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Lattice Energy Current in Solids and Lattice Thermal Conductivity. I

by Ph. Choquard
Institut Battelle, Genéve

(10. XI. 62)

Abstract: An accurate description of the non-equilibruim Lattice Properties of Solids
assumes a detailed knowledge of the energy current carried by elastic waves. An analysis of this
quantity is presented in this paper, where complete expressions for the harmonic and anharmo-
nic part of the homogeneous and inhomogeneous components of the energy current are derived.
A particular feature is the occurrence of a non-diagonal contribution to the homogeneous and
harmonic part of the energy current. Some consequences of the features dealt with on the fre-
quency and temperature dependence of the Lattice Thermal Conductivity are discussed, de-
tailed calculations being referred to a forthcoming paper.

Introduction and Summary

With a view to refining the theory of some solid-state kinetic coefficients such
as the Lattice Thermal Conductivity of Solids (hereafter referred to as L. T. con-
ductivity) on the basis of modern dynamical theories of dissipative phenomena, a
more exhaustive analysis of a key quantity relevant to this transport property,
namely the energy current carried by elastic waves, is instrumental. This is indeed
necessary when it is noticed that the standard expression known to describe this
observable, an expression generally derived on the basis of qualitative arguments,
corresponds only to the homogeneous and phase-independent component of the
harmonic part of the energy current take into account. Derivation from first, even
though elementary, principles of more complete expressions is therefore called for
and has been felt worth a separate presentation considering the new features re-
vealed by the analysis and the variety of relevant consequences.

Accordingly we devote the beginning of this paper to the establishment of a
general Ansatz for the energy current flowing through a unit surface (taken as the
face of unit cell) in a solid in terms of the velocities and forces experienced by its
atoms, under the assumption that the atoms are confined in their cells. This An-
satz is shown to satisfy the conservation law for the energy in form of a difference
equation. Next, when taking the elastic limit of the Ansatz, the expression obtained
is compared and identified with the one derived in classical field theory from a general
anisotropic Lagrange density. Then, following some elementary generalizations,
an analysis of the inhomogeneous (space dependent) energy current is made in terms
of energy-current waves. These oscillatory components are indeed necessary in
investigations dealing with the wave-number dependent L. T. conductivity and more
- generally for treating dynamical and statistical aspects of correlation effects related
to energy disturbances in solids, such as those produced by energy spikes for instance.
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Next comes the introduction of elastic waves and normal modes. Since this step
involves mostly well-known algebra, resulting compact expressions only are given
and their major features discussed. However, owing to its particular interest, closer
attention is paid to the homogeneous part of the energy current, both on its har-
monic and anharmonic parts. The harmonic part is shown to consist of the usual
expression (in which the occurence of the familiar group velocity is strictly derived)
and of an additional contribution involving pairs of waves of different polarizations
for the same wave vector. Whereas the former is, in classical language, phase in-
dependent (quantum mechanically: diagonal), the latter is phase dependent (non
diagonal). Another diagonal contribution appears also in the anharmonic part of the
energy current and arises from all anharmonic terms which are even in the number
of interactin waves. The formal expression for this contribution is correspondingly
given. :

In the next paper two consequences of the above analysis are tested within the
scheme of the classical theory of the L. T. conductivity as based on KuBo’s for-
malism.

First, since phase-dependent observables are expected to give rise to resonance
phenomena, the effect on the non-diagonal harmonic energy-current on the L. T.
conductivity’s frequency-dependence is investigated. It is shown to yield a non-
vanishing high-frequency conductivity, thus affecting qualitatively the high-fre-
quency behavior of a thermal conductor commonly interpreted on the basis of a
simple heat diffusion equation.

Secondly, since phase-independent observables predominantly affect the static
part of kinetic coefficients, the effect of the diagonal part of the anharmonic energy
current on the static L. T. conductivity is also investigated for a pure anharmonic
solid. When dissipated through second-order, non-diagonal three-wave interactions,
the diagonal quartic terms of the energy current are shown to produce a tempera-
ture-independent contribution to this transport property. This predicts a high
temperature saturation of the L. T. conductivity, even for a pure crystal, as con-
trasted with the familiar Debye 1/7 law.

However natural the above effects appear, their partial validity within the bulk
of effects contributing to the overall thermal conductivity of solids makes them
probably of more theoretical interest, except under extreme experimental condi-
tions.

I. Lattice Energy Current
a) Ansatz for the Lattice Energy Current

For simplicity we consider the case of a mono-atomic simple cubic lattice with
atoms bound by two-body forces. The generalization to the realistic case of poly-
atomic lattices where the atoms are held by two and more body forces will prove
straighforward later on.

A useful link for finding the Ansatz for the energy current is to think in terms
of the power delivered from a lattice cell s’ to a cell s” via the interaction between
- the atoms located in those respective cells. Here s’ and s” are vectors pointing from
any given origin toward the center of the cells. These powers, denoted by P(s’, s"),

are partial rate of change of energies per unit time, called E(s’, s”), which can be
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expressed in terms of the velocities and forces experienced by the atoms along the
following lines, essentially inspired from Peierls’ original procedure*).
Let

gU(S’, S”) = (P(l s'— s A Uy — us”g)
- (p(S”, S")

be the interatomic potential expressed as a function of the relative displacements
uy — ug of the atoms located in the equilibrium position at the site s’ and s”. The
lattice energy is given by

1 . 1 n
E = é'?mus,—l—?g p(s', ")

In computing its rate of change per unit time, rate which is obviously zero, the
second order time derivatives of the atomic displacements which occur can be eli-
minated with the aid of the equations of motion. For the a-th (x =1, 2, 8) compo-
nent of the atomic displacement u, it reads:

0

‘e _ ! I
M g,a= = s SZ' p(s', ")

a / ”
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2 Fa(s', S”)
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Partial forces have been introduced and defined by

Fa(si sﬂ) _ 0 (p(S’, S”) . (1)

O(us, o — us", «)

One has then
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= Y E(s',s") = Y P(s, s").
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si s”

In the above identity, partial rates of change of energies have been introduced and
defined by the relation

" 3
E(s', s") = P(s', s") = 3] 5 (g, o + 1g,q) Fols', 5") - (2)

*) R. E. PEIERLS: Annalen der Physik 3, 1060, 1929. Well suited to our purpose we favor
this discrete lattice approach although another procedure might be followed along the lines
indicated by J. G. KirRkwoob: J. of Chem. Phys. 14, 180, 1946.
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These quantities satisfy the obvious but important antisymmetry relation:
P(Sl, sl!) £ P(s#, S,) — (2/)

They serve in particular to express in a properly symmetrized manner the rate of
change of the energy contained in an arbitrary portion of the lattice. Imagineé for

‘this a portion I of the crystal surrounded by a portion II, the rest of it; one has

indeed: . .
Ei=—FE;= 2 ZP(S’, s") .

s’'cl §"cll

If in particular the portion I is reduced to one cell, labelled with the vector s, one has
= X' Ps, 5, 3)
N

no restriction on the summation over s’ being necessary since P(s, s) = 0.

We can now proceed to establish the Ansatz for the energy current. Let us do
that inductively in starting with the one-dimensional case. Consider a cell s in a
chain of lattice constant a; the total power delivered across the edge-loeated at
s -+ a/2, from left to right say, is obviously given by

3 X R
s'<s ">

It is now natural to associate an energy current Q(s -+ @/2) flowing in the same
direction as being proportional to (— 1) times this power; the current having the
dimension of energy times velocity or power times length, we may choose the pro-
portionality constant as a and check later on whether this choice is correct. We set

therefore
Qs + a/2) = —aZ’ ZPS s”) (4)
s'<<s §">s

In order to check the conservation law for the energy, we consider also the current
flowing from left to right, through the edge of the cell s located at s — @/2, namely

Qs —al2) = —a 2 2 P(s’, s")

s'<s-a s">s-a

and we form the difference of the two currents. There appears a one-by-one can-

cellation of all the terms for which the segment s” — s’ crosses both edges. There
obviously remains the contributions from what leaves the cell s minus what enters
in it; i.e. with s’ or s” =5, s" — s’ = r and the antisymmetry property (2')
1
—A0(s) = — 2 {P(s, s+7) — P(s —7, s)}
r >0
= _ 5
r;){Pss—[—r ) + Ps,s — 1)} (5)
-~ T Psstn=— T P69
r=0 s’

or, with equation (3)
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The continuity equation is satisfied in a difference form. This difference in the
1. h. s. goes over to the usual differential at the limit @ — 0, thus fixing the choice
for the proportionality constant a. It is convenient to rewrite the definition (4)
in terms of the variables » = s” — s’ and ¢ = s — s/, variables which convey the
effect of nearest neighbor, next-nearest-neighbor interaction and so on. We then have

Q(s)z—azr;\_jf’(s—t,su—t%—r) (4)
r>0 t=20

and notice that for a given distance 7, there are r/a contributions corresponding to
the possible origins s’ = s — ¢ of the partial powers, origins which are located in the
center of cells belonging to a rectangle of surface 7 - a drawn from the right-hand
edge of the cell s to the left.

For the two-dimensional case we consider in a square lattice of basis vectors
a, = (a,0) and a, = (0, a) the current Q, flowing in the direction 1, say, through
the right-hand edge of the lattice cell s. This current is given by a double sum of
partial powers P(s’, s”) over pairs of cells (s, s”) such that the vector s” — s’ crosses
the edge. Introducing again the now vector variables r = §" — s’ and t = s — s,
then, for a given r, of components 7., 7,, there are as many contributions as origins
of partial powers located in the center of cells which are found in a parallelogram
drawn from the right-hand edge of cell s in the direction — r. The surface of this
parallelogram being 7, a, this number amounts exactly to 7, a/a® = r,/a. We notice
also that, r, being positive, for 7, > | 7, | there is a contribution to the current from
the cell s, whereas for 7, <C | 7, | there is no contribution from that cell. Finally, if
r, = ¥, we adopt a convention in order not to count twice (i.e. in ¢, and Q,) the
contributions from the diagonals: either in introducing a weight factor of 1/2 or
in association each corner of the cell s to one edge. With these remarks we can write

Qus) =—a Y DY P(s—t,s—t+ 1) (4")
m o :

where r(1) means that one has to sum over the half plane with », > 0. The con-
servation law for the energy is checked in forming the appropriate combination of
four current components, namely

Q1(31 Iy —;—, 52) = Q1(31 = % " 32) + Qz(sl, Sg -+ %) - Qg(sl, Sp — %) ;

Mutual cancellation of terms is first checked for a given r; then taking into account
the above remarks and the antisymmetry property (2'), this difference is seen to

yield: 1 .
(4101 + 4;,05) = — D P(s, s + 1) = — E(s) (5%)

where the summation over r now extends over the whole plane. The limit a — 0
applied on the 1. h. s. yields, as expected, div Q. In the three-dimensional case no
new feature appears, and we can write for the »-th component (» =1, 2, 3) of the
current flowing through the face of the cubic cell, which is normal to the direction »

Q) =—a Y D P(s—ts—t+1) (4")
r(v) {(r) ‘
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where again, for a given r, the number of contributing partial powers amounts to
7, * a®/a® = 7,/a. The symbol r(y) means that one has to sum over the half-space
with », > 0. In this case, the continuity equation reads, in difference form

= 24005 = —E(s). (5")

b) Elastic limit

From the above definition of the current flowing through the face of an ele-
mentary cell we easily get the definition of the energy current density g(s), namely

G(s) = 0,08 =— 2 3 T P(s—t,s—t+1). (6)

r(v) t(r)

It is instructive at this stage to carry out the elastic limit of equatlon (6). Starting
with equation (2) for the partial power

3
1 ; y "
= X g Ut ) Fuls', o) @)

we take the harmonic approximation for the partial forces, which yields, according
to equation (1),

3
Fa( 2 S - 8 ( s,a T us",a')

where
02
Pua (1) = —5,—5,— #(1) (7)

and then pick first order contributions in the time and space derivatives of the
atomic displacements uy, u - expanded around their value at the site s. This gives

’Ms,,d - n .r N i § ?’ asv ’Ms, ml y

1 . ” ’
_2_ (us',a + us",oc) = us,oc

and leads to

g,(s) = Z 2 2 Us, o’ (poux rv’??_:_ Us, o - (8)

aa'v' r(v) Er)

The summation over £(r) can be carried out since it appears as dummy variable.
It amounts to the important number 7,/a, so that

. 0
gv(s) = T L 2 Z Us, 0 T» qjaa'(r) ¥y dsy Us, o -

aa v rv)
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The summation over r(») can also be performed. Introducing the tensor of elastic
energy constants

