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Lorentz-kovariante analytische Funktionen

von Klaus Hepp
Eidgendssische Technische Hochschule, Ziirich

(1. XI. 62)

Abstract: The structure of the module Op, (D) of holomorphic tensor fields (transforming
according to the irreducible representation [7, s] of the proper complex Lorentz group L_(C)) over
the ring Ojg, 0j(D) of L_(C)-invariant holomorphic functions is investigated. A decomposition of
every F € O, 5(D) into a finite linear combination of tensor polynomials Q,[:’ 1 e Op, s1(D) with
L ,(C)-invariant holomorphic coefficient functions is shown to exist (locally) for a large class of
domains D. As a generalization of a theorem of BARGMANN, HarLL and WIGHTMAN it is proved that
in such domains each L +)(C)-invariant holomorphic function is a strongly holomorphic function
of the L ,(C)-invariants. The results are applied to the Wightman functions of arbitrary spinor
fields, for which for instance it is shown that all 3-point functions can be continued into the
Killén-Wightman-domain. Finally sufficient conditions for the existence of invariant amplitudes
for scattering and production processes are given.

§ 1. Einleitung

Die Methoden der Funktionentheorie mehrerer komplexer Verdnderlicher haben
in den letzten Jahren zu einem gewissen Fortschritt in der Theorie der Elementar-
teilchen und ihrer Wechselwirkungen beigetragen.

In der allgemeinen Quantenfeldtheoriel)?) haben die physikalischen Grossen
(Vakuumerwartungswerte von Produkten von Feldoperatoren im x-Raum bzw. von
retardierten und zeitgeordneten Produkten im p-Raum) eindeutige analytische Fort-
setzungen zu holomorphen Tensorfeldern mehrerer komplexer Vektorargumente, in
denen sich Strukturen der Theorie, wie Lorentz-Kovarianz und Lokalitit, fiir gewisse
Untersuchungen besonders geeignet ausdriicken (vgl. 3)). In den analytischen S-Ma-
trix-Theorien (vgl. %)) postuliert man, durch die Stérungstheorie geleitet, Regularitats-
eigenschaften von Feynman-Amplituden im Raum der komplexen Impulsvektoren
auf der «Massenschale» und versucht, von dieser Seite her die Phinomene der relativi-
stischen Elementarprozesse zu verstehen.

Die mathematischen Schwierigkeiten bei diesen Untersuchungen sind bekanntlich
gross. So beschrankt man sich bei den meisten grundsitzlichen Fragen auf das verein-
fachte Modell eines neutralen Skalarfeldes, in der Hoffnung, dass die Komplikationen
fiir realistische Teilchen mit beliebigen Spins rein algebraischer Natur sind. Wir wer-
den an der Klasse der Lorentz-kovarianten holomorphen Tensorfelder, die nach dem
obigen in einem gewissen Sinne die fundamentalen Gréssen der Theorie darstellen,
zeigen, wie und unter welchen Bedingungen eine « Reduktion auf skalare Gréssen» im
mathematisch strengen Sinne méglich ist.
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Genauer sei /1 - S(A) eine irreduzible Tensordarstellung der eigentlichen kom-
plexen Lorentz-Gruppe L, (C) (vgl. §2.), und es sei F*(z,, ... 2,) ein s-Tupel (s =dim S)
von in einem Gebiet D im C** der komplexen Vierervektoren z = (z;, ... 2,) holomor-
phen Funktionen, die sich nach der Darstellung S kovariant transformieren:

TR B w 2 S F*¥(z, ... z,) (1.1)
a' =1
fir alleze Dund alle Ae L (C)mit Az = (A2, ...A2)eD*).

Ist A - S(A) die Einsdarstellung, so heisse F(z) in D L (C)-invariant. Die Menge
Og(D) der in D holomorphen S-kovarianten Tensorfelder (1,1) bildet einen Modul
iber dem Ring Oy (D) der in D L, (C)-invarianten holomorphen Funktionen.

