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On Perturbation Expansions in Axiomatic Quantum Field Theory

by P. Curtius
Theoretisch-Physikalisches Seminar der E.T.H., Ziirich

(1. XI. 62)

Abstract: 1t is shown that the perturbation expansions of L.S.Z. axiomatic field theory can
be described by Lagrangian formalism; and conversely that the perturbation series derived from
Lagrangian formalism satisfy the conditions following from a perturbation treatment of the L. S. Z.
axioms.

1. Introduction

In this paper the connection between the perturbation treatments of axiomatic
and of Lagrangian quantised field theories is examined. In sections 2 and 3, the frame-
work of the L.S.Z. axioms and the method of generating functionals are developed.
In sections 4 and 5, equivalence theorems connecting the axioms and properties of
certain vacuum expectation values are derived for the complete fields and for their
perturbation expansions. In section 6, the functional representation of the unre-
normalised Feynman-Dyson series is shown to formally satisfy the r-equations in
every order. In section 7, the same result is derived after renormalisation has been
carried out, and it is shown conversely that all solutions of the time-ordered 7-equations
can be described by a renormalised Feynman-Dyson series. Section 8 contains
consequences of this result following from the equivalence theorems. The proofs are
complete if the integrability conditions (3), (3’) defined in section 4 are satisfied in all
orders of perturbation theory.

2. The L.S.Z. Axioms

The discussion in this paper is confined to the theory of a single Hermitian scalar
field with non-vanishing rest mass, which is described in the Heisenberg picture by
the symmetric field operator 4 (x). For this theory, the axiomatic framework developed
in the papers of LEHMANN, Symanzik, and ZIMMERMANNY) is used; we quote the
L.S.Z. axioms in the following form:

1. (Operator distribution): In a Hilbert space £ with positive definite scalar product
(D, V), a symmetric temperate operator distribution A4 (x) shall be defined on a dense
subset ) C $, further restrictions on ) to be made subsequently. For such solutions

25%



390 P. Curtius H.P.A.

f*(x) of the Klein-Gordon equation for mass s which are “testing functions with fast
decrease” (see L. SCHWARTZ?)) on the mass shell, the expressions

At  Dde D
shall exist *), where

~

A%t) =4 j A(%) 0uf*(x) d®; FO0,6=FG—FG

Xg=1¢
and A*(t) D C .
2. (Lorentz Invariance): In § there shall exist a continuous unitary representation
Uf(a, A) of the real inhomogeneous proper orthochronous Lorentz group L', with

U, ) DC D; Ula, A) Alx) Ua, A) = A (Ax + a). (2.1)

There shall exist one (and only one up to multiplication by c-number factors) vector
Q € 2P which is invariant against all transformations U(a, A), (a, A) € L',.
3. (Locality): For x — y space-like,

(D, [A(x), Ay)]¥P)=0 D,¥eD. (2.2)

4. (Asymptotic Condition): There shall exist in § free fields 4,,(x), 4,,,(x) of mass m
defined on %) such that 43, (f) 2V C 9, and

lim (@, A*(t) ¥) = (qb, A2, (9) ‘If) D,¥Pec ). (2.3)
tﬁ>+oo out

For a complete system of f*, £ shall be cyclic with respect to the ring of polynomials
either in A% or AZ%,.
From these assumptions follows the existence of a unitary scattering matrix S
defined by
Aoy (%) = S7H A (%) S (2-4)

It also follows that £ contains a complete orthonormal system of vectors constructed
by application of polynomials either in A%, or in A%, on 2.

For matrix elements between vectors from 22, the asymptotic condition further
permits to derive reduction formulae '

[Ai(x), S T[A(%y) ... A(x,)]] =
(2.5a)
- fA(x — K, ST[AWX) Alx,) ... A(x,)] dx’,
[Ain(x), R[A(y); A(x) ... A(x,)]]
. (2.5b)
—i (A — ) K, RIAG); AW) Ax) . A@)] dx'; K= —0+m?

*) O. W. GREENBERG (Princeton Thesis 1956) has shown that in the case of diverging wave
function renormalisation, this condition has to be weakened ; one then only postulates existence of
the convolution product of these expressions with a testing function in the time variable.
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for the T- and R-products of the field operator defined *) by

T[A(xy) ... A(x,)] = 2 0(x; —%5) ... 0(x,_y —x,) A(xy) ... A(x,), (2.6a)
P(l...n)
R[A(x); Axy) ... A(x,)]
; 2.6b
= X 0w 00ty — ) [ (AW, A 1 A | PO
P1...n)
The summation extends over all permutations of the indices 1, ..., .