'}’;;Z = Z ¥ (paa 7y
r(v)
1 ©)
== ) 2 7y (pcxa'(r) Ty
r
owing to obvious symmetry properties; finally we get
g,(s) = 2 ug Y22 4w (8
e, s, o Jao as ] S, x

We ought to compare this expression with the one derived in classical field theory
from the corresponding Lagrange density. Going to the elastic limit in the potential
energy we get, in setting s” = s’ 4+ r, s’ = s, the following expression for the po-
tential energy density

Ous, Ous, o’
v(s) = Z{zaa 2 (pcza Vo ¥y } (),,ya ' a,,;

oo
vy

o) = b 3y e s

- ao o7y o7y’

vy

with equation (9)

Now with p = m/a® the anisotropic Lagrange density reads

1 - 9 o OUs, o : Ous, o'
8= ?4:-_:9“3’“ T2 2 Yaa' T3, sy

from which is derived the expression for the energy current density*)

. 0L (s)
go(s) = Z L T R v
o o 2
Osy
o vy auS, o'
= 2 s, Yaa sy’

aa v

which means exactly equation (8).

c) Generalizations

Equation (4") can readily be extended to those cases where many-body forces
cannot be neglected. Consider for illustration 3-body forces. If they are derived
from a potential energy of the form

Ve = % 2 o(s', s", s"),
s, 8", 8"

*) G. WENTZEL: Einfiihrung in die Quantentheorie der Wellenfelder (F. Deuticke, Wien 1943),
equation (2.2) p. 8. For the purpose of comparison, we find it more appropriate to work with
the unsymmetrized strain tensor than with its symmetrized and antisymmetrized components
more familiar in elasticity theory.
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partial powers, depending upon 3 sites, can be defined as follow

P(s/’ S”, slll)

. . 0 : 0 . 0 . 0 1 ! " m
=2 (— B%sm 3 T Yaa g T Ura gor T Yt O—Sa) 57 ¢(s, 87, 7).

o

Their contribution to the energy current, Q,(s | 3-body), can be expressed as a sum

over a triplet of sites (s', s”, s”) such that the vectors s" — s’ and §” — §' or
s" — s§" cross the face of the cell normal to the direction ». In addition to the
variables r = §" — s/, t = s — s', one introduces a third variable 2 = §" — s" so
that"

Q,,(S‘S-body) = —422 ) P(s—t,s—t+r,s—t+r+2),
re) i 2(&7)
the domain of summation of z consisting of two interpenetrating skew pyramids of
vertices §’, s” intersecting at the face of the cell s normal to the direction ».
Finally the generalization of equation (4”) to the case of polyatomic lattices is
obvious. One has indeed to introduce partial powers depending not only upon the
sites but also upon the indices of the atoms in the sites, and sum over pairs (or
triplets) such that P(s’, s”) entering the above formulae becomes, in the case of
e.g. two-body forces:

g
P(s,’, SII) — Z Pn,’n”(sr, S”) ,

”r’ n =1

# being the number of atoms per cell, with

Pn’,n”(s,’ S”) = Z o (as’,n’,rx + /"’-ts"n”,oc) Foc,n’,n” (Si’ S”)

and

Foc,n’,n"(srr S”) - 70(148, o us”,n",af (pn’,n"(sf: S”) &

As detailed calculations have shown that no new feature was introduced by these
generalizations except the one already revealed by the model case, further develop-
ment will be made on the basis of the mono-atomic three-dimensional case, which
obviously simplifies notations.

d) Energy-current waves

The relations established so far are expressed as functions of the lattice site s.
In view of future studies on correlation effects related to energy disturbances in
solids, it is natural to derive dual expressions as functions of a wave number k
belonging to the first Brillouin zone of the reciprocal lattice. For this, we start
again from equation (4")

QV(S):_aEZP(S—t,S#t—f—T) (41///)

) 107

and analyse the partial powers as follows

P(s',s") =P(s', s + 1) =) &* Pk, 1) (10)

k
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with
Pk, 1) = X e P(s, s' + 1) = PX(— k1), (11)
<

the asterisk meaning complex conjugate.
Introduction of (10) in (4") yields, with §' = s — ¢

0,(5) = —a X X 3 Rt Pk, 1) .
kR r(v) t(r)

This transformation enables an independent summation over #(r), for which we
introduce a function
O,k 1) =a ) e k. (12)

t(r)
In particular

6,00, r) =7 (12)

With this definition, we obtain
Qu(s) = > e*(— 1) )] 0,(k, 1) P(k, 7). (13)
k r(v) .

Besides, we can introduce energy-current waves of amplitude Q,(k) by the decom-
position

0(s) = X ™ 0, (14)
with \
0,(k) = X 5 Q,(s) = Qi(— k). (15)

Substitution of (14) in (13) gives the general relation between the amplitude of the
energy-current wave and the partial-power waves

Q,(k) = (— 1) %'Gv(k, r) Pk, 1) . (16)

From equation (16) one can easily go to the long-wave limit. The converse however
would not be so trivial, and in this respect the above relation may be instrumental
in studying the dynamics of the short-wave spectrum of highly localized energy
fluctuations in crystalline lattices. We can close this part of our analysis in writing
the continuity equation (5”) in k space. With

E(k) = « X % E(s)
and

4,0,(5) = (1 — e Q,(k)

the continuity equation reads, always for our simple cubic lattice

B(R) + 3 (1=, = 0. (17
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e) Introduction of lattice waves

Although wave-number dependent, the components Q,(k) are still functions of
the atomic displacements and their time derivatives in the s representation. Intro-
duction of lattice waves and normal modes is therefore the next step with which
to proceed. Since this step involves mostly standard calculations, these will not be
reproduced here in details. The nature of the general component Q,(k) will be de-
scribed and closer attention paid to the steady component Q,(0) owing to its parti-
cular interest.

Expansion of the interatomic potential in powers of the atomic displacement
followed by the introduction of the amplitude w,(q) of the mode of wave vector q
and polarization p through the usual transformation

1 ; p
Vm N g et Ko@) wap (18)
where X%(q) are the elements of the polarization matrix, yields the well-known
expression for the energy of an anharmonic solid which can be written in compact
tensor forms as follows

E-—iw =7 +i42@ w -

U

s,o0

1

w+3, NS/Q(P wew* w4+ (19)

Here w is a tensor of rank 1 with 3(N — 1) components w,(q), and @, a tensor of
rank » containing a sum over » space variables of multiple derivatives of order »
of the crystal potential, multiplied by a #n-product of elements of polarization ma-
trices X%(q); 4» = A(q) with ¢ = q, + ¢, + - * - g@» and A(q) is the function fa-
miliar in lattice dynamics, namely
1qs 2
B [N g=0,2x7
4 q)_;"eq |0 0 otherwise

7 being any vector in the reciprocal lattice. The harmonic part of the potential
energy reads in particular

1 4
2—‘——3¢2:TJZ’

= 22 Z[ P (1 —e97) (1 — 697) | - X2(Q) - XEH(q) "y, w0y,

1 *
= ;Aqbwq,pww
since its diagonal, with the eigenvalues

Op.p Agp = Op p g Z[ 2 ‘p"‘“ —2 cosqr)] Xt(q) X:F'(q) . (20)

It will be convenient to rewrite this bilinear expression in matrix form instead
of tensor form. w becomes a column vector with 3(N — 1) components, w™ its
hermitian conjugate, 4 a diagonal matrix; introducing a definition for the quantity
in parenthesis, namely '

MA@ = 5 X o Ga) (2 — 208 q7) (21)

m

{l
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equation (20), together with the eigenvalue equations and the unitarity condition
applying to the polarization matrix, then reads

A= X+AX, , (20)
AX= X1, (20")
X+A = 1X+, (20"
X+X = 1. (20™)

These equations will be used presently.

In carrying out parallel calculations on the partial powers which in turn are
introduced in equation (16), an expansion of the following form is found for the
general component Q,(k):

A2"‘ v, . A;;-—k B 18 R
Q,(k) = le{ (Nk) x2:zww+ﬁj£r3/2) xszzw'w'l‘y‘I—"'} (22)

where the y,, result from combining partial powers with the function 6, and summ-
ing over r(v) and where A,(— k) = A(q) with g = — k+ q, + q.+ *** qn.
Notice that in the form (22), Q,(k) conveys the effects of the anharmonicity of
interatomic forces. It is obvious that the energy transferred through the lattice
carries also its anharmonic part. Even if small in magnitude, this part may produce
first-order effects which should not be overlooked.

f) Homogeneous energy current

We proceed in studying the steady component Q,(0), its harmonic @, ,(0) and
anharmonic partQ, ,(0). Consider first Q,, ,(0); remembering that0,(0, r) =7,,itreads

1 4 i : oo’ i iqr
= 5~ , (qz‘vl‘q)zr'[(_i) 271‘ (Pm(r) (1+eqr)(1_GQ)]
X Xi(q) - XE(q) - iw, ,w,

*

2 [ 7 a() 2 sing 1| - X2(q) XT(q) i 10 - 0y, -

T, L)

Defining the quantity in square parenthesis by
B’ .(q) = %’ r, 220 gsingr=1 37, P20 osing s (24)

o 7

@,,» (0) can be written in compact matrix form:

0,10) = 5wt X*BXitw. (23))
Now inspection of (24) and (21) shows the important connection

d (25)

B'(q) = 50— Alg) .

a relation which will be used to transform further equation (23').

28 H.P.A. 36, 4 (1963)
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To do so, we start from (2()’) that we derive on both sider with respect to g,
0X

r)a .
aq l“—— X 4+ X+A - dge ¥

the second term on the r. h. s. is precisely the term we want. In applying the eigen-
value equations (20’), (20”) and taking into account the unitarity condition (20”),
one finds:

X+ "’a}? X=—X+BX= L; 4[4, Y] (26)
with [A, Y'] = AY” — YA e
Yv = agy 2 _X 3 (27)
Y't=—Y", (27')
3 b . ’
= 2 o X9 Xo(9) (27")
Thus
1. 1 o Lrg g 08
0u4l0) = 3 { @ § i o wt g [A Y0 (28)
With 4, , = w} , and the definition of the group velocity
, d
Car = 35 Par
the eigenvalues of the diagonal part read
1 9 )

Equation (28), then, reads, in scalar form:

_ 2 2 @) 7oy oyt P '
Q1(0) = = {Cv pWqpt W pWa 0y, + o ( Wg,p — Og,p) Yy 1Wg Wy, }'(28)
b, 1’

This equation is amenable to comparison with the standard form if the usual trans-
formation to normal coordinates is made, namely:

Wy = |/l (agp + alg

2 wq,p

75«?7 .
7 wq = l/ Ag p a_q’p) ;

After some manipulations showing cancellation of all antisymmetric contribution
in (p, p'), the final formula reads:

(30)

1 »
0y, 4(0 ~ N 53 quwqﬁ g.p %q,b
1 1 , 1
t N ; ? ¢21,¢") Yip(a) 9 (Hwg p + 1wy ) (28")
b
1/2
(00g, * g, 5) 1" - 2 (@g,p Ggp T gy Bg,p) -
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The proof of (28), (28’) and (28”") for polyatomic lattices follows exactly the same
lines, so that it will be spared here. The summation over $ can readily be extended
from 3 to 3 #n,.

The first part, which is phase independent, represents the well-known expression
for the steady component of the harmonic energy current in which the presence of
the group velocity has been strictly derived. A few words about the group velocity
ought to be said here.

Inspection of the oscillatory component Q, , (k) shows indeed that the concept
of group velocity is applicable only for k = 0. This is due to the function 0,(k, r),
which acts as a difference and displacement operator. For instance, in the one-
dimensional case, where the function 6, can easily be evaluated

ST ikt _ 1 —emitr
26 — 1 — g-ika ’

t=o0

the harmonic part of Q(k) reads

WL =B [(—i) 32O (14 o) (1 — 7] i iy w0,

and becomes, after some manipulations
k 3 1 .- *
=2 ey g [0 — B — g + o ®) i v v (B1)
q

where we notice a suggestive combination of eigenvalues taking the place of the
group velocity. In the three-dimensional case the situation is more complicated
owing to the presence of polarization matrices. The above example however illus-
trates clearly the limit of validity of the concept of group velocity. Furthermore
the interesting long-wave limit can be investigated in general by further application
of the method used to transform the steady component (23) in the convenient form
(28). Higher derivatives of the eigenvalues 4, , appear as well as additional phase
dependent contributions*).

