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Lattice Energy Current in Solids and Lattice Thermal Conductivity. I

by Ph. Choquard
Institut Batteile, Genève

(10. XL 62)

Abstract: An accurate description of the non-equilibruim Lattice Properties of Solids
assumes a detailed knowledge of the energy current carried by elastic waves. An analysis of this
quantity is presented in this paper, where complete expressions for the harmonic and anharmo-
nic part of the homogeneous and inhomogeneous components of the energy current are derived.
A particular feature is the occurrence of a non-diagonal contribution to the homogeneous and
harmonic part of the energy current. Some consequences of the features dealt with on the
frequency and temperature dependence of the Lattice Thermal Conductivity are discussed,
detailed calculations being referred to a forthcoming paper.

Introduction and Summary

With a view to refining the theory of some solid-state kinetic coefficients such
as the Lattice Thermal Conductivity of Solids (hereafter referred to as L. T.
conductivity) on the basis of modern dynamical theories of dissipative phenomena, a
more exhaustive analysis of a key quantity relevant to this transport property,
namely the energy current carried by elastic waves, is instrumental. This is indeed
necessary when it is noticed that the standard expression known to describe this
observable, an expression generally derived on the basis of qualitative arguments,
corresponds only to the homogeneous and phase-independent component of the
harmonic part of the energy current take into account. Derivation from first, even
though elementary, principles of more complete expressions is therefore called for
and has been felt worth a separate presentation considering the new features
revealed by the analysis and the variety of relevant consequences.

Accordingly we devote the beginning of this paper to the establishment of a
general Ansatz for the energy current flowing through a unit surface (taken as the
face of unit cell) in a solid in terms of the velocities and forces experienced by its
atoms, under the assumption that the atoms are confined in their cells. This
Ansatz is shown to satisfy the conservation law for the energy in form of a difference
equation. Next, when taking the elastic limit of the Ansatz, the expression obtained
is compared and identified with the one derived in classical field theory from a general
anisotropic Lagrange density. Then, following some elementary generalizations,
an analysis of the inhomogeneous (space dependent) energy current is made in terms
of energy-current waves. These oscillatory components are indeed necessary in
investigations dealing with the wave-number dependent L. T. conductivity and more
generally for treating dynamical and statistical aspects of correlation effects related
to energy disturbances in solids, such as those produced by energy spikes for instance.
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Next comes the introduction of elastic waves and normal modes. Since this step
involves mostly well-known algebra, resulting compact expressions only are given
and their major features discussed. However, owing to its particular interest, closer
attention is paid to the homogeneous part of the energy current, both on its
harmonic and anharmonic parts. The harmonic part is shown to consist of the usual
expression (in which the occurence of the familiar group velocity is strictly derived)
and of an additional contribution involving pairs of waves of different polarizations
for the same wave vector. Whereas the former is, in classical language, phase
independent (quantum mechanically: diagonal), the latter is phase dependent (non
diagonal). Another diagonal contribution appears also in the anharmonic part of the
energy current and arises from all anharmonic terms which are even in the number
of interactin waves. The formal expression for this contribution is correspondingly
given.

In the next paper two consequences of the above analysis are tested within the
scheme of the classical theory of the L. T. conductivity as based on Kubo's
formalism.

First, since phase-dependent observables are expected to give rise to resonance
phenomena, the effect on the non-diagonal harmonic energy-current on the L. T.
conductivity's frequency-dependence is investigated. It is shown to yield a non-
vanishing high-frequency conductivity, thus affecting qualitatively the high-frequency

behavior of a thermal conductor commonly interpreted on the basis of a

simple heat diffusion equation.
Secondly, since phase-independent observables predominantly affect the static

part of kinetic coefficients, the effect of the diagonal part of the anharmonic energy
current on the static L. T. conductivity is also investigated for a pure anharmonic
solid. When dissipated through second-order, non-diagonal three-wave interactions,
the diagonal quartic terms of the energy current are shown to produce a
temperature-independent contribution to this transport property. This predicts a high
temperature saturation of the L. T. conductivity, even for a pure crystal, as
contrasted with the familiar Debye 1/T law.

However natural the above effects appear, their partial validity within the bulk
of effects contributing to the overall thermal conductivity of solids makes them
probably of more theoretical interest, except under extreme experimental conditions.

I. Lattice Energy Current

a) Ansatz for the Lattice Energy Current

For simplicity we consider the case of a mono-atomic simple cubic lattice with
atoms bound by two-body forces. The generalization to the realistic case of
polyatomic lattices where the atoms are held by two and more body forces will prove
straighforward later on.

A useful link for finding the Ansatz for the energy current is to think in terms
of the power delivered from a lattice cell s' to a cell s" via the interaction between
the atoms located in those respective cells. Here s' and s" are vectors pointing from
any given origin toward the center of the cells. These powers, denoted by Pfs', s"),

are partial rate of change of energies per unit time, called Efs', s"), which can be
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expressed in terms of the velocities and forces experienced by the atoms along the
following lines, essentially inspired from Peierls' original procedure*).

Let
cpfs',s'>)^<pf\s' -s'' + us,-us„\)

<pfs", s')

be the interatomic potential expressed as a function of the relative displacements
us, — usi of the atoms located in the equilibrium position at the site s' and s". The
lattice energy is given by

E Z\mùî+\Zcpfs>,s").
s' s's"

In computing its rate of change per unit time, rate which is obviously zero, the
second order time derivatives of the atomic displacements which occur can be
eliminated with the aid of the equations of motion. For the oc-th (a 1,2, 3) component

of the atomic displacement us-, it reads:

~— Y wis', s")dus,a A? Y
d

_
oc s„

- E-vi r Vis', s")^f ò(uS',a - us", oc) rV '

=* TFafs',s").
s"

Partial forces have been introduced and defined by

Fa(s' s") - ^~
d——- cpfs', s") (1)av ' 0(us% oc — Us", oc) rx '

One has then

0 £ E \Em^,^s;, a ~E (v. - %'.«) (-) Fa(»'. s")\
a=l 1 *' s's" J

È E\Ms;«Fafs', s") - i(i,„ - V,J Fafs', s")\
oc=l s',s" I >

ÈEÌ(us;aAus%JFAs',s")
<x=l s',s"

£ Efs', s") £ Pfs>, s").

In the above identity, partial rates of change of energies have been introduced and
defined by the relation

Efs', s") Pfs', s") jr\ fus, a + v,J Fa(s', s") (2)
a=l2

*) R. E. Peierls: Annalen der Physik 3, 1060, 1929. Well suited to our purpose we favor
this discrete lattice approach although another procedure might be followed along the lines
indicated by J. G. Kirkwood: J. of Chem. Phys. 14, 180, 1946.
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These quantities satisfy the obvious but important antisymmetry relation :

P(s', s") + P(s", s') 0 (2')

They serve in particular to express in a properly symmetrized manner the rate of
change of the energy contained in an arbitrary portion of the lattice. Imagine for
this a portion I of the crystal surrounded by a portion II, the rest of it; one has
indeed:

Ei=-E„ E Ep(s'-S")-
s'cl s"cll

If in particular the portion I is reduced to one cell, labelled with the vector s, one has

È(s) £P(s, s'), (3)
s'

no restriction on the summation over s' being necessary since Pfs, s) 0.
We can now proceed to establish the Ansatz for the energy current. Let us do

that inductively in starting with the one-dimensional case. Consider a cell s in a
chain of lattice constant a; the total power delivered across the edge located at
s + a/2, from left to right say, is obviously given by

E E px A).
s1 ^ .c s" > s

It is now natural to associate an energy current Qfs + a/2) flowing in the same
direction as being proportional to (— 1) times this power; the current having the
dimension of energy times velocity or power times length, we may choose the
proportionality constant as a and check later on whether this choice is correct. We set
therefore

Qfs + a/2) - a £ ^X^X- (4)
s' ^ s s" > s

In order to check the conservation law for the energy, we consider also the current
flowing from left to right, through the edge of the cell s located at s — a/2, namely

Ç(s-a/2) -« X E PXX
s' < s - a s" > s - a

and we form the difference of the two currents. There appears a one-by-one
cancellation of all the terms for which the segment s" — s' crosses both edges. There
obviously remains the contributions from what leaves the cell s minus what enters
in it; i.e. with s' or s" s, s" — s' r and the antisymmetry property (2')

AA^ - JT {X*. s + r) — Pfs - r, s)}
r > 0

~ E {Pfs, s + r) + Pfs, s - f)}

- X Pfs,sAr) -ZPfs,s>)
r ^ 0 s'

n(3)

Ì AQfs) - Efs) j

(5)

or, with equation (3)

(5')
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The continuity equation is satisfied in a difference form. This difference in the
1. h. s. goes over to the usual differential at the limit a -> 0, thus fixing the choice
for the proportionality constant a. It is convenient to rewrite the definition (4)
in terms of the variables r s" —- s' and t s — s', variables which convey the
effect of nearest neighbor, next-nearest-neighbor interaction and so on. We then have

Qfs) - a X *E P(s - *¦ s - * + y) (4')
r > 0 t 0

and notice that for a given distance r, there are rja contributions corresponding to
the possible origins s' s — t of the partial powers, origins which are located in the
center of cells belonging to a rectangle of surface r • a drawn from the right-hand
edge of the cell s to the left.

For the two-dimensional case we consider in a square lattice of basis vectors
a, =¦- fa, 0) and a2 (0, a) the current Q, flowing in the direction 1, say, through
the right-hand edge of the lattice cell s. This current is given by a double sum of
partial powers Pfs', s") over pairs of cells (s', s") such that the vector s'' — s' crosses
the edge. Introducing again the now vector variables r s" — s' and t s — s',
then, for a given r, of components r,, r2, there are as many contributions as origins
of partial powers located in the center of cells which are found in a parallelogram
drawn from the right-hand edge of cell * in the direction — r. The surface of this
parallelogram being r, a, this number amounts exactly to r, aja2 r,\a. We notice
also that, r, being positive, for r, > [ r2 j there is a contribution to the current from
the cell s, whereas for r, < I r2 I there is no contribution from that cell. Finally, if
r, r2, we adopt a convention in order not to count twice (i.e. in Q, and Q2) the
contributions from the diagonals: either in introducing a weight factor of 1/2 or
in association each corner of the cell * to one edge. With these remarks we can write

Q,fs) - a £ V Pfs - t, s - t + r) (4")
r(l) t{r)

where rft) means that one has to sum over the half plane with r, > 0. The
conservation law for the energy is checked in forming the appropriate combination of
four current components, namely

<3i(si + y> S2) — @i(si ~ T - S2) + Ç2(si' s2 + f — Qz(si' s2 - y) •

Mutual cancellation of terms is first checked for a given r; then taking into account
the above remarks and the antisymmetry property (2'), this difference is seen to
yield :

T

±(A1Q1 + AtQt) -£P(s,s+r) - Efs) (5")
r

where the summation over r now extends over the whole plane. The limit a -> 0

applied on the 1. h. s. yields, as expected, div Q. In the three-dimensional case no
new feature appears, and we can write for the r-th component fv — 1, 2, 3) of the
current flowing through the face of the cubic cell, which is normal to the direction v

Qv(s) -a££P(s-t,s-t
r(v) t(r)

(4'")
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where again, for a given r, the number of contributing partial powers amounts to
rv • a2/«3 rv\a. The symbol rfv) means that one has to sum over the half-space
with rv > 0. In this case, the continuity equation reads, in difference form

i Z AJQ,(') -Efs) (5'")

b) Elastic limit

From the above definition of the current flowing through the face of an
elementary cell we easily get the definition of the energy current density gfs), namely

As) =-^QM - ~E Ep(s -t,s-t (6)
r(v) t(r)

It is instructive at this stage to carry out the elastic limit of equation (6). Starting
with equation (2) for the partial power

P(s',s")= E i(«.>+V,JW/ (2)
oc =1

we take the harmonic approximation for the partial forces, which yields, according
to equation (1),

Fa(s', s") - X ?««•(*' - s") ¦ K,,, - «,,,)
a' «- 1

where

9W(f) dr« drar<P(r) (7)

and then pick first order contributions in the time and space derivatives of the
atomic displacements us-, us- expanded around their value at the site s. This gives

Er, ÒSv- Us-«'

and leads to

gvfs)

(V. + «.-,¦)

