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Lorentz-kovariante analytische Funktionen

von Klaus Hepp
Eidgenössische Technische Hochschule, Zürich

(1. XI. 62)

Abstract: The structure of the module 0[>iS](.D) of holomorphic tensor fields (transforming
according to the irreducible representation [r, s] of the proper complex Lorentz group L+(C)) over
the ring 0[o,o]{D) °i Z.+(C)-invariant holomorphic functions is investigated. A decomposition of

every F e 0[r;Sj(D) into a finite linear combination of tensor polynomials ßj, e 0[f]S](i3) with
£,(C)-invariant holomorphic coefficient functions is shown to exist (locally) for a large class of
domains D. As a generalization of a theorem of Bargmann, Hall and Wightman it is proved that
in such domains each L,+,(C)-invariant holomorphic function is a strongly holomorphic function
of the L,+j(C)-invariants. The results are applied to the Wightman functions of arbitrary spinor
fields, for which for instance it is shown that all 3-point functions can be continued into the
Källen-Wightman-domain. Finally sufficient conditions for the existence of invariant amplitudes
for scattering and production processes are given.

§ 1. Einleitung
Die Methoden der Funktionentheorie mehrerer komplexer Veränderlicher haben

in den letzten Jahren zu einem gewissen Fortschritt in der Theorie der Elementarteilchen

und ihrer Wechselwirkungen beigetragen.
In der allgemeinen Quantenfeldtheorie1)2) haben die physikalischen Grössen

(Vakuumerwartungswerte von Produkten von Feldoperatoren im x-Raum bzw. von
retardierten und zeitgeordneten Produkten im p-~Ranm) eindeutige analytische
Fortsetzungen zu holomorphen Tensorfeldern mehrerer komplexer Vektorargumente, in
denen sich Strukturen der Theorie, wie Lorentz-Kovarianz und Lokalität, für gewisse
Untersuchungen besonders geeignet ausdrücken (vgl. 3)). In den analytischen S-Ma-
trix-Theorien (vgl.4)) postuliert man, durch die Störungstheorie geleitet,
Regularitätseigenschaften von Feynman-Amplituden im Raum der komplexen Impulsvektoren
auf der «Massenschale» und versucht, von dieser Seite her die Phänomene der relativistischen

Elementarprozesse zu verstehen.
Die mathematischen Schwierigkeiten bei diesen Untersuchungen sind bekanntlich

gross. So beschränkt man sich bei den meisten grundsätzlichen Fragen auf das vereinfachte

Modell eines neutralen Skalarfeldes, in der Hoffnung, dass die Komplikationen
für realistische Teilchen mit beliebigen Spins rein algebraischer Natur sind. Wir werden

an der Klasse der Lorentz-kovarianten holomorphen Tensorfelder, die nach dem
obigen in einem gewissen Sinne die fundamentalen Grössen der Theorie darstellen,
zeigen, wie und unter welchen Bedingungen eine «Reduktion auf skalare Grössen» im
mathematisch strengen Sinne möglich ist.
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Genauer sei A -> S (A) eine irreduzible Tensordarstellung der eigentlichen
komplexen Lorentz-Gruppe LAC) (vgl. §2.), und es sei F'x(z„ zn) ein s-Tupel (s dimS)
von in einem Gebiet D im C4" der komplexen Vierervektoren z (z,, zn) holomorphen

Funktionen, die sich nach der Darstellung S kovariant transformieren:

F«(A z„...Azn)= £ S(A)l. F*'(z„ ...z„) (1.1)
st' -1

für alle zeflund alle A e LAC) mit Az (A z„ ...A z„) eD*).
Ist A -> S (A) die Einsdarstellung, so heisse F(z) in D Z,+(C)-invariant. Die Menge

Os(D) der in D holomorphen S-koVarianten Tensorfelder (1,1) bildet einen Modul
über dem Ring O[0 0](D) der in D L+(C)-invarianten holomorphen Funktionen.

Das Hauptproblem dieser Arbeit ist es abzuklären, wann der Modul Os(D) über dem
Ring O[0 „](£>) von endlichem Typus ist, das heisst wann es in D endlich viele S-ko-
variante holomorphe Tensorfelder Q^(z) («Standardkovarianten») gibt derart, dass
sich jede S-kovariante analytische Funktion Fe Os(D) in D darstellen lässt als

F(*) £ fn(*) <£W (1-2)

mit L+(C)-invarianten holomorphen Funktionen /„ G O[004D).
Wir werden zeigen (§4.), dass eine solche «Standardzerlegung» (1,2) im allgemeinen

nicht überall lokal möglich ist, und werden hinreichende Bedingungen (§ 5.) für die
Existenz von lokalen und globalen Standardzerlegungen in Os(D) angeben. In allen
Fällen werden die Standardkovarianten ein minimales System von 5-kovarianten
Polynomen (§ 3.) sein, von gewissermassen trivialer kinematischer Natur. Damit
wendet sich das Interesse den Z,+(C)-invarianten holomorphen Koeffizientenfunktionen

zu. Hier werden wir (§ 5.) ein Theorem von Bargmann, Hall und Wightman5)
verallgemeinern und einen kanonischen Zusammenhang zwischen L(+)(C) -invarianten
holomorphen Funktionen und stark holomorphen Funktionen der L(+)(C)-Invarianten
herstellen. Diese Resultate werden schliesslich (§6.) auf die Theorie der Wightman-
Funktion und verallgemeinerten retardierten Funktionen und auf das Problem der
invarianten S-Matrixamplituden 7) angewandt.

§ 2. Tensordarstellungen von L+(C)

In diesem Abschnitt werden kurz die irreduziblen Tensordarstellungen der eigentlichen

homogenen komplexen Lorentz-Gruppe LAC), der Gruppe der komplexen
unimodularen 4 x 4-Matrizen, die die symmetrische Bilinearform

(*, y) *o y° - £ x« y £ ëllv x» f (2.1)
n - 1 /j, v 0

invariant lassen, charakterisiert. Die LAC) ist isomorph zur eigentlichen komplexen
4-dimensionalen Orthogonalgruppe 0+(4, C) (die hyperbolische Signatur der Metrik

*) Durch (1.1) lässt sich Fa(z) stets S-kovariant und eindeutig nach L+(C) D analytisch
fortsetzen5). Daher sei O.E. D LAC) D angenommen. Da die Tensordarstellungen von LAC) voll-
reduzibel sind6), ist ferner die Annahme der Irreduzibilität von S(A) keine Beschränkung der
Allgemeinheit.
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gp„ ist nur sinnvoll im Hinblick auf die physikalischen Randwerte im reellen Min-
kowski-Raum), und so ergeben sich die irreduziblen Tensordarstellungen leicht mit
den Methoden der klassischen Darstellungstheorie6). Zur quantitativen Diskussion
des physikalisch interessanten Falles der L+(C) ist es jedoch vorteilhafter*), sich auf
die einfache Struktur der Darstellungstheorie der S 1(2, C) ® S L(2, C), der universellen

Überlagerungsgruppe der LAC), zu stützen und im Spinorkalkül zu operieren.
Hier gewinnen viele Formeln eine besonders einfache Gestalt, und es wäre möglich,
den Aufwand an nichttrivialer komplexer Analysis durch direkte Abschätzungen zu
verkleinern (vgl. Lemma 3 und § 5.).

Ordnet man über die Darstellung

(2.2)

der Pauli'schen 2 X 2-Matrizen jedem komplexen Vierervektor z eineindeutig und
linear eine 2 X 2-Matrix 5 zu :

3

z *-> z 2J z" av (2.3)
v - 0

dann wird bekanntlich32)10) ein 2 — 1-Homomorphismus von S L(2, C) ® S L(2, C)
auf LAC) gestiftet, indem jedem (A.B)eS L(2, C) ® S L(2, C) die durch

A(A,B)z AzBT (2.4)

definierte Transformation A(A, B) e LAC) zugeordnet wird. Bei diesem

Homomorphismus bilden die A(A, A) mit der zu A konjugiert komplexen Matrix A genau
die Einskomponente der reellen homogenen Lorentz-Gruppe V+.