DasHauptproblem dieser Arbeit ist es abzukldren, wann der Modul O¢(D) iiber dem
Ring O ¢;(D) von endlichem Typus ist, das heisst wann es in D endlich viele S-ko-
variante holomorphe Tensorfelder (3(z) («Standardkovarianten») gibt derart, dass
sich jede S-kovariante analytische Funktion F € Og(D) in D darstellen ldsst als

K
Flg) = 3] 1,60 032 (12)

mit L (C)-invarianten holomorphen Funktionen f, € Oy (D).

Wir werden zeigen (§4.), dass eine solche « Standardzerlegung» (1,2) im allgemeinen
nicht iiberall lokal méglich ist, und werden hinreichende Bedingungen (§ 5.) fiir die
Existenz von lokalen und globalen Standardzerlegungen in Og(D) angeben. In allen
Fillen werden die Standardkovarianten ein minimales System von S-kovarianten
Polynomen (§ 3.) sein, von gewissermassen trivialer kinematischer Natur. Damit
wendet sich das Interesse den L (C)-invarianten holomorphen Koeffizientenfunk-
tionen zu. Hier werden wir (§5.) ein Theorem von BARGMANN, HALL und WIGHTMAN®)
verallgemeinern und einen kanonischen Zusammenhang zwischen L,,(C)-invarianten
holomorphen Funktionen und stark holomorphen Funktionen der L,(C)-Invarianten
herstellen. Diese Resultate werden schliesslich (§ 6.) auf die Theorie der Wightman-
Funktion und verallgemeinerten retardierten Funktionen und auf das Problem der
invarianten S-Matrixamplituden ?) angewandt.

§ 2. Tensordarstellungen von L (C)

In diesem Abschnitt werden kurz die irreduziblen Tensordarstellungen der eigent-
lichen homogenen komplexen Lorentz-Gruppe L (C), der Gruppe der komplexen
unimodularen 4 x 4-Matrizen, die die symmetrische Bilinearform

3 3

(2, 9) =2090— D anyn= D g, x4y (2.1)
n=1 w,v=20

invariant lassen, charakterisiert. Die L (C) ist isomorph zur eigentlichen komplexen

4-dimensionalen Orthogonalgruppe O, (4, C) (die hyperbolische Signatur der Metrik

*) Durch (1.1) lasst sich F%(z) stets S-kovariant und eindeutig nach L (C) D analytisch fort-
setzen®). Daher sei 0.E. D = L (C) D angenommen. Da die Tensordarstellungen von L_(C) voll-
reduzibel sind®), ist ferner die Annahme der Irreduzibilitit von S(A) keine Beschrinkung der
Allgemeinheit.
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g, ist nur sinnvoll im Hinblick auf die physikalischen Randwerte im reellen Min-
kowski-Raum), und so ergeben sich die irreduziblen Tensordarstellungen leicht mit
den Methoden der klassischen Darstellungstheorie®). Zur quantitativen Diskussion
des physikalisch interessanten Falles der L, (C) ist es jedoch vorteilhafter*), sich auf
die einfache Struktur der Darstellungstheorie der S L(2, C) ® S L(2, C), der univer-
sellen Uberlagerungsgruppe der L. (C), zu stiitzen und im Spinorkalkiil zu operieren.
Hier gewinnen viele Formeln eine besonders einfache Gestalt, und es wire moglich,
den Aufwand an nichttrivialer komplexer Analysis durch direkte Abschitzungen zu
verkleinern (vgl. Lemma 3 und § 5.).

Ordnet man iiber die Darstellung

o P A A B e

der Pauli’schen 2 x 2-Matrizen jedem komplexen Vierervektor z eineindeutig und
linear eine 2 x 2-Matrix z zu:

. 3
— 2 2¥ o, (23)
v=0

dann wird bekanntlich32)19) ein 2 — 1-Homomorphismus von S L(2, C) ® S L(2, C)
auf L (C) gestiftet, indem jedem (4, B)e S L(2, C) ® S L(2, C) die durch

P e T
A4, B)z=Az BT (2.4)

definierte Transformation A(4, B) € L,(C) zugeordnet wird. Bei diesem Homo-

morphismus bilden die A(4, 4) mit der zu 4 konjugiert komplexen Matrix A genau
die Emskomponente der reellen homogenen Lorentz-Gruppe L.