^T E E E *»».a' «PaccX) r«
act'v' r(v) t{r)

dss *•<* (8)

The summation over tfr) can be carried out since it appears as dummy variable.
It amounts to the important number rja, so that

g,(») - i E,E «..« r> VaAr) r, ~-
a a' v' r(v)
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The summation over rfv) can also be performed. Introducing the tensor of elastic
energy constants

Vit ^r Erv <P*Ar) rv
r{v)

l?-\ Er*<P«Mr*
(9)

owing to obvious symmetry properties; finally we get

,w - E *«.« vil ÒSv ¦*«, oc' • (8')

We ought to compare this expression with the one derived in classical field theory
from the corresponding Lagrange density. Going to the elastic limit in the potential
energy we get, in setting s" s' 4- r, s' s, the following expression for the
potential energy density

/ „\ I nf ' V"» / \ Ì dws,oc dus,a'
v(s) Y A i 2^ E <P.Ar) rv r, }-^ '—

oc a ^ r ' òr,

with equation (9)
__

1 yi ,¦ dus, a
_ }«!,.'

a a
v v'

Now with £ mjaz the anisotropic Lagrange density reads

T i \ 1 t-t '2 1 rr ev' ÔMs, a dws, a'

oc a
r v'

from which is derived the expression for the energy current density*)

dL(s)
gv(s) E dus.o

ÒSv

E \«r«: dus, a'
ÒSv'

which means exactly equation (8').

c) Generalizations

Equation (4'") can readily be extended to those cases where many-body forces
cannot be neglected. Consider for illustration 3-body forces. If they are derived
from a potential energy of the form

F««) X 27 <p(As"y'"),

*) G. Wentzel: Einführung in die Quantentheorie der Wellenfelder (F. Deuticke, Wien 1943),
equation (2.2) p. 8. For the purpose of comparison, we find it more appropriate to work with
the unsymmetrized strain tensor than with its symmetrized and antisymmetrized components
more familiar in elasticity theory.
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partial powers, depending upon 3 sites, can be defined as follow

Pfs', s", s'")

E (- 3«*,,. -jr- + «,.. -^- + Mi> -^- + *v,a -A.) X- ç,(,', S", O

Their contribution to the energy current, Qvfs I 3-body), can be expressed as a sum
over a triplet of sites fs', s", s'") such that the vectors s" — s' and s'" — s' or
s'" — s" cross the face of the cell normal to the direction v. In addition to the
variables r s" — s', t s — s', one introduces a third variable z s'" — s" so

that
Qvfs 13-body) - « 27 27 27p(5 - *• * - * + r's - * + r + 2) '

r(v) t(r) z(t.r)

the domain of summation of z consisting of two interpenetrating skew pyramids of
vertices s', s" intersecting at the face of the cell s normal to the direction v.

Finally the generalization of equation (4'") to the case of polyatomic lattices is

obvious. One has indeed to introduce partial powers depending not only upon the
sites but also upon the indices of the atoms in the sites, and sum over pairs (or
triplets) such that Pfs', s") entering the above formulae becomes, in the case of

e.g. two-body forces:

Pfs',s")= 27 Pn;n-{S',S"),
ri, ri" 1

n0 being the number of atoms per cell, with

pri,rifs', s") E Y (*X»'.a + "**»".«) F«.»>- (s'' s")
a

and

X n „¦(*', s") - -,,
ò

.- cp„. n.(s', s")a-n •" v ' d(us',ri,(x — Us\ri',ot) Tn-nK '

As detailed calculations have shown that no new feature was introduced by these
generalizations except the one already revealed by the model case, further development

will be made on the basis of the mono-atomic three-dimensional case, which
obviously simplifies notations.

d) Energy-current waves

The relations established so far are expressed as functions of the lattice site s.

In view of future studies on correlation effects related to energy disturbances in
solids, it is natural to derive dual expressions as functions of a wave number k
belonging to the first Brillouin zone of the reciprocal lattice. For this, we start
again from equation (4'")

QAs) - a 27 27 X* - t, s - t A- r) (4"")
r(v) /(/¦)

and analyse the partial powers as follows

Pfs', s") Pfs', s' + r) 27 etks'Pfk, r) (10)
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Pfk, r) X 2J e~iks' Pfs', s' + r) P*f k, r)

423

(H)

the asterisk meaning complex conjugate.
Introduction of (10) in (4'") yields, with s' s — t

QA*) - <* E E E ^1*-'p(k' ')¦
h r(v) t(r)

This transformation enables an independent summation over tfr), for which we
introduce a function

6vfk, r) =a X X*'. (12)
t(r)

In particular
0,(0, r)=rv. (12')

With this definition, we obtain

QÀs) 27 eiks(-1) 27 «.(*•r) p(*>r)
k r(v)

(13)

Besides, we can introduce energy-current waves of amplitude Qvfk) by the
decomposition

(14)

with

QM EeiksQM
k

\
QÀk) ~ 27 e-iHsQM Qlf- k) (15)

Substitution of (14) in (13) gives the general relation between the amplitude of the
energy-current wave and the partial-power waves

x(*)=x-i)27e*(fexx*. r)
rjv)

(16)

From equation (16) one can easily go to the long-wave limit. The converse however
would not be so trivial, and in this respect the above relation may be instrumental
in studying the dynamics of the short-wave spectrum of highly localized energy
fluctuations in crystalline lattices. We can close this part of our analysis in writing
the continuity equation (5'") in k space. With

Efk) N 27' Efs)

and

XÇ,W-X1 -e-ih>aQvfk)

the continuity equation reads, always for our simple cubic lattice

Efk) A E ^fl-e-iknQÀk)=0- (17)
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e) Introduction of lattice waves

Although wave-number dependent, the components Qvfk) are still functions of
the atomic displacements and their time derivatives in the s representation.
Introduction of lattice waves and normal modes is therefore the next step with which
to proceed. Since this step involves mostly standard calculations, these will not be

reproduced here in details. The nature of the general component QA[k) will be
described and closer attention paid to the steady component QvfO) owing to its particular

interest.
Expansion of the interatomic potential in powers of the atomic displacement

followed by the introduction of the amplitude wp(q) of the mode of wave vector q
and polarization p through the usual transformation

,tqs K(q) *>a,p. (is)

where X£fq) are the elements of the polarization matrix, yields the well-known
expression for the energy of an anharmonic solid which can be written in compact
tensor forms as follows

E — w • w + — -±02: w • w -4- — Nfl¥&3:w-ww + ---. (19)

Here w is a tensor of rank 1 with 3(Ar — 1) components wp(q), and &n a tensor of
rank n containing a sum over n space variables of multiple derivatives of order n
of the crystal potential, multiplied by a w-product of elements of polarization
matrices X*fq); An Afq) with q q, 4- q2 4- • • • qn and Afq) is the function
familiar in lattice dynamics, namely

A(a)= ye^ \N 9 0,2^W V Ì 0 0 otherwise10

t being any vector in the reciprocal lattice. The harmonic part of the potential
energy reads in particular

^EA(qNql E, [ll^d-^l (1 -J*')] -Xifq) >2%(q') -wqit
q,q a, a
p,p'

1|?X u'i.p Kp

¦Wq',P'

since its diagonal, with the eigenvalues

<W Kp óp-p' <p E, [ì E ^y? (2 - 2 cos«r)] xPM KHq) ¦ (20)
a, a

It will be convenient to rewrite this bilinear expression in matrix form instead
of tensor form, w becomes a column vector with 3fN — 1) components, w+ its
hermitian conjugate, X a diagonal matrix; introducing a definition for the quantity
in parenthesis, namely

KAq) ^yEi 9WM (2 - 2 cos q r) (21)
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equation (20), together with the eigenvalue equations and the unitarity condition
applying to the polarization matrix, then reads

X X+AX, (20')

AI= XX, (20")

X+A XX+, (20'")

X+X 1 (20"")

These equations will be used presently.
In carrying out parallel calculations on the partial powers which in turn are

introduced in equation (16), an expansion of the following form is found for the
general component Qvfk) :

QÀk) ~ {^W^ti Aww + AÌ^- xl:iè'ww + '--} (22)

where the xl. result from combining partial powers with the function 0„ and summing

over rfv) and where Anf— k) Afq) with q — k A- q, A- q^ A ' ' ' Çn-
Notice that in the form (22), Qvfk) conveys the effects of the anharmonicity of
interatomic forces. It is obvious that the energy transferred through the lattice
carries also its anharmonic part. Even if small in magnitude, this part may produce
first-order effects which should not be overlooked.

f) Homogeneous energy current

We proceed in studying the steady component QA[0), its harmonic QVi Ä(0) and
anharmonic part QVi „(0). Consider first QVi Ä(0) ; remembering that öv(0, r) rp, it reads

1 A,
Qv,hfO) - 9» tTt %i-~ y,: i w w

E ^t1E [(- o E r* —~- a+^ v - eiq,rn2 N --q, q x oc u r(v)
P.P'

X Xifq) ¦ XAq')

-4wE E\E"r~ <P«Ar) 2 sin q r] ¦ X*(q) X?fq) ¦ i èq,t
q oc oc' L r[v)

P,P'

Wq,p-

Defining the quantity in square parenthesis by

ßL'(9)-27^^-2sin9r-yi7^-^1•2sin9'• (24)
r(v)

QVi h (0) can be written in compact matrix form :

Qv,hf0)=^TWw+X+BXi™- (23')2 JV

Now inspection of (24) and (21) shows the important connection

Bvfq) -è~Mq) (25)

a relation which will be used to transform further equation (23').
28 H. P. A. 36, 4 (1963)
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To do so, we start from (20') that we derive on both sider with respect to qv

oqv oqv
*AA,X4-X+A--^
oqv oqv

the second term on the r. h. s. is precisely the term we want. In applying the eigenvalue

equations (20'), (20") and taking into account the unitarity condition (20'"),
one finds:

X+ Az*r x X+ B X -A!_ + [A, Y-]
0 qv 0 qv

L J (26)

with [X, Y-] XY" - Y»X
ÒX+
oqv

yv+ _ yv _

x,

y;Aq)= E A>qA Kp{q) ¦ xpAq) ¦

a 1

Thus

<?v,*(0) ~w{w+\2 EqAiè + w+A^YV

(27)

(27')

(27")

(28)

With Xg7p WgiP and the definition of the group velocity

1-P ~ Oqv mi-P

the eigenvalues of the diagonal part read

J_ d
— rv

2 dqv I'P ~ i'P 'm<i,P ¦

Equation (28), then, reads, in scalar form:

(29)

<X„(o) ^-27{c;
p,p'

q,P™q,Piwq,pWq,PÔp,p A -r-fu>q,p—l»q.p) ^ pp""-q,p)Yfp,iwq,p, •»;/}. (28')

This equation is amenable to comparison with the standard form if the usual
transformation to normal coordinates is made, namely:

2 coq,p
faq,p A a-q,p)

pfM< q,P «X»)q.pi

(30)

After some manipulations showing cancellation of all antisymmetric contribution
in fp, p'), the final formula reads:

m»=^£c;q,P wq,P aq,P aq,P

"w E y K.*> - m\,p'ì Ypp'(q) y (ll<°<i,p + 1l(o^
q

p.p

K \l/2 Î KP' aqq,P

(28"
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The proof of (28), (28') and (28") for polyatomic lattices follows exactly the same
lines, so that it will be spared here. The summation over p can readily be extended
from 3 to 3 n0.

The first part, which is phase independent, represents the well-known expression
for the steady component of the harmonic energy current in which the presence of
the group velocity has been strictly derived. A few words about the group velocity
ought to be said here.

Inspection of the oscillatory component Qv,hfk) shows indeed that the concept
of group velocity is applicable only for k 0. This is due to the function 6vfk, r),
which acts as a difference and displacement operator. For instance, in the one-
dimensional case, where the function 0„ can easily be evaluated

rZZ3 i p-ikr

t o

the harmonic part of Qfk) reads

_
1 V A (q A- q' - k)E -(? +/ "k) [(- *¦) E -^r- G + ^ (* - «'">]{

a a' L v ¦>. ft J2 AT
qq L r >0

and becomes, after some manipulations

Qkfk) 27 a ¦ y~r^r ~ [<»% - k) - 0)%) + »»(*)] » W, w'q_k (31)
q

where we notice a suggestive combination of eigenvalues taking the place of the
group velocity. In the three-dimensional case the situation is more complicated
owing to the presence of polarization matrices. The above example however
illustrates clearly the limit of validity of the concept of group velocity. Furthermore
the interesting long-wave limit can be investigated in general by further application
of the method used to transform the steady component (23) in the convenient form
(28). Higher derivatives of the eigenvalues Xq<P appear as well as additional phase
dependent contributions*).