Es sei <R[f'sJ der komplexe Vektorraum der Spinoren fai...ari...L vom Range

(r, s) mit oq 1, 2, ßj 1, 2. Dann ist durch (Summation stets über doppelte Indizes) :

((A x B)W)ai...ark.,,h=ljAinBfy)a,,..a,k...k (2.5)
i -1 1 - 1 '

eine 2"'+'s-dimensionale i.a. reduzible Darstellung von S L(2, C) ® S L(2, C) gegeben.

Auf dem (r + 1) (s + l)-dimensionalen Teilraum &iS] der in a und ß symmetrischen
Spinoren V,n1...arÄ--.ft lst ^ie Darstellung (2.5) irreduzibel, und alle endlichen
stetigen irreduziblen Darstellungen von S L(2, C) ® (S L(2, C) sind vom Typ [r, s]

mit ganzen Zahlen r, s > 09).
Ein wichtiger invarianter Spinor ist die e-Matrix

ur (2.6)

die in der Darstellung (2.2) mit i a2 übereinstimmt. Denn wegen A e AT det (.4) e

für alle komplexen 2x2 Matrizen A ergibt die e-Kontraktion zweier ungepunkteter

*) Die wesentlichen Resultate dieser Arbeit lassen sich unabhängig vom Spinorkalkül für alle
klassischen komplexen Gruppen beweisen 8).
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oder gepunkteter Indizes eines Spinors wieder einen Spinor von um 2 niedrigerem
Rang.

Symmetrische Spinoren ip e S[/",SJ von geradzahligem Gesamtrang r + s 0(2)
und Tensoren T über dem 4-dimensionalen Minkowski-Raum, die sich nach irreduziblen

Darstellungen der LAC) transformieren, stehen nach den folgenden Formeln in
eineindeutiger linearer Beziehung zueinander :

..arß,.

2 e« à
7-7- Pt + »j-lPtj +

h LI 2j-i

ar /3,

s — r
2 E

T-r ar + 2;-lar + 2

¦¦'ßsll 2

mit der Umkehrung:

r
r- s

2

(r>s)

(r<s),

(2.7)

^r)a1,.,«Ti„ft ijKi)aifcî"" ^77 X + 2,-X + 2, (^S
j-1

v>(T)Xi...arßl...ßs=n KK* T">-"sn x+2/-i«,+2/ ^ s> •

» -1 ; -1 ' '

(2.8)

Die Komplexifikationen aller irreduzibler Tensordarstellungen von L\ sind über die
folgende Relation durch Darstellungen der S L(2, C) (g) S L(2, C) vom Typ [r, s],

r + s 0(2), gegeben:

T((A x 5) y)".•¦•"«= TJA(A, B)« r(y))*'1 ¦¦•'», (2.9)
»-i

und das Transformationsgesetz einer j>, s]-kovarianten Funktion lautet:

Fa/5 C4(A B) %, /1(^, B) *„) S(A, B^fFa,^,(z„...z„) (2.10)

mit

S(A, Bf? f[ A«\ TT BV

Als Bausteine für ein minimales System von Standardkovarianten werden wir in dem
folgenden Abschnitt neben dem Vektor z^ noch einige einfache irreduzible
Tensorpolynome brauchen. Der Pseudovektor

(zi Az2A z3y s e*»»"(*i), (*«), (*s)«r (2-11)

von drei Vierervektoren zv z2, z3 steht über

- (z, A 22 A z3, z4) [«!, z2, z3, z4] (2.12)
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mit der Determinante [z„ z2, z3, z4] von z„ zä, z3, z4 in Zusammenhang. Dabei ist sßVQa

der total antisymmetrische Tensor vom Rang 4 mit e0123 1. Es gilt die Identität:

saßroef"'ea -det' : : (2.13)
| aÖ IA ~Ô G ]

Schliesslich sind

M±(h, z2r ~ [zlzl -z\zl± iE>"e°(z,)p (z2)a\ (2.14)

schiefe selbstduale bzw. antiselbstduale Tensoren vom Rang 2.

Über (2.8) erhält man für (2.11) und (2.14) die folgenden Spinorkovarianten :

(z, A z2 A z3)a/ä i [(z„ z2) (z3)ap + (z2, z3) (z,)xp |

~T „ i (2-15)

- («i.*s) W«X fe«a e*s)«/jL j

MAzi, z2)ai Xt S ß e *2% «. - MAz1, z2)Ä A S &T e «i)A ft ' (2-16'
jj

wobei § für die (separate) totale Symmetrisierung der ungepunkteten und gepunkte-
ce,/>

ten Indizes steht :

Ö r<x, ...ar, ft.../3s y\ s| ^ ^ap(i) ¦¦¦<*P(r) Xl) ••• ^ö(s) '

a, ß P<Q

mit Summation über alle Permutationen P von (1, r) und Ç von (1, s). Schliesslich

gilt

X z2) --\ Sp (z*, e il e) (2.18)

Im folgenden werden wir ohne Gefahr von Missverständnissen die Tilde über einem
Spinor fortlassen, dessen Transformationsverhalten ohnehin eindeutig durch die

Anzahl der <x- und /S-Indizes bestimmt ist.

§3. L+(C)-kovariante Polynome

Die Klasse der L+(C)-kovarianten Polynome ist in mehrfacher Hinsicht wichtig.
Einmal bildet sie die einfachste Familie von L+(C)-kovarianten Tensorfeldern, und
die sich hier ergebenden grundsätzlichen Zusammenhänge zwischen der Invariantentheorie

und der komplexen Analysis werden später die «kanonische» Struktur des

Moduls 0[fs](ö) und der Ringe O[00](D), O0(D) kennzeichnen. Zum anderen werden
wir für jede irreduzible Darstellung [r, s] von LAC) ein minimales System von ko-
varianten Polynomen <2X](z) konstruieren, die den Modul ^XS](z) der [r, s]-ko-
varianten Polynome in den Variablen z (z„ z„) e C4" über dem Unterring
¥o(z) C ^o,oX) der L(C)-invarianten Polynome erzeugen. Dieses Erzeugendensystem

wird später - nach der «Komplettierung» des Moduls ^P[r>s](z) zum Modul
0[r<s](D) - in gewissen Fällen für die in D [r, s]-kovarianten analytischen Funktionen
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ausreichen. Schliesslich gewinnen wir hier einen quantitativen Zusammenhang
zwischen L(+)(C)-invarianten Polynomen und Polynomen in den Z.(+)(C)-Invarianten -
eine Illustration der analytischen Strukturen, die wir im § 5. antreffen werden.

Man erhält leicht einen Überblick über die algebraische Struktur der Moduln
ty[r,s]iz) durch die Reduktion von Monomen

d

ij (**.)«.*.. zxe{z„...zn), (3.1)
Jr!

in unter LAC) irreduzible Komponenten. Ist qai„.Xr,k — k eln lrreduzibler Spinor
der Darstellung [r, s], so zerfällt bekanntlich das Tensorprodukt qa ,„a A...;j x

X +1 ß 4-1
*n ^e folgenden irreduziblen Terme :

O 1oL1...*rßl---h Z«r + lßt + l ' ^ X---arJVXX + X + l SßJs + l '

<x,ß a

Sx. Z * F (1 ' ' Z F F ' '
; ar-f_i^s + l arar + l' "*i ¦•• <*r ßi •••£* Of + l^s + l arar+l ßs&s + l

(3.2)

zu den Darstellungen [r + 1, s + 1], [r + 1, s — 1] (s > 0), [r — 1, s + 1] (r > 0) und
[r — 1, s — 1] (y, s > 0). So zerfällt (3.1) (vgl. Lemma 3) in eine Summe von [r, s]-

kovarianten Monomen mit stets r A- s 0(2), in denen gewisse a- und /3Tndexpaare
e-kontrahiert sind und die freien ol- und /S-Indizes symmetrisiert sind. Die Identität
(2.13) spiegelt sich im binären Bereich der Spinoren in der Tatsache, dass Ketten
von mit mehr als 2 e-Spinoren kontrahierten (zxX,s, sich stets in einfachere Kova-
rianten zerlegen lassen durch Identitäten wie