Es sei R der komplexe Vektorraum der Spinoren v, . .., vom Range

d.nrﬂ
(,s) mit «; = 1, 2, ﬁ — 1, 2. Dann ist durch (Summation stets uber doppelte Indizes):
((A & B) ’!P)al"'a’rbl' HA HB 1’00‘1' Ot}ﬁ,'ﬁ; (25)

eine 27 +*-dimensionale i.a. reduzible Darstellung von S L(2,C) ® S L( C) gegeben.

Auf dem (r + 1) (s + 1)-dimensionalen Teilraum S * der in « und ﬁ symmetrischen
Spinoren ¥, . 4.4 .. 5 ist die Darstellung (2.5) irreduzibel, und alle endlichen
stetigen irreduziblen Darstellungen von S L(2, C) ® (S L(2, C) sind vom Typ [7, 5]
mit ganzen Zahlen 7, s > 09).

Ein wichtiger invarianter Spinor ist die e-Matrix

8:(_1 Iy (2.6)

/

die in der Darstellung (2.2) mit ¢ o, {ibereinstimmt. Denn wegen 4 ¢ A7 = det (4) ¢
fiir alle komplexen 2 x 2 Matrizen A ergibt die ¢-Kontraktion zweier ungepunkteter

*) Die wesentlichen Resultate dieser Arbeit lassen sich unabhingig vom Spinorkalkiil fiir alle
klassischen komplexen Gruppen beweisen 8).
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oder gepunkteter Indizes eines Spinors wieder einen Spinor von um 2 niedrigerem
Rang.

Symmetrische Spinoren y e G"* von geradzahligem Gesamtrang » + s = 0(2)
und Tensoren T iiber dem 4-dimensionalen Minkowski-Raum, die sich nach irredu-
ziblen Darstellungen der L (C) transformieren, stehen nach den folgenden Formeln in
eineindeutiger linearer Beziehung zueinander:

r—3s

2 % y2j-1P2j ¢
5 : ' l g 1- 1 r#
oty By .. Bs = o 277 - (7’ >-—— S) ’

R (O

azﬂz o
(2.7)
s—v
: Ou; T 2 8“f+2]'—1°‘r+2i
T(Qp)#l Hs' . ;l__-z (“-?l)al 6'1 ’q)al,. Oy él .”lés:,"ljl- 7ﬁ*wTW';7 (?’ g s) ]
mit der Umkehrung:
_’__5
w(T)al-“arﬁx---f}s:1g(o‘ﬂi)wf’:z’ Tm.n#rﬂ ﬁs+2; 1ﬁ5+2; (’V__>_S))
(2.8)
s—r
g
W(T)al...arﬁl...ﬁsiﬂ dzﬁ’t ”'#sg 80"'%—2?-1(21-}-2]' (T£$).

Die Komplexifikationen aller irreduzibler Tensordarstellungen von L', sind iiber die
folgende Relation durch Darstellungen der S L(2, C) ® S L(2, C) vom Typ [7, s],
7 + s = 0(2), gegeben:

T ((4 x Byt = [ A(A, B Ty, (2.9)
f=1

und das Transformationsgesetz einer [7, s]-kovarianten Funktion lautet:
F,; (A(4, B) z,, ... A(A, B) z,) = S(4, B)“ g4 Eo oz, oo 2,) (2.10)
mit

s, BEF = [ A HB

i=1

Als Bausteine fiir ein minimales System von Standardkovarianten werden wir in dem
folgenden Abschnitt neben dem Vektor z# noch einige einfache irreduzible Tensor-
polynome brauchen. Der Pseudovektor