The second part of formula (28') represents a new contribution to the
homogeneous energy current which is carried by excitations mixing two different
polarizations for the same wave vector. This part is phase dependent, and the excitations
oscillate rapidly with the angular frequency œ qp — eo9jf>. Several interesting
consequences of dynamical and statistical nature follow from the presence of these
terms; for instance dynamic effects are expected to manifest themselves through
resonance phenomena of which a prototype will be treated in the next paper in
connection with the frequency-dependence of the L. T. conductivity. Statistical
effects will also be met there, but we can readily estimate the simplest one in
computing the mean square average (AQly <Q?> since <(?*> 0 of the energy current
given by (28") for a classical harmonic crystal in equilibrium. In this respect it is

*) Cf. L. Salem, Phys. Rev. 125, 1788-1791 (1962), where a similar situation is studied in
Hilbert space.
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convenient to introduce action-angle variables by the following transformation

aq,P V' Aq,P eXPia-q,p- (32)

As a function of these variables the harmonic energy is known to read

Eh Zj mq,p q,P
q,p

and the volume element in phase space is simply dAqP da.qP tor each oscillator.
Making use of the classical expectation value

<A*t i^p w
we find, after some manipulations, the illustrative formula

(K T)2
27 <«(°)2> A'2

X { ECq'p A E Je VIA*) *&<«> [Kp - <,) [£- + ^)]' }
•" e' p, p

(34)

which settles on proper ground the question of the relative importance of the phase-
dependent part of the homogeneous energy current.

Going back now to equation (22), the presence of anharmonic contributions
suggests a study of the phase-independent part of its homogeneous component in
order to detect sources of first-order effects. As in the well-known case of the potential

energy, these terms are found in all interactions involving an even number of
waves (4, 6, etc.). Following the introduction of action-angle variables, the process
of averaging over the phases produces the well-known pairing rule between modes
of different wave number in such a way that the phase average homogeneous and
anharmonic energy current takes the following form, written in compact notation :

07.{0) TV {3AA Xl -A • co-iA A 5 • 3^X £ : A m-iA u-i A X
(35)

where A and co-1A mean tensors of first rank with 3 n0 N — 3 components Aq p and

^q,p ' ^q,p-
The effect of the (non-dissipative) quartic terms of (35) on the high-temperature-

dependence of the L. T. conductivity will be estimated in lowest order in the next
paper, under the assumption that dissipation is provided by the three-mode-interactions

of the potential energy. Further consequences borne out of the above
analysis will be presented in subsequent papers, where the treatment of some
fundamental Lattice Properties of Solids will be handled anew.
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Corrélations angulaires directionnelles bêta-gamma dans la
désintégration de Sb124, Eu152 et Eu154

par Jules-Willy Sunier
Laboratoire de Physique des Hautes Energies, E. P. F., Zurich

(4. VIL 1962)

Summary. The ß-y directional correlations involving the first forbidden 2,31, 1,48 and 1,84
MeV beta transitions in the decay of Sb124, Eu152 and Eu154 have been measured as a function of
beta particle energy. Near maximum beta energy the anisotropy factor e(W) in the correlation
function N(W,0) 1 + e(W) P2(cos0) was found to be £(4,74 m, c!) -0,387 ±0,012,
£(3,64) -0,447 ± 0,013 and e(4,33) -0,315 ± 0,034 for Sb124, Eu152 and Eu154 respectively.

The absence of a term P4(cos0) in the ß-y correlation functions provides further evidence
for the first-forbidden character of the involved beta transitions. Pure jBij transitions are
excluded from the experimental values of e(W) but the data imply that this matrix element
must contribute very significantly. The nuclear matrix elements involved in the observed beta
transitions have been computed from the measured values of s(W) and taking into account the
experimental data of the shape correction factors and of the ß-y (circularly polarized) angular
correlations. The results are characterized by the predominance of the jBjj matrix element
and yield for Sb124, Eu152 and Eu154 respectively:

\JBijjR j (1,76 ± 0,22) • IO-2; (2,86 ± 0,36) ¦ IO"3; (1,20 ± 0,14) • IO"3

\JrjR j (1,7 ±1,1) • IO-3; (5,5 ±3,0) • 10"4; (0,5 ±1,5) • IO"4

\JiaxrjR\ (1,4 ±1,4) • IO-3: (0,97 ± 1,70) • 10~4; (2,3 ±1,4) • IO-4

\fia j (1,43 ± 0,77) • 10~4; (1,97 ± 0,82) • 10~4; (0,73 ± 0,50) • 10^4

(R is the nuclear radius in units h me c 1). Selection rules suppressing the matrix
elements other than J\Bjj are discussed. The results are compared with the predictions of the
Conserved Vector Current Theory.

I. Introduction

L'hypothèse de la non-conservation de la parité dans les interactions faibles,
émise par Lee et Yang1) en 1957, a stimulé de nombreuses études théoriques et
expérimentales dans le domaine de l'interaction bêta. La clarification de nos
connaissances sur la forme de l'interaction elle-même en est la conséquence directe.
D'une part, la mesure de la distribution angulaire des électrons émis par des noyaux
polarisés2) et l'étude des corrélations angulaires bêta-gamma polarisés circulaire-
ment dans les transitions permises ont établi que la violation de la parité est maxima.
D'autre part, la mesure par Goldhaber3) de l'hélicité du neutrino et l'étude des
corrélations angulaires electron-neutrino4) ont confirmé la théorie à deux composantes
du neutrino et précisé que l'interaction bêta est uniquement de forme vectorielle
(V) et pseudo-vectorielle fA). En outre, l'expérience de Burgy et alA) sur la
désintégration de neutrons polarisés ainsi que la mesure de la durée de vie du neutron
libre6) et de O14 7)8) ont permis de déterminer le signe et la grandeur des constantes
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de couplage de l'interaction. Il est dès lors établi que l'interaction bêta est du type
V — A, avec CA [- 1,19 -j- 0,03] Cr.

L'étude des transitions bêta en corrélation avec les transitions électromagnétiques

qui leur succèdent est ainsi devenue un moyen d'investigation direct de la
structure nucléaire. La forme de l'interaction bêta étant admise, il est désormais
possible de déterminer expérimentalement les éléments de matrice nucléaires de
l'hamiltonien d'interaction. Leur calcul théorique n'est possible que dans quelques
cas, car il nécessite une connaissance complète des fonctions d'onde globales des
états initial et final du noyau. Ces fonctions peuvent être évaluées sur la base des
modèles nucléaires, mais seule une théorie exacte des forces nucléaires pourrait donner

des résultats satisfaisants. L'accumulation de valeurs expérimentales apporte
une contribution à l'étude critique des modèles nucléaires et à leur perfectionnement.

Dans le cas des transitions permises, seuls deux éléments de matrice interviennent:

/1 et J a. Ils sont entièrement déterminés par la mesure du log/ t et de la
fonction de corrélation bêta-gamma polarisé circulairement. Pour les transitions
interdites du premier ordre, six éléments de matrice entrent en jeu [J"y5, J a • r ;

\r,\a,\axr; j Btj] dans le cas le plus général. Il est nécessaire de faire intervenir

pour les leptons des fonctions d'onde relativistes, solutions de l'équation de
Dirac pour des particules dans un champ coulombien. Les différentes formes de la
probabilité de transition sont ensuite développées en une série de puissances
décroissantes du facteur | (ocZ)l(2R). et. est la constante de structure fine, Z la
charge du noyau et R son rayon. Dans le cas général, le premier terme de cette série
contient £2 et ne dépend pas de l'énergie W de la particule bêta émise. Pour la
plupart des transitions interdites du premier ordre, il est suffisant de ne considérer que
le premier terme du développement. C'est l'approximation £. Dans cette approximation,

seules deux combinaisons linéaires des éléments de matrice caractérisant
la transition bêta peuvent être déterminées.

Cependant, il existe quelques transitions pour lesquelles l'approximation | n'est
pas valable. Leur valeur ft est anormalement élevée. En outre, le facteur de forme
du spectre, la corrélation directionnelle bêta-gamma et le facteur de polarisation de
la corrélation bêta-gamma polarisé circulairement dépendent fortement de l'énergie

de la particule bêta, le dernier facteur présentant de plus une dépendance angulaire.

Pour les transitions impliquant une différence de spin de 1 entre l'état initial
et final du noyau, le nombre des éléments de matrice nucléaires inconnus est réduit
à quatre. Ces quatre éléments peuvent, en principe, être déterminés univoquement
par l'ensemble des mesures énumérées ci-dessus. Le fait que ces transitions ne puissent

être traitées dans l'approximation £ est attribué soit à une annulation mutuelle
des éléments de matrice intervenant dans le premier terme du développement en f,
soit à l'influence d'une règle de sélection qui tend à diminuer la contribution de
certains de ces éléments de matrice. Les modèles nucléaires déterminent ces règles de
sélection.

Plusieurs cas typiques ont été soulignés par Kotani9), en particulier le Sb124,

l'Eu152 et l'Eu154. Nous nous sommes proposé, pour ces trois isotopes, de mesurer la
corrélation directionnelle des cascades 3~(ß) 2+(y) 0+ en fonction de l'énergie W de
la particule bêta. Ces mesures, comparées à celles du log/1, du facteur correctif du
spectre et de la corrélation bêta-gamma polarisé circulairement, nous ont permis de
déterminer les éléments de matrice nucléaires des transitions bêta envisagées. La
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confrontation des résultats devait mettre en évidence l'influence d'une règle de
sélection réduisant la contribution des éléments de matrice $ a, $ r et $ O X r par
rapport à l'élément de matrice jBij. Le cas des deux noyaux Gd152 et Gd154,

situés de part et d'autre de la limite des noyaux déformés, était en outre intéressant

pour tester la validité de la règle de sélection K, déterminée par le modèle
collectif de Bohr et Mottelson.

Cette étude développe essentiellement les résultats de publications antérieures
et tient compte des mesures de corrélations bêta-gamma polarisé circulairement
dans la désintégration de Sb124 et de Eu152, effectuées dans l'intervalle par d'autres
auteurs10-14). Elle confirme les résultats de mesure de la fonction de corrélation

directionnelle bêta-gamma, donnés précédemment par l'auteur10) pour l'Eu152
et par Steffen15) pour Sb124. Par contre elle est en désaccord avec d'autres travaux
sur l'Eu15216)17)18). L'étude de l'Eu154 a été développée. En particulier, l'utilisation
d'une source liquide a permis de lever l'indétermination due à l'atténuation de la
corrélation, atténuation provoquée par l'interaction des moments nucléaires avec
les champs électrique et magnétique dans un milieu polycristallin.

Dans un premier chapitre, nous rappellerons brièvement les éléments théoriques
nécessaires à la compréhension du problème. Une deuxième partie sera consacrée à

la description de notre dispositif de mesure, des sources et des différentes corrections

qu'il convient d'apporter aux résultats. Les résultats et le calcul des éléments
de matrice seront présentés dans un troisième chapitre, tandis qu'une dernière
partie sera réservée à une discussion et à l'interprétation de ces résultats.