§ (z, ezlsz3e zi% ^ (z„ z3) M+(z2, z4)Äj ^ A- (z2, z4) MAzx, z3)ai a%

a

- (z„ z2) M+(z3, z4)ai ai - (z3, z4) Af+(z1, z2)ai a%
(3.3)

- (Z1( Z4) M+(Z2, Z3)aiaj - (Z2, Z3) MAZ-L, Zi)Xla2 ¦

Ebenfalls lassen sich Kovarianten wie M+(zlt z2) M_(z3, z4), [z„ z2, z3, z~\ z5, Mt^, z2) x
(z3 A z4 A z5) und (Zj A z2 A z3) (z4 A z5 A z6) singularitätenfrei auf einfachere Kovarianten

mit Koeffizientenpolynomen in den Skalarprodukten reduzieren. Durch
vollständige Induktion nach d folgt das

Lemma 1: Der Modul *$[,_s](z), z (z,, zn) e Cin, ist über dem Ring ^30(z) von
endlichem Typus. Jedes kovariante Polynom qaß(z) e ^ß[nsj(z) ist zerlegbar in:

M1) É'?«« Q«si(zU (3X

mit invarianten Polynomen qx(z) e Sß0(z) in den Skalarprodukten (z{, z;-) und mit den

folgenden Standardkovarianten :

(«) für r s + 2 t > s:

Ql'HzU nK)IJM+K + im-V^ +J\ r (3-5a)
l-l m-l \aß



Vol. 36, 1963 Lorentz-kovariante analytische Funktionen

(ß) für s r + 2 t > r :

361

exw S \flK) ÛM-K+2m_,y,r+J
aß V l m-l «/j

(3.5b)

(y) für r s 4= 0:

a/?''1
(3.5:)

c- 1

QÏ''K*)«b SII(z*tKßt K A z„r+1 A z,r + 2)ar/i;,
ajS'-1

(3.5d)

(ô) für r 5 0:

QÌ[0, 0] f eojw x-vxx (3.5e)

Hierbei steht a ß für ax, ar /3j, /9S und % für alle Kombinationen von Vierervektoren

zx g {z1; z„}, die über C verschiedene Standardkovarianten liefern. Für
festes [r, s] und n gilt: 1 < x < K K(r, s, n) < oo.

Insbesondere ist also jedes L(C)-invariante Polynom p(z„...zn) als Polynom
p((Zj, Zj)) in den r n (n + l)/2 C(C)-VektorinVarianten (zt, Zj), 1 < * < / < n,
darstellbar und ebenso jedes L+(C)-invariante Polynom q(z„ zn) als Polynom q((z{, Zj),

(n
[zki, zkt]) in den r+ n (n + l)/2 + max JO, I II L+(C)-Invarianten (zt, Zj) und

[zki, zki] mit 1 < k,< A k4< n. Dies ist ein Spezialfall des sogenannten
1. Hauptsatzes der Invariantentheorie6). Jedoch ist eine solche Darstellung im
allgemeinen nicht eindeutig. Zwischen den L(C)-Invarianten von n 4-Vektoren z„ zn

gelten für n > 5 die Relationen :

X> ZjJ • • (z,v ZjJ ¦ 1 <i,<c <i5<n
det1 : : =0

(z- X) (X Z.) 1 < /l< •¦• < ?5 < n
\ h' Jx' »'»' ),<

und für die L+(C)-Invarianten noch für n ;> 4:

(V */J • • ¦ X,. 2;,)

X,. • • • 2*,] [2/, • • • *J + det
'

: : 0

fe4. */,) fe4> */,)

(3.6)

(3.7)

mit 1 < k, < < k„ < n, 1 < l, < <li<n.
Aus dem 2. Hauptsatz der Invariantentheorie6)11) folgt, dass alle Polynom-

Relationen zwischen den L{+)(C) Vektorinvarianten auf (3.6) (und (3.7)) zurückgeführt

werden können: sei in dem Cr<+) der komplexen Variablen ztj (und zk^k%k) mit
den Symetrien ztJ zjt (und zkikikski sgn n X

gegeben, das bei der Substitution
'**<!) *Jj(2) *)7(3) *7T(4)^ ein Polynom P(z)

ij (z,-, z,) (und zMjMj [zK, zkt, zK, zk>]) (3.8)
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für die Vektorinvarianten der (z,, z„) £ C4" identisch verschwindet, dann gehört
P(z) dem Polynomideal über dem Cr<+) an, das durch die Relationen (3.6) (und (3.7))
in den Variablen ztj (und zkikikakt) erzeugt wird.

Sei 7(+): Cin -> C(+) die Abbildung, die jedem M-Tupel von Vierervektoren

z,,... z„ die r(+) Z,(+)(C)-Invarianten I[+,(z), PA' (z) - nämlich die (zit z}) und eventuell

die [zki, zk] - zuordnet. Man überzeugt sich leicht5)8), dass das /(+)-Bild des

Cin genau die durch die Relationen (3.6) (und (3.7)) definierte algebraische Varietät
/<+> c cr(+) ist.

Jetzt lassen sich unsere Kenntnisse über die Struktur der Ringe s^3f0>0](z), s}*(0)(2)

folgendermassen zusammenfassen :

Lemma 2: Zu jedem im Cin(z) L(+)(C)-invarianten Polynom P(z„ zn) gibt es ein

Polynom P(z,, zr(+)) im CrM(z) mit

P(z„ ...zn) P{I[+\z), F+^z)) Xo /<+)(z) (3.9)

Je zwei Polynome P,(z), P2(z) definieren dasselbe L(+)(C)-invariante Polynom P(z),
falls sie auf /(+) übereinstimmen, das heisst falls ihre Differenz dem durch die
Relationen (3.5) (und (3.6)) erzeugten Polynomideal angehört.

Man vergleiche mit Lemma 1 und 2 die Sätze 2 und 3 des Abschnittes § 5

Eine charakteristische Schwierigkeit wird später bei den funktionentheoretischen
Untersuchungen auftreten und nur mit nichttrivialen Sätzen der analytischen Garbentheorie

überwunden werden können : die Tatsache, dass im allgemeinen die
Standardkovarianten <2XX) nicht global singularitätenfrei fast überall zu einem im
Darstellungsraum &r>s] linear unabhängigen System verkürzt werden können. Da nun
in den Fällen, wo dies doch möglich ist, stärkere Resultate beweisbar sind, seien kurz
quantitativ die Abhängigkeitsrelationen diskutiert.

Im Falle n 1 ist tyr,s](z,) leer für r 4= s und ^r'rì(z,) wird erzeugt durch das

einzige Tensorpolynom :

QM(h)aß S ii>X,-;(- Xio)
¦xß '-1

Für n 2 ist das Erzeugendensystem von ^^(Zj, z2)

aß

x min [r, s\- y. 2

iJ(*i) II X)77MXi,22)
/1 m X n 1

(3.11)
1.11

(0 < x < min {r, s}) linear unabhängig im &r,s\ falls z, und z2 linear unabhängig
und nicht total isotrop sind (vgl. § 4.).

Für n 3 wird S[r'sl durch die Standardkovarianten (3.5) aufgespannt, falls die
Gram'sche Determinante G(z„ z2, z3) #= 0 ist. Für die Darstellungen vom Typ [r, r],
[2,0] und [0,2] bilden die ÇLr,s](z) dann eine Basis. Für Darstellungen [r, s] mit
\r — s | 2 sind für G(z„ z2, z3) 4= 0 die einzigen Abhängigkeitsrelationen über dem
Konstantenkörper C, und zwar von der Art :

§ [z, MAz2, z3) + z3 M±(z3, z,) A- z3 MAzlt z2)]aß 0 (3.12)
a ß
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Daher kann hier das Erzeugendensystem {ÇXX)} global und singularitätenfrei zu
einer Basis von &•s) verkürzt werden. Für | r — s | > 2 treten dann weiter Relationen
über ^P0(z) auf, wie:

S Xi, *i) M±(z2, z3) M±(z2, zs) + (z2, z2) MAz3, z,) M±(z3, z,)
<*,ß

+ (z3, z3) M^, z2) Mtta, z2) + 2(Zi, z2) MAz2, z3) M±(zs, z,)

+ 2(z2, z3) M±(za, z,) M±(z„ z2) + 2(z3, z,) M±(z1, z2) il&(z„ z3)] a 0

(3.13)

Hier ist keine globale singularitätenfreie Verkürzung des Erzeugendensystems mehr
möglich.