These reduction formulae permit expression of the matrix elements of 7- and R-
products between vectors of the “incoming” orthonormal system by vacuum expec-
tation values (“v.e.v”) of T- and R-products of higher degree. The result of the
reduction procedure can be collected in the following formal series expansion (valid
only for matrix elements between vectors from £9):

S T[A(x,) ... A(x,)]
Eéiz:/i:/ﬂ%'“%&l”Jm:AMWﬂ-~AmWJ:mh“me (& 1)
RIA(y); A(xy) ... A(x,)] .
:yf;%f...fr(y; By eos Bty o )t A (thy) oo A o) s dtty .. . (2.7b)

For n = 0, these formulae reduce to series representations of S and A(x). The 7- and
r-functions are defined by

(2, T[A(xy) ... A(x,)] ), (2.8a)

‘U(xl xn) =

r(v; %y ... x,) = (2, R[A(<y); A(xy) ... A(x,)] £2) (2.8b)

where barred coordinates designate ‘“amputation’:
©(..%,..)=1K, 7(..5,..), (2.9a)
2y .y ) = K PR e %y 00 ) (2.9b)
v(x;...) =K, r(x;...). (2.9¢)

The inversion of the amputation prescription is

oo ty) = [ A, = ) T Ty ) iy, (2.10a)
T8 2 ) =fAA(xV — ) (%} e Yy ool) AV, ~ (2.10D)
r(x; ...) =fAR(x — Y rly;...) dy. (2.10c)

*) For the definition of products of temperate distributions with -functions see here O. STEIN-
MANN?),
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3. Formal Generating Functionals

The algebraic properties of the infinite systems of 7- and R-products are very
concisely expressed with the aid of formal generating functionals?). A generating
functional & {J} of a function variable J(x)

F{J} = g‘%fﬂ.fﬂ”}(xl ox) Jx) .. (%) day ... dx, (3.1)

may be considered as a Volterra expansion (analogous to TAYLOR's series)

)
w1 b} n A
g{I-l—]}—n;n—![f](x)gm)dx] Fiy=e 1. FqY (3.2
of & at I = 0. The Volterra coefficients f can be considered as formal functional
derivatives defined by

(5. J6)] = 8 — #) 3.3)

87’

(%, ... x,) is symmetric in %,, ..., %,.

We expressly state that in this paper we shall not need any assumptions concerning
the convergence of Volterra series, or concerning the existence of generating func-
tionals or their functional derivatives as operators in §); generating functionals are
used exclusively as a means of writing operations defined on each of their Volterra
coefficients, in analogy to the calculus of formal power series.

The generating functionals of 7- and R-products are defined by

5-{]} =1 +”§m/‘f T[A(xy) ... Alx,)] J(xq) - ](xn) dx, ... dx, (3.4a)
= Texp{i [A( J(x) ds},

R AT} = A(x) + g%f...fR[A(x);A(xl) e A)] (3.4D)
% ](xl) ](xn) dxldxﬂ

Some of their formal properties are contained in the following lemmas (for the proof
one may e.g. refer to the author’s dissertation$)):

Lemma 1 (Time-ordered Functionals): If §{]} is the formal generating functional
of an infinite system of operator-valued distributions {S[¥, ... x,]}

STy =1+ 3 0 f.../'sml k] J) oo J(5) dy ... dx,  (3.5)
n=1
then the relation

[01%) S[#y ... %) =S T[A(x,) ... A(x,)] (3.6)

*) The bracket [O] is to signify that an equation is valid up to an uncertainty with support in
the subspace O = [x4,..., ¥, % =...=2%,]; %, ..., ¥, are all the variables explicitly contained in
the equation.
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is necessary and sufficient for the equations

[O] 0(y—x % SIS (T =0 ) (3.7a)

5= 8y ©

AW = SHIYSATY, 3.7)
Sis a unitary operator independent of J. [(3.7a) will be referred to as BoGoLJUBOV's

equation”); it implies unitarity as well as time-ordering of 5, if products of temperate
distributions with 0-functions are defined such that 0(x) 4 6(—x) = 1 is preserved.]