II. Rappels théoriques et formules utilisées

1. Probabilité de transition et éléments de matrice nucléaires

Le calcul de toute fonction de corrélation bêta-gamma fait intervenir la probabilité

de transition bêta entre deux états nucléaires | i > et | / >. Cette probabilité
est proportionnelle au carré de l'élément de matrice < / | Htf | i > de l'hamiltonien
d'interaction. Dans le cadre de la théorie V — A, cet élément de matrice a la forme:

</ | Htf \ *> E Ê [d* [# X(X - CA y.) r-{k) vf]
X [fe y„(l + ys) wJ + h ¦ c

expression dans laquelle tpf] et tp^ sont les fonctions d'onde d'un nucléon d'indice k
dans l'état initial et final du noyau, xpe et ipv les fonctions d'onde de l'électron et du
neutrino, x~ la composante de l'opérateur d'isospin transformant un neutron en
proton, et yß les matrices de Dirac. L'intégrale s'étend simultanément aux coordonnées

spatiales des nucléons et des leptons. L'interaction bêta est locale et la
longueur d'onde associée à l'électron et au neutrino est beaucoup plus grande que les
dimensions nucléaires ; il est donc légitime de calculer (j | Hit [ i) en effectuant
un développement limité des fonctions d'onde des leptons, solutions de l'équation
de Dirac pour une particule dans un champ coulombien. La densité d'interaction se

décompose alors en une combinaison linéaire d'éléments de matrice nucléaires qui
contiennent toutes les variables dynamiques de la transition. Ces différents
éléments de matrice sont de la forme <y* | Ox \ ipA, que nous écrirons simplement
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Mx. L'opérateur 0X doit satisfaire les règles de sélection déterminées par les changements

de spin et de parité entre les états nucléaires initiaux et finaux:

[ h — If | < X < | 7", -f- J/ et m TTf nx -f 1.

X est l'ordre tensoriel de l'opérateur 0A. Le moment angulaire total emporté par
la paire electron-neutrino est égal à X.

Les éléments de matrice contribuant aux transitions bêta interdites du premier
ordre sont énumérés dans le tableau 1. Rappelons que ces transitions sont caractérisées

par An — 1 et ZlJ 0, -j- 1, ±2.
Tableau 1

Eléments de matrice des transitions bêta interdites du premier ordre

Mx fOx X AI

Ca j i Va

CA f a ¦ r 0 0

Cv J r 0, ± 1

Cv f i a 1

CA f i O X r 0-^0 interdit

Ca f Bu 0, ± 1, ± 2

r 2
Ca J [dt Xj A- Xi ex,- — - ôtj a ¦ r] 2 O-j-0, l-s-0, 0-s-l

interdits

2. Corrélations bêta-gamma

Soit un noyau effectuant une transition entre les états J0 et I1, avec émission

d'un électron d'énergie W (impulsion p). Soit une transition entre les états Ix et I2,

avec émission d'un photon d'impulsion k et de multipolarités L et L' (j Iy — I2\
y. L, L' y^\Ix A- I2\). La probabilité de détecter simultanément les deux radiations

dans les directions p et k s'exprime par:

NfW) ~ 27 E Xa> GnX, (J„ hh,L L') PAp ¦ k) (2)
n XX'

Les facteurs GnUJ sont des coefficients géométriques qui ne dépendent que des

règles d'addition vectorielle des moments angulaires. Les Pnfp • k) sont les
polynômes de Legendre de degré n. Les indices X et X' caractérisent l'ordre tensoriel des

opérateurs 0} et Ox-, responsables de la transition bêta. Les paramètres de particules

bnir contiennent les variables spécifiquement nucléaires sous forme d'un
produit d'éléments de matrice :

Kxr *»xAW, I) MÀ M, (3)

W est l'énergie de la particule bêta. | (oc Z)/f2 R) est le facteur d'énergie coulombienne;

a est la constante de structure fine, Z la charge du noyau et R son rayon.
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Il est indiqué, pour le calcul de la probabilité de transition, de développer les
coefficients anlv en séries de puissances décroissantes de |. Pour les noyaux
intermédiaires et lourds, | est de l'ordre de 10 et ces développements convergent rapidement.

Dans le tableau 2 nous indiquons la puissance de | et de W qui intervient
dans les facteurs anXV, pour chaque combinaison bilinéaire des éléments de matrice
Mx et Mv qui entrent en jeu dans quelques observables liées à une désintégration
bêta interdite du premier ordre. Les indices X et ?.' se rapportent aux éléments de
matrice énumérés dans le tableau 1, et les trois observables indiquées seront celles

que nous utiliserons pour déterminer expérimentalement ces éléments de matrice.

Tableau 2

Ordre de grandeur des termes successifs du développement en f et éléments de matrice contri¬
buant aux transitions bêta interdites du premier ordre

Observable n 0(f2) 0($-W) 0(W2)

A V

Facteur de forme du spectre bêta: C(W)

A A' A A'

0 0 0 0 0 0
1 1 1 1 1

2

1

2

Facteur d'anisotropie de la corrélation
directionnelle bêta-gamma: e(W)

0 2
1 1

1 2

1 1

1 2
2 2

Facteur de polarisation de la corrélation bêta-
gamma polarisé circulairement' PC(W)

0 1 0 1 0 1

1 1 1 1 1 1 1

1 2 1 2

1 2

3 2 2

3. Approximation «f»

Lorsque W0, l'énergie de la transition, est telle que £ > W0, ïi suffit de considérer

la contribution des termes d'ordre £2 pour l'évaluation des coefficients anxx
de la formule (3). Ceci définit l'approximation «f ». L'élément de matrice d'ordre 2

fBij) ne figure pas dans anlv (cf. tableau 2). Dans cette approximation, la forme du
spectre bêta est essentiellement statistique, ou « permise », la corrélation directionnelle

bêta-gamma est isotrope, et la corrélation bêta-gamma polarisé circulairement
a les mêmes caractéristiques que celle des transitions permises. Seules les deux
combinaisons linéaires d'éléments de matrice

V CA / iyi + £CA / o ¦ r et

Y=— Cvia.yÇCAioxr — ÇCv/ r

peuvent être déterminées expérimentalement.
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La plupart des transitions interdites du premier ordre satisfont à cette approximation,

ou ne nécessitent qu'une faible correction due aux termes d'ordre f W.
Elles sont appelées transitions coulombiennes et ne présentent pas d'intérêt pour
la détermination expérimentale des éléments de matrice nucléaires.

4. Non-validité de l'approximation «|»

Il peut arriver qu'une combinaison linéaire particulière des éléments de matrice
qui contribuent aux termes d'ordre f2 soit si petite que les termes suivants du
développement des anXr deviennent dominants, ceci même si la condition f > W0 est
satisfaite. Il s'agit d'un effet d'annulation mutuelle des éléments de matrice. Un tel
cas est connu dans le Ra E.

Si par contre les éléments de matrice d'ordre X 0 et 1 sont petits par rapport
à l'élément d'ordre 2, l'importance de ce dernier devient telle que l'approximation |
perd sa validité. Il en résulte une déviation sensible de la forme du spectre, par
rapport à la répartition statistique. De plus, la corrélation directionnelle bêta-
gamma devient fortement anisotrope, et un terme en P3(cos0) apparaît dans la
fonction de corrélation bêta-gamma polarisé circulairement (cf. tableau 2). Un tel
effet est dû à une règle de sélection définie dans le cadre d'un modèle nucléaire
particulier. Nous citerons deux cas:

— Modèle en couches: interdiction «/»

Lorsque les protons et neutrons participant à la transition occupent des états
de la même couche principale, seules des transitions pour lesquelles \j — /' | ^2
(/ et j' étant les états initiaux et finaux) donnent lieu à un changement de parité.
Ce fait résulte de la succession des niveaux propre au modèle en couches. L'opérateur

Bij fX 2) dominera dans une transition bêta interdite du premier ordre, les

opérateurs d'ordre X 0 et 1 ne pouvant induire des transitions pour lesquelles

— Modèle de Bohr et Mottelson: interdiction «Kd

Dans le cas des noyaux déformés, un état nucléaire est caractérisé par son spin
total J, sa parité n et son moment angulaire intrinsèque K, projection de J sur l'axe
de symétrie du noyau. Si la transition bêta relie deux états K et K', tels que
| K — K' | ^2, l'élément de matrice J Bu peut être le seul autorisé.

Les transitions bêta interdites du premier ordre pour lesquelles l'effet d'une
règle de sélection provoque une déviation de l'approximation f et une prédominance

de l'élément de matrice J Bij sont les transitions favorables à la détermination
expérimentale des éléments de matrice nucléaires.

5. Cas des transitions 3~(ß) 2+(y) 0+

La transition bêta a lieu avec un changement de spin de 1. Dans ce cas, seuls
4 éléments de matrice contribuent à la fonction de corrélation, car les opérateurs
d'ordre X 0 ne peuvent induire de transition AI 1. Avec la notation de Kotani9)
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(4)

nous les introduirons sous la forme des paramètres u, x, Y et z définis par les rela
tions :

u r)-1 \Ca lia X rl

x rj-1 \— Cv / fl

Y j?-1]- Cv fia] -£(« +

z n-1 [Ca J Bu]

rj est un élément de matrice de normalisation arbitraire, la probabilité de transition
ne dépendant que de combinaisons bilinéaires d'éléments de matrice. Nous le choisirons

égal à CA j Bu, ce qui revient à poser z 1.

Avec cette notation, l'équation (2) prend la forme :

Nßv(W, 6) A0(W) + A2fW) P2fcos6)

X

X 2.

+ X [A'W) P.fcosO) + A3fW) P3(cos0)].
(5)

w

Les coefficients AnfW) sont des formes bilinéaires des paramètres u, x et Y définis
parles relations (4). Nous donnerons, pour une cascade 3_(/?) 2+(y) 0+, les différentes
observables que nous utiliserons pour la détermination des paramètres u, x et Y.

a) Facteur de forme du spectre bêta: Mesuré en fonction de W et normalisé pour une
énergie W„.

CnfW) A0fW) ArAfWn)

AofW) A- i(w0 - wy + X±fW> - 1)] + Y2 + (-

/ 2 4 W 2 W„ \ v

"M 3 9 9 9W~1~9J
(Wl 7 5 W W0 2 W0 5 W'\+ (-e- - 78 9~~ + TF + ~^i u

3 W
2W,
~~3

°-\xY

18 9 ' 9 W ' 9

b) Corrélation directionnelle bêta-gamma: Mesurée en fonction de PT.

e(W) i4,(TF) ^oW) -

(6 a)

(6b)

(7 a)

A2fW)
W1 - 1

(7b)

252 w [6 Ax TT + 36 X2 Y - (12 X2 W0 - Ì2W) x

- (30 W - 12 A2 Pfo) u + 24X2xY
-i2X2uY - (8X2W0 + 4W) x*

- (4 X2 W0 - 7 IF) m2 - (12 17 - 12 A2 17«) « *].
c) Corrélation bêta-gamma polarisé circulairement: Mesurée en fonction de 0 pour

une énergie moyenne W.

(8a)
PcfW, 6)

W2- 1 AAW)J\^ose) A- A3(W)P3(cos6)

A0(W) A- A2(W)P2(cosd)
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[- 60 Y2 - 60 Xt W Y A- 4(5 Wl + 6 W- - 5 W W0 - 6) x

A- 2(5 W% A- 24 W - 20 W W0 - 9) u
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Dans les équations (6) à (8), TF0 est l'énergie maximum de la transition bêta. Les
paramètres Xlt À2> ^4 sont des fonctions de W et ont été calculés par Kotani20).
Chacune des observables a, b et c définit une surface du deuxième degré dans un
système de coordonnées u, x, Y. Le point d'intersection commun à ces surfaces

permet de déterminer u, x et Y ; il est alors aisé de tirer la valeur des 4 éléments de
matrice à partir du log/ t.

III. Dispositif expérimental et technique de mesure

1. Appareillage

Le dispositif expérimental utilisé pour les mesures préliminaires et celles de
Sb124 a été décrit précédemment10). Pour les mesures de l'Eu152 et de l'Eu154, nous
avons construit une chambre à vide plus grande et utilisé un spectromètre à
coïncidences à plusieurs canaux. Les caractéristiques de ce dispositif sont les suivantes:
La source est montée sur une feuille de mylar de 0,9 mg/cm2, tendue sur un anneau
de plexiglas de 86 mm de diamètre intérieur et de 3 mm d'épaisseur. Elle est placée
sous vide, à l'intérieur d'un cylindre en aluminium de 250 mm de diamètre et

Corrélations angulaires ß-y
Chambre à vide et détecteurs.