Für w 4 sind in der Darstellung [0, 0] die Erzeugenden 1 und [zx z2 z3 z4]

unabhängig über ^„(z) und ebenso in (1.1) die Vektoren z„ z2, z3, z4 und die Pseudovektoren

z, A z2 A z3, z2 A z3 A z4, z3 A z4 A zx, zi A Z! A z2. Sonst existiert hier und für höhere n
keine globale Polynombasis von *p[r,sl(z).

Wenn auch die Darstellung (3.4) nicht eindeutig ist, so kann man dennoch
Zerlegungen angeben, bei denen die auftretenden Terme «nicht zu gross» werden.
Genauer heisse eine Einheit vom Grade d die [r, s]-Kovariante:

d- m
2~~

exxx..,^...^ n spK+ia-isz«m+le)
d — r d— s

X
6-1

(3.14)

11 X+26-lar+2(, 11 Bßs+2c-lßs-

mit m max {r, s) (bzw. m r, r + 2 für r s 4= 0) und mit d — r,d — s 0,2, 4,
und Q[x's](z) nach (3.5). Der Betrag eines numerischen Faktors vor (3.14) heisse
Gewicht der Einheit. Dann gilt das

d

Lemma 3: Es gibt eine Reduktion des Monoms JJ (zx)aL.ß\ vom Grade d in eine
t i

Summe von Einheiten (3.14) vom Grade d und höchstens einem Gesamtgewicht Bd

(B < co konstant, unabhängig von z und d).
Der Beweis erfolgt induktiv nach d durch wiederholte Anwendung der Clebsch-

Gordan-Reihe. Auf die Bereitstellung der notwendigen Spinoridentitäten (vgl. (3.3))
sei hier verzichtet, da die Hauptresultate dieser Arbeit - Satz 2 und 3 - ebenfalls aus
einem allgemeinen Satz von Grauert und Remmert12) (vgl. 8)) gefolgert werden
können.

§ 4. Der Fall n 1, 2 und ein Gegenbeispiel für n 3

Lorentz-kovariante analytische Funktionen von einer oder zwei Vierervektorvariablen

lassen stets eine eindeutige holomorphe Standardzerlegung (1.2) zu. Dieser-
von H. Araki entdeckte Sachverhalt*) - beruht wesentlich auf der Existenz von

*) Ich danke Herrn Dr. H. Araki für die Benutzung seiner Resultate an dieser Stelle.
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Isotropiegruppen G+(z) von LAC), unter denen auf Grund der 7_+(C)-Kovarianz (1.1)
das Tensorfeld Faß(z) invariant sein muss. Die spezielle Gestalt dieser G+(z)-invarian-
ten Tensoren liefert zusammen mit der linearen Unabhängigkeit der Standardkovarianten

(3.10), (3.11) für n 1,2 die Behauptung.
Eine Verallgemeinerung dieser Resultate auf holomorphe Tensorfelder mit 3 und

mehr Argumentvektoren ist dagegen nicht mehr uneingeschränkt möglich, wie es ein

typisches Gegenbeispiel für den Fall n 3 am Ende dieses Abschnittes illustrieren
wird.

Satz 1 : (H. Araki):
a) Alle [r, s]-holomorphen Tensorfelder Fxß(z,) von einer Vierervektorvariablen

z,e D1C C* sind eindeutig zerlegbar in der Form :

if(Zi)Q['--Azilß für r s

liß(h)={ (4-1)
I 0 sonst

mit einer in D, holomorphen L(C)-invarianten Funktion f(z,).
b) Für [r, s]-holomorphe Tensorfelder Fas(z1, z2) von zwei Vierervektorvariablen

(z,, z2) efljC Cs gibt es eine eindeutige Zerlegung

min {r, s}

Fat(*i.*l- £ L(h,z2)Q[:-si(z„z2)aß (4.2)
H- o

mit in D2 holomorphen L(C)-invarianten Funktionen fx(z,, z2).

Dem Beweis dieses Satzes schicken wir zwei Hilfssätze voraus :

Lemma 4: Sei G+(z1) die Isotropiegruppe von z,, das heisst die Untergruppe der
Elemente von LAC), die den Vektor z, fest lassen, und sei der Spinor y>aß e &r,s^ mit
r 4- s 0(2) invariant unter G+(Zi). Dann ist ipaß 0 für r A= s oder z, 0 und für
r s und z, 4= 0 von der Gestalt :

v*ß=vsnM«ßf v>ec- <4-3>

aß '-1

Beweis: Sei zunächst z, l0= (1, 0, 0, 0) I das heisst z, I I I. Dann ist die reelle

Orthogonalgruppe 0+(3, R) in drei Dimensionen die Untergruppe der reellen Elemente

von G+(Zj). 0+(3, R) ist über den Homomorphismus (2.4) das Bild der Paare (U, U) mit
UeS £7(2, C).

Alle irreduziblen eindeutigen Darstellungen von 0+(3, R) sind vom Typ X>J,

/ 0, 1, 2 realisiert durch symmetrische Spinoren vom Rang (2 /, 0) oder,
äquivalent, (0, 2/)9). Daher zerfällt die irreduzible Darstellung [r, s], r A- s 0(2), von
LAC) als Darstellung von 0+(3, R) wie ein Tensorprodukt:

[r, s] ~ £r'2 ® T>sl2 ~ X)(r+S)l2 © © D r~s ,2
• (4.4)
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Ein Spinor ipaß 4= 0 aus S[r,s] ist also genau dann invariant unter 0+(3, R), falls r s

ist und ipx ß von der Gestalt :

*w=vSii &)«,*. v>ec xs)
aß 4_1

Zu einem beliebigen Vektor z, mit (z„ z,) 4= 0 gibt es stets ein A e LAC) mit z,
<x.Al0, xe C. Falls ipaß GAzi) -invariant ist, so ist

hh S(A-Tjv*r <4-6)

C+(/0)-invariant und daher von der Form (4.5). Also gilt (4.3), wenn immer (z„ z,) 4= 0

ist.
Ist nun z, 4= 0 ein Nullvektor, so kann er immer durch LAC) ani l (1, 0, 0, 1)

/ - /2 0\\
I also / I I I transformiert werden.

In diesem Fall wird die Untergruppe GAI) erzeugt durch die Bilder der Elemente
von S 1.(2, C) ®SL(2,C):

(A(x), BIß)) mit A(x) (£"). B(ß) (l i
/X/2 0

(C(Ö),C(Ö)) mit C(0)=
0 eAi6

(4.7)

Sei y (r2)p ip, 2X2, A - ¦ ¦ A-die Komponente des G+(/)-invarianten Spinors ya ß e &'• *\
wo r2 der (symmetrischen) Indizes a,- 2 sind. Dann gilt

((4(a) x 1) v) (r2)ß £ f (r2 + m)A ^ 2 a- (4.8)
m-0 \ m I

Damit tp% ß unter allen A (a) X 1 invariant ist, ist notwendig und hinreichend :

ip (r2 A- m)ß- 0 für alle ß und r — r2 > m > 1. (4.9)

Daher ist y(r2)ß 0 für alle ß ausser für r2 0, und aus einem analogen Argument mit
1 X B(ß) folgt das Verschwinden aller Komponenten von y>aß ausser von ip, ,_ i... i-
Schliesslich bedingt die Invarianz unter C(ö) X C(ö) die Gleichheit r s. Dies
beweist Lemma 1.