Lemma 2 (Retarded Functionals): 1f Q. { ]} is the formal generating functional of an
infinite system of operator-valued distributions {Q[x; #, ... 1,1},

QAN =+ 3k [ [0t 5 Tm) o T o, (39
then the relation
[0 Olx; %y «s %,] = RlA(x); Alx) s A(2,)] (3.9)

is necessary and sufficient for the equations

[0] Qu A} =170(x—y [Q4T} O]}, (3.10a)
Qlx] = A(x) . (3.10Db)

[(3.10a) will be referred to as Peierls’ equation?®); it implies the retardation of R, as
well as the “unitarity” equation R,,, — R,,, =1 [R,, R,].]

4. Equivalence Theorems

The operator-valued generating functionals of the preceding section can be
expressed by their v.e.v.

t{j}_1+2 ff T(x) ... J(x) dxy ... dz,,  (4.1a)

r (]} = Z%,f / X%y x) J() e () dy ... dx, (4.1b)

with the aid of the reduction formulae. The expansions (2.7) are equivalent to the
following expression for the generating functionals:

S - T{Jt=:t{J+ A4, K,}:

III

: exp {/A -g- '} :t{J}, (4.2a)
)
¥ 8 7

R} =0 ) + 4 K} i=exp [4,0) Ko 5, avhied]y. (420)
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These expressions are valid for matrix elements between vectors from &); since o9
contains a complete system of orthonormal state vectors constructed by application
of polynomials in A%, on £2, matrix elements of non-linear expressions in the functionals
(4.2) can be expressed by summation over this system of intermediate states. It is
well-known that the summation over states yields expressions in the v.e.v. of the form

RATY RATY = exp | [A4,0) Ko 5 av)iedy s A}, (43a)

where the “A+-convolution” of the two v.e.v.-functionals is defined by

t{J} A+« {J} = r.{J}- exp{// K1A+(u—v)K4g](kdudv} v,{J}. (4.3b)

The A+-convolution can be formally derived from the product of normal products
(4.2b) via ‘
et =egterdat, i [a,[a,b]] =[5, [a, b]] =0. (4.4)

In any field theory with L.S.Z. asymptotic condition, it is therefore possible to
derive an infinite system of non-linear integral equations for the z-functions and for
the 7-functions by insertion of the expansions (4.2) in the Bogoljubov equation (3.7a)
and in the Peierls equation (3.10a). The Bogoljubov equation for 7-functions?) is

0 (y — x) Zn'Pk(—l)"ff...fﬁ[duydv,idﬂuu—v,,)]
k=0 I=0 r=1

X{[T*(Xy oo X Uy oo e ) TXY Xpyg e Xy Uy 0) — TV Xq e Xy Uy .. ) (4.5a)
>4 r(xxk+1...xn51...5,)]}+%o‘(x, Y, Xy, oee, %,) =0
while the Peierls equation for »-functions is 10)11)
(XY %y ...%) =140 (x —y) ZP’“Z./ fﬂdu dv, t A+ (u, — v,)]
_ L (4.5b)

X {r(; 2 oo xpthy o ) (Y Xy e Xy Uy --. V) — [ > Y]}

+o(x;y, % ...%,) .

The prescription P* f(x, ... %) g(%; .1 - .- %,) is defined as summation over all divisions
of the arguments #,, ... %, into two classes of 2 and #» — % elements respectively.

The uncertainties appearing in the functional equations of the lemmas 1 and 2
are here exhibited through undetermined real distributions o(x, v, %4, ..., #,) and
o(x; ¥, %y, ..., x,) with support in {x = y = %, = ... = x,}; their reality is implied by
the unitarity property contained in (3.7a) and (3.10a). In these equations, we have
set the unimodular constant t{0} = 1.

If, on the other hand, Lorentz-invariant solutions {r} or {r} of (4.5) are given, then

(with the aid of a free field 4,,(x) with cyclic vacuum £) one can construct by the



Vol. 36, 1963 On Perturbation Expansions in Axiomatic Quantum Field Theory 395

series (4.2) a field theory satisfying the L.S.Z. axioms, if the following convolution
integrals exist as temperate distributions:

[ R A IT A4, —y,) dndy,),  (4.6a)

{23 C{1,2,... Min(m,n)}

f . f P06 Hy e %) 15 Ty e 7)) II [A*(x,, — v,) dx,, dy,]. (4.6b)