Double Cothode-

Follower 6BQ7A

Double CF
6BQ7Ä

Du Mont
6363

Ecran
Tiûgneiique Na I

3 x2

RCA

6342 -Ä

3,05 mm Hg

Fig. 1
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400 mm de hauteur, avec une épaisseur de paroi de 3 mm. Un sas permet de
l'enlever rapidement et de la remplacer par une source étalon. Le détecteur bêta est
fixé perpendiculairement à l'axe de la chambre à vide et plonge à l'intérieur. Il est
constitué d'un scintillateur plastique (Nuclear Enterprises NE 102) de 36 mm de
diamètre et 9 mm de hauteur, et d'un photomultiplicateur RCA 6342-A. L'une
des bases et le manteau du scintillateur ont été recouverts par evaporation sous
vide d'un mince film d'aluminium. Le détecteur gamma, extérieur à la chambre à

vide, est mobile autour de l'axe de celle-ci. Il se compose d'un cristal de Nal (Tl) de
76 mm de diamètre et 51 mm d'épaisseur, et d'un photomultiplicateur DuMont6363.
La résolution du détecteur bêta est de 18% pour la ligne de conversion de 980 keV
du Pb207, celle du détecteur gamma de 9% pour la ligne de 661 keV du Cs137.

L'étalonnage en énergie de la voie bêta a été effectué à l'aide des lignes de conversion

du Cs137 (624 keV) et du Pb207 (980 et 481 keV). La validité de l'extrapolation
linéaire vers les hautes énergies a été périodiquement contrôlée à l'aide d'un
générateur d'impulsions. Le dispositif de détection est représenté par la figure 1.

Le spectromètre à coïncidences proprement dit est du type «fast-slow». Les
impulsions recueillies sur l'anode des photomultiplicateurs passent par un amplificateur

rapide, saturé avec une impulsion d'entrée de 20 mV, et sont normées à une
amplitude de 1 V et une durée de 5 nsec. Elles commandent un étage de coïncidences

rapides, dont le temps de résolution est 2 tR 9 nsec. Dans chacune des
voies lentes, les impulsions collectées à la huitième dynode du photomultiplicateur
sont amplifiées linéairement (Nuclear Enterprises «Non-overloading» NE 5202).
Plusieurs analyseurs à un canal (2 dans la voie gamma, 4 dans la voie bêta)
sélectionnent chacun une bande d'énergie et déclenchent, par l'intermédiaire d'unités de
mise en forme des impulsions, un circuit de coïncidences lent de résolution 2 tl
4 • 10~7 sec. Une horloge permet de présélectionner la durée de chaque mesure, et
commande automatiquement le déplacement du détecteur mobile et l'enregistrement

des résultats. Le schéma général de l'installation est illustré par la figure 2.

2. Sources

Sb124: Un échantillon métallique enrichi à 97,7% de Sb123 a été irradié pendant
18 jours dans un flux de 2.1013 n/cm2 sec. Ce métal a été évaporé sous vide sur une
feuille d'aluminium de 0,4 mg/cm2, tendue sur un anneau de plexiglas de 20 mm de
diamètre intérieur. La source avait un diamètre de 3 mm et une épaisseur de 1 mg/
cm2.

Eu152: De l'oxyde d'Eu enrichi à 91,9% d'Eu161 a été irradié pendant 20 jours
dans un flux de 0,9 ¦ IO14 n/cm2 sec. La source a été préparée par evaporation à sec
d'une goutte d'EuCl3 en solution aqueuse sur une feuille d'or de 1,5 mg/cm2. Elle
a été oxydée dans un four à une température de 700 °C et recouverte d'un film
protecteur de laque LC600 de quelques [i,g/cm2. Son épaisseur était de 0,9 mg/cm2
et son diamètre de 2 mm. La feuille d'or a ensuite été collée sur un disque de mylar
perforé-en son centre.

Eu154: De l'oxyde enrichi à 98,96% d'Eu153 a été irradié pendant 4 semaines
dans un flux de 1,3 • IO14 n/cm2 sec. Deux sources ont été utilisées. L'une a été
préparée comme dans le cas précédent, sur une feuille de mica de 1 mg/cm2. Son
diamètre était de 8 mm et son épaisseur de 0,7 mg/cm2. La seconde consistait en



348 Jules-Willy Sunier H. P. A.

Sc ß i

rJ^l-FT-n =f€D Sc I I

=?€]—ÏHZD
Sc /9 2

-EËHDHEt=€D Sc 2

Sc 22
AL/3CF

Sc /9 3 Nurrsroteurs
mécaniques

Machine
à écrire

=€3AS 3 Sc 13

Sc 23
Ù2

Sc /9 4 IBM4^-R-R-=J"lT Sc 14

Sc 24

i CR IARfl
Sc CRI

Sc CR 2

CRAR

r^a-EHZH Scf I

ALT
ScT2

HZHHIHD

Fig. 2

Schéma général de l'électronique
AL Amplificateur linéaire NE 5202; AR Amplificateur rapide; A Analyseur monocanal

NE 5102; D Délai (variable de 0 à 2 (isec) ; F Mise en forme des impulsions (12 V
et 0,3 (j.sec) ; CR Coïncidence rapide (2 xR 9 nsec) ; T Coïncidence triple (2 tx, 0,4 fxsec),

Sc Echelle

une solution aqueuse d'EuCl3 contenant 70% de glycérine. La viscosité du mélange
était d'environ 0,2 poises à 25 °C. Une goutte de cette solution a été étalée entre
un disque de mica de 1 mg/cm2 et une feuille de mylar de 0,9 mg/cm2. L'étanchéité
du tout a été réalisée par un film de laque 70700 dont l'épaisseur était d'environ
200 (xg/cm2. Cette source avait un diamètre de 10 mm et une épaisseur de 5 mg/cm2.

3. Technique de mesure

La fonction de corrélation bêta-gamma dépend de l'énergie de la particule bêta.
Pour étudier cette dépendance, nous sélectionnons dans les analyseurs de la voie
bêta 4 bandes d'énergie différente, d'une largeur de 100 keV. Selon le seuil choisi,
plusieurs cas peuvent se présenter ; ils sont illustrés par la figure 3.
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Dans le cas a) une seule transition bêta est enregistrée (ß^. Nous n'acceptons
alors dans chacune des voies gamma que les impulsions correspondant au pic
photoélectrique de la transition yx. La corrélation ßx—yt pure est ainsi mesurée dans
chacune des voies du circuit de coïncidences. Cette mesure simultanée dans deux
circuits différents permet de contrôler la bonne marche de nos appareils.

Dans le cas b), une partie du spectre de deux transitions bêta différentes est
acceptée par l'analyseur bêta. Les deux analyseurs gamma sont réglés pour n'accepter

que les pics photoélectriques des transitions yx et y2. Si l'énergie de la transition
y2 est supérieure à celle de la transition yx, une des voies du circuit de coïncidences
mesure la corrélation ß2—y2 pure, l'autre un mélange des corrélations ßx—yi et
ß2—y2, ainsi que la corrélation triple ß2— fy2)—ylt où la radiation y2 n'est pas
observée. Cette façon de procéder permet de corriger dans les meilleures conditions la
contribution de corrélations étrangères à la corrélation ßx~Yi <lue nous cherchons
à déterminer.

I.

V,

h -1— I,

a) b) c)

^^ Bonde d'énergie /3 analysée

Fig. 3

Différents types de mesures

Dans le cas c), les fonctions de corrélation ß—yx et ß—y2 peuvent être mesurées
si l'on connaît le profil de ligne de chacune des transitions gamma enregistrée par
notre détecteur, ainsi que leur rapport d'embranchement.

Pour chaque bande d'énergie comprise entre Ws et Ws A AW, la fonction de
corrélation directionnelle entre une transition bêta interdite du premier ordre et la
transition gamma qui lui succède est de la forme :

NßyfW) 1 + efW) P2fcos6)

0 est l'angle sous-tendu par les directions d'émission des deux radiations, et W est
l'énergie moyenne de l'électron dans la bande choisie. Cette énergie est définie par
la relation

Ws + AW
S Wn(W)dW

W AA
jn(W) dW

où n(W) est le nombre de bêta émis avec l'énergie W.
Une mesure du taux de coïncidences pour 0 90° et 0 180° est en principe

suffisante pour déterminer efW). Elle ne permet cependant pas de déceler les asy-
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métries d'appareillage. Il est en outre nécessaire de s'assurer que la source est bien
centrée et que les diffusions éventuelles des deux radiations en cascade, à l'intérieur
et à l'extérieur de la chambre à vide, ne modifient pas la forme de la fonction de
corrélation. Le centrage de la source est obtenu en déplaçant l'axe de la chambre à

vide, qui passe par le centre de la source, jusqu'à ce que le nombre de gamma
enregistrés sous les angles 0 90°, 180° et 270° diffère de moins de 0,5%. La forme
de la fonction de corrélation expérimentale peut être déterminée en choisissant les

angles d'un cycle de mesures dans la succession 0 90°, 135°, 180°; 180°, 225° et
270°; ce choix permet également de contrôler la symétrie du dispositif par rapport
à 0 180°, et de comparer le taux de coïncidences mesuré en fonction de 0 avec
une corrélation de la forme

N(6) 1 + eP2(cos0) + ^4P4(cos0)

Nous définissons les deux paramètres de mesure

_ 2 Ct (180°) - Ct (90°) - Cl (270°)
~~ Ct (90°) + Ct (270°) - 2 Cf

TJ _ a(135°) + Q(225°) - C<(90°) - C/(270°)
"" C*(90°) + C<(270°) - 2 Cf '

Ct(6) nCjßy est le nombre de coïncidences total C rapporté au nombre de bêta
et de gamma, enregistré sous un angle 0 pendant n cycles de durée T. Cf est le taux
de coïncidences fortuites, déterminé avec la méthode des deux sources.

Une moyenne de k mesures Ak, Uh, pondérée proportionnellement à l'inverse du
carré de l'erreur statistique, a été calculée pour chaque énergie W (analyse %2).

Les coefficients e et A± ont été déterminés à partir des valeurs moyennes A et U.
L'absence d'un terme en P4(cos0) dans la fonction de corrélation (^44 0), qui se

traduit par A 2 U, est non seulement une confirmation du degré d'interdiction
de la transition bêta étudiée, mais encore un test de la symétrie géométrique de

notre appareillage. Cette symétrie a en outre été vérifiée par la mesure d'une
corrélation relative à une transition bêta permise, pour chacun des isotopes étudiés; une
telle corrélation est théoriquement isotrope.

Chaque mesure a duré de 20 à 40 heures, y compris le temps réservé à la mesure
des coïncidences fortuites. La position du détecteur gamma était modifiée toutes
les 5 à 10 minutes fT). Entre chaque mesure, les analyseurs ont été étalonnés en
énergie et les seuils de discrimination réajustés. Pour une énergie donnée de la
particule bêta, le nombre total des coïncidences enregistrées sous un angle 0 dans
une série de k mesures a varié entre 50000 et 120000.

4. Corrections pour un mélange de cascades

La corrélation mesurée peut contenir une contribution de cascades y—y selon la
bande d'énergie choisie dans la voie bêta. Cette contribution peut être directement
mesurée si l'on absorbe les électrons par un écran d'aluminium placé devant le
scintillateur bêta; elle est en général petite en raison de la faible efficacité d'un
scintillateur plastique mince pour les rayons gamma.
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Une correction plus importante doit être faite lorsque deux transitions bêta sont
admises dans la bande d'énergie de la voie bêta. La fonction mesurée est alors une
superposition de trois corrélations; un tel cas est illustré par la figure 3b). Nous
mesurons alors dans la voie ß1—y1 un mélange des corrélations:

i. I0fßi) -hfyi) -X
2. I0fß2) - [Jx(y2)] - I2fYl) - I3

3. ISA - A(y>) - h -

La parenthèse [ ] signifie que la radiation y2 n'est pas observée, tandis que la
troisième cascade n'intervient que par la fraction du spectre de scintillation Compton
de y2 comprise sous le pic photoélectrique de yx.