Lemma 2: Sei GAzi, z2) die Untergruppe der Elemente von i+(C), die zwei linear
unabhängige, nicht total isotrope Vektoren z„ z2 fest lässt. Dann ist jeder G+(z1, z2)-

invariante Spinor y>a ß e S[r's] mit r + s 0(2) von der Gestalt

ffljjt {r, 5}

Vaß= E ?(*)&'',](*1.*«U (4-10)

mit eindeutig bestimmten komplexen Koeffizienten ip(x).
Beweis: 2 Vektoren z„ z2 mit det | (z„ z2) \ 4= 0 können stets durch LAC) in den

durch l0 (1, 0, 0, 0) und l3 (0, 0 0, 1) aufgespannten Teilraum gedreht werden.

G+(Z0, /3) besteht aus den Elementen A(C(0), C(0)) über den Homomorphismus (2.4).
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Sei ip(r,, s,) eine Komponente des Spinors ip^ß 6 S[r's] mit r, der a; 1, sx der

ßj 1. Diese transformiert sich unter GAh, h) wie folgt:

{(C(6) x C(6)) ip) (r„ s,) J6/2(2j-,-j- + s-2si; W(ri. si)

Daher folgt aus der C+(/0, /3)-Invarianz von rpay.

r-s*i -rr- + s, ¦

(4.11)

(4.12)

Im Falle r > s ist somit der symmetrische Spinor ip^ß eindeutig durch die folgenden
s A- 1 Komponenten bestimmt :

(*„...*r) (i,...l,l...l,2,...2,2,...2); (ß,...ßs) (l,...l,2,...2). (4.13)

r-s s - s, r-s

Nun ist

lpA-l3
2

» Ô1- i^A-3-) <5? & und MAL /.)„ -=-(*«+ « */a« a ß \ 2 /ajS # JJ«ia2 \ a, aa a, a2

Dies ermöglicht die Darstellung:

V<x/5= 27 ^) S

also:

/J^L^./JJ^U
f - S

~~2~

nM^°'isk
k=i + 2k-l&s+2k

(4.14)

min {r, s}

faß= X y>(*)<%''K*i>*J.ß-
K-l

Aus der Gleichheit der Zahl der Komponenten (4.13) und der Anzahl der ÇJXXi» ^2)

folgt die Eindeutigkeit der Darstellung und die lineare Unabhängigkeit der
Standardkovarianten.

Ist für lineare unabhängige z„ z2 die Skalarproduktmatrix vom Rang 1, so können

z„ z2 durch LAC) in den von /2 (0, 0, 1, 0) und l (1, 0, 0, 1) aufgespannten
Teilraum gedreht werden. G+(/2, l) besteht aus den Elementen A(A(oc), B(oc)) mit (4.7).

Sei ip(r2, s2) eine Komponente des Spinors ipaß e S[r-S] mit r2 der a; 2, s2 der ßj 2.

Dann gilt unter G+(/2, l)

{(A(x)xB(x))ip)(r2,s2) r2J'S^'xm+"h + m)(S2 + n)ip(r2+m,s2+n). (4.15)
m-0 »-0 \ m I \ n I

Notwendig und hinreichend für die C+(^2, /)-Invarianz ist:

r2A-m) (s2 4- n)r — r2 s — s2

XX
m — CS rt 0

m + n M

ip (r2A- m, s2A- n) 0 (4.16)
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für 1 < M < r + s — r2 — s2. Setzt man M 1, so folgt

V fa + L s2) - -Xi, ^ (r2, s2 a- 1) (4.17)
'JT J

und mit s2 s : yj(r3, s) 0 inr 1 < r2 < r und mit r2 r : y>(r, s2) 0 für 1 < s2 < s.

Also gilt :

0 für r2 A- s2> min {r, s}

^ —j- S \2 2
Mr" (°> r2 + S2) SOIlst

Wegen

und

r(r2. S2

^-(J o%' (I)^(hL
X-fe, Q«, o. - - 2 i ÓJ, ÓJ,, M_(/2, /)Â Â 2 i * Ó]

(4.18)

sind wieder alle GAh, ^-invarianten Spinoren eindeutig in der Form (4.10) darstellbar
und die Standardkovarianten Qx,s]{l2,l) sind linear unabhängig. Dies beweist die
Behauptung.

Zum Beweis von Satz 3 im Falle n 1 betrachten wir ein 0 4= z, e D, und A aus
der Isotropiegruppe G+(zi). Dann folgt aus der [r, s]-Kovarianz von Faß :

FaßM Faß (A zj S(A)«j Fa,0,(z,) (4.19)

und nach Lemma 1 die Gestalt (4.1) für Faß(z-,) mit eindeutig bestimmtem
Koeffizienten f(z,). Eingesetzt in (4.19) folgt aus der Eindeutigkeit von f(z,) die L+(C)-In-
varianz und die Holomorphie: für z, 4= 0 ist stets eine Komponente a0/S0 von

e^fo) * 0 und daher ^.^
holomorph. Da der Nullpunkt zx 0 von niederer Dimension ist, folgt die
Holomorphie und L+(C)-Invarianz von f(z,) in ganz Dv

Analog schliesst man für n 2 durch Betrachtung von G+(z1, z2) für linear
unabhängige, nicht total isotrope z,, z2. In solchen Punkten folgert man die Zerlegbarkeit

von Faß(z,,z2) nach (4.3), und, da die Standardkovarianten hier linear
unabhängig sind, ist (4.3) eindeutig nach den Koeffizientenfunktionen fx(z,, z2) lösbar.
Diese sind daher wieder L+(C)-invariant und holomorph in ganz D2, da die Menge der
Ausnahmepunkte nur nach dem Riemann'schen Fortsetzungssatz hebbare Singularitäten

beitragen kann. Damit ist Satz 3 bewiesen.
Für drei Vierervektoren z„ z2, z3 existieren im allgemeinen keine nichttrivialen

Isotropiegruppen mehr. Falls die Gram'sche Determinate G(z) 4= 0 ist, spannen
Zi, z2, z3 und z, A z2 A z3 den 4-dimensionalen komplexen Minowski-Raum C4 auf. Für
G(z) 0 dagegen hegen z„ z2, zs und zx A z2 A z3 in einem durch Einheitsvektoren
l-,, l2, l aufgespannten singulären Teilraum (l„ l2, ly C C4:

zi ci,l, + ci2l2 + ci3l (l<i<3) (4.21)

mit (l{, lj) -òtj, (l0 I) (I, I) 0 (1 < i, j < 3) und l,M2/A a I, a ± 1 je nach
der Orientierung der z,.
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Offenbar gilt :

z, A z2 A z3 a det

und

C,(z) det
(z2, z2), (z2, z3)

(z2, z3), (z3, z3)

det2 (zykl.)

Aus (4.22) und (4.23) folgt bei geeigneter Wahl der Zweige von ^Ct(z) für G(z)

C+(C)-invariante Relation:

X^O(z)zf-a(z,Az2Az3r 0.

(4.22)

(4.23)

Odie

(4.24)

Nach dieser geometrischen Überlegung lässt sich leicht eine L+(C)-kovariante analytische

Funktion F(z„ z2, z3) konstruieren, die nicht in ihrem ganzen Definitionsbereich
eine lokale holomorphe Zerlegung gestattet. Offenbar ist

G(z)-1 X"a(z) G(z)-1 \XiCAz) zf-a (z, A z2 A z3A (4.25)

holomorph für alle z mit G(z) ]A[ C{(z) 4= 0. Ferner ist ein Punkt w mit G(w) 0 aber
3 j_l

mit YlC{(w) 4= 0 und linear unabhängigen w{ b{, l, + bi212 + bi3 l (1 < i < 3)

i-l
ein regulärer Punkt von {G(z) 0}. Denn für einen Einheitsvektor l0 mit (l0, l0) — 1,

(l0, l) 4= 0, ist die Variablensubstitution (z„ l0) <-» G(z) bei festen restlichen
Komponenten von z,, z2, z3 biholomorph in einer Umgebung von w wegen

dG(z)

A(AA0
- 2 (w, A w2 A w3, l0 A w2 A w3)

6n

2(l0, l) det

"31 • • ¦ ^33

1 "21 b22

det ' 4=0.
°31 "32

(4.26)

Daher ist in einem solchen Punkt w G~1(z) X^(z) holomorph, obwohl die eindeutig
bestimmten (vgl. § 3.) L(C)-invarianten Koeffizientenfunktionen G~1(z) ^C^z) und
G~1(z) dort singular werden. Dieses Gegenbeispiel ist typisch für alle Darstellungen
[r, s] für n > 3.