A3 C{1,2,... Min(m,n)}

Locality is here a consequence of Lorentz invariance and time-ordering or retardation.
From lemma 2 follows in this way the G.L.Z.-Theorem. If the symmetric field
operator A(x) satisfies the L.S.Z. axioms, then the r-functions defined from it
through (2.8b) satisfy the following conditions:
1. 7(x; %y ... x,) is a real Lorentz-invariant temperate distribution symmetric in
Ky oo, &

2. The r-functions satisfy the Peierls-equation (4.5b).
3. The convolution integrals (4.6b) exist as temperate distributions. —

Given on the other hand a set of »-functions satisfying conditions 1, 2, and 3, then
Ax) =1, {4, K, }: (4.7a)

is a representation (valid only for matrix elements between vectors from 29) of a
symmetric field operator 4 (x) satisfying the L.S.Z. axioms, the R-products of which
fulfil equation (2.8b). —

This theorem has been proved by GLASER, LEHMANN, and ZIMMERMANN 12). From
lemma 1 follows in the same way the

“Time-Ordered G.L.Z.-Theorem’ : If the symmetric field operator A(x) satisfies
the L.S.Z. axioms, then the z-functions defined from it through (2.8a) fulfil the
following conditions:

1". 7(%, ... x,) is a Lorentz-invariant temperate distribution symmetricin %,, ...,

2'. The 7-functions satisfy the Bogoljubov-equation (4.5a).

3’. The convolution integrals (4.6a) exist as temperate distributions. —

Given on the other hand a set of z-functions satisfying these conditions, then

ne

A@) =+ exp { / A ) K, gm dx’} YAt Y, (4.7D)

where 4;, is a free field with cyclic vacuum vector £2, is a representation (valid for
matrix elements between vectors from £2) of a symmetric field operator A4 (x) satisfy-
ing the L.S.Z. axioms, the T-products of which fulfil equation (2.8a). -

By combination of the two G.L.Z.-theorems follows immediately the “z-r-Equs-
valence Theorem’: Given a set of t-functions satisfying the conditions 1’, 2’, and 3';
then the r-functions defined by

L]} =+ T} 2 A% 2 10T} (4.8)
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satisfy the conditions 1, 2, and 3. Given on the other hand a set of »-functions satis-
fying these conditions, then the 7-functions defined by

Tg.x,) = Tle, # AT % (r, AT % (ox, ) oo )] 720 (4.9)

satisfy the conditions 1’, 2’, and 3'. - 7
A proof of the last two theorems has been given in the author’s dissertation.

5. Perturbation Expansions

Having in mind the well-known perturbation treatment of Lagrangian field theory
to be considered below, we define perturbation expansions in terms of a coupling
constant g of the field operator

e o]

Ax) = 37 gm Ao() (5.1)
m=10
and of the Green’s functions
T(®y oo ) = 3 g™ Ty 00 2, (5.2a)
) m=0
(s %y .. %) = ) gr i xy . x,) (5.2b)
m=10

As usual, these expansions are treated as formal power series without assumptions
concerning their convergence. The aim of this section is to show in what way the
perturbation treatment modifies the equivalence theorems.

We define perturbation theoretic L. S.Z. axioms (1p), (2p), and (4p) as the postulate
of validity of the axioms 1, 2, and 4 (with 4'Y = A4,,) for every order of the partial
sums

n

A7) = 2 g Ay (5.3)

m=10

In order to simplify the treatment of operator domains, we confine the discussion of
this paper to the case that the expressions (4.7) of the field operator are of finite degree
in A®(x) in every order of perturbation theory (this corresponds to the case of
Lagrangians of finite degree in the interacting field operator). The domain 2 of the
L.S.Z. axioms is then in all instances to be substituted by the domain £° of the free
field operator A% (x). Thus, perturbation theoretic locality [axiom (3p)] is defined by
(x — v spacelike)

(@, 37 [A®(x), An-H(y)] sp) —0, BYeD, m=0,1,2.. (54
k=0

We further define G.L.Z.-conditions (1p), (3p), and (1'p), (3'p) to mean the validity
of conditions 1, 3, and 1’, 3’ respectively for all # of ¢/ in every pertuyrbation order m.
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Conditions (2p) and (2'p) are defined as the validity of the perturbation theoretic
Peierls and Bogoljubov equations:

1

P (Y %y ...%,) =10 ZP"Z’[ fH[du dv, i A% (u, — v,)]

7

X AP (5 2y o X Uy o ) P K g e Xy Uy U) — [ > Y]}

n

- RS BBy 5w B s

n-1 -

m
T Y fy e ) = Z P" [T9%(y %y ... 2) T (X % 1 ... %,)
1 U ,

+ Ty o 2) T (Y X gy e )

Z PkZ/ /H[du dv, i A+ (u, — v,)] | (5.6)

j=1 k=0

X [T(J)*(y xl .o xk ul .o %l) T(m_J)(x xk+1 .--}n ‘Ul “ e vl)

+ T(")*(;]_ Ve ;k ;tl e &1) T(m—J)(& ;C §k+1 s xn ’Ul s ‘Z)I)]

— ey +iom™(x,y, 2, ..., %,).