The second part of formula (28') represents a new contribution to the homo-
geneous energy current which is carried by excitations mixing two different polari-
zations for the same wave vector. This part is phase dependent, and the excitations
oscillate rapidly with the angular frequency w, , — @, , . Several interesting con-
sequences of dynamical and statistical nature follow from the presence of these
terms; for instance dynamic effects are expected to manifest themselves through
resonance phenomena of which a prototype will be treated in the next paper in
connection with the frequency-dependence of the L. T. conductivity. Statistical
effects will also be met there, but we can readily estimate the simplest one in com-
puting the mean square average (AQ%> = (Q2%) since (Q,> = 0 of the energy current
given by (28") for a classical harmonic crystal in equilibrium. In this respect it is

*) Cif. L. SALEM, Phys. Rev. 125, 1788-1791 (1962), where a similar situation is studied in
Hilbert space.
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convenient to introduce action-angle variables by the following transformation

dg p :VAM exXpi oty , - (32)
As a function of these variables the harmonic energy is known to read

E, = qZ; WgpAg s

and the volume element in phase space is simply d4, , dx, , for each oscillator.
Making use of the classical expectation value

KT

Agp> = o (39

we find, after some manipulations, the illustrative formula
K T

2 (Q3(0)%> = )z
y =1

p¥ 9 9 1 1 2 ( (34)
X{ %‘C i 2 16 Yoo Yorld) [(w‘”’ ~ @) (wq,p t oar )] }

qQ P v

which settles on proper ground the question of the relative importance of the phase-
dependent part of the homogeneous energy current.

Going back now to equation (22), the presence of anharmonic contributions
suggests a study of the phase-independent part of its homogeneous component in
order to detect sources of first-order effects. Asin the well-known case of the poten-
tial energy, these terms are found in all interactions involving an even number of
waves (4, 8, etc.). Following the introduction of action-angle variables, the process
of averaging over the phases produces the well-known pairing rule between modes
of different wave number in such a way that the phase average homogeneous and
anharmonic energy current takes the following form, written in compact notation:

0ral0) = 4 {3 LA e A45 8 A o4 0 A } (35)
where 4 and w4 mean tensors of first rank with 3 n(,N — 3 components 4, , and
@gp gy

The effect of the (non-dissipative) quartic terms of (35) on the high-temperature-
dependence of the L. T. conductivity will be estimated in lowest order in the next
paper, under the assumption that dissipation is provided by the three-mode-inter-
actions of the potential energy. Further consequences borne out of the above ana-
lysis will be presented in subsequent papers, where the treatment of some funda-
mental Lattice Properties of Solids will be handled anew.
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Corrélations angulaires directionnelles béta-gamma dans la
désintégration de Sb'24, Eu'’? et Eu'®

par Jules-Willy Sunier
Laboratoire de Physique des Hautes Energies, E. P. F., Zurich

(4. VII. 1962)

Summary. The f-y directional correlations involving the first forbidden 2,31, 1,48 and 1,84
MeV beta transitions in the decay of Sb'?4, Eu'5? and Eu'%* have been measured as a function of
beta particle energy. Near maximum beta energy the anisotropy factor ¢(W) in the correlation
function N(W, 0) = 1 + (W) P,(cosfl)) was found to be £(4,74 m,c?) = — 0,387 + 0,012,
£(3,64) = — 0,447 4 0,013 and £(4,33) = — 0,315 £ 0,034 for Sbiz¢, Eul®? and Eul!% respec-
tively. The absence of a term P,(cos0) in the -y correlation functions provides further evidence
for the first-forbidden character of the involved beta transitions. Pure _[Bi ; transitions are
excluded from the experimental values of ¢(W) but the data imply that this matrix element
must contribute very significantly. The nuclear matrix elements involved in the observed beta
transitions have been computed from the measured values of ¢(W) and taking into account the
experimental data of the shape correction factors and of the -y (circularly polarized) angular
correlations. The results are characterized by the predominance of the [B;; matrix element
and yield for Sb2, Eu!%? and Eu'’* respectively:

| [By/R | = (1,76 4 0,22) - 10~2; (2,86 + 0,36) - 10~3; (1,20 - 0,14) - 10~

| [*IR | = (1,7 +1,1) -10-3; (55 =+ 3,00 -10-%; (0,5 + 1,5) -10-*

|fioxr/R| = (1,4 L 1,4) -10-% (0,97 = 1,70) - 10~%; (2,3 + 1,4) -10-4
| = | (

| [ia
(R is the nuclear radius in units 2 = m, = ¢ = 1). Selection rules suppressing the matrix ele-

ments other than [B;; are discussed. The results are compared with the predictions of the
Conserved Vector Current Theory.

S
e
W
i

+ 0,77) - 10-¢; (1,97 + 0,82) - 10—¢; (0,73 + 0,50) - 10—

I. Introduction

L’hypothése de la non-conservation de la parité dans les interactions faibles,
émise par LEE et YANG!) en 1957, a stimulé de nombreuses études théoriques et
expérimentales dans le domaine de l'interaction béta. La clarification de nos con-
naissances sur la forme de l'interaction elle-méme en est la conséquence directe.
D’une part, la mesure de la distribution angulaire des électrons émis par des noyaux
polarisés?) et I'étude des corrélations angulaires béta-gamma polarisés circulaire-
ment dans les transitions permises ont établi que la violation de la parité est maxima.
D’autre part, la mesure par GOLDHABER?) de I'hélicité du neutrino et I’étude des cor-
rélations angulaires électron-neutrino*) ont confirmé la théorie a deux composantes
du neutrino et précisé que l'interaction béta est uniquement de forme vectorielle
(V) et pseudo-vectorielle (4). En outre, I'expérience de BURGY et al.5) sur la désin-
tégration de neutrons polarisés ainsi que la mesure de la durée de vie du neutron
libre¢) et de 0! 7)®) ont permis de déterminer le signe et la grandeur des constantes
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de couplage de l'interaction. Il est dés lors établi que 'interaction béta est du type
V—A4, avec C4 = [—1,19 4 0,03] Cy.

L’étude des transitions béta en corrélation avec les transitions électromagné-
tiques qui leur succédent est ainsi devenue un moyen d’investigation direct de la
structure nucléaire. La forme de l'interaction béta étant admise, il est désormais
possible de déterminer expérimentalement les éléments de matrice nucléaires de
I’hamiltonien d’interaction. Leur calcul théorique n’est possible que dans quelques
cas, car il nécessite une connaissance compléte des fonctions d’onde globales des
états initial et final du noyau. Ces fonctions peuvent étre évaluées sur la base des
modeles nucléaires, mais seule une théorie exacte des forces nucléaires pourrait don-
ner des résultats satisfaisants. L’accumulation de valeurs expérimentales apporte
une contribution 4 1’étude critique des modéles nucléaires et a leur perfectionnement.

Dans le cas des transitions permises, seuls deux éléments de matrice intervien-
nent: [1 et [ ¢. Ils sont entiérement déterminés par la mesure du logf? et de la
fonction de corrélation béta-gamma polarisé circulairement. Pour les transitions
interdites du premier ordre, six éléments de matrice entrent en jeu [[¥;, [0 - r;
Ir,[a, foxr; [B;;] dans le cas le plus général. Il est nécessaire de faire inter-
venir pour les leptons des fonctions d’onde relativistes, solutions de 1’équation de
Dirac pour des particules dans un champ coulombien. Les différentes formes de la
probabilité de transition sont ensuite développées en une série de puissances dé-
croissantes du facteur § = (x Z)/(2 R). « est la constante de structure fine, Z la
charge du noyau et R son rayon. Dans le cas général, le premier terme de cette série
contient &2 et ne dépend pas de 'énergie W de la particule béta émise. Pour la plu-
part des transitions interdites du premier ordre, il est suffisant de ne considérer que
le premier terme du développement. C'est I'approximation &. Dans cette approxi-
mation, seules deux combinaisons linéaires des éléments de matrice caractérisant
la transition béta peuvent étre déterminées.

Cependant, il existe quelques transitions pour lesquelles I'approximation & n’est
pas valable. Leur valeur f¢ est anormalement élevée. En outre, le facteur de forme
du spectre, la corrélation directionnelle béta-gamma et le facteur de polarisation de
la corrélation béta-gamma polarisé circulairement dépendent fortement de I'éner-
gie de la particule béta, le dernier facteur présentant de plus une dépendance angu-
laire. Pour les transitions impliquant une différence de spin de 1 entre I’état initial
et final du noyau, le nombre des éléments de matrice nucléaires inconnus est réduit
a quatre. Ces quatre éléments peuvent, en principe, étre déterminés univoquement
par I'ensemble des mesures énumérées ci-dessus. Le fait que ces transitions ne puis-
sent étre traitées dans 'approximation & est attribué soit a une annulation mutuelle
des éléments de matrice intervenant dans le premier terme du développement en &,
soit a I'influence d’une régle de sélection qui tend a diminuer la contribution de cer-
tains de ces éléments de matrice. Les modéles nucléaires déterminent ces régles de
sélection.

Plusieurs cas typiques ont été soulignés par KoTANI?), en particulier le Sb1%4,
I’Euts? et ’Eu'st. Nous nous sommes proposé, pour ces trois isotopes, de mesurer la
corrélation directionnelle des cascades 3-(8) 2+(y) Ot en fonction de I'énergie W de
la particule béta. Ces mesures, comparées a celles du logf ¢, du facteur correctif du
spectre et de la corrélation béta-gamma polarisé circulairement, nous ont permis de
déterminer les éléments de matrice nucléaires des transitions béta envisagées. La
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confrontation des résultats devait mettre en évidence l'influence d’une régle de
sélection réduisant la contribution des éléments de matrice [¢, [ r et [0 X r par
rapport a 1'élément de matrice [ Bs;. Le cas des deux noyaux Gd!52 et Gds¢,
situés de part et d’autre de la limite des noyaux déformés, était en outre intéres-
sant pour tester la validité de la régle de sélection K, déterminée par le modéle col-
lectif de Bohr et Mottelson.

, Cette étude développe essentiellement les résultats de publications antérieures
et tient compte des mesures de corrélations béta-gamma polarisé circulairement
dans la désintégration de Sb'?4 et de Eus?, effectuées dans l'intervalle par d’autres
auteurs'o-14), Elle confirme les résultats de mesure de la fonction de corréla-
tion directionnelle béta-gamma, donnés précédemment par 'auteur??) pour 'Euls?
et par STEFFEN') pour Sb!2¢, Par contre elle est en désaccord avec d’autres travaux
sur 'Euts? 16)17)18) [ ’étude de 'Euts* a été développée. En particulier, 1'utilisation
d'une source liquide a permis de lever l'indétermination due a l'atténuation de la
corrélation, atténuation provoquée par l'interaction des moments nucléaires avec
les champs électrique et magnétique dans un milieu polycristallin.

Dans un premier chapitre, nous rappellerons brié¢vement les éléments théoriques
nécessaires a la compréhension du probléme. Une deuxiéme partie sera consacrée a
la description de notre dispositif de mesure, des sources et des différentes correc-
tions qu’il convient d’apporter aux résultats. Les résultats et le calcul des éléments
de matrice seront présentés dans un troisiéme chapitre, tandis qu'une derniere
partie sera réservée a une discussion et a l'interprétation de ces résultats.

II. Rappels théoriques et formules utilisées
1. Probabilité de transition et éléments de matrice nucléatres

Le calcul de toute fonction de corrélation béta-gamma fait intervenir la proba-
bilité de transition béta entre deux états nucléaires |7 ) et | f ). Cette probabilité
est proportionnelle au carré de I'élément de matrice ¢ f| Hif|¢ » de I'hamiltonien
d’interaction. Dans le cadre de la théorie V' — A, cet élément de matrice a la forme:

f ‘ H;y ‘ 1) = Z 21 f dv W}k) 'V,u(CV —Cy ¥s) Tik) ‘ng)] (1)
X [Eey,u,(l —]— yﬁ) ‘Pﬂ + h'C,

expression dans laquelle 9! et p® sont les fonctions d’onde d'un nucléon d’indice %
dans I'état initial et final du noyau, y. et y, les fonctions d’onde de 1'électron et du
neutrino, v~ la composante de I'opérateur d’isospin transformant un neutron en
proton, et y, les matrices de Dirac. L’intégrale s’étend simultanément aux coordon-
nées spatiales des nucléons et des leptons. L’interaction béta est locale et la lon-
gueur d’onde associée a I’électron et au neutrino est beaucoup plus grande que les
dimensions nucléaires; il est donc légitime de calculer {f| Hs|4)> en effectuant
un développement limité des fonctions d’onde des leptons, solutions de 1’équation
de Dirac pour une particule dans un champ coulombien. La densité d’interaction se
décompose alors en une combinaison linéaire d’éléments de matrice nucléaires qui
contiennent toutes les variables dynamiques de la transition. Ces différents élé-
ments de matrice sont de la forme (yf|0,|w:>, que nous écrirons simplement
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M ;. L'opérateur O, doit satisfaire les régles de sélection déterminées par les change-
ments de spin et de parité entre les états nucléaires initiaux et finaux:

‘I@—IﬂQﬂQ!I@—FIﬂ et mimrm, = +1.