Ein Punkt (zv zn) e Cin heisse regulär, wenn der Rang rz seiner Skalarprodukt-
matrix Z ((z{, Zj)) gleich der Dimension des durch ihn aufgespannten Teilraums
<zx,... z„> C C4 ist. Nach 5) ist im Falle rz 3,4 jeder Punkt zeCin regulär.

Ein zu dem obigen w regulärer Punkt w° mit gleichen Invarianten ist gegeben
durch w\ b{ t lx + bi 212. Man überzeugt sich leicht, dass in einer hinreichend kleinen
Umgebung U(w°) stets auf {G(z) 0}, falls dim <z1, z2, z3> 3 ist, G(z)~1 Xß+(z)

holomorph und G(z)-1 Xß_ (z) singular (oder umgekehrt) ist. Daher ist w° Randpunkt
des Regularitatsbereicb.es von G(z)~1 X±(z).
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Ein gemischter Tensor wie G(z)~1 X"+(z) X"_(z) muss jedoch nach dem Riemann'-
schen Fortsetzungssatz in ganz £7(a>°) holomorph sein, da für dim <z1( z2, z3> 3

eine eventuelle Singularität von G(z)~1 entweder durch X+(z) oder durch Xv_(z)
absorbiert wird und die algebraische Menge {dim (z„ z2, z3> < 3} im C12 nieder-
dimensional ist. Tatsächlich verschwindet die scheinbare Singularität G(zA1 als
Koeffizientenfunktion, falls man G(z)~1 X'J+(z) X"_(z) in7_+(C)-irreduzible Komponenten

zerlegt:

G(z)^ X"+ X'_ £ G-1 (fct ]jCk-Alk) S(z{, zkr '

ii Z{(zltzk))lckMA
k-l

ÌCkMA

s,zk)^CkMAz1,z2)"A

2i £ {(z„ zk) XJCk MAz2, z3r + (z2, zk) )'Ck M_{z

+ fe zk)^CkMAz1,z2AA

T'l G-1 éfcfc(z{,zj

(4.27)

Dabei ist S(zi? zk)f" 1/2 (zf z\ + z- zl) - 1/4 ^"(Zj, zk) der irreduzible symmetrische
Tensor vom Rang 2 mit verschwindender Spur und Aik das Komplement zu (z;, zk)

in der Skalarproduktmatrix der z„ z2, z3. Die Holomorphie der L(C)-invarianten
Koeffizienten in U(w°) folgt aus den Relationen :

Aik(z)

Ä-l

|/Q(z) \]ck(.

für G(z) 0 (4.28)

Die Diskussion dieses Beispiels zeigt also, dass man für w > 2 keine holomorphe
lokale Standardzerlegbarkeit mehr beweisen kann, wenn nicht zu jedem Punkt z im
Definitionsbereich D ein regulärer Punkt z° mit gleichen L+(C)-Invarianten enthalten
ist. Ferner ist nicht jedes System von invarianten Koeffizientenfunktionen in D
singularitätenfrei, jedoch wird im nächsten Abschnitt für eine grosse Klasse von
L+(C)-invarianten Gebieten D wie in (4.27) die Existenz einer lokalen holomorphen
Zerlegung in Standardkovarianten bewiesen.

§5. L+(C)-kovariante analytische Funktionen in K+>-saturierten Gebieten

Das Gegenbeispiel im letzten Abschnitt zeigte, dass im Falle n > 2 zusätzliche
Voraussetzungen an den Definitionsbereich D zu fordern sind, damit jedes in D
holomorphe L+(C)-kovariante Tensorfeld überall eine lokale holomorphe Standardzerlegung

erlaubt. Als notwendig erwies sich dabei die Bedingung, dass D zu jedem
Punkt zeD einen regulären Punkt z° mit gleichen Z,+(C)-Invarianten enthält oder,
äquivalent 5), dass D saturiert ist bezüglich der Abbildung 1+ (vgl. § 3.) in die
Invarianten der Gruppe LAC) :

D (7+)-1 o I+(D) (5.1)

24 H. P. A. 36, 3 (1963)



370 Klaus Hepp H. P. A.

In /+-saturierten Gebieten D gelten analog zu den Resultaten von Bargmann, Hall
und Wightman (5), Lemma 2 und 3). Sätze über den Zusammenhang von Lorentz-
Bahnen und -Invarianten und über die Struktur der Abbildung 1+ : C4 " -> Cr+ (vgl.
8)13)). Es zeigt sich, dass I+(D) eine algebraische Menge in einem Gebiet G C Cr* ist,
die in jedem Punkt von G als das genaue simultane Nullstellengebilde der Polynome
(3.6) und (3.7) charakterisiert ist.

Während es auf algebraischen Mengen tfCGCC*im allgemeinen verschiedene

inäquivalente Holomorphiebegriffe («komplexe Strukturen») gibt*)12), kann man für
I+(D) beweisen, dass alle diese komplexen Strukturen zusammenfallen und jede auf
I+(D) holomorphe Funktion lokal in eine konvergente Potenzreihe in den Variablen

zij> zkx*,ksfc, (vgl- § X des umgebenden Raumes Cr-(z) entwickelbar ist («starke
Holomorphie»), das heisst I+(D) ist in G C Cr- eine normale algebraische Menge.
Der an anderer Stelle 8) gebrachte Beweis stützt sich auf klassische Sätze der
Invariantentheorie (vgl. § 3.), auf einen Approximationssatz für kovariante analytische
Funktionen in /+-saturierten Gebieten durch kovariante Polynome (8), Lemma 3) und
auf ein Theorem von Grauert und Remmert12). Dabei ergibt sich in Verallgemeinerung

zu § 3. ein kanonischer Isomorphismus zwischen dem Ring O[0 0] (D) der auf D
holomorphen LAC)-invarianten Funktionen und dem Ring 0(I+(D)) der auf I+(D)
holomorphen Funktionen in den Z.+(C)-Invarianten:

Satz2: Zu jedem /+-saturierten Gebiet D C Cin ist die CA(C)-InvariantenVarietät
I+(D) eine normale algebraische Menge in einem Gebiet G C Cr*. Jeder auf D
holomorphen L+(C)-invarianten Funktion / entspricht genau eine auf I+(D) (stark)

holomorphe Funktion / mit
f(z) /X I+(z) (5.2)

en :

1. Der gleiche Satz liefert in sinngemässer Abänderung für die volle komplexe
Lorentz-Gruppe L(C) eine Verallgemeinerung eines Theorems von Bargmanx, Hall
undWightman 6) auf /-saturierte Gebiete D, ebenfalls mit starkerHolomorphie auf 1(D).

2. Eine auf einer algebraischen Menge M C G C Ck (allgemeiner auf einer
analytischen Menge M C G C Ck, die in jedem Punkt zeG das genaue simultane
Nullstellengebilde von in z lokal holomorphen Funktionen ist) stark holomorphe Funktion
f(z) ist also lokal Spurfunktion einer im volldimensionalen Ck holomorphen Funktion,
das heisst zu jedem z° e M gibt es eine volldimensionale Umgebung £7(z°) C Ck und
eine in £7(z°) im gewöhnlichen Sinne holomorphe Funktion g(z) mit

f(z) g(z) für alle z e £7(z°) n M (5.3)

Zwei in £7(z°) holomorphe Funktionen gt(z), g2(z) definieren auf £7(z°) fi M die gleiche
stark holomorphe Funktion, falls sie dort übereinstimmen (vgl. Lemma 2). Damit ist
eine auf M C G C Ck stark holomorphe Funktion eine Äquivalenzklasse von in G

*) z.B. ist die von Bargmann, Hall und Wightman5) für eine in der «ausgedehnten Röhre»

%'n holomorphe L(C)-invariante Funktion / bewiesene komplexe Struktur als Funktion / auf der

Skalarproduktvarietät 3JZn die sogenannten «schwachen Holomorphie»: /ist auf 9Jt„ stetig und in
den gewöhnlichen Punkten von 9Jfn (wo 9Jfn komplexe Mannigfaltigkeit ist) holomorph im klassischen

Sinne.
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lokal holomorphe Funktionen. Falls G holomorphkonvex ist, folgt aus einem tiefen
Satz der komplexen Analysis14), dass es eine in ganz G holomorphe Funktion gibt,
deren Spur auf M f ist. Dies eröffnet eine eventuell interessante Perspektive im
folgenden Abschnitt.