(21 A 22 A 29)" = 6"7%%(z1), (%), (%) (2.11)
von drel Vierervektoren z,, z,, 23 steht iiber

— (21 A 23 A 23, 24) = [21, 25, 23, 24 (2.12)
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mit der Determinante [z, 2,, 23, 2,] VON 24, 2, %3, 2, in Zusammenhang. Dabei ist e#72°
der total antisymmetrische Tensor vom Rang 4 mit £°123 = 1. Es gilt die Identitét:

| ; ga,u L. gom
V0 gh?e% — _det | : : (2.13)
i go,u gﬁd
Schliesslich sind '
1 :
Mo(z, 29)"" =[5 ;p — 2 25 £ 16"7°%(21), (29) ] (2.14)

schiefe selbstduale bzw. antiselbstduale Tensoren vom Rang 2.
Uber (2.8) erhilt man fiir (2.11) und (2.14) die folgenden Spinorkovarianten:

(30 A 2y A 28y = i [(21, 2) (Bl + (200 20) (B N

N (2.15)
~ () (o + Gre 3 o], |
M (24, 200, = S (B2 6 25)a o, 3 (e in =S @ ed)y s,  (216)
* B

wobel S fiir die (separate) totale Symmetrisierung der ungepunkteten und gepunkte-
ten Inf:i’lfzes steht:

Sﬁ%l oo b = 1o 2 Yapray - %500 oty - ogs (2.17)

mit Summation iiber alle Permutationen P von (1, ... #) und Q von (1, ... s). Schliess-

lich gilt

(roz) = — 5 Sp (e o). (2.18)

Im folgenden werden wir ohne Gefahr von Missverstidndnissen die Tilde iiber einem
Spinor fortlassen, dessen Transformationsverhalten ohnehin eindeutig durch die

Anzahl der «- und ﬁ—Indizes bestimmt ist.

§3. L, (C)-kovariante Polynome

Die Klasse der L_(C)-kovarianten Polynome ist in mehrfacher Hinsicht wichtig.
Einmal bildet sie die einfachste Familie von L (C)-kovarianten Tensorfeldern, und
die sich hier ergebenden grundsdtzlichen Zusammenhédnge zwischen der Invarianten-
theorie und der komplexen Analysis werden spiter die «kanonische» Struktur des
Moduls Oy, (D) und der Ringe O o(D), Oy(D) kennzeichnen. Zum anderen werden
wir fiir jede irreduzible Darstellung [7, s] von L_(C) ein minimales System von ko-
varianten Polynomen Q “)(z) konstruieren, die den Modul P, 4(z) der [r, s]-ko-
varianten Polynome in den Variablen z= (7, ...2,) € C*" iiber dem Unterring
Po(z) C Pio,0y(?) der L(C)-invarianten Polynome erzeugen. Dieses Erzeugenden-
system wird spdter — nach der « Komplettierung» des Moduls P, (z) zum Modul
0y, (D) — in gewissen Fillen fiir die in D [, s]-kovarianten analytischen Funktionen
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ausreichen. Schliesslich gewinnen wir hier einen quantitativen Zusammenhang zwi-
schen L,(C)-invarianten Polynomen und Polynomen in den L ,(C)-Invarianten -
eine Illustration der analytischen Strukturen, die wir im § 5. antreffen werden.

Man erhilt leicht einen Uberblick iiber die algebraische Struktur der Moduln
B, 5;(2) durch die Reduktion von Monomen

d

H (sz,)az_ B %, € 80 s s B s (3.1)

1 =1

in unter L, (C) irreduzible Komponenten. Ist g, 3, €in irreduzibler Spinor

P Oy Byens

der Darstellung [7, s], so zerféllt bekanntlich das Tensorprodukt ¢, . ,.5... 4 X
%y 4 1fs 4 1D die folgenden irreduziblen Terme:
S. Qal...a,rﬁ.,_...{és za,+1,és+1 ¥ S qax-..ar.és....és zdr+1ié§_[_1 8&5&3-{—1 !
o
4 (3.2)