A est Tordre tensoriel de l'opérateur O,;. Le moment angulaire total emporté par
la paire électron-neutrino est égal a A.

Les éléments de matrice contribuant aux transitions béta interdites du premier
ordre sont énumeérés dans le tableau 1. Rappelons que ces transitions sont caracté-
riscespar A = —let Al =0, + 1, 4+ 2.

Tableau 1
Eléments de matrice des transitions béta interdites du premier ordre

MA:[OA A AT
Ca [ s
CAfcr-r 0 0
Cvfr 0, - 1
cvfm 1
Ca [iox 7 0 — 0 interdit
2
cAf[aixj+xiaj—-3—a”a-r] 2 001001

interdits

2. Corrélations béta-gamma

Soit un noyau effectuant une transition entre les états I, et I,, avec émission

d'un ¢lectron d’énergie W (impulsion $). Soit une transition entre les ¢tats I et I,,

avec émission d'un photon d’impulsion k et de multipolarités L et L' (| I, — I,
< L,L"<<|I,+ I,|). La probabilité de détecter simultanément les deux radia-

tions dans les directions # et £ s’exprime par:

~

NW) ~ X 3 by Guaw Uy Iy Lo, LL) Palp - ). (2)
Les facteurs G, ;; sont des coefficients géométriques qui ne dépendent que des
ragles d’addition vectorielle des moments angulaires. Les Pn(/j\) . E) sont les poly-
nomes de Legendre de degré ». Les indices 4 et 4’ caractérisent I'ordre tensoriel des
opérateurs O, et O, , responsables de la transition béta. Les paramétres de parti-
cules b, ,, contiennent les variables spécifiquement nucléaires sous forme d’un pro-
duit d’éléments de matrice:

sz = Ay (W, &) M, M, . . (3)

W est I'énergie de la particule béta. & = (x Z)/(2 R) est le facteur d’énergie coulom-
bienne; o est la constante de structure fine, Z la charge du noyau et R son rayon.
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Il est indiqué, pour le calcul de la probabilité de transition, de développer les
coefficients a,,;; en séries de puissances décroissantes de &. Pour les noyaux inter-
médiaires et lourds, & est de 1'ordre de 10 et ces développements convergent rapide-
ment. Dans le tableau 2 nous indiquons la puissance de & et de W qui intervient
dans les facteurs a,,;;-, pour chaque combinaison bilinéaire des éléments de matrice
M; et M, qui entrent en jeu dans quelques observables liées a une désintégration
béta interdite du premier ordre. Les indices A et A’ se rapportent aux éléments de
matrice énumérés dans le tableau 1, et les trois observables indiquées seront celles
que nous utiliserons pour déterminer expérimentalement ces éléments de matrice.

Tableau 2

Ordre de grandeur des termes successifs du développement en & et éléments de matrice contri-
buant aux transitions béta interdites du premier ordre

Observable % 0(&%) 0(&-W) 0(W?)
A A A AN A

Facteur de forme du spectre béta: C(W) 0 0 0 0 0 0 0

1 1 1 1 1 1

2 2

Facteur d’anisotropie de la corrélation direc- 0 2 1 1

tionnelle béta-gamma: (V) 2 1 1 1 2

1 2 2 2

Facteur de polarisation de la corrélation béta- 0 1 1 0 1

gamma polarisé circulairement: P.(1/) 1 1 1 1 1 11

2 1
1 2
3 2 2

3. Approximation «&»

Lorsque W,, I'énergie de la transition, est telle que & > W,, il suffit de consi-
dérer la contribution des termes d’ordre &2 pour l'évaluation des coefficients a, ;-
de la formule (3). Ceci définit I'approximation «&» L’élément de matrice d’ordre 2
(Bij) ne figure pas dans a,,;, (cf. tableau 2). Dans cette approximation, la forme du
spectre béta est essentiellement statistique, ou «permise», la corrélation direction-
nelle béta-gamma est isotrope, et la corrélation béta-gamma polarisé circulairement
a les mémes caractéristiques que celle des transitions permises. Seules les deux
combinaisons linéaires d’éléments de matrice

-

V:CA/iy5+ECAfG-r et
Y:_cvfm +ECa[ioxr—ECh [+

!

peuvent étre déterminées expérimentalement.
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La plupart des transitions interdites du premier ordre satisfont a cette approxi-
mation, ou ne nécessitent qu'une faible correction due aux termes d’ordre & W.
Elles sont appelées transitions coulombiennes et ne présentent pas d’intérét pour
la détermination expérimentale des éléments de matrice nucléaires.

4. Non-validité de I’ approximation «&»

I1 peut arriver qu'une combinaison linéaire particuliére des éléments de matrice
qui contribuent aux termes d’ordre &2 soit si petite que les termes suivants du déve-
loppement des a,,;; deviennent dominants, ceci méme si la condition & > W, est
satisfaite. Il s’agit d’un effet d’annulation mutuelle des éléments de matrice. Un tel
cas est connu dans le Ra E.

51 par contre les éléments de matrice d’ordre 4 = 0 et 1 sont petits par rapport
a I’élement d’ordre 2, 'importance de ce dernier devient telle que I’approximation &
perd sa validité. Il en résulte une déviation sensible de la forme du spectre, par
rapport a la répartition statistique. De plus, la corrélation directionnelle béta-
gamma devient fortement anisotrope, et un terme en P,(cosf)) apparait dans la
fonction de corrélation béta-gamma polarisé circulairement (cf. tableau 2). Un tel
effet est di & une régle de sélection définie dans le cadre d’'un modéle nucléaire
particulier. Nous citerons deux cas:

— Modeéle en couches: interdiction «j»

Lorsque les protons et neutrons participant a la transition occupent des états
de la méme couche principale, seules des transitions pour lesquelles |[§ — j' | > 2
(7 et ;' étant les états initiaux et finaux) donnent lieu & un changement de parité.
Ce fait résulte de la succession des niveaux propre au modeéle en couches. L’opéra-
teur By; (A = 2) dominera dans une transition béta interdite du premier ordre, les
opérateurs d’ordre A = 0 et 1 ne pouvant induire des transitions pour lesquelles
f =f | > 1L

— Modéle de Bohr et Mottelson: interdiction « K »

Dans le cas des noyaux déformés, un état nucléaire est caractérisé par son spin
total 7, sa parité s et son moment angulaire intrinséque K, projection de I sur 'axe
de symétrie du noyau. Si la transition béta relie deux états K et K', tels que
| K — K'| > 2, 'élément de matrice [ By, peut étre le seul autorisé.

Les transitions béta interdites du premier ordre pour lesquelles I'effet d'une
régle de sélection provoque une déviation de 'approximation & et une prédomi-
nance de I’¢lément de matrice [ B;; sont les transitions favorables a la détermination
expérimentale des éléments de matrice nucléaires.

5. Cas des transitions 3-(f) 2+(y) 0+

La transition béta a lieu avec un changement de spin de 1. Dans ce cas, seuls
4 éléments de matrice contribuent a la fonction de corrélation, car les opérateurs
d’ordre 4 = 0 ne peuvent induire de transition A7 = 1. Avec la notation de KoTan1?)



Vol. 36, 1963 Corrélations angulaires directionnelles béta-gamma 435

nous les introduirons sous la forme des paramétres %, x, Y et z définis par les rela-
tions: )
u =yt CAfiGXT]
x:n—l-—Cvfr] >ﬂ.=1
Y — g [— Cvfia] — £+ %)
2z =?’]_1 ﬂcAfB,;j] 222. J

7 est un élément de matrice de normalisation arbitraire, la probabilité de transition
ne dépendant que de combinaisons bilinéaires d’éléments de matrice. Nous le choisi-
rons égal & C4 [ Byj;, ce qui revient & poser z = 1.

Avec cette notation, I’équation (2) prend la forme:

Nﬂy(W: 9) = Ao(W) % Az(W) Pz(COSB) 5
+ {% [AL(W) Py(cos8) + Ag(W) Py(cost)]. )

Les coefficients A,(W) sont des formes bilinéaires des paramétres u, x et Y définis
par les relations (4). Nous donnerons, pour une cascade 3—(8) 2+(y) 0+, les différentes
observables que nous utiliserons pour la détermination des paramétres u, x et Y.

a) Facteur de forme du spectre béta: Mesuré en fonction de W et normalisé pour une
énergie W,.

Ca(W) = Ao(W) A5H(W) , (6a)
Ao W) = 5 [(Wo — W)+ W(W? — )] + V2 + (55 — 252) 2 Y
+(aw =5 )Y L (6b)
b) Corrélation directionnelle béta-gamma: Mesurée en fonction de W.
e(W) = A,(W) 471(W) , (72)
AW) = — S (6 W +364,Y — (124, Wo — 12W)
—@BOW — 124, Wo)u +242,xY [ (71)

— 122, uY — (8 4y Wo + 4 W) 22
— A A Wy —TW)uz — (12W — 12 4, W) u x.

c) Corrélation béta-gamma polarisé circulaivement: Mesurée en fonction de 6 pour
une énergie moyenne W.

P, 60) = |/F2=L  AuW) Pilcost) + 4,(W) Py(coso) (8a)
S wE Ag(W) 4+ Ay(W) Py(cosh)
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A(W) = o [—60Y: — 60, WY + 45 W3 +6W2—5WW,—6) «
LS WEL2UW — 20 W Wo— 9) u
L 20BW —2Wo)uY + 40(We— W) 5 Y (8D)
L 20(WE—3W Wy + 2 W) ux

+ 53— Wi+6WW, — 8 W2 u?],

Ao(W) = (72— 1) [ 45 I + 45 5 — 35 4] (8¢)

Dans les équations (6) a (8), W, est I'énergie maximum de la transition béta. Les
paramétres 4,, 4,, 4, sont des fonctions de W et ont été calculés par KoTANI?).
Chacune des observables a, b et ¢ définit une surface du deuxiéme degré dans un
systéme de coordonnées #, x, Y. Le point d’intersection commun a ces surfaces
permet de déterminer #, x et Y'; il est alors aisé de tirer la valeur des 4 éléments de
matrice a partir du logf ¢.

III. Dispositif expérimental et technique de mesure
1. Appareillage

Le dispositif expérimental utilisé pour les mesures préliminaires et celles de
Sbi24 a été décrit précédemment??). Pour les mesures de I’'Euts? et de I’'Eu¢, nous
avons construit une chambre a vide plus grande et utilisé un spectromeétre a coinci-
dences a plusieurs canaux. Les caractéristiques de ce dispositif sont les suivantes:
La source est montée sur une feuille de mylar de 0,9 mg/cm?, tendue sur un anneau
de plexiglas de 86 mm de diamétre intérieur et de 3 mm d’épaisseur. Elle est placée
sous vide, a I'intérieur d’'un cylindre en aluminium de 250 mm de diametre et

Corrélations angulaires B-y.
Chambre @ vide et détecteurs.

% Aluminium
Bl rom

Ecran
magnétique

Double Cathode -
Follower 6BQ7A
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400 mm de hauteur, avec une épaisseur de paroi de 3 mm. Un sas permet de l'en-
lever rapidement et de la remplacer par une source étalon. Le détecteur béta est
fixé perpendiculairement a l'axe de la chambre 4 vide et plonge a l'intérieur. Il est
constitué d’un scintillateur plastique (Nuclear Enterprises NE 102) de 36 mm de
diamétre et 9 mm de hauteur, et d'un photomultiplicateur RCA 6342-A. L’une
des bases et le manteau du scintillateur ont été recouverts par évaporation sous
vide d'un mince film d’aluminium. Le détecteur gamma, extérieur a la chambre a
vide, est mobile autour de 1’axe de celle-ci. Il se compose d’un cristal de Nal (Tl) de
76 mm de diamétre et 51 mm d’épaisseur, et d'un photomultiplicateur DuMont 6363.
La résolution du détecteur béta est de 189, pour la ligne de conversion de 980 keV
du Pb27, celle du détecteur gamma de 99, pour la ligne de 661 keV du Cs!3".
L’étalonnage en énergie de la voie béta a été effectué a 1'aide des lignes de conver-
sion du Cs37 (624 keV) et du Pb207 (980 et 481 keV). La validité de I'extrapolation
linéaire vers les hautes énergies a été périodiquement controlée a 1'aide d’'un géné-
rateur d’'impulsions. Le dispositif de détection est représenté par la figure 1.