Soit a le rapport du nombre d'électrons d'énergie E de la transition ß2 à celui de
la transition ß1. Soit b le rapport du nombre de photons de la transition y2 à celui
de la transition y1, admis dans la bande de l'analyseur gamma. Soient enfin elt e2,
e3 les facteurs d'anisotropie des corrélations 1, 2 et 3. La valeur mesurée e* s'écrit:

* e, + a e,. A- a b e.
1 + a A- a b

En posant c — e^e^ et d e3felt nous obtenons pour la fonction de corrélation
principale :

^, * l A- a A- a b
£l e

1 + a (b A- cjd) eje* '

Le facteur a est déduit du rapport d'intensité total des deux transitions ß1 et ß2.
b est une fonction de l'efficacité du détecteur gamma, de sa résolution, du rapport
d'embranchement des deux transitions gamma envisagées et de leurs coefficients
de conversion interne. La valeur de e3 est mesurée directement dans la seconde voie
du circuit de coïncidences, simultanément à celle de e*. Le rapport cjd, pour une
transition yt pure, a la forme suivante:

A F2(L, L, I312) ¦ [(2 h + 1) (2 I, + l)]1'2

(- \)U-h-L, W(I, I, I2 I2; 2 Lt) A- ô*(- l)h-i,~L', W(IX It I2 J2; 2 L2)
X

F2(L2 L2 I2 7.) + 2 ô F2(L2 L2 I2 I,) A- <52 F2(L> L2 I2 /,)

L2 et L'2 caractérisent l'ordre multipolaire de la transition y2, et ô le paramètre de

mélange. Les coefficients géométriques W(Ia Ia lb lb', n Lk) et FnfLic L'k lb la) sont
tabellés.

5. Corrections d'angle solide. Dimensions et épaisseur de source

Ces corrections se ramènent à la multiplication par un facteur correctif de la
valeur de eexp. Ce procédé n'est valable que si les détecteurs ont un axe de symétrie
de rotation et si les dimensions de la source sont petites par rapport à celles des

détecteurs. Dans notre dispositif, l'influence de l'extension finie de la source est

négligeable. L'épaisseur de la source nécessite une correction très faible, inférieure
à 0,5% de la valeur mesurée. Pour la source liquide d'Eu154, le facteur correctif était
de 1,015 dans la bande d'énergie W 3,53 m0 c2. La correction d'angle solide pour
29 H. P. A. 36, 4 (1963)



442 Jules-Willy Sunier H. P. A.

le détecteur gamma a été déterminée expérimentalement selon la méthode de
Lawson et Frauenfelder19). Nous avons admis que l'efficacité du détecteur bêta
était de 100%, indépendamment de l'angle d'incidence de la particule bêta. La
correction d'angle solide a été calculée. L'influence de la rétrodiffusion des électrons
sur le scintillateur bêta, évaluée d'après le profil de la ligne de conversion du Pb207

(980 keV), a été négligée, ce profil étant pratiquement symétrique.
Le tableau 3 donne les différentes caractéristiques des détecteurs et les corrections

apportées. Dans ce tableau, dSß et iisrsont les distances de la source aux détecteurs

bêta et gamma. Les facteurs Q2ß£t Ç2rsont les facteurs de correction d'angle
solide pour le terme en P2(cos0) de la fonction de corrélation, et Ey est l'énergie de
la transition gamma de la cascade étudiée.

Tableau 3

Caractéristiques des sources et des détecteurs

Isotope Source Détecteur ß Détecteur y dsß dSy Ey Q.2ß Ö2y

0 e 0 h 0 h

mm mg/cm2 mm mm mm mm mm mm keV

Sb124 3 1 32 12 25,4 25,4 33 39 603 1,171 1,046
Eu152 2 0,9 36 7 76 51 61 165 344 1,065 1,037
Eu154 8 0,7 34 9 76 51 56 182 123 1,068 1,024*)
(Oxyde) 32 9 76 51 56 179 123 1,060 1,036**)
Eu154 10 5,0 34 9 76 51 56 179 123 1,068 1,036
(Liquide)
*) Diaphragme du collimateur de Pb entourant le détecteur gamma : 0 50 mm
**) Diaphragme du collimateur de Pb entourant le détecteur gamma:; 0 68 mm

IV. Résultats des mesures

1. Sb124

Notre première étude de corrélations directionnelles bêta-gamma dans la
désintégration de l'Eu152 10) et les résultats communiqués par différents auteurs16)17)18)

divergent considérablement. Nous avons donc jugé opportun de mesurer la
corrélation 3-(2,31 MeV) 2+(0,603 MeV) 0+ dans le Sb124, avec les mêmes conditions
expérimentales que nous avions adoptées pour l'Eu152. Les résultats, comparés
avec une mesure très précise de Steffen15), devaient permettre un contrôle de la
sensibilité de notre dispositif expérimental. La figure 4 représente le schéma de

désintégration de Sb124 (Nuclear Data Sheets, NRC 60-6-76).
Nous avons mesuré la dépendance en énergie de la fonction de corrélation

directionnelle ßi—y-i (cf. fig. 4), pour des énergies bêta comprises entre 1,1 et 1,8 MeV;
au-dessous de 1,58 MeV, il était nécessaire de corriger la valeur expérimentale efW),
qui contient une contribution importante des corrélations ß2—y2 et ß2—fy2)—y1.
Cette correction ne peut être faite correctement que si la corrélation ß2—y2 et le
facteur de mélange multipolaire de la radiation y2 sont connus. Nous avons utilisé
à cet effet les résultats d'une mesure de Paul21). Pour chaque bande d'énergie
mesurée, les contributions relatives des trois corrélations contribuant à sexp ont été
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déterminées sur la base du rapport d'intensité total des deux transitions ßx et ß2.
Le spectre de scintillations du gamma de 722 keV a été extrapolé à partir de celui
de la ligne de 662 keV du Cs137.

.Sb"

Transitions p
(en MeV)

0.22 11 7

0,61 517. p

0.954 5 7

59 57.

2.3 23 7.

log fi - 10,2

E(keV) I"

— 2691 (3)

2295 3

r 9 x io-'2 sec

Fig. 4

Schéma de désintégration de Sb124

Le tableau 4 récapitule les résultats des mesures, et donne :

la valeur moyenne de l'énergie W de chaque bande mesurée,

la valeur expérimentale sexpfW), corrigée pour la présence de coïncidences
fortuites et l'extension finie des détecteurs (angle solide),
le rapport d'intensité a des deux transitions ßx et ß2 relatif à la bande d'énergie
choisie,
la valeur efW) corrigée pour la contribution d'autres cascades, ainsi que son erreur,
le rapport des coïncidences fortuites Cf aux coïncidences totales Ct.

L'erreur indiquée As tient compte de l'écart quadratique moyen de la répartition

statistique des mesures et de l'incertitude des différentes corrections.
Nous donnons encore dans ce tableau la valeur du facteur d'anisotropie de la

corrélation ß2 — y2 et le paramètre de mélange E2—Ml de la transition y2 que nous

avons utilisés pour la correction de e„PfW). Ces grandeurs sont tirées des mesures
de Paul21) et de Lindquist etal.22). A titre de comparaison, quelques valeurs de

Steffen23) pour le facteur e de la fonction de corrélation ß1—yi sont indiquées.
Nos résultats sont compatibles avec ceux de Steffen. Il est donc légitime

d'admettre que, malgré l'exiguité de la chambre à vide utilisée, la corrélation mesurée
n'est ni atténuée ni déformée par la diffusion des électrons sur les parois de cette
chambre. La sensibilité de notre dispositif expérimental est ainsi vérifiée. Bien que
cette conclusion soit positive, un nouveau dispositif a été construit. Il s'adaptait
plus facilement à l'électronique rapide de notre laboratoire, tout en permettant des

mesures plus complètes et plus précises. Une seconde mesure dans le cas de l'Eu152
est venue confirmer son efficacité.
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Tableau 4

Résultats des mesures de la corrélation directionnelle
Sb124 3- (2,31 MeV ß) 2+ (0,603 MeV y) 0+ Te124

w
3)

eexp(W)
2)

a
3)

eAW) As CfjCt
5)

3,16 - 0,228 0,258 - 0,264 0,020 0,04
3,36 - 0,248 0,188 - 0,270 0,015 0,05
3,54 - 0,272 0,127 - 0,289 0,015 0,04
3,60 - 0,285 0,117 - 0,304 0,015 0,09
3,75 - 0,284 0,079 - 0,295 0,012 0,08
3,80 - 0,290 0,066 - 0,306 0,010 0,09
3,98 - 0,321 0,029 - 0,336 0,010 0,12
4,10 - 0,353 ~0 - 0,353 0,014 0,16
4,58 - 0,378 - 0,378 0,009 0,15
4,74 - 0,387 - 0,387 0,012 0,05

Corrélation ß2 — y2:

«2 + 0,19 ± 0,01 X(E2--Ml) +0,9 ± 0,2

Valeurs de Steffen :

W 3,2 ex(W) - 0,260 ± 0,007
: 4,0 0,350 ± 0,009
¦¦ 4,7 - 0,390 ± 0,006

2. Eu152

L'objectif final de ce travail étant la détermination expérimentale des éléments
de matrice nucléaires de la transition bêta, il était souhaitable de connaître la
corrélation Eu152 (1,48 MeV ß) 2+(0,344 MeV y) 0+ Gd152 avec une meilleure précision
que celle de notre première étude10). La présente mesure a permis de faire une
correction rigoureuse pour l'influence de cascades perturbatrices tout en vérifiant la
sensibilité de notre nouvel appareillage. La figure 5 représente le schéma de désintégration

de l'Eu152 (Nuclear Data Sheets NRC 59-4-77). Le spin 4 du niveau de
755 keV du Gd152 a été déterminé dans ce laboratoire par une mesure de la corrélation

y-i~Yi en coïncidence avec la transition ß2 (cf. fig. 5*). D'après cette même étude,
le paramètre de mélange M3^E2 de la transition y2 est de + 0,15 ^ ô ^ + 0,2028).

Nous avons mesuré la corrélation directionnelle /Si—yi en fonction de l'énergie
des particules bêta. Le seuil de la bande d'énergie sélectionnée variait entre 850 et
1350 keV. Comme dans le cas de Sb124, une correction est nécessaire pour les bandes
d'énergie comprises entre 850 et 1050 keV. Pour l'effectuer, nous avons mesuré
simultanément la corrélation ß2—y2 pour les énergies considérées. Le tableau 5 donne :

1. les valeurs de eexp corrigées pour les coïncidences fortuites, les coïncidences

gamma-gamma, l'extension et la résolution finie des détecteurs,
2. les valeurs de efW) compte tenu de la correction pour les cascades perturbatrices,

et leur erreur,
3. le rapport d'intensité « des deux transitions ß2etß1 dans la bande d'énergie mesurée,

*) Note en cours d'impression: Cette mesure a été récemment confirmée par Schick et
Grodzins [Bull. Am. Phys. Soc. 8, 333 (1963)].



Vol. 36, 1963 Corrélations angulaires directionnelles bêta-gamma 445

Eu
s

I3y
3" (3) E(keV) I

Transitions
(en MeV)

ß

0,22 2% ßi

0,36 2,77«. A,

0,71 12% fil

1,05 1,6 7c ?2

1,48 7.57«, fi
log ft 12,1

1584

1446

— 344 2T

r 0.1 * I0"9sec

Gd
64

Fig. 5

Schéma de désintégration de Eu152

4. le rapport des coïncidences gamma-gamma et des coïncidences fortuites aux
coïncidences totales,

5. les valeurs de e2 pour la fonction de corrélation ß2—y2.
As tient compte de l'erreur statistique et de l'erreur des différentes corrections.

Tableau 5

Résultats des mesures de la corrélation directionnelle
Eu162 3- (1,48 MeV ß) 2+ (0,344 MeV y) 0+ Gd 152

W Sexp(W) a e(W) Ae Oy y/Ufr CfjCt
1) 3) 2) 4) i)

2,51 - 0,262 0,09 - 0,282 0,014 0,15 0,03
2,70 - 0,329 0,05 - 0,340 0,020 0,14 0,03
2,86 - 0,365 0,01 - 0,367 0,009 0,12 0,03
3,01 - 0,392 ~0 - 0,392 0,008 0,12 0,04
3,12 - 0,399 0,009 0,14 0,05
3,23 - 0,405 0,011 0,14 0,04
3,32 - 0,425 0,012 0,13 0,05
3,42 - 0,434 0,013 0,12 0,04
3,49 - 0,436 0,008 0,11 0,04
3,54 - 0,457 0,012 0,10 0,05
3,64 - 0,447 0,013 0,07 0,04

Corrélatior ß%-Yt-
W 2,51 e2(W) - 0,053 ± 0,013

2,70 - 0,074 ± 0,011
2,86 - 0,084 ± 0,014
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La symétrie de notre dispositif a été contrôlée par la mesure de la corrélation
ßi~Yz'> la transition ß3 est permise et la corrélation doit être isotrope. La valeur
obtenue pour une énergie bêta comprise entre 400 et 700 keV: e3 + 0,010-J-0,015
confirme que la diffusion des électrons dans la chambre à vide ne provoque pas
d'asymétrie dans le taux de coïncidences. Enfin, la forme de la corrélation:
NßyfO) 1 + eP2(cos0) a été contrôlée par une série de mesures pour lesquelles
nous avons mesuré les deux paramètres expérimentaux A et U, définis plus haut.
La figure 6 a) représente le résultat de l'une de ces mesures.