Für den Modul 0[riS](D) wurde in 8) mit den gleichen Methoden bewiesen:

Satz 3: Jedes in einem /+-saturierten Gebiet D [r, s]-holomorphe Tensorfeld
Fa ß(z) lässt sich lokal zerlegen

F*ß{z) XioIAz)CA-%z)aß- (5.4)
x-l

in die Standardkovarianten (3.5) der Darstellung [r, s] und in auf I+(D) lokal (stark)

holomorphe Funktionen /„. Ist D holomorph-konvex, so wird durch die
Standardkovarianten {ÇXX)} der Modul 0^(0) über dem Ring O[00](/J) j-~ 0(I+(D))
endlich erzeugt (das heisst eine Darstellung (5.4) gilt global in D).

In Verallgemeinerung von Lemma 1 kann man zeigen, dass 0f,]S](D) in /-saturierten

holomorph-konvexen Bereichen (L(C) zerfällt in 2 disjunkte Komponenten) D
bereits über dem Unterring O0(D) der L(C)-invarianten Funktionen endlich erzeugt
ist. Dazu muss man - wie es auch in den Beweisen von Satz 2 und 3 möglich ist - das
Theorem von Grauert und Remmert durch eine explizite Abschätzung der appoxi-
mierenden Polynome (vgl. Lemma 3) ersetzen. Dann erhält man den

Satz 3' : In jedem /-saturierten holomorph-konvexen Bereich D wird der Modul
0[fiS](D) über dem Ring O0(D) ^ 0(I(D)) durch die Standardkovarianten {<?X](z)}
endlich erzeugt. Insbesondere gilt stets in /-saturierten Bereichen eine lokale
Standardzerlegung K

F«ß(z) 27/X/(z)<2XXX (5-5)
x-l

mit auf 1(D) lokal (stark) holomorphen Funktionen /„.
Speziell erlaubt jede L+(C)-invariante holomorphe Funktion hier eine Zerlegung

f{*)=f°(*) + Êfi(*)[\*A,\*d (5-6)
A l

mit (lokalen) L(C)-invarianten holomorphen Funktionen.
In gewissen Fällen, wo die Standardzerlegung eindeutig ist (vgl. § 3.), kann man

auf die Holomorphiekonvexität des Bereiches D verzichten und allgemeiner beweisen :

Satz 4: Sei D ein /-saturiertes Gebiet im Cin. Dann wird der Modul 0[r>s'D) über
dem Ring O0(D) durch die Standardkovarianten (3.4) erzeugt, falls « 1 oder 2 ist
(vgl. Satz 1) und ferner bei n 3 für Darstellungen [r, s] mit | r — s | < 2 und bei
n 4 für [r, s] [0, 0] oder [1, 1].

Schliesslich sei noch bemerkt, dass die Sätze dieses Abschnittes ihre Gültigkeit
behalten, falls man statt /<+'-saturierte Gebiete D C Cin /<+»-Urbilder M von
analytischen Mengen in Gebieten G C Cr(+) und überall die stark holomorphe Struktur
betrachtet. Ein typisches Beispiel ist die « Massenschale » M im Raum C4 " der komplexen
Impulsvektoren (p,, p„), definiert durch

{pi,Ph m\ (l<i<n), 2>,. 0\ (5.7)
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Nach Berücksichtigung des Energie-Impuls-Erhaltungssatzes lässt sich M auch auf
der im C4("-1) der Variablen p,, pn_1 eingebetteten komplexen Mannigfaltigkeit

M-l
(es sei Yl mi * 0)

V {(p„...pn_,): (p^p^mllyiyn-l) (5.8)

als das genaue Nullstellengebilde eines Polynoms

(Pi+---+ P„-v Pi+---+ Pn-x) - m\ (5.9)

charakterisieren, dessen Singularitätenmenge mindestens 2-codimensional ist. Daher

ist für^jTm,. 4= 0 die «Massenschale» M eine normale algebraische Menge im Cin auf
i-l

Grund eines Satzes von K. Oka15). In diesem Fall ist die Forderung der starken
Holomorphie von selbst erfüllt.

§ 6. Anwendungen

Wie wir es schon in der Einleitung ausgeführt haben, dient die vorliegende
Untersuchung der Aufklärung des Zusammenhanges von L+(C)-kovariantem
Transformationsverhalten und Analytizitätseigenschaften in relativistischen Theorien.

Ein mathematisch klar umrissenes Anwendungsgebiet liegt in der allgemeinen
Quantenfeldtheorie vor. Dazu betrachten wir eine lokale relativistische Quantenfeldtheorie

im Wightman'schen Sinne1)8) mit temperierten Feldoperatordistributionen
ip[k)(x) (k 1, 2, 3 ; 1 < n < nk) in einem Hilbert-Raum § und speziell mit dem
relativistischen Transformationsgesetz

U(a, A) ip(k)(x) U(a, A)-1 S^(A~l, Ä-%ip[hi (Ax + a) (6.1)

für (a, A) aus der universellen Überlagerungsgruppe F+ der inhomogenen eigentlichen
orthochronen reellen Lorentz-Gruppe F+, wobei A A(A, Ä) nach (2.4) definiert ist
und (a, A) -> U(a, A) eine stetige unitäre Darstellung von P+ in <r> ist und

(A,B)^ SM(A,B) (6.2)

eine o.E. irreduzible Darstellung [r, s] von S L(2, C) ® S L(2, C).
Dann sind bekanntlich die Vakuumerwartungswerte

sß*:::::iXo> ...*.) (Q, vi?W • • • <;X„) ß) (6-3)

als temperierte Distribution in den Differenzvariablen f,- x{ — xi_1, 1 < i < n,
Randwerte von holomorphen Tensorfeldern H7*";;;*^^, f„), den «(m+1)-
Punkt-Funktionen». Nach einem Satz von Bargmann, Hall und Wightman5) ist

^l'A'.iZ^i' ¦¦¦ f«) zunächst holomorph in der «ausgedehnten Röhre»%'n:

%'„ {(C„ Q: 3(C[, An), A g LAC) mit Irn^e V+, Z{ A Q (6.4)

[V+ sei der Vorkegel im reellen 4-dimensionalen Minkowski-Raum) und transformiert
sich dort L+(C)-kovariant für (A, B) e S L(2, C) ® S L(2, C) :
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Wk;o;-%(A(A,B)i;,,...A(A,B)Çn) j

S<*°>C4, B);:... S™(A, B)H Wl: ; ; ; kv«ß„ Q \

Die Wightman-Funktionen zu zweideutigen Darstellungen (6.5) verschwinden
identisch, während sich die anderen eindeutig analytisch und Z.+(C)-kovariant in die
Vereinigung der «permutierten Röhren» %„ (J P(g) £« fortsetzen lassen1)3)13). Die
Gebiete Tn und %% sind /-saturiert. ÄEy" +1

Aus unseren Untersuchungen folgt zunächst eine lokale Standardzerlegung (jeder
irreduziblen Komponente) von TF^°;;.*"(Ci> ¦¦¦ Cn) nach Satz 3. Die Wightman-Funktionen

zu Darstellungen vom Typ [0, 0] sind speziell stark holomorph auf der LAC)-
Invariantenvarietät I+(%% und erlauben lokal eine Zerlegung nach Satz 3, während
man jeder L(C)-invarianten Wightman-Funktion in kanonischer Weise eine auf
9JJ^ I(Xn) stark holomorphe Funktion in den Skalarprodukten zuordnen kann.
Stets konvergiert lokal eine Potenzreihe in den Invarianten.