Le spectrométre a coincidences proprement dit est du type «fast-slow». Les im-
pulsions recueillies sur 'anode des photomultiplicateurs passent par un amplifica-
teur rapide, saturé avec une impulsion d’entrée de 20 mV, et sont normées a une
amplitude de 1 V et une durée de 5 nsec. Elles commandent un étage de coinci-
dences rapides, dont le temps de résolution est 2t = 9 nsec. Dans chacune des
voies lentes, les impulsions collectées 4 la huitiéme dynode du photomultiplicateur
sont amplifiées linéairement (Nuclear Enterprises «Non-overloading» NE 5202).
Plusieurs analyseurs a un canal (2 dans la voie gamma, 4 dans la voie béta) sélec-
tionnent chacun une bande d’énergie et déclenchent, par 'intermédiaire d’unités de
mise en forme des impulsions, un circuit de coincidences lent de résolution 2 7, =
4 - 107 sec. Une horloge permet de présélectionner la durée de chaque mesure, et
commande automatiquement le déplacement du détecteur mobile et I'enregistre-
ment des résultats. Le schéma général de l'installation est illustré par la figure 2.

2. Sources

Sb2¢: Un échantillon métallique enrichi & 97,7%, de Sb?3 a été irradié pendant
18 jours dans un flux de 2.10'® n/cm? sec. Ce métal a été évaporé sous vide sur une
feuille d’aluminium de 0,4 mg/cm?, tendue sur un anneau de plexiglas de 20 mm de
diameétre intérieur. La source avait un diamétre de 3 mm et une épaisseur de 1 mg/
cm2.

Eu's2: De l'oxyde d’Eu enrichi a 91,9%, d’Euls! a été irradié pendant 20 jours
dans un flux de 0,9 - 10** n/cm? sec. La source a été préparée par évaporation a sec
d’une goutte d’EuCl; en solution aqueuse sur une feuille d’or de 1,5 mg/cm?2. Elle
a été oxydée dans un four & une température de 700°C et recouverte d’'un film
protecteur de laque LC600 de quelques pg/cm? Son épaisseur était de 0,9 mg/cm?
et son diameétre de 2 mm. La feuille d’or a ensuite été collée sur un disque de mylar
perforé-en.son centre.

Eu®s¢: De l'oxyde enrichi a4 98,96%, d’Eu'ss a été irradié pendant 4 semaines
dans un flux de 1,3 - 104 n/cm? sec. Deux sources ont été utilisées. L'une a été
préparée comme dans le cas précédent, sur une feuille de mica de 1 mg/cm?2 Son
diameétre était de 8 mm et son épaisseur de 0,7 mg/cm2. La seconde consistait en
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Schéma général de I’électronique

AL = Amplificateur linéaire NE 5202; AR = Amplificateur rapide; A = Analyseur mono-

canal NE 5102; D = Délai (variable de 0 a 2 psec); F = Mise en forme des impulsions (12 V

et 0,3 usec); CR = Coincidence rapide (2 7g = 9 nsec); T = Coincidence triple (2 77, = 0,4 psec),
Sc = Echelle

une solution aqueuse d’EuCl, contenant 709, de glycérine. La viscosité du mélange
était d’environ 0,2 poises a 25°C. Une goutte de cette solution a été étalée entre
un disque de mica de 1 mg/cm? et une feuille de mylar de 0,9 mg/cm? L’étanchéité
du tout a été réalisée par un film de laque 70700 dont 1'épaisseur était d’environ
200 pg/cm? Cette source avait un diamétre de 10 mm et une épaisseur de 5 mg/cm?,

3. Technique de mesure

La fonction de corrélation béta-gamma dépend de 1'énergie de la particule béta.
Pour étudier cette dépendance nous selectionnons dans les analyseurs de la voie
béta 4 bandes d’énergie différente, d’une largeur de 100 keV. Selon le seuil ChOlSI
plusieurs cas peuvent se présenter; ils sont illustrés par la figure 3.
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Dans le cas a) une seule transition béta est enregistrée (f,). Nous n’acceptons
alors dans chacune des voies gamma que les impulsions correspondant au pic photo-
électrique de la transition y,. La corrélation §,—9, pure est ainsi mesurée dans
chacune des voies du circuit de coincidences. Cette mesure simultanée dans deux
circuits différents permet de contrdler la bonne marche de nos appareils.

Dans le cas b), une partie du spectre de deux transitions béta différentes est
acceptée par 'analyseur béta. Les deux analyseurs gamma sont réglés pour n’accep-
ter que les pics photoélectriques des transitions y, et ,. Si 1'énergie de la transition
¥, est supérieure a celle de la transition y,, une des voies du circuit de coincidences
mesure la corrélation f,—y, pure, 'autre un mélange des corrélations f,—7y, et
fa—7., ainsi que la corrélation triple 8,—(y,) —y., ol la radiation y, n’est pas ob-
servée. Cette facon de procéder permet de corriger dans les meilleures conditions la
contribution de corrélations étrangeéres a la corrélation f;,—y, que nous cherchons

a déterminer.
[«
8, B—é
B, _ 1, i

8\ |% 1%
T L I,
5 L
1 I, i N —1 I,
a) b) c)

7. Bande dénergie B onalysée

Fig. 3

Différents types de mesures

Dans le cas c), les fonctions de corrélation f—y, et f—y, peuvent étre mesurées
si 'on connait le profil de ligne de chacune des transitions gamma enregistrée par
notre détecteur, ainsi que leur rapport d’embranchement.

Pour chaque bande d’énergie comprise entre W, et W + AW, la fonction de
corrélation directionnelle entre une transition béta interdite du premier ordre et la
transition gamma qui lui succéde est de la forme:

Ng (W) =1 + &(W) Py(cost) .

6 est I'angle sous-tendu par les directions d’émission des deux radiations, et W est
I'énergie moyenne de 1’électron dans la bande choisie. Cette énergie est définie par
la relation

Ws + AW

[ waw)aw

W__ Ws
 [w(w)aw

ou n(W) est le nombre de béta émis avec 1'énergie .
Une mesure du taux de coincidences pour 6 = 90° et § = 180° est en principe

suffisante pour déterminer ¢(W¥). Elle ne permet cependant pas de déceler les asy-
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métries d’appareillage. Il est en outre nécessaire de s’assurer que la source est bien
centrée et que les diffusions éventuelles des deux radiations en cascade, a I'intérieur
et a l'extérieur de la chambre 4 vide, ne modifient pas la forme de la fonction de
corrélation. Le centrage de la source est obtenu en déplagant I'axe de la chambre a
vide, qui passe par le centre de la source, jusqu’a ce que le nombre de gamma en-
registrés sous les angles 6 = 90°, 180° et 270° différe de moins de 0,59%,. La forme
de la fonction de corrélation expérimentale peut étre déterminée en choisissant les
angles d’un cycle de mesures dans la succession § = 90°, 135°, 180°; 180°, 225° et
270°; ce choix permet également de contrdler la symétrie du dispositif par rapport
a 0 = 180°, et de comparer le taux de coincidences mesuré en fonction de 6 avec
une corrélation de la forme

N@) =1 + & Py(cosl) + A, Py(cosl) .
Nous définissons les deux paramétres de mesure

2 Ct (180°) — Ct (90°) — Cf (270°)
Ct (90°) + Cf (270°) — 2 Cf

A:

C#(135°) + C#(225°) — C#(90°) — C#(270°)

Bl Ct(90°) + C#(270°) — 2 Cf

Ct(f) = nC/By est le nombre de coincidences total C rapporté au nombre de béta
et de gamma, enregistré sous un angle 6 pendant # cycles de durée 7. Cf est le taux
de coincidences fortuites, déterminé avec la méthode des deux sources.

Une moyenne de k& mesures A%, U*, pondérée proportionnellement a 'inverse du
carré de l'erreur statistique, a été calculée pour chaque énergie W (analyse yx2).

Les coefficients ¢ et A, ont été déterminés 2 partir des valeurs moyennes 4 et U.
L’absence d’'un terme en P,(cosf) dans la fonction de corrélation (4, = 0), qui se

traduit par 4 = 2 U, est non seulement une confirmation du degré d’interdiction
de la transition béta étudiée, mais encore un test de la symétrie géométrique de
notre appareillage. Cette symétrie a en outre été vérifiée par la mesure d’une corré-
lation relative a une transition béta permise, pour chacun des isotopes étudiés; une
telle corrélation est théoriquement isotrope.

Chaque mesure a duré de 20 a 40 heures, y compris le temps réservé a la mesure
des coincidences fortuites. La position du détecteur gamma était modifiée toutes
les 5 4 10 minutes (7). Entre chaque mesure, les analyseurs ont été étalonnés en
énergie et les seuils de discrimination réajustés. Pour une énergie donnée de la
particule béta, le nombre total des coincidences enregistrées sous un angle 6 dans
une série de £ mesures a varié entre 50000 et 120000.

4. Corrections pour un mélange de cascades

La corrélation mesurée peut contenir une contribution de cascades y—v selon la
bande d’énergie choisie dans la voie béta. Cette contribution peut étre directement
mesurée si I'on absorbe les électrons par un écran d’aluminium placé devant le
scintillateur béta; elle est en général petite en raison de la faible efficacité d’un
scintillateur plastique mince pour les rayons gamma.
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Une correction plus importante doit étre faite lorsque deux transitions béta sont
admises dans la bande d’énergie de la voie béta. La fonction mesurée est alors une
superposition de trois corrélations; un tel cas est illustré par la figure 3b). Nous
mesurons alors dans la voie f;,—v; un mélange des corrélations:

1. Iy(B,) — Iy) — I,
2. Iy(Be) — [La(ye)] — La(yd) — 1y,
3. Iy(Bs) — Iy(ys) — 1.

La parenthése [ ] signifie que la radiation y, n’est pas observée, tandis que la troi-
sitme cascade n’intervient que par la fraction du spectre de scintillation Compton
de y, comprise sous le pic photoélectrique de v, .

Soit a le rapport du nombre d’électrons d’énergie E de la transition f, a celui de
la transition §,. Soit & le rapport du nombre de photons de la transition y, a celui
de la transition y,, admis dans la bande de I’analyseur gamma. Soient enfin ¢,, &,,
&g les facteurs d’anisotropie des corrélations 1, 2 et 3. La valeur mesurée ¢* s’écrit:

¢ € T aetabe
- l1+a+abd

En posant ¢ = g,/e; et d = g,/e;, nous obtenons pour la fonction de corrélation
principale:
o ok 14 a-+ab
=TT 0 T cjd) egfe

Le facteur a est déduit du rapport d’intensité total des deux transitions g, et f3,.

b est une fonction de I'efficacité du détecteur gamma, de sa résolution, du rapport

d’embranchement des deux transitions gamma envisagées et de leurs coefficients

de conversion interne. La valeur de g, est mesurée directement dans la seconde voie

du circuit de coincidences, simultanément & celle de ¢*. Le rapport ¢/d, pour une

transition y, pure, a la forme suivante: '

c 1/2

T = FZ(LILI I, 12) : [(2 I, + 1) (2 I, + 1)]

(— WhToly W(I, I, I, I,; 2 Ly) + 68— \)I-IoLi W(I, I, I, I,: 2 L})
F2(L2 L2 I2 Il) s 20 F2(L2 Lé 12 Il) + 92 F2(L2’ Lé I2 Il)

X

L, et L, caractérisent 'ordre multipolaire de la transition y,, et d le parameétre de
mélange. Les coefficients géométriques W (I, Iy Ip In; n Ly) et Fu(Ly Ly Ip I4) sont
tabellés.

5. Corrections d’angle solide. Dimensions et épaisseur de source

Ces corrections se raménent 4 la multiplication par un facteur correctif de la
valeur de ¢,,,. Ce procédé n’est valable que si les détecteurs ont un axe de symétrie
de rotation et si les dimensions de la source sont petites par rapport a celles des
détecteurs. Dans notre dispositif, 'influence de I'extension finie de la source est
négligeable. L’épaisseur de la source nécessite une correction trés faible, inférieure
a 0,5%, de la valeur mesurée. Pour la source liquide d’Eus, le facteur correctif était

de 1,015 dans la bande d’énergie W = 8,53 m, c2. La correction d’angle solide pour

29 H.P.A. 36, 4 (1963)
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le détecteur gamma a été déterminée expérimentalement selon la méthode de
LawsoN et FRAUENFELDER!?). Nous avons admis que l'efficacité du détecteur béta
était de 1009%, indépendamment de 'angle d’incidence de la particule béta. La
correction d’angle solide a été calculée. L’influence de la rétrodiffusion des électrons
sur le scintillateur béta, évaluée d’aprés le profil de la ligne de conversion du Pb2*”
(980 keV), a été négligée, ce profil étant pratiquement symétrique.