1.2 N(0) * - (0.436 i 0,0081 Pa (co* 8)
- 10,005 ±0.011) P4 (CO* ß)

1.0

0.8

Eu l52
#, s,

0.6 W 3.49

1 1 1 I 1
^*

Pj (cose) -

(0,120 ± 0.010) Pj (COSÒ t

(0,002 1 0,017) P4 (co».$
N (fi)

z 1.0 -

•u'^ /fl, K

W 4.330,8 -

-0,5

P, coso

Fig. 6

Corrélation ß1 — yl reportée en fonction de P2(coso) a) Eu152; b) Eu154

Les valeurs de efW) observées sont compatibles avec les résultats de notre
première étude10), bien qu'en moyenne légèrement inférieures. Elles sont par contre
en désaccord avec les mesures de Dulaney et al.1*), Bhattacherjee et al.17) et
Fischbeck et al.la), l'écart moyen absolu étant respectivement de 0,09, 0,11 et 0,05

pour une énergie W ^ 3,35 m0 c2. Nous ne pouvons pas expliquer ces différences.
Leur effet sur la détermination des rapports des éléments de matrice est d'ailleurs
beaucoup moins important.

3. Eu154

Cet isotope, à bien des égards analogue à l'Eu152, s'en distingue cependant par
deux caractéristiques essentielles. Le Gd154 est déformé et possède un spectre de
rotation alors que le Gd152 est sphérique et possède un certain nombre de niveaux
de vibration. D'autre part, la durée de vie du premier niveau excité du Gd154 est
longue, en raison de la faible énergie du niveau; elle pose un problème particulier:
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celui de l'atténuation de la fonction de corrélation. La figure 7 représente le schéma
de désintégration de l'Eu154 (Nuclear Data Sheets NRC 59-3-63).

Des mesures de corrélation gamma-gamma24) ont montré que l'atténuation
était due à deux types de perturbation : d'une part l'interaction du moment quadrupolaire

électrique du noyau avec une variation du champ électrique local dans une
source polycristalline, d'autre part l'interaction de structure hyperfine due au
couplage des moments magnétiques dipolaires du noyau et de l'ion paramagnétique
Gd3+. La corrélation est atténuée car le spin du noyau dans le niveau intermédiaire

.Eu

I6ï
3 13)

E(keV) I

1721

Aîy

129 3*

998 2

\T,

7x10" sec

Transitions ß
(en MeV)

0,25 29% ßs

0,57 357. ßs

0,83 20% Pi
0,97 3 7. h
(1,6) 37. h
1,84 107. /»1

log ft 12."

Gd
64

Fig. 7

Schéma de désintégration de Eu154

de la cascade change d'orientation avant que ce niveau se désexcite. L'expérience
a montré que dans le cas d'une source liquide l'interaction quadrupolaire est
négligeable pour une durée de vie du niveau intermédiaire de l'ordre de 1 nsec. En
particulier, Ofer25) a constaté que les corrélations mettant en jeu le niveau de 122 keV
du Sm152, dont la durée de vie est de rn 2 nsec, n'étaient pas modifiées que la
source soit en solution aqueuse d'une viscosité de 0,01 poises ou dans un mélange
de glycerol de viscosité égale à 5 poises. D'autre part, en découplant le spin du
noyau et le spin de la couche électronique par un champ magnétique parallèle à la
direction d'observation du premier quantum, Stiening et Deutsch26) sont
parvenus à éliminer la perturbation due à l'interaction de structure hyperfine dans la
cascade 2~fy5) 2+(y1) 0+ du Gd154 (cf. fig. 7). La corrélation vraie étant connue, il
est alors possible de mesurer par comparaison les coefficients d'atténuation de
différentes sources.

Du point de vue des corrélations bêta-gamma, il n'est guère possible de concilier
les exigences d'une source mince et d'une diffusion négligeable des électrons dans
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l'entourage de la source avec un dispositif de découplage magnétique permettant
d'obtenir la corrélation vraie à partir d'une source liquide. La plupart de nos
mesures ont été faites avec une source d'oxyde d'Eu et sont donc sujettes à la double
atténuation quadrupolaire et hyperfine. Les mesures faites avec une source liquide
ont permis de vérifier que le coefficient d'atténuation dû à l'interaction quadropu-
laire est, dans la limite d'erreur expérimentale, le même pour la corrélation bêta-
gamma que pour la corrélation gamma-gamma.

Soit G* le rapport des anisotropies de la corrélation pour une source d'oxyde et

pour une source liquide. Nos mesures donnent :

Glfß y) 0,56 ± 0,03

Ce résultat est compatible avec les résultats de Debrunner24) :

GQAy y) 0,55 -j- 0,10

En utilisant d'autre part la mesure de l'atténuation due à l'interaction de structure
hyperfine de Stiening et Deutsch26), nous obtenons le coefficient d'atténuation
total d'une source d'oxyde:

G\fß y) Glfß y) Gf*(j8 y) G%fß y) ¦
+\^ 0,46 ± 0,04

expression dans laquelle rn 1,7 nsec et r2 7,8 nsec26). Ce coefficient d'atténuation

est compatible avec celui que l'on obtient sur la base de corrélations gamma-
gamma, soit G*2fy y) =0,41 Az 0,0824). Signalons en outre qu'il a été établi que la
grande majorité des atomes, après la désintégration bêta, retournent au niveau
fondamental de l'ion Gd3+ en un temps considérablement plus court que la durée de
vie du niveau 2+ de 123 keV; la perturbation peut donc être considérée comme
stationnaire26). Il est ainsi plausible que l'atténuation ne dépende pas du fait que
la première transition de la cascade soit une transition bêta ou une transition gamma.

Nous avons mesuré les fonctions de corrélation directionnelle des cascades

ßi—yi et ß3—y3 (cf. fig. 7). La première est comparable au cas de l'Eu152 discuté
plus haut. La seconde est intéressante car, le niveau 2+ (998 keV) du Gd154 étant un
niveau de rotation K 2, la transition ß3 n'est pas interdite par la règle de sélection

K. Il n'en est pas de même pour la transition ßlt pour laquelle on a AI < AK
3. La corrélation ß1—y1 a été mesurée en fonction de l'énergie des bêta, par bandes

de 100 et 200 keV, avec un seuil variant entre 1000 et 1700 keV. La corrélation
ß2—y2 a été mesurée simultanément pour les bandes d'énergie comprises entre 1000
et 1400 keV. Le nombre minime des coïncidences enregistrées dans cette voie montre
que la transition ß2 est douteuse. Les résultats de l'analyse du spectre bêta par
Langer27) s'accordent avec cette conclusion. La correction due à un mélange des
corrélations ß1—y1, ß2—fy2)— Yi et ß2—y2 a été ainsi négligée. La source utilisée
contient un mélange d'Eu152 et d'Eu154. Le rapport d'intensité des transitions ßt
de l'Eu152 et ßx de l'Eu154 y est égal à 7,5%. La contribution de la transition yx
(344 keV) de l'Eu152 dans la bande d'énergie correspondant au pic photoélectrique
de la transition yx (123 keV) de l'Eu154 est faible. Aucune correction due à la
présence d'Eu152 dans la source n'a donc été faite.

La mesure de la dépendance en énergie de la corrélation ß3—y3 est très imprécise
pour les énergies bêta inférieures à 830 keV, en raison de la forte intensité de la
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transition ßt. Nous n'avons mesuré que la corrélation dans une bande d'énergie
comprise entre 830 keV et 970 keV. Les pics photoélectriques des transitions y3 et

yt issues du niveau 2+ de 998 keV ne sont pas complètement séparés dans notre
détecteur gamma. Nous avons en fait mesuré dans les deux canaux de notre spectromètre

à coïncidences les corrélations ß3— [y3 4- x y4] et ß3—[y y3 A Yt]- Les deux
corrélations pures ont été obtenues en tenant compte des rapports d'intensité relative

x et y, déterminés expérimentalement.
La symétrie de notre dispositif expérimental a été vérifiée pour 4 énergies bêta

différentes par une mesure de la corrélation ßb—y5, qui est isotrope. Enfin, pour
chaque mesure, les paramètres A et U ont été déterminés. L'absence d'un terme
en P4(cos0) dans la fonction de corrélation confirme le spin 3 de l'Eu154. La figure 6b)
représente le résultat d'une mesure, reporté en fonction de P2(cosö).

La mesure des corrélations ß3—y3 et ß3—y4 permet en outre de déterminer le
paramètre de mélange multipolaire E2—Ml de la transition yt. Le résultat obtenu

a a* +4>°
Ô 6'5 - 1,9

est compatible avec celui que donne Debrunner24).
Les mesures sont résumées par les tableaux 6 a et 6 b. Le tableau 6 a donne les

valeurs de efW) avec et sans correction pour l'atténuation de la corrélation, et le

rapport des coïncidences gamma-gamma et fortuites aux coïncidences totales. Le
tableau 6b donne les valeurs de Sß Y

et EßzYi ainsi que celles de £-ßiYb- Les erreurs
données dans ces deux tableaux tiennent compte de l'erreur statistique, augmentée
en fonction de i2 pour les valeurs e G^, ainsi que de l'indétermination de G'2 pour
les valeurs de e. Les résultats des mesures avec la source d'oxyde d'Eu sont compatibles

avec ceux que donnent Sastry et al.2S) et Wyly et al.29).

Tableau 6 a

Résultats des mesures de la corrélation directionnelle
Eu154 3- (1840 keV ß) 2+ (123 keV y) 0+ Gd164

W e(W) G2 A(sGt) e(W) Ae(W) y yl CfjCt

Source d'oxyde d'Eu : G[ 0,46 ± 0,04
3,05 - 0,118 0,018 - 0,256 0,045 0,126 0,46
3,25 - 0,125 0,020 - 0,271 0,049 0,070 0,46
3,44 - 0,145 0,015 - 0,315 0,041 0,025 0,47
3,64 - 0,149 0,012 - 0,323 0,037 0,016 0,47
3,73 - 0,158 0,005 - 0,330 0,028 0,009 0,45
3,83 - 0,159 0,006 - 0,332 0,030 ~0 0,47
3,90 - 0,149 0,005 - 0,323 0,031 0,43
4,04 - 0,146 0,006 - 0,317 0,030 0,45
4,21 - 0,140 0,007 - 0,304 0,029 0,44
4,25 - 0,154 0,008 - 0,334 0,033 0,50
4,30 - 0,138 0,013 - 0,299 0,037 0,46
4,33 - 0,145 0,010 - 0,315 0,034 0,30

Source liquide: Gf/S -- 0,82 ± 0,02
3,53 - 0,260 0,017 - 0,318 0,024 0,018 0,35
3,90 - 0,270 0,005 - 0,330 0,008 ~0 0,20
4,25 - 0,258 0,010 - 0,315 0,014 0,25
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Tableau 6 b

Corrélation W e(W) Ae(W)

ßs-Y*
ßn-Yt

2,65
2,65

- 0,041

+ 0,021
0,005
0,004

ßs-Ys 1,64
1,73
1,83
1,98

+ 0,001

+ 0,003

- 0,002

- 0,001

0,001
0,001
0,002
0,002

4. Calcul des éléments de matrice nucléaires

Les paramètres nucléaires Y, x et u définis au chapitre II, § 5, ont été calculés

pour les transitions bêta de plus haute énergie fßx) dans la désintégration de Sb124,

Eu152 et Eu154. Les mesures suivantes ont été prises en considération pour ce calcul :

1. Facteur d'anisotropie efW) des corrélations directionnelles ß1 — y1 que nous
avons mesurées.

2. Facteur de correction du spectre CnfW), donné par Langer et Smith27) pour
Sb124, Eu152 et Eu154.

3. Facteur de polarisation PcfW, 6) de la corrélation bêta-gamma polarisé circu¬
lairement, mesuré par Alexander et Steffen13) pour Sb124 et par Berthier14)
pour Eu152.