0™(x; %y ... x,) and 6™ (x, ... x,) are real, Lorentz-invariant temperate distributions
symmetric in #,, ..., %, with support in x = x;, = ... = x,.

We now insert the series (5.1), (5.2) in the proofs of the first and third equivalence
theorems of the preceding section. The calculus of formal power series then yields the
following perturbation theoretic lemmas, which are to be applied below:

Lemma 3: Given a perturbation expansion (5.1) of the symmetric field operator
A(x) which satisfies axioms (1p) through (4p). Then the perturbation theoretic 7-
functions defined by

PO B o ) = 2 (2, R[A™)(x); A™)(x,) ... Amn)(x )] 2) (5.7)
Mo+ oo +mpy=m

satisfy the perturbation theoretic G.L.Z.-conditions (1p), (2p), and (3p). — Given on
the other hand a perturbation expansion (5.2b) of the 7-functions satisfying these
conditions*) ; then the series (4.7a) constructed from the perturbation sums of the 7
with the aid of a free field A° with cyclic vacuum vector is a representation of a
symmetric field operator (valid for matrix elements between vectors from 2°), which
satisfies the perturbation theoretic L.S.Z. axioms and equation (5.7).

Lemma 4: Given a perturbation expansion (5.2a) of the z-functions satisfying the
conditions (1'p), (2'p), and (3'p); then the 7'™-functions defined by

W} = k§ VR T} % A+ % 0 PLT} (5.8)

*) For the question of symmetry of the solutions of (5.5) cf. H. M. Friep13).
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satisfy the conditions (1p), (2p), and (3p). — Given on the other hand a perturbation
expansion (5.2b) of the r-functions satisfying these conditions, then the 7)-functions
recursively defined by

m n-—1

TE Ty E) =0 ) Y PRT(x, . x) A Ky e )
i=0k=2

= (5.9)

1 n 00 P
+5 3 3 P 3 [ [ [t do i A% (s, — 0]
i=1 k=0 I=1 e=1

X TD (g oo Xty oo t8) YP=I(2; Xy g ovs Xy Vg e )

n

satisfy the conditions (1'p), (2'p), and (3'p). —

6. Unréenormalised Perturbation Theory of Lagrangian Formalism

By the equivalence theorems the investigation of the connection between “axio-
matic”’ and Lagrangian perturbation theory may be reduced to verification of the
conditions (1'p), (2'p), and (3’p) for the perturbation theoretic z-functions derived
from Lagrangian theory. In this section it will be shown that the unrenormalised
Feynman integrals formally satisfy the perturbation theoretic Bogoljubov equation
(5.6) in every order.

In the proof, the formal summation of FEYNMAN’s perturbation series via gener-
ating functionals will be used. The easiest access to this method is by SCHWINGER's
functional equation for the time-ordered functional & {J}. Given a Lagrange theory
with local Lorentz-invariant interaction term

L[A(x)] =g L, [A(x)] (6.1)

which for simplicity is assumed to be linear in a single coupling constant g. The LV
shall be hermitian Lorentz-invariant polynomials homogeneous of #-th degree in the
field operator 4 (x) or its space-time derivatives of finite order. Then application of the
equation of motion and of the canonical commutators to the formal equation

+ co %o
Tl }=T [exp {z f A(u) I(u) du” it Ax) T [exp {i f A(v) I(v) dv”
yields (SCHWINGER 4))
0 I’ 1 6

brm  vli Fr(x)] B I(x)} ol =108 5 ]

Ly =y, [ Liwne. |

Schwinger’s equation is of course also valid for the v.e.v. of the &-functional
which generates the 7-functions. For L, = 0, the generating functional of the free
propagators

tO{I} = exp {~ %/]I(u) AT (u — v) I(v) du dv} = g~1214"T (6.3a)

(%

1
i

(6.2)