Le tableau 3 donne les différentes caractéristiques des détecteurs et les correc-
tions apportées. Dans ce tableau, 4,4 et d,,, sont les distances de la source aux détec-
teurs béta et gamma. Les facteurs Q,zet Q. sont les facteurs de correction d’angle
solide pour le terme en P,(cosf) de la fonction de corrélation, et E,, est I'énergie de
la transition gamma de la cascade étudiée.

Tableau 3

Caractéristiques des sources et des détecteurs

Isotope Source Détecteur § Détecteur y dsp  dsy E,  Qap Qay

%] 0 (%] h %] h

mm mg/em? mm mm mm mm mm mm keV
S 3 1 32 12 25,4 254 33 39 603 1,171 1,046
Eul52 2 0,9 36 7 76 51 61 165 344 1,065 1,037
Eul% 8 0,7 34 9 76 51 56 182 123 1,068  1,024%)
(Oxyde) 32 9 76 51 56 179 123 1,060 1,036**)
Eulss 10 5,0 34 9 76 51 56 179 123 1,068 1,036
(Liquide)
*) Diaphragme du collimateur de Pb entourant le détecteur gamma: ¢ = 50 mm
**) Diaphragme du collimateur de Pb entourant le détecteur gamma: ¢ = 68 mm

IV. Résultats des mesures
1‘_ Sb124

Notre premiére étude de corrélations directionnelles béta-gamma dans la dés-
intégration de I'Eu!s? 10) et les résultats communiqués par différents auteurs!s)17)1s)
divergent considérablement. Nous avons donc jugé opportun de mesurer la corré-
lation 3-(2,31 MeV) 2+(0,603 MeV) 0+ dans le Sb'?4, avec les mémes conditions
expérimentales que nous avions adoptées pour I'Eu®s2. Les résultats, comparés
avec une mesure treés précise de STEFFEN'?), devaient permettre un controle de la
sensibilité de notre dispositif expérimental. La figure 4 représente le schéma de
désintégration de Sb#*4 (Nuclear Data Sheets, NRC 60-6-76).

Nous avons mesuré la dépendance en énergie de la fonction de corrélation direc-
tionnelle 8, —y, (cf. fig. 4), pour des énergies béta comprises entre 1,1 et 1,8 MeV;

au-dessous de 1,58 MeV, il était nécessaire de corriger la valeur expérimentale e(W),
qui contient une contribution importante des corrélations ff,—y, et fo—(y2) — 1.
Cette correction ne peut étre faite correctement que si la corrélation f,—y, et le
facteur de mélange multipolaire de la radiation vy, sont connus. Nous avons utilisé
a cet effet les résultats d’'une mesure de Paur?!). Pour chaque bande d’énergie
mesuree, les contributions relatives des trois corrélations contribuant a ¢,,, ont été
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déterminées sur la base du rapport d’intensité total des deux transitions 8, et f,.
Le spectre de scintillations du gamma de 722 keV a été extrapolé a partir de celui
de la ligne de 662 keV du Cs?%7.

124
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Schéma de désintégration de Sb124

Le tableau 4 récapitule les résultats des mesures, et donne:
1. la valeur moyenne de I’énergie W de chaque bande mesurée,

2. la valeur expérimentale &,,,(W), corrigée pour la présence de coincidences for-
tuites et I'extension finie des détecteurs (angle solide),

3. le rapport d’intensité a des deux transitions §, et f§, relatif a la bande d’énergie

choisie, .

la valeur (W) corrigée pour la contribution d’autres cascades, ainsi que son erreur,

le rapport des coincidences fortuites Cf aux coincidences totales Ct.

iUl

L’erreur indiquée Ae tient compte de I'écart quadratique moyen de la réparti-
tion statistique des mesures et de l'incertitude des différentes corrections.

Nous donnons encore dans ce tableau la valeur du facteur d’anisotropie de la
corrélation B,—y, et le parameétre de mélange E2—M]1 de la transition y, que nous

avons utilisés pour la correction de e,,,(W). Ces grandeurs sont tirées des mesures
de Paur®) et de LINDQUIST ef al.2%). A titre de comparaison, quelques valeurs de
STEFFEN??) pour le facteur ¢ de la fonction de corrélation §,—y, sont indiquées.

Nos résultats sont compatibles avec ceux de STEFFEN. Il est donc légitime d’ad-
mettre que, malgré I'exiguité de la chambre a vide utilisée, la corrélation mesurée
n’est ni atténuée ni déformée par la diffusion des électrons sur les parois de cette
chambre. La sensibilité de notre dispositif expérimental est ainsi vérifiée. Bien que
cette conclusion soit positive, un nouveau dispositif a été construit. Il s’adaptait
plus facilement a I’électronique rapide de notre laboratoire, tout en permettant des
mesures plus complétes et plus précises. Une seconde mesure dans le cas de I'Eu’s?
est venue confirmer son efficacité.
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Tableau 4

Résultats des mesures de la corrélation directionnelle
Sbi2 3- (2,31 MeV f) 2+ (0,603 MeV ) 0+ Tel*

W eexp(W) a 81( ) AS Cf/Ct
1) 2) 3) 4) 5)
3,16 — 0,228 0,258 — 0,264 0,020 0,04
3,36 — 0,248 0,188 — 0,270 0,015 0,05
3,54 — 0,272 0,127 — 0,289 0,015 0,04
3,60 — 0,285 0,117 — 0,304 0,015 0,09
3,75 — 0,284 0,079 — 0,295 0,012 0,08
3,80 — 0,290 0,066 — 0,306 0,010 0,09
3,98 — 0,321 0,029 — 0,336 0,010 0,12
4,10 — 0,353 ~ 0 — 0,353 0,014 0,16
4,58 — 0,378 — 0,378 0,009 0,15
4,74 — 0,387 — 0,387 0,012 0,05

Corrélation fi, —y,:
g, = +0,19 & 0,01 8y, (E2—M1) = 40,9 & 0,2
Valeurs de STEFFEN:
W =32 & (W) = — 0,260 + 0,007
= 4,0 = 0,350 - 0,009
= 4,7 = — 0,390 - 0,006
2. Euls?

L’objectif final de ce travail étant la détermination expérimentale des éléments
de matrice nucléaires de la transition béta, il était souhaitable de connaitre la cor-
rélation Eus? (1,48 MeV ) 2+(0,344 MeV y) 0+ Gd's2 avec une meilleure précision
que celle de notre premiére étude'?). La présente mesure a permis de faire une cor-
rection rigoureuse pour l'influence de cascades perturbatrices tout en vérifiant la
sensibilité de notre nouvel appareillage. La figure 5 représente le schéma de désinte-
gration de I’Eu'5? (Nuclear Data Sheets NRC 59-4-77). Le spin 4 du niveau de
755 keV du Gd'5% a été déterminé dans ce laboratoire par une mesure de la corrélation
y,—7. eén coincidence avec la transition g, (cf. fig. 5*%). D’apres cette méme étude,
le parametre de mélange M3—EZ2 de la transition y, est de 40,15 <C 6 << + 0,2028),

Nous avons mesuré la corrélation directionnelle §;,—y, en fonction de I'énergie
des particules béta. Le seuil de la bande d’énergie sélectionnée variait entre 850 et
1350 keV. Comme dans le cas de Sb?4, une correction est nécessaire pour les bandes
d’énergie comprises entre 850 et 1050 keV. Pour l'effectuer, nous avons mesuré
simultanément la corrélation §,—v, pourles énergies considérées. Le tableau 5 donne:

1. les valeurs de g,,, corrigées pour les coincidences fortuites, les coincidences
exp
gamma-gamma, l'extension et la résolution finie des détecteurs,

2. les valeurs de ¢(I¥) compte tenu de la correction pour les cascades perturbatrices,
et leur erreur,
3. lerapportd’intensité a desdeuxtransitionsf, et f,danslabande d’énergie mesurée,

*) Note en cours d’impression: Cette mesure a été récemment confirmée par ScHick et
GropziNs [Bull. Am. Phys. Soc. &, 333 (1963)].
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Fig. 5
Schéma de désintégration de Eul’?

4. le rapport des coincidences gamma-gamma et des coincidences fortuites aux
coincidences totales,

5. les valeurs de ¢, pour la fonction de corrélation f,—y,.
Ae tient compte de l'erreur statistique et de I'erreur des différentes corrections.

Tableau 5

Résultats des mesures de la corrélation directionnelle
Eus? 3- (1,48 MeV f5) 2+ (0,344 MeV y) 0+ Gd 12

w Eexp(W) a e(W) Ae Cyy[Ct Cf|Ct
1) 3) 2) 4) 4)

2,51 — 0,262 0,09 — 0,282 0,014 0,15 0,03
2,70 — 0,329 0,05 — 0,340 0,020 0,14 0,03
2,86 — 0,365 0,01 — 0,367 0,009 0,12 0,03
3,01 — 0,392 ~ 0 — 0,392 0,008 0,12 0,04
3,12 — 0,399 0,009 0,14 0,05
3,23 — 0,405 0,011 0,14 0,04
3,32 — 0,425 0,012 0,13 0,05
3,42 — 0,434 0,013 0,12 0,04
3,49 — 0,436 0,008 0,11 0,04
3,54 — 0,457 0,012 0,10 0,05
3,64 — 0,447 0,013 0,07 0,04
Corrélation f,—y,:
W = 2,51 (W) = — 0,053 + 0,013

= 2,70 = — 0,074 + 0,011

= 2,86 = — 0,084 4 0,014
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La symeétrie de notre dispositif a été contrdlée par la mesure de la corrélation
Bs—7s; la transition g, est permise et la corrélation doit étre isotrope. La valeur
obtenue pour une énergie béta comprise entre 400 et 700 keV: g, = + 0,010 40,015
confirme que la diffusion des électrons dans la chambre 4 vide ne provoque pas
d’asymétrie dans le taux de coincidences. Enfin, la forme de la corrélation:
Ng, (0) = 1 + € Py(cosf) a été controlée par une série de mesures pour lesquelles
nous avons mesuré les deux paramétres expérimentaux A et U, définis plus haut.
La figure 6a) représente le résultat de I'une de ces mesures.

12 N(@) = 1| - (0436 £0,008) P, (cos )
o - (0,005£0011) P, (cos@)
b
Z ok
o8
06 |-
] I N S S S S S S
-05 0 0,5 10
F’2 (cos g ) =it
i N'(8) = | - (0,120 £ 0.010) P, (cos8 )
~ - (0,002 £ 0017) P, (cos§ )
= .
Z 0
09 |-
Eul54 01 a~1
08 W= 433
Lo | sl A | OO S

P, (cos8) ———w=
Fig. 6

Corrélation f#, —y, reportée en fonction de P,(cosf) a) Eu!s?; b) Euls

Les valeurs de &(I¥) observées sont compatibles avec les résultats de notre pre-
miére étudel?), bien qu’'en moyenne légérement inférieures. Elles sont par contre
en désaccord avec les mesures de DULANEY ef al.'%), BHATTACHER]JEE ef al.l?) et
FISCHBECK et al.18), I'écart moyen absolu étant respectivement de 0,09, 0,11 et 0,05

pour une énergie W ~ 3,35 m, ¢ Nous ne pouvons pas expliquer ces différences.
Leur effet sur la détermination des rapports des éléments de matrice est d’ailleurs
beaucoup moins important.

3. Eus4

Cet isotope, a bien des égards analogue 4 'Eu’5?, s’en distingue cependant par
deux caractéristiques essentielles. Le Gd!s4 est déformé et posséde un spectre de
rotation alors que le Gd'52 est sphérique et posséde un certain nombre de niveaux
de vibration. D’autre part, la durée de vie du premier niveau excité du Gd!s* est
longue, en raison de la faible énergie du niveau; elle pose un probléme particulier:



Vol. 36, 1963 Corrélations angulaires directionnelles béta-gamma 447

celui de I'atténuation de la fonction de corrélation. La figure 7 représente le schéma
de désintégration de 'Eu's* (Nuclear Data Sheets NRC 59-3-63).