Für die 2- und 3-Punktfunktionen ist nach Satz 4 stets eine eindeutige Standardzerlegung

in ganz ï£ möglich mit holomorphen Koeffizientenfunktionen in dem
Gebiet 9ftf der Skalarprodukte (n 1, 2). Wendet man das Fortsetzungsverfahren
von Källen und Wightman16) oder Ruelle17) zur Berechnung der Holomorphie-
hülle $(ÌT(^) auf diese Funktionen an, so ist bekanntlich das Resultat trivial für
n 1, und für n 2 folgt unmittelbar der

Satz: Die 3-Punkt-Funktionen W^^d, f2) von 3 lokalen Spinorfeldern
W^\xù> Vft'^i)' f^\xz) lassen sich stets eindeutig analytisch und L(+)(C)-kovariant
in das Källen-Wightman-Gebiet /_1(§('UJf)) fortsetzen.

Aus der Diskussion der Randhyperflächen der ausgedehnten Röhren %'n und der

Skalarproduktvarietät 9J?„ (is)w)i8-22)) folgt bis heute, dass alle %'n mit « < 4 Holo-
morphiegebiete sind. Nach Satz 3' existieren in diesen Gebieten für die Wightman-
Funktionen globale holomorphe Standardzerlegungen.

Für n > 4 ist die Skalarproduktvarietät 93(„ eine algebraische Menge in einem
Gebiet G Ç_Cn <"+1>'2. Aus der Charakterisierung der Randpunkte von 9ft„ nach Källen
und Wightman16) und Jost18) folgt, dass man als G das /-Bild 9JÎ* der ausgedehnten
Röhre %% von n n-Vektoren wählen kann. Denn der eingehenden Analyse von
Wightman in 13) folgend kann man zeigen, dass die Randpunkte in

B4 ÖS4 n Ö£4' (6.6)

als spezielle Randpunkte von ï£ (mit jeweils verschwindenden letzten n — 4
Komponenten) durch keine «-dimensionale komplexe Lorentz-Transformation in das
Innere von %" gedreht werden können, und daraus folgt 16), dass 9Jìn in 9JÎ£

abgeschlossen und damit algebraisch ist23). Daher ist %'n Holomorphiegebiet, wenn man
beweisen könnte, dass X%' oder, äquivalent nach einem Satz von Ruelle24), 9Jt*

Holomorphiegebiet ist. Aus der letzteren Tatsache liesse sich weiter schliessen, dass
sich die L4(C)-invarianten Wightman-Funktionen Wk"-h',(Ç1,... £,) von « + 1

Skalarfeldern holomorph und /."(C)-invariant in die ausgedehnte Röhre %% von n
ot-Vektoren fortsetzen liessen. Dies folgt unmittelbar aus der Bemerkung in Anschluss

an Satz 2 in § 5., sogar mit zusätzlichen Aussagen über das Wachstum der (nicht
eindeutig bestimmten) analytischen Fortsetzungen (25), Seite 240). Man hat nur zu be-
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nutzen, dass dann Wk° ¦ - *"(Ci> • • • Ç„) holomorph ist auf der in dem (hypothetischen)
Holomorphiegebiet W^ normal eingebetteten algebraischen Menge Wn.

Auch für die verallgemeinerten retardierten Funktionen (26-2s)) von Spinorfeldern
ip{A existieren lokale Standardzerlegungen im komplexen Impulsraum.

Als zweite wichtige Anwendung unserer Methoden untersuchen wir das Problem
der invarianten Amplituden in einer S-Matrix-Theorie4). Das S-Matrix-Element
eines Wechselwirkungsprozesses von h einlaufenden und n — k auslaufenden Teilchen
der Impulse pt und der Spinzustände a)Apt) (auf eine zusätzliche Isospin-Multiplizität
werde hier nicht eingegangen) ist im wesentlichen gegeben durch die Feynman-
Amplitude2)29):

%(p,a) %(p,...p„,a1,...a»)

<(Pl) ¦¦¦ <k(h) ^...JpL-.-Pn) <tlSPk + l) ---<n(Pn)
(6.7)

wo <5al...an(Pv ••• Pn) — S(a)(j*) ein /-(+)-kovarianten Tensorfeld ist, und zwar die
Fouriertransformierte des Vakuumerwartungswertes eines zeitgeordneten Produktes
der Feldoperatoren der wechselwirkenden Teilchen mit Differentiationsoperatoren
{n + m2), (yM d^ + rn), je nach Transformationscharakter. Dabei geht in (6.7) nur
der Wert von 3f(o)(i*) aul der Massenschale (5.7) ein. Sm(j*) lst kontrahiert mit den
Kovarianten ala.(pA die die Polarisationszustände der in- und out-Teilchen
charakterisieren.

In den Untersuchungen über das Verhalten von Streu- und Produktionsamplituden
postuliert man (oder beweist in gewissen Fällen) Analytizitätseigenschaften für

das Tensorfeld ^^(p) in den komplexen Vierervektorvariablen p{. Setzen wir also

voraus, dass ^^(p) holomorph und Z.(+)(C)-kovariant ist auf einer L(+)(C)-invarianten
offenen Menge D auf der Massenschale M der Variablen p,, p„. Dann ist es für die
Theorie wichtig (zum Beispiel für die Aufstellung von Spektraldarstellungen einer
betrachteten Klasse von analytischen Funktionen), ob es einen endlichen Satz von in
D holomorphen L(+)(C)-invarianten Amplituden An(p), 1 < n < N, gibt und einen
Satz von «kinematischen» Standardinvarianten Bn(p, a), 1 < n < TV7) gebildet aus
den Impulsen pt und den Spingrössen aj, derart dass die Feynman-Amplitude %(p, a)

zerlegbar ist in :

%(p,a)= X A„(P) Bn(p, a). (6.8)
n 1

Dabei soll das Invariantensystem möglichst minimal sein und den physikalischen
Nebenbedingungen genügen (zum Beispiel (i y p{4- mt) nt 0 für Spin 1/2-Teilchen
und p{ e,- 0 für Spin 1-Teilchen).

Die Existenz einer Zerlegung (6.8) lässt sich formal (das heisst ohne Rücksicht auf
Konvergenz) aus der Störungstheorie plausibel machen7). Ferner existieren
Vorschriften, wie man in gewissen konkreten Fällen einen Zerlegungsansatz (6.8) mit
vorgegebenen Invarianten Bn(p, a) auf die Abwesenheit von «kinematischen»
Singularitäten prüfen kann30).

Aus den vorliegenden Untersuchungen bietet sich nun für /<+)-saturierte offene
Mengen D C M die folgende allgemeine und von der Störungstheorie unabhängige
lokale Lösung dieser Aufgabe an : man zerlege das in D stark holomorphe Tensorfeld
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(vgl. die Bemerkungen am Ende von § 5. über M) lokal in Standardkovarianten der
irreduziblen Komponenten von fy^ip) und in Z,(+)(C)-invariante holomorphe
Koeffizientenfunktionen. Die QA's] (p) werden weiter mit den Spingrössen a-> kontrahiert
und ergeben nach Anwendung der physikalischen Nebenbedingungen7) singularitätenfrei

ein für Prozesse von Teilchen mit nichtverschwindender Ruhemasse
minimales System von Invarianten Bn(p, a).

Ist D holomorph-konvex, wie im Falle der 2-Teilchen-Streuamplitude mit
Holomorphie in dem von Mandelstam31) postulierten Gebiet auf der Massenschale, oder
wenn Satz 4 anwendbar ist, so gewinnt man auf diese Weise ein globales System von
holomorphen invarianten Amplituden An der Standardinvarianten B„, 1 < n < N.

Meinem verehrten akademischen Lehrer, Herrn Prof. Dr. R. Jost, möchte ich an
dieser Stelle herzlich für seine begeisternde Einführung in die mathematische Physik
und sein stetes Interesse danken, dann besonders den Herren Dr. H. Araki und Dr.
D. Ruelle für viele hilfreiche Ratschläge und wertvolle Kritik und Herrn Prof. Dr.
M. Fierz und den Freunden am Seminar für theoretische Physik der ETH für viele
anregende Diskussionen.
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