AT () = i O(x) A+(x) + i O(— x) A+(— ), (6.3b)
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1s a solution of (6.2). If L, + 0,

t{I} = exp { fL =+ 5 I(x] dx} g~ 12T AT (6.4)

is a solution of (6.2), as may be seen through commutation of I(x) with the first factor
on the right. It is easily verified that the expansion in powers of the coupling constant
of the 7-functions effected by the differentiation prescription (6.4) is after amputation
identical term by term with the unrenormalised Feynman perturbation integrals?).
These integrals are in general divergent, and all our manipulations of unrenormalised
Feynman integrals are formal; i.e. multiplication and integration of distributions is
effected regardless of existence questions. In these manipulations the following rules
will be observed:
1. Graphs with “short-circuited” lines (beginning and ending on the same vertex)
are disregarded.
2. If after insertion of the definition (3.6b) of A* an integrand contains a product
which by permutation of the order of distribution factors can be brought to the form
O (4 —%g) ... 0 (1 —%,) 0 (%, — %) Flay ...x.); x%,6{x, ... %, (6.5)

n—1

the corresponding integral is put equal to zero.
The perturbation theoretic Bogoljubov equation (5.6) is in functional notation

0] 6 (y—x) 5 2 {O* (T} A+ 5 1R} — 0 ; (6.6)

the significance of the clause [0] has been explained in the footnote to equation (3.6).
The verification of (6.6) can be reduced to a linear problem through SYMANZIK’s
generating functional of double graph integrals.

SYMANZIK's functional1®) is defined by

W J =TT+ 5T T -5 7} (6.7)

Its v.e.v. v {], J} can be calculated from t{J} by A+-convolution:

o], J}=t* {] +-§-}} exp{w/[mim (4 — v) Fg-mdu dy}t{]—%']} (6.8)

Through formal calculation of the A+-convolution via (4.4) the unrenormalised
Feynman-Dyson perturbation solution (6.4) yields an unrenormalised perturbation
expansion of v (Symanzixk, loc. cit.):

t{J, ]} =exp {2fsin [ 1 5Dm]L [D,] dx } e 4 J+1/4JAJ (6.9)

b=—?_, p=_

—— D,=———.
T8I YAC)
The argument of the first exponential is a convenient notation of the expression

6 —

z'Lw[B—éD]—z'L D+ D]—Zsm[l D4 ]I, (610
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derived from (3.2). From (6.9) follow unrenormalised »-functions via the relation

t{J} =D t{], J} [7o0- (6.11)
The desired linearisation of (6.6) is effected if one writes it in the form
0] 0(y—x)D,D,v{],]}]5.0=0, (6.12)

where this equation is to be valid for all coefficients of the power series in the coupling
constant. We prove (6.12) for the series (6.9) by consideration of the corresponding
double graphs.

Double graphs have been first introduced by Dyson?!?) for the representation of
the perturbation series of »-functions derived from Lagrangian theory. The name
stems from the fact that in double graphs, not only the number of vertices and their
connection structure is important, but in addition the subgraphs formed by the A%-
functions must be considered which contain an orientation structure induced by the
time ordering of the arguments of the A~.

A graphical notation for SYMANZzIK's integrals (6.9) in the case of spin-0 quantum
electrodynamics has been developed in the author’s dissertation. It suffices for our
present purpose to note that the Lagrangian functions of the first exponential
correspond to the vertices of the double graphs; for every differentiation operator
contained in them, a A%- or A'-line must be attached which leads either to another

vertex, or to external currents J, J.

Dyson’s double graphs have the property of “7T-structure”, i.e. from every vertex
issues exactly one A%-line. For Symanzik’s double graphs (6.9), we have the analogous
property of R-structure: At every vertex begins at least one A%-line. The proof follows
immediately from the fact that every vertex in (6.9) contains at least one D-operator,
which necessarily acts on the retarded end of a A%-line.