Des mesures de corrélation gamma-gamma2?4) ont montré que l'atténuation
était due a deux types de perturbation: d’une part l'interaction du moment quadru-
polaire électrique du noyau avec une variation du champ électrique local dans une
source polycristalline, d’autre part I'interaction de structure hyperfine due au cou-
plage des moments magnétiques dipolaires du noyau et de l'ion paramagnétique
Gd3+. La corrélation est atténuée car le spin du noyau dans le niveau intermédiaire

esEU
16y
37 (3) . T
E(kev) I
\\ \ 1721
\
\
\
\\
\ 1399 27
\
\
\ ¥
\ +
\ 19 3
+
Tronsitions g v
(en MeV)
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057 35% fs \\ Ll &
083 20% f, \
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097 3% f | P
{1.6) 3% IﬁZ -
= E’z
184 10% B,
+
log ft= 12,4 123 2
h T =1,7x10"?sec
o ot
154
54Gd
Fig. 7

Schéma de désintégration de Euls4

de la cascade change d’orientation avant que ce niveau se désexcite. L’expérience
a montré que dans le cas d'une source liquide I'interaction quadrupolaire est négli-
geable pour une durée de vie du niveau intermédiaire de I’ordre de 1 nsec. En parti-
culier, OFER?3) a constaté que les corrélations mettant en jeu le niveau de 122 keV
du Sm??, dont la durée de vie est de 7, = 2 nsec, n’étaient pas modifiées que la
source soit en solution aqueuse d’une viscosité de 0,01 poises ou dans un mélange
de glycérol de viscosité égale 4 5 poises. D’autre part, en découplant le spin du
noyau et le spin de la couche électronique par un champ magnétique paralléle a la
direction d’observation du premier quantum, STIENING et DEUTSCH?¢) sont par-
venus a éliminer la perturbation due & 'interaction de structure hyperfine dans la
cascade 2-(y;) 2*(y,) 0+ du Gds (cf. fig. 7). La corrélation vraie étant connue, il
est alors possible de mesurer par comparaison les coefficients d’atténuation de dif-
férentes sources.

Du point de vue des corrélations béta-gamma, il n’est guére possible de concilier
les exigences d’une source mince et d’une diffusion négligeable des électrons dans



448 Jules-Willy Sunier H.P. A

I'entourage de la source avec un dispositif de découplage magnétique permettant
d’obtenir la corrélation vraie a partir d’une source liquide. La plupart de nos me-
sures ont ¢té faites avec une source d’oxyde d’Eu et sont donc sujettes a la double
atténuation quadrupolaire et hyperfine. Les mesures faites avec une source liquide
ont permis de vérifier que le coefficient d’atténuation da a l'interaction quadropu-
laire est, dans la limite d’erreur expérimentale, le méme pour la corrélation béta-
gamma que pour la corrélation gamma-gamma.

Soit GY le rapport des anisotropies de la corrélation pour une source d’oxyde et
pour une source liquide. Nos mesures donnent:

G{(B ) = 0,56 + 0,03
Ce résultat est compatible avec les résultats de DEBRUNNER?):
G(yy) = 0,55 4+ 0,10 .

En utilisant d’autre part la mesure de 'atténuation due a I'interaction de structure
hyperfine de STIENING et DEUTSCH?®#), nous obtenons le coefficient d’atténuation
total d'une source d’oxyde:

GY(B ¥) = G§(B ) GI™(B 7) = GY(BY) - gopey = 046 £ 0,04

expression dans laquelle 7, = 1,7 nsec et 7, = 7,8 nsec?¢). Ce coefficient d’atténua-
tion est compatible avec celui que 1'on obtient sur la base de corrélations gamma-
gamma, soit G}, (y ¥) = 0,41 4+ 0,08%4). Signalons en outre qu’il a été établi que la
grande majorité des atomes, apres la désintégration béta, retournent au niveau
fondamental de 1'ion Gd3+ en un temps considérablement plus court que la durée de
vie du niveau 2+ de 123 keV; la perturbation peut donc étre considérée comme
stationnaire?$). Il est ainsi plausible que I'atténuation ne dépende pas du fait que
la premiére transition de la cascade soit une transition béta ou une transition gamma.

Nous avons mesuré les fonctions de corrélation directionnelle des cascades
f1—y. et B;—v, (cf. fig. 7). La premiére est comparable au cas de I’'Eu?s? discuté
plus haut. La seconde est intéressante car, le niveau 2+ (998 keV) du Gd!5¢ étant un
niveau de rotation K = 2, la transition f, n’est pas interdite par la régle de sélec-
tion K. Il n'en est pas de méme pour la transition ,, pour laquelle on a A7 < AK
= 3. La corrélation 8, —7y, a été mesurée en fonction de I'énergie des béta, par ban-
des de 100 et 200 keV, avec un seuil variant entre 1000 et 1700 keV. La corrélation
f.—7y. a été mesurée simultanément pour les bandes d’énergie comprises entre 1000
et 1400 keV. Le nombre minime des coincidences enregistrées dans cette voie montre
que la transition f, est douteuse. Les résultats de I'analyse du spectre béta par
LANGER?) s’accordent avec cette conclusion. La correction due 4 un mélange des
corrélations f;—vy,, f.—(y.) —y, et f.—y. a été ainsi négligée. La source utilisée
contient un mélange d’Eu?? et d’Eu'*. Le rapport d’intensité des transitions j3,
de 'Eus? et §, de 'Eu's* y est égal a 7,59,. La contribution de la transition y,
(344 keV) de I'Eu's? dans la bande d’énergie correspondant au pic photoélectrique
de la transition y, (123 keV) de I’Euts* est faible. Aucune correction due a la pré-
sence d’Eu's? dans la source n’a donc été faite.

La mesure de la dépendance en énergie de la corrélation f;—y, est trés imprécise
pour les énergies béta inférieures & 830 keV, en raison de la forte intensité de la
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transition f,. Nous n’avons mesuré que la corrélation dans une bande d’énergie
comprise entre 830 keV et 970 keV. Les pics photoélectriques des transitions v, et
v, issues du niveau 2+ de 998 keV ne sont pas complétement séparés dans notre
détecteur gamma. Nous avons en fait mesuré dans les deux canaux de notre spectro-
metre a coincidences les corrélations f;—[y; + % 4] et f3—[v vs + v4). Les deux
corrélations pures ont été obtenues en tenant compte des rapports d’intensité rela-
tive x et y, déterminés expérimentalement.

La symétrie de notre dispositif expérimental a été vérifiée pour 4 énergies béta
différentes par une mesure de la corrélation f;—7y;, qui est isotrope. Enfin, pour
chaque mesure, les paramétres A et U ont été déterminés. L’absence d’un terme
en P,(cos6) dans la fonction de corrélation confirme le spin 3 de I’'Eu?s4. La figure 6b)
représente le résultat d’'une mesure, reporté en fonction de P,(cos@).

La mesure des corrélations ,—v, et f;—7, permet en outre de déterminer le
parameétre de melange multipolaire E2—M1 de la transition y,. Le résultat obtenu

+ 4,0
— 1,9

est compatible avec celui que donne DEBRUNNER?4).
Les mesures sont résumées par les tableaux 6a et 6b. Le tableau 6a donne les

0 =86,5

valeurs de &(WW) avec et sans correction pour I'atténuation de la corrélation, et le
rapport des coincidences gamma-gamma et fortuites aux coincidences totales. Le
tableau 6b donne les valeurs de g5 ., et g, ainsi que celles de ¢4, . Les erreurs
données dans ces deux tableaux tiennent compte de l'erreur statistique, augmentée
en fonction de x? pour les valeurs ¢ GY, ainsi que de l'indétermination de G} pour
les valeurs de e. Les résultats des mesures avec la source d’oxyde d’Eu sont compa-
tibles avec ceux que donnent SASTRY ef al.28) et WYLY et al.??).

Tableau 6 a

Résultats des mesures de la corrélation directionnelle
Eu's* 3~ (1840 keV ) 2+ (123 keV y) 0+ Gd*5

W e(W) G, Ale G,) e(W) Ae(W) Cyy/Ct Cf/Ct
Source d’oxyde d’Eu: G4 = 0,46 + 0,04

3,05 — 0,118 0,018 — 0,256 0,045 0,126 0,46
3,25 — 0,125 0,020 — 0,271 0,049 0,070 0,46
3,44 — 0,145 0,015 — 0,315 0,041 0,025 0,47
3,64 — 0,149 0,012 — 0,323 0,037 0,016 0,47
3,73 — 0,158 0,005 — 0,330 0,028 0,009 0,45
3,83 — 0,159 0,006 — 0,332 0,030 ~ 0 0,47
3,90 — 0,149 0,005 — 0,323 0,031 0,43
4,04 — 0,146 0,006 — 0,317 0,030 0,45
4,21 — 0,140 0,007 — 0,304 0,029 0,44
4,25 — 0,154 0,008 — 0,334 0,033 0,50
4,30 — 0,138 0,013 — 0,299 0,037 0,46
4,33 — 0,145 0,010 — 0,315 0,034 0,30
Source liquide: fos = 0,82 4+ 0,02

3,53 — 0,260 0,017 — 0,318 0,024 0,018 0,35
3,90 — 0,270 0,005 — 0,330 0,008 ~ 0 0,20

4,25 — 0,258 0,010 — 0,315 0,014 0,25
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Tableau 6 b
Corrélation w (W) Ae(W)
Bs— Vs 2,65 — 0,041 0,005
Ba—vs 2,65 + 0,021 0,004
Bs—vs 1,64 + 0,001 0,001
1,73 -+ 0,003 0,001
1,83 — 0,002 0,002
1,98 — 0,001 0,002

4. Calcul des éléments de matrice nucléaires

Les parameétres nucléaires Y, x et » définis au chapitre 11, § 5, ont été calculés
pour les transitions béta de plus haute énergie (8,) dans la désintégration de Sb!%4,
Eu®s2 et Eu's4. Les mesures suivantes ont été prises en considération pour ce calcul:

1. Facteur d’anisotropie &(IW) des corrélations directionnelles g;,—y, que nous
avons mesurées.

2. Facteur de correction du spectre C,(W), donné par LANGER et SMITH??) pour
Sblu, Euls? et Eulss.

3. Facteur de polarisation P.(W, 0) de la corrélation béta-gamma polarisé circu-
lairement, mesuré par ALEXANDER et STEFFEN!3) pour Sb1%4 et par BERTHIER!)
pour Eu?s2,

Pour chacune des mesures ci-dessus, les valeurs des paramétres Y, xx et ux
rendant minimum 1’expression

Q*(Ye, e, wx) = Y &ilf; — (W4, 04)]2

ont été calculées par la calculatrice électronique ERMETH. Dans I’expression de (2,
k désigne le type de la mesure (& = 1, 2, 3); f*(W, 6) symbolise les fonctions théori-
ques définies au chapitre 11, formules 6a) & 8¢); f* est la valeur expérimentale de f*,
mesurée pour une énergie W; ou sous un angle 0;; g; est le carré de l'inverse de
I'erreur de f%. o

Une moyenne des Y, xx, ux, pondérée par la valeur minimum de Q%, a été
ensuite calculée pour chaque isotope étudié. Le tableau 7 donne les résultats du
calcul et leurs erreurs.

' Tableau 7

Parameétres nucléaires

Spies Eqnlse Eyl54
Y 0,640 £+ 0,125 0,744 4 0,160 0,900 + 0,150
x — 0,084 4 0,050 0,161 + 0,086 — 0,035 + 0,105
u — 0,079 + 0,075 0,034 4 0,059 0,190 + 0,110

Les résultats indiquent clairement que, dans les trois cas étudiés, nous sommes
en présence de I'effet d’une régle de sélection. Un tel effet se caractérise par 9):

2| ~[Y[> x| ~]u].
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Les figures 8 a 10 représentent les valeurs mesurées de (W), Ca(W) et Py(W, 6)
ainsi que les courbes théoriques correspondant aux parameétres nucléaires indiqués
dans le tableau 7.