S_qai"'afﬁl"‘észar—{—l‘és-[hl811’0(1’—}—1, Qal.“ar,él.‘.ﬁszar+1Bs+18arar+1£Bsﬁs+1 J
B

zu den Darstellungen [» +1,s+ 1], [r+ 1,s — 1] (s > 0), [r — 1,s + 1] (r > 0) und
[r —1,s—1] (r, s > 0). So zerfdllt (3.1) (vgl. Lemma 3) in eine Summe von [7, s]-
kovarianten Monomen mit stets » 4+ s = 0(2), in denen gewisse «- und f-Indexpaare

e-kontrahiert sind und die freien a- und f-Indizes symmetrisiert sind. Die Identitit
(2.13) spiegelt sich im bindren Bereich der Spinoren in der Tatsache, dass Ketten
von mit mehr als 2 e-Spinoren kontrahierten (z,),, 4, sich stets in einfachere Kova-
rianten zerlegen lassen durch Identitdten wie

S (zl € 2’21' EZ3¢€ zg‘)cxl oy (2’1, 23) M+(z2’ 24)051 o, + (22’ 24) M-i—(zl’ z3)ot1 oy l
- (zlr 22) M+(Z3, 24)011 oy (ZS’ 2'4) ‘ZLI+(21’ 22)‘11 o, (33)
— (21, 24) M (25, z3)a1 ay (22, 23) M, (21, Z4)a1 a, J

Ebenfalls lassen sich Kovarianten wie M, (zq, 25) M_(23, 24), [21, %2, %3, 24) 25, Mi(24, 25) X
(33 A 24 A 25) und (2, A 23 A\ Z3) (24 A 25 A\ 2g) singularitdtenfrei auf einfachere Kovarian-
ten mit Koeffizientenpolynomen in den Skalarprodukten reduzieren. Durch voll-
stdndige Induktion nach 4 folgt das

Lemma 1: Der Modul ‘B, 4(2), z = (2, ... 2,) € G4, ist iiber dem Ring PB,(z) von
endlichem Typus. Jedes kovariante Polynom g, 4(z) € Py, ;(2) ist zerlegbar in:

70 4(%) E q.(2) Q7 (2), (3.4)

mit invarianten Polynomen g,(z) € By(z) in den Skalarprodukten (z;, 2;) und mit den
folgenden Standardkovarianten:

(¢) fiir r =54 2¢ > s:

) t

QE:’ sj(z)aﬁl = S ﬂ(z"l) HM+(Z"5+2m~1’ Z"S—}—Zm)j .’ (358.)

af =1 m=1 a
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(B) fur s=r+42¢>r:

4 13
[r,s R
0@, = § I] ) TTMA 0y 5y 0 " (3.5b)
g LA n=

(y) fur r =5 = O:

r r] S H ”1 - ﬁz (352)

af t=1
Fr 7 .
J S ﬂ ul o 181 Kr+1 A Zxr+2)a,.ﬁ7. ; (3.5d)
up i=
(@) filr re=g=0;
QBO, () =1, QLO, 0] (z) = [an’ Zys B Zu,j : (3.5€)

Hierbei steht ocﬁ fir oy, ... o, ﬁl, ﬂs und # fiir alle Kombinationen von Vierervek-
toren z,€{z,...2,}, die iiber C verschiedene Standardkovarianten liefern. Fiir
festes [r, sjund ngilt: 1 <x < K = K(r, s, n) < oo.