We now prove that all contributions to the left side of (6.12) vanish. All possible

contributions have exactly one external J. If ] is here end point of a A-line, then for
graphs of finite perturbation order the R-structure implies at least one cycle of A%-
functions of the form

AR (g — ) A%ty — ) A% (2, — ) (6.13)

in the integrand. Because of the rule for expressions (6.5) these graphs give no
contribution. J therefore is end point of a A¥-line, while all external / must be origins
of AR-lines. Such graphs which contain a J that is not connected to J through a chain
of A®-lines with consequent orientation, because of their R-structure must again

contain a cycle (6.13) and give no contribution. The integrand of all possible contri-
butions to the left side of (6.12) therefore contains a factor

Oy — ) A% (x —x) ... AR (x,_; — x,) A% (x, — ) (6.14)

and must again vanish because of the rule for expressions (6.5). We have thus com-
pleted the proof that FEyNMAN’s integrals (6.4) formally satisfy the Bogoljubov
equation (6.6) in all orders of perturbation theory.
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7. r-Equations and Renormalised Lagrangian Theory

Equivalent to the formal integral representation (6.4) for the unamputated z-

functions are the following formal integrals for the amputated z-functions (see e.g.
ref.®)):

W - o g 5
8" Tren V1 -+ yi) = i H) _5}(”...75—/@)f...[G(xl—xz)...B(meI—xm)
1 k o

X {L[f(x)] 2 i A+ % { ... {L[{(x,_)] 2 i A+ % L [f(x, )]} ... }} dx, ... dx, [ (7.13)

x tO{f{ K.} \f==0 ,
F{f} 1 4+ £ G{f} = F{f} 990 45 Gy (7.1)

The question whether from the Feynman integrals (7.1) temperate distributions may
be determined is called the renormalisation problem. We quote here known results
(see e.g. BocoLjuBov and SHIRKOV)) in the form of

Lemma 5: In the integrand of (7.1), temperate distributions may be specified from
the formal product expressions by addition of local Lorentz-invariant hermitian
compensation terms*) to the Lagrangian L, :

L[f(®)] — LHx)] = L[f(%)] + Lem /()] (7.2a)

Lum10)) = 3 g X U] (7.2b)

The coefficients C,, ,; of the monomials in L_,,, are to compensate divergent integrals

mni

formally such that their difference §C,,,; becomes finite; this manipulation may be
defined e.g. as limit of a Pauli-Villars regularisation procedure??). The renormalised
product expressions then contain a number of undetermined constants 8C,, ,; which is
finite in every order of perturbation theory**). —

After the renormalisation procedure, the existence of the integrals (7.1) is assured
if condition (3'p) of the G.L.Z.-theorem is valid in every order of perturbation theory.
This condition shall always be assumed in the following***).

Since the proof of (6.6) is valid for arbitrary L!”, the perturbation theoretic
Bogoljubov equation [condition (2'p)] is satisfied by the renormalised 7-functions of
arbitrary Lagrange theories. Lemma 5 guarantees that these z-functions are Lorentz-
invariant temperate distributions; their symmetry follows from inspection of (7.1),
so that condition (1p) is also completely satisfied.

Conversely, we now prove

*) If the renormalisation may be effected in such a way that in the formal power series (7.2b),
the number of monomials in f contained in the coefficient of g is bounded uniformly in m, L, is
called renormalisable, otherwise non-renormalisable.

**) As additional renormalisation prescription, all vacuum graphs are neglected; this yields
t[0] = 1 as assumed above.

*%**) BogoLjuBov and SHIRKOV (loc. cit.) have shown that this assumption is connected with

the ‘““adiabatic theorem’’; the latter is treated e.g. in the encyclopedia article by G. KALLEN?).

26 H. P. A. 36, 4 (1963)
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Lemma 6: An arbitrary solution of the perturbation theoretic Bogoljubov-
equation (5.6) can be represented by a renormalised Feynman-Dyson series

t{1}~exp{ f L, [t2 ]dx}t“”{]}. (7.3)

I(x)

Any non-trivial iteration solution of (5.6) needs non-vanishing o™ as starting-
terms; for if all 6™ are zero, then insertion of the 7 derived from (6.3) yields 7™ = 0

for m > 0. Since the 6®(x,, ..., x,) are real Lorentz-invariant temperate distributions
with support in x; = %, = ... x,, they are of the form
¥y, ..., %,) = WZ o [ (a,,u ) H ?, ( 2 ) 8 (x) — 2, } (7.4)

where the $ are polynomials in the space-time derivative operators, and the Q, are
real, Lorentz-invariant, and linear in arguments of the type indicated. Then if we
define

O] — O [ I1 [p@ (00—) f(x)], ] (7.5

o=1

and if 6@ =0 forj=0,1,...,k — 1, the lemma is proved for the lowest nontrivial
order since

{0{I} = g f Zw 6” S| (T} (7.6)

The remainder of the proof follows by induction. It may now be assumed that for
an arbitrary solution of (5.6), (7.3) is valid up to the order m — 1:

H0(I}y = exp{ff_g; XY x}t(“){IHg:U; E=0,1,...,m—1. (1.7)

L® is a renormalised Lagrangian of maximal degree % in the coupling constant g.
Let #,,;, + 2 be defined as the smallest number of arguments for which the term in
curly brackets in equation (5.6) does not vanish. To the Lagrangian L{"~" describing
the solution in (m — 1)th order, we now add a set of renormalisation terms of m-th

order; T (x y %, ... x, ) calculated from (7.3) with the resulting L™ is then, because

of the validity of (6.6) for arbitrary L,,,, equal to the expression calculated from (5.6)
after insertion of the perturbation orders (7.7), up to an uncertainty of the form
a™(x,y, %y, ... %, ). After addition to L{ = of the Lagrange term 1. , , corresponding

Ny

te g™ Y, K e

"min)’ the induction step has been proved for » = #,,,,; it is proved

in like manner for arbitrary # by iteration with the aid of all ™ of a lesser number of
arguments. Lemma 6 has thus been proved.
We collect the results of this section in the following

Theorem 1: The renormalised perturbation series of the 7-functions of an arbitrary
local Lorentz-invariant Lagrangian formalism satisfy the perturbation theoretic
Bogoljubov 7-equations as well as condition (1'p) in every order. Conversely, every
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solution of the perturbation theoretic Bogoljubov-equations satisfying conditions
(1'p) may be represented by a renormalised local Lorentz-invariant Lagrangian
formalism. Condition (3'p) has been assumed throughout. -

8. Consequences of the Equivalence Theorems

For arbitrary Lagrangian theories, renormalised perturbation series of the #-
functions may be derived from the renormalised t#-functions (assuming condition
(3'p)) via the A+*-convolution (5.8), the result of which is a renormalised Dyson-
Symanzik-prescription

i i — . T1 )
z'gmri ){]}:Dxexp{Zfsm [_Z—Dyﬁﬁ] remD]dy}gJA J+1/aTat Jl _o- (81)
()

m=0
Theorem 1 and lemma 4 therefore imply:

Theorem 2: Perturbation expansions of the 7-functions determined from a renor-
malised Dyson-Symanzik-prescription (8.1) of an arbitrary local Lorentz-invariant
Lagrangian theory are a solution of the perturbation theoretic Peierls-equation (5.5)
and satisfy condition (1p), where condition (3p) has been assumed. Conversely, every
set of r-functions satisfying the r-equation (5.5) and conditions (1p), (3p) may be
represented by a renormalised Dyson-Symanzik-prescription of a local Lorentz-
invariant Lagrangian theory.

From this theorem follows immediately by lemma 3:

Theorem 3: If a perturbation series (5.1) of an interacting field A (x) is formed by
inserting the perturbation theoretic #™-functions of an arbitrary local Lorentz—
invariant Lagrangian formalism into the expansion (4.7):

= Zoo‘ gn f'f...fr(’")(x; Ky wndly) B AR 5.0 ANE) :‘dxlf.. dx, (8.2)

where A%x) is a free field with cyclic vacuum vector £2, and condition (3p) is assumed
to hold for the #™, then A (x) satisfies the perturbation theoretic L.S.Z.-axioms with
A;,(x) = A%x). — If on the other hand a perturbation expansion (8.2) of the field
operator satisfies the perturbation theoretic L.S.Z.-axioms, then the #™ may be
represented by a Dyson-Symanzik-series (8.1) derived from a local Lorentz-invariant
Lagrange theory*). —

It is noted that the partial sums (5.3) of the field operator will not in general satisfy
the locality postulate (2.2). However, the perturbation theoretic locality (5.4) proved
in theorem 3 suffices to prove the locality condition for perturbation theoretic Wight-
man functions; since further the spectral condition for A4(x) follows from the one for
A, (%), we have as

*) J. Rzewuski?l) derives a similar result for all Wightman field theories where certain
existence assumptions for functionals hold. It seems that the justification of these assumptions by
the results of K. SymaNzik®) must be supplemented by the postulate of convergence of the
perturbation series.
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Corollary: If perturbation orders of the Wightman functions are constructed from
the perturbation expansion (5.1) of a field operator calculated by an arbitrary local
Lorentz-invariant Lagrangian formalism:

Wz, ... %) = 3 (2 A™(x,) ... Am(x,) Q) (8.3)

My + o+ +mp =m

then each 2™ satisfies all linear conditions of Wightman’s theorem22).
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