. s 124
o2 Sb™" B,-¥, Y= 0840t 0,25
= -0084 * 0050

u= -0079 % 0075
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b) Facteur de polarisation P¢(f) en fonction de ’angle d’émission 6,3

W —a
c) Facteur de forme du spectre 8; en fonction de W 27)

Les courbes pointillées correspondent & la valeur minimum de Q2, les courbes pleines aux
parameétres indiqués sur la figura a). Les courbes C(W)uuqx et C(W)m;s indiquent les valeurs
limites des mesures de LANGER et SMITH

Fig. 8
Corrélation 2,31 MeV f,—0,603 MeV y, de Sb24
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Les courbes pointilles correspondent a la valeur minimum de Q2, les courbes pleines aux para-
metres indiqués sur la figure a). Les courbes C(W)uax €t C(W) i, indiquent les valeur limites
des mesures de LANGER et SMITH
Fig. 9
Corrélation 1,48 MeV f,—0,344 MeV y, de Eu!®?
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a) Coefficient d’anisotropie de la corrélation directionnelle en fonction de 'énergie W du béta
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Les courbes pointillées correspondent a la valeur minimum de Q2 les courbes pleines aux para-
meétres indiqués sur la figure a). Les courbes C(W),uz5 €t C(W) iy indiquent les valeurs limites
des mesures de LANGER et SMITH
Fig. 10
Corrélation 1,84 MeV §,—0,123 MeV y, de Eulst

L’élément de matrice de normalisation # = C4 [ By;, défini au chapitre II, se
calcule directement 4 partir de la relation:

p=m¥In2 (.

dans laquelle (f,f) est la valeur /¢ corrigée en fonction de la forme non statistique du
spectre. C'est une fonction de Y, x et #?). Le tableau 8 donne la valeur des éléments
de matrice nucléaires contribuant aux transitions béta étudiées. Les éléments de
matrice qui ont la dimension d'une longueur sont rapportés au rayon nucléaire R
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(R=1,2 AY3f). Le systéme d’unités choisi est tel que % = m = ¢ = 1. [Unité de
temps: %/m c? = 1,29 - 10~2* sec; unité de longueur = %/m ¢ = longueur d’onde de
Compton de I'électron = 3,86 - 1011 cm.] Les constantes de couplage de ’hamil-
tonien d’interaction introduites dans le calcul sont:

k3

Cv = [1,42 4 0,01] - 10-* erg cm® = [3,01 + 0,02] - 10-12 "~

et
Ca=[—1,19 4+ 0,031 Cr 7)9).
Tableau 8
Eléments de matrice nucléaires
Sb124 Eﬁ152 Eu154
logf; t 10,46 L+ 0,24 11,98 =~ 0,25 12,73 4+ 0,23
/%j + [1,76 + 0,22]-10-2 + [2,86 & 0,36] - 103 + [1,20 + 0,147 - 10-3
/—}%- F [1,70 4+ 1,10] - 103 4+ [5,50 + 3,007 - 10— F+ [0,50 F 1,50]-10*
1O X T

f Vi F [1,40 + 1,40]-10-3 + [0,97 F 1,701 - 104 + [2,30 + 1,40] 104
fia + [1,43 + 0,77] - 10— + [1,97 + 0,82]-10—¢ + [0,73 + 0,50] - 10-*

V. Discussion et conclusion

1. Ordre de grandeur des éléments de matrice nucléaires

L’élément de matrice [ B;; prédomine dans les trois transitions béta étudiées.
Sa valeur est cependant réduite par rapport a celle de [ B;; d’une transition inter-
dite unique. Le logf¢ d’une telle transition (logf¢ ~~ 8,5) correspond en effet a
| Bij|R =~ 0,2. Les facteurs de réduction de 1'élément de matrice [ B;; sont de
Pordre de 10, 70 et 160 pour Sb!24, Eu's? et Eu's4 respectivement.

Dans les transitions interdites du premier ordre non-uniques et non-favorisées,
I'élément de matrice standard rapporté au rayon nucléaire R est de l'ordre de
I'unité (logft =~ 7). Les valeurs expérimentales données dans le tableau 8 montrent
que, par rapport aux transitions interdites «ordinaires», les éléments de matrice
[ ret [i0 X r sont réduits d’'un facteur > 400, > 1200, > 2700, tandis que pour
I'élément de matrice relativiste [¢ a, les rapports de réduction sont de I'ordre de
120, 100 et 250 pour Sb24, Eu's? et Eu'®* respectivement.

La prédominance relative de 1’élément de matrice [ B;; par rapport aux élé-
ments de matrice d’ordre tensoriel 4 = 1 est la caractéristique de I'effet d’une regle
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de sélection, auquel la déviation de l'approximation & et le ralentissement des
transitions béta envisagées doivent étre attribués.

2. Différentes re‘glés de sélection envisagées

Dans le cas de Sb%¢, les résultats expérimentaux peuvent s’expliquer par la
régle de sélection «j». La parité négative de 1’état fondamental de Sb!24 est due
vraisemblablement a l'orbite 4 11/2- du neutron impair. Le proton créé aprés la
désintégration béta peut prendre place sur les orbites g 7/2+, d 5/2+, 4 3/2+ ou s 1/2+,
si 'on n’admet aucun mélange de configurations hors des couches principales!s).
La variation du moment angulaire provoquée par la transition béta est alors au
moins égale a4 2, ce qui implique l'interdiction des éléments de matrice d’ordre
A =1, tout en n’excluant pas la réduction de I'élément [ B;; (A = 2) en fonction
d'un mélange de configurations a4 l'intérieur de la couche principale.

Dans le cas de la transition Eutst—g,— Gd!5* ol les deux noyaux sont déformés,
la composante intrinséque du moment angulaire (K) varie de 3. La régle de sélection
«K» peut étre invoquée pour expliquer les résultats expérimentaux. Le degré d’in-
terdiction des éléments de matrice d’ordre A = 1 serait alors supérieur a celui de
I'élément de matrice [ Byj, ce qui est expérimentalement vérifié. L’étude de la
transition g, (cf. fig. 7), caractérisée par AK = 1 et pour laquelle les éléments de
matrice d’ordre 2 = 1 ne seraient pas interdits, ne permet pas de conclusion précise.
Cependant, la faible anisotropie de la corrélation f,—v, au voisinage de I'énergie
maximum de la transition béta et les résultats préliminaires de la corrélation f;—y,
polarisé circulairement??) ne semblent pas suggérer une prédominance relative de
I’élément de matrice [ B;j;.

Aucune régle de sélection particuliére n’a retenu notre attention pour expliquer
la prédominance de [ B;j; dans la transition §, de 'Eu?s? (cf. fig. 5). Le noyau Gd*s?
étant sphérique, la régle de sélection «K» n’est pas applicable; les valeurs expéri-
mentales des éléments de matrice des transitions f, de I’Eu?s? et de ’Eu!s* sont
cependant trés semblables. Mentionnons toutefois que la valeur f# anormalement
élevée de la transition #,—Eu's?, donc la réduction i# globo des éléments de matrice
nucléaires, peut s’expliquer comme suit: les fonctions d’onde des états fondamen-
taux de 'Eu!s? et du Gd's? se recouvrent approximativement (mis a part la défor-
mation de I'Eu'5?). La partie intrinséque de la fonction d’onde du premier niveau
excité du Gd's? (2+ 344 keV) est la méme que la fonction d’onde du niveau fonda-
mental; en revanche sa partie collective fait que ces deux derniers états sont quasi-
orthogonaux. Il en résulte que les fonctions d’onde du noyau avant et aprés la
désintégration f, ne se recouvrent pas, ce qui a pour effet de ralentir considérable-
ment la transition.

3. Conclusion

Ce travail a permis de montrer qu’il est possible de déterminer expérimentale-
ment les éléments de matrice nucléaires de I’hamiltonien d’interaction, dans le cas
des transitions béta interdites du premier ordre avec 47 = 1 et qui ne répondent
pas a I'approximation «&». Cette possibilité renforce l'intérét de 1’étude des tran-
sitions béta en tant que moyen d’investigation direct de la structure du noyau.
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Cependant, dans les trois cas étudiés, l'indétermination sur les éléments de
matrice [ r, [10 X r et [7a est considérable. En réalité, les grandeurs significa-
tives résultant de notre étude sont:

Y:.[—Cv_fz'aJrchfr-gcA_/'z'a>< r]_:7
et

’l] = CA / Bij 3

Les parameétres nucléaires x et » fixent avant tout un ordre de grandeur, car les
trois cas étudiés sont a la limite de 1’«approximation B;; modifiée » dans laquelle on
pose x = # = 0. Des mesures considérablement plus précises sur la dépendance
angulaire et énergétique des parametres des différentes corrélations béta-gamma
seraient souhaitables; elles sont difficilement abordables en raison de leur durée.

Signalons que I'hypothése du courant vectoriel conservé permet d’établir une
relation entre les éléments de matrice [ r et [7 @, et par conséquent de réduire le
nombre des parameétres libres?®!). Les éléments de matrice calculés dans ce travail ne
sont pas incompatibles avec cette relation. On obtient en effet:

Tableau 9

Comparaison entre les valeurs théoriques et expérimentales du rapport:

Isotope Euts? JOIVEEL Shiss
Ay 0,58 0,60 0,50
Aoxp 0,36 + 0,30 — 1,5 L 4,5 — 0,1 -0,5

En introduisant la relation de Fujita®!) dans le calcul des éléments de matrice, 1l
serait possible d’améliorer la précision sur la détermination des parametres nucléai-
res x et u, et de tester au moyen des corrélations angulaires béta-gamma 1’hypo-
thése du courant vectoriel conservé. Seuls des résultats de mesure plus précis légi-
timeraient cette fagon de procéder.

Nous tenons a remercier vivement M. le Professeur P. SCHERRER et M. le Pro-
fesseur J. P. BLASER du soutien qu’ils ont accordé a ce travail et de I'intérét cons-
tant qu’ils ont manifesté. Nous sommes tout particuliérement reconnaissants envers
MM. DEBRUNNER, BERTHIER, PERDRISAT et M. le Professeur K. ALDER pour leur
collaboration, leurs conseils et pour d’enrichissantes discussions. Notre gratitude
va également a MM. LaMBERT, HEss, PoNCINI et BAKKEN pour leur assistance
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I'ERMETH, pour la programmation de nos calculs.



Vol. 36, 1963 Corrélations angulaires directionnelles béta-gamma 457
Bibliographie

1) T. D. Lee et C. N. YaNG, Phys. Rev. 104, 254 (1956).

%) C. S. Wu, E. CumBLER, R. W. HavwarDp, D. D. HoprprEs et R. P. Hupson, Phys. Rev. 105,
1413 (1957).

%) M. GOLDHABER, Phys. Rev. 109, 1015 (1958).

‘) W. B. HERRMANNSFELD, R. L. BurRMAN, P. STAEHELIN, J. S. ALLEN et T. H. Braip, Phys.
Rev. Letters 1, 61 (1958).
W. B. HERRMANNSFELD, D. R. Maxon, P. STAE"HELIN et J. S. ALLEN, Phys. Rev. 107,
641 (1957).

5) M. T. Burgy, V. E. Kroun, T. B. Novey, C. R. Rinco et V. L. TELEGDI, Phys. Rev. 110
1214 (1958); Phys. Rev, Letters 1, 324 (1958).

8) A. N. SoswnovsHil, P. E. Spivak, A. Prokor’Ev, 1. E. KutiLov et Y. DoBrYNIN, JETP 35,
739 (1959).

) D. L. HENDRIE et J. B. GERHARDT, Phys. Rev. 121, 846 (1961).

8) R. K. BarpiN, C. A. BARNES, W. A, FOwLER et P. A. SEEGER, Phys. Rev. Letters 5, 323

(1960).

T. Kotani, Phys. Rev. 114, 795 (1959).

J. W. SuNiER, P. DEBRUNNER et P. SCHERRER, Nucl. Phys. 19, 62 (1960).

P. DEBRUNNER, M. LAMBERT, A. Poncini et J. W. SuNIER, Helv. Phys. Acta 33, 985 (1960).

J. W. SuniEer, Helv. Phys. Acta 34, 477 (1961).

P. ALEXANDER et R. M. STEFFEN, Phys. Rev. 124, 150 (1961).

J. BERTHIER, Thése de doctorat n® 4671, Université de Paris (1962).

R. M. STeEFFEN, Phys. Rev, Letters 4, 290 (1960).

H. DuLaNEY JR., C. H. BRADEN et L. D. WyLv, Phys. Rev. 117, 1092 (1960).

S. K. BHATTACHERJEE et S. K. MiTrA, Nuovo Cimento 10, 175 (1960).

H. J. FisceBECK et R. G. WILKINSON, Phys. Rev. 120, 1762 (1960).

S. LAwsoN JR. et H. FRAUENFELDER, Phys. Rev. 91, 649 (1953).

. Kotant et M. Ross, Phys. Rev. 113, 622 (1959).

. Paur, Phys. Rev. 121, 1175 (1961).

LinpQuisT et I. MARKLUND, Nucl. Phys. 4, 189 (1957).

. Hess, Travail de dipléme EPF (non publié) (1960).

DEBRUNNER et W. KunbpiG, Helv. Phys. Acta 33, 395 (1960).

OFER, Nucl. Phys. 4, 477 (1957).

. STIENING et M. DEUTscH, Phys. Rev. 121, 1484 (1961).

M. LANGER et D. R. SmiTH, Phys. Rev. 119, 1308 (1960).

. S. R. SastrY, R. F. PETRY et R. G. WiLkiNsoN, Phys. Rev. 123, 615 (1961).

D. Wyry, E. T. PaTroNIs, H. DuLaNEY et C. H. BRADEN, Phys. Rev. 124, 841 (1961)

R. HEss et J. W. SUNIER (en préparation).

81) J. Fujrra, Phys. Rev. 126, 202 (1962).

oo e e e e e e e
® N b W B M O ©

[ T TR R C RN S R I C R R R

S ©® © u o B W e o= O ©

S e N, i WS- P o W W 5 P P O SOV SV S N~ W PRI - PV .
PRomypdRmH

30 H.P.A. 36, 4 (1963)



	Lattice energy current in solids and lattice thermal conductivity. I