Pour chacune des mesures ci-dessus, les valeurs des paramètres Yk, ~Xk et Uk
rendant minimum l'expression

Q*fYk, xk, uk) £gt[fi - ffWt, di)]2
i

ont été calculées par la calculatrice électronique ERMETH. Dans l'expression de Q2,

k désigne le type de la mesure fk 1, 2, 3) ; fkfW, 8) symbolise les fonctions théoriques

définies au chapitre II, formules 6a) à 8c) ; /* est la valeur expérimentale de fk,
mesurée pour une énergie Wi ou sous un angle dt) gi est le carré de l'inverse de

l'erreur de /*.
Une moyenne des Yk, ~xt, Uk, pondérée par la valeur minimum de Q\, a été

ensuite calculée pour chaque isotope étudié. Le tableau 7 donne les résultats du
calcul et leurs erreurs.

Tableau 7

Paramètres nucléaires

Sb124 Eu152 Eu154

Y
x
u

0,640 ± 0,125

- 0,084 ± 0,050

- 0,079 ± 0,075

0,744 ± 0,160
0,161 ± 0,086
0,034 ± 0,059

0,900 ± 0,150

- 0,035 ± 0,105
0,190 ± 0,110

Les résultats indiquent clairement que, dans les trois cas étudiés, nous sommes
en présence de l'effet d'une règle de sélection. Un tel effet se caractérise par 9) :

I z i ~ I Y I > X ~ I « I
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Les figures 8 à 10 représentent les valeurs mesurées de efW), CnfW) et PAW, 6)
ainsi que les courbes théoriques correspondant aux paramètres nucléaires indiqués
dans le tableau 7.

1

0,2 sb'"*-r, Y 0,640 + 0,125

x ¦ - 0,084 ± 0,050

u - 0,079 ± 0,075

¦0,3 ^{3±fL -

0.4

1*02
f 1

a) Coefficient d'anisotropie e( W) de la corrélation directionnelle en fonction de l'énergie W du bêta

-b

0,3 -

0,2 -
Sb ßx T, Cire

W„ 4.60

b) Facteur de polarisation Pc(0) en fonction de l'angle d'émission 6ßY13)

ctwi

ciw

i i l j

c) Facteur de forme du spectre ßx en fonction de W 27)

Les courbes pointillées correspondent à la valeur minimum de Q2, les courbes pleines aux
paramètres indiqués sur la figura a). Les courbes C(W)max et C(W)mjn indiquent les valeurs

limites des mesures de Langer et Smith

Fig. 8

Corrélation 2,31 MeV j^-0,603 MeV yx de Sb124



452 Jules-Willy Sunier H. P. A.

1 1

_ 152
Eu ßrl Y 0,744 ± 0,160

h X 0,161 ± 0,086
-0,3
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rV^
%>,

u 0,034 ± 0,059

-0,4 ^^^
,1 W0J

i
1*01

a) Coefficient d'anisotropie e(W) de la corrélation directionnelle en fonction
de l'énergie W du bêta

Eu ß, IC. cire. W. » 3.35 N

b) Facteur de polarisation Pc(6) en fonction de l'angle d'émission 0ßY 14)

ciwi

c w

c) Facteur de forme du spectre ft en fonction de W 27)

Les courbes pointillés correspondent à la valeur minimum de Q2, les courbes pleines aux
paramètres indiqués sur la figure a). Les courbes C(W)max et C(W)m{„ indiquent les valeur limites

des mesures de Langer et Smith

Fig. 9

Corrélation 1,48 MeV ft-0,344 MeV yx de Eu152
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Y 0,900 ±0,150

X - 0,035 ± 0,105

u 0,190 ± 0,110

Eu154/?,-y,

a) Coefficient d'anisotropie de la corrélation directionnelle en fonction de l'énergie W du bêta
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b) Facteur de forme du spectre ft en fonction de W 27)

Les courbes pointillées correspondent à la valeur minimum de Q2, les courbes pleines aux
paramètres indiqués sur la figure a). Les courbes C(W)maxet C(W)mi„ indiquent les valeurs limites

des mesures de Langer et Smith

Fig. 10

Corrélation 1,84 MeV ft-0,123 MeV yx de Eu154

L'élément de matrice de normalisation rj Ca J" Bij, défini au chapitre II, se
calcule directement à partir de la relation :

rf n* ln 2 -(fct) -1

dans laquelle (fc t) est la valeur /1 corrigée en fonction de la forme non statistique du
spectre. C'est une fonction de Y, x et ua). Le tableau 8 donne la valeur des éléments
de matrice nucléaires contribuant aux transitions bêta étudiées. Les éléments de
matrice qui ont la dimension d'une longueur sont rapportés au rayon nucléaire R
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fR 1,2 Alls /). Le système d'unités choisi est tel que % m c 1. [Unité de

temps: ä/w c2 1,29 • IO-21 sec; unité de longueur h/m c longueur d'onde de

Compton de l'électron 3,86 • IO-11 cm.] Les constantes de couplage de l'hamiltonien

d'interaction introduites dans le calcul sont:

et

Cv [1,42 ± 0,01] • IO-49 erg cm3 [3,01 ± 0,02] • IO"12 ~
Ca [- 1,19 ± 0,03] Cv 7)8).

Tableau 8

Eléments de matrice nucléaires

Sb124 Eu152 Eu154

log/c t 10,46 ± 0,24 11,98 ± 0,25 12,73 ± 0,23

f ?*>
J AA

I- x r

± [1,76 ± 0,22] • IO-2 ± [2,86 ± 0,36] • IO"3 ± [1,20 ± 0,14] • IO-3

=F [1,70 ± 1,10] • IO-3 ± [5,50 ± 3,00] • IO-4 =F [0,50 r 1,50] • IO-4

=F [1,40 ± 1,40] - IO-3 ± [0,97 r 1,70] • 10~4 ± [2,30 ± 1,40] • 10~4
R

a ± [1,43 ± 0,77] • IO-4 ± [1,97 ± 0,82] • IO"4 ± [0,73 ± 0,50] • IO"4

V. Discussion et conclusion

1. Ordre de grandeur des éléments de matrice nucléaires

L'élément de matrice J" Bu prédomine dans les trois transitions bêta étudiées.
Sa valeur est cependant réduite par rapport à celle de J Bu d'une transition interdite

unique. Le iogft d'une telle transition fiogft m 8,5) correspond en effet à

J BijjR ^ 0,2. Les facteurs de réduction de l'élément de matrice \Bij sont de

l'ordre de 10, 70 et 160 pour Sb124, Eu152 et Eu154 respectivement.
Dans les transitions interdites du premier ordre non-uniques et non-favorisées,

l'élément de matrice standard rapporté au rayon nucléaire R est de l'ordre de
l'unité fiogft ^ 7). Les valeurs expérimentales données dans le tableau 8 montrent
que, par rapport aux transitions interdites «ordinaires», les éléments de matrice
J r et j io x r sont réduits d'un facteur > 400, > 1200, > 2700, tandis que pour
l'élément de matrice relativiste J i a, les rapports de réduction sont de l'ordre de
120, 100 et 250 pour Sb124, Eu152 et Eu154 respectivement.

La prédominance relative de l'élément de matrice i Bij par rapport aux
éléments de matrice d'ordre tensoriel X 1 est la caractéristique de l'effet d'une règle
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de sélection, auquel la déviation de l'approximation f et le ralentissement des
transitions bêta envisagées doivent être attribués.

2. Différentes règles de sélection envisagées

Dans le cas de Sb124, les résultats expérimentaux peuvent s'expliquer par la
règle de sélection «/». La parité négative de l'état fondamental de Sb124 est due
vraisemblablement à l'orbite ht\j2~ du neutron impair. Le proton créé après la
désintégration bêta peut prendre place sur les orbites g 7/2+, d 5/2+, d 3/2+ ou s 1/2+,
si l'on n'admet aucun mélange de configurations hors des couches principales13).
La variation du moment angulaire provoquée par la transition bêta est alors au
moins égale à 2, ce qui implique l'interdiction des éléments de matrice d'ordre
X 1, tout en n'excluant pas la réduction de l'élément f Bu fX 2) en fonction
d'un mélange de configurations à l'intérieur de la couche principale.

Dans le cas de la transition Eu1"-^- Gd164 où les deux noyaux sont déformés,
la composante intrinsèque du moment angulaire fK) varie de 3. La règle de sélection
«K» peut être invoquée pour expliquer les résultats expérimentaux. Le degré
d'interdiction des éléments de matrice d'ordre X 1 serait alors supérieur à celui de
l'élément de matrice j Bu, ce qui est expérimentalement vérifié. L'étude de la
transition ß3 (cf. fig. 7), caractérisée par AK 1 et pour laquelle les éléments de
matrice d'ordre X 1 ne seraient pas interdits, ne permet pas de conclusion précise.
Cependant, la faible anisotropie de la corrélation ß3—y3 au voisinage de l'énergie
maximum de la transition bêta et les résultats préliminaires de la corrélation ß3—y3
polarisé circulairement30) ne semblent pas suggérer une prédominance relative de
l'élément de matrice J" Bij.

Aucune règle de sélection particulière n'a retenu notre attention pour expliquer
la prédominance de j" Bi, dans la transition ß1 de l'Eu152 (cf. fig. 5). Le noyau Gd162

étant sphérique, la règle de sélection «i£» n'est pas applicable; les valeurs
expérimentales des éléments de matrice des transitions ßx de l'Eu152 et de l'Eu154 sont
cependant très semblables. Mentionnons toutefois que la valeur ft anormalement
élevée de la transition ßx—Eu152, donc la réduction in globo des éléments de matrice
nucléaires, peut s'expliquer comme suit: les fonctions d'onde des états fondamentaux

de l'Eu152 et du Gd152 se recouvrent approximativement (mis à part la
déformation de l'Eu152). La partie intrinsèque de la fonction d'onde du premier niveau
excité du Gd152 (2+ 344 keV) est la même que la fonction d'onde du niveau
fondamental ; en revanche sa partie collective fait que ces deux derniers états sont quasi-
orthogonaux. Il en résulte que les fonctions d'onde du noyau avant et après la
désintégration ßx ne se recouvrent pas, ce qui a pour effet de ralentir considérablement

la transition.

3. Conclusion

Ce travail a permis de montrer qu'il est possible de déterminer expérimentalement
les éléments de matrice nucléaires de l'hamiltonien d'interaction, dans le cas

des transitions bêta interdites du premier ordre avec AI 1 et qui ne répondent
pas à l'approximation «£». Cette possibilité renforce l'intérêt de l'étude des
transitions bêta en tant que moyen d'investigation direct de la structure du noyau.
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Cependant, dans les trois cas étudiés, l'indétermination sur les éléments de

matrice J r, $ io X r et j i a est considérable. En réalité, les grandeurs significatives

résultant de notre étude sont :

Y I — Cv / i a A-£ Cv I r — g CA j i o x A- —

et

rj Ca Bu

Les paramètres nucléaires x et u fixent avant tout un ordre de grandeur, car les
trois cas étudiés sont à la limite de 1'«approximation Bij modifiée» dans laquelle on
pose x u 0. Des mesures considérablement plus précises sur la dépendance
angulaire et énergétique des paramètres des différentes corrélations bêta-gamma
seraient souhaitables; elles sont difficilement abordables en raison de leur durée.

Signalons que l'hypothèse du courant vectoriel conservé permet d'établir une
relation entre les éléments de matrice J r et \ i a., et par conséquent de réduire le
nombre des paramètres libres31). Les éléments de matrice calculés dans ce travail ne
sont pas incompatibles avec cette relation. On obtient en effet :

Tableau 9

Comparaison entre les valeurs théoriques et expérimentales du rapport :

J"
X

Isotope Eu152 Eu154 Sb134

Atk
Aexp

0,58
0,36 ± 0,30

0,60

- 1,5 ± 4,5
0,50

- 0,1 i 0,5

En introduisant la relation de Fujita31) dans le calcul des éléments de matrice, il
serait possible d'améliorer la précision sur la détermination des paramètres nucléaires

x et u, et de tester au moyen des corrélations angulaires bêta-gamma l'hypothèse

du courant vectoriel conservé. Seuls des résultats de mesure plus précis
légitimeraient cette façon de procéder.
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va également à MM. Lambert, Hess, Poncini et Bakken pour leur assistance
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