Insbesondere ist also jedes L(C)-invariante Polynom p(z, ... 2,) als Polynom

;’)((zz, %;)) in den 7 = n (n + 1)/2 L(C)-Vektorinvarianten (z;, z;), 1 <+ <7 < #, dar-

ir ~j

stellbar und ebenso jedes L (C)-invariante Polynom g(z, ... 2,) als Polynom g((z;, z;),
(n
(2, .- 2;,)) In den 7,  =n (n + 1)/2 4+ max {0, (4)‘ L. (C)-Invarianten (z;, z;) und

l b

(Zh -+ 2] mit 1 <k <...<Rky <n. Dies ist ein Spezialfall des sogenannten
1. Hauptsatzes der Invariantentheorie®). Jedoch ist eine solche Darstellung im all-
gemeinen nicht eindeutig. Zwischen den L(C)-Invarianten von » 4-Vektoren z, ... 2,
gelten fiir » > 5 die Relationen:

(Zf" zjl) .--(zil, zjs); 1<ty < i tp =0
(zis’ Zjl) (Zfii ZJE) 1 g h L = _75 g n )

und fiir die L_(C)-Invarianten noch fiir n > 4:

2 2) e (2 2)

(2 e 2 ] (2, 2 ) + det =0 (3.7)

(2, ;) (2x,» 21,)

mitl <ki<.. <k<nl<]l<..<[l<n

Aus dem 2. Hauptsatz der Invariantentheorie®)!!) folgt, dass alle Polynom-
Relationen zwischen den L,)(C) Vektorinvarianten auf (3.6) (und (3.7)) zuriickge-
filhrt werden kénnen: sei in dem C"™ der komplexen Variablen z;; (und z 4 4,z,) mit
den Symetrien z;; = 2z;; (und 2, 4 ..z, =S8N 7 X 2, ein Polynom P(2)
gegeben, das bei der Substitution

(1) Bn(2) $7(3) ’fﬂm)

;= (21, 7)) (und 2 g 5, = [Zkp Zkpr 2y Z1,)) (3.8)
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fiir die Vektorinvarianten der (2, ... 2,) € C*" identisch verschwindet, dann gehort

P(z) dem Polynomideal {iber dem C" an, das durch die Relationen (3.6) (und (3.7))
in den Variablen z;; (und 2, 4, 4,) erzeugt wird.

Sei IY: C*" > C'™M die Abbildung, die jedem #-Tupel von Vierervektoren
Zir e z, die 7, L(,)(C)-Invarianten I{*)(z),... I ﬁa))(z) — ndmlich die (z;, z;) und even-
tuell die [z, ... %, ] — zuordnet. Man iiberzeugt sich leicht®)®), dass das I9-Bild des
C*r genau die durch die Relationen (3.6) (und (3.7)) definierte algebraische Varietit
I®C C'W ist.

Jetzt lassen sich unsere Kenntnisse tiber die Struktur der Ringe P 1(2), To(2)
folgendermassen zusammenfassen :

Lemma 2: Zu jedem im C%"(z) L ,(C)-invarianten Polynom P(z, ... z,) gibt es ein
Polynom P(zy, ... z,) im C"®(z) mit

Pz, ... 2) = B{(I{Y), ... Iﬁ::)(z)) = Po IM(z) . (3.9)

Je zwei Polynome 131('2), 132(2) definieren dasselbe L,)(C)-invariante Polynom P(z),

falls sie auf I+ iibereinstimmen, das heisst falls ihre Differenz dem durch die Rela-
tionen (3.5) (und (3.6)) erzeugten Polynomideal angehort.

Man vergleiche mit Lemma 1 und 2 die Sitze 2 und 3 des Abschnittes § 5!

Eine charakteristische Schwierigkeit wird spater bei den funktionentheoretischen
Untersuchungen auftreten und nur mit nichttrivialen Sitzen der analytischen Garben-
theorie iiberwunden werden konnen: die Tatsache, dass im allgemeinen die Standard-
kovarianten QY *(z) nicht global singularititenfrei fast iiberall zu einem im Dar-
stellungsraum G % linear unabhéngigen System verkiirzt werden kénnen. Da nun
in den Fillen, wo dies doch moglich ist, stirkere Resultate beweisbar sind, seien kurz
quantitativ die Abhédngigkeitsrelationen diskutiert.

Im Falle n = 1 ist " *)(z,) leer fiir  + s und P ")(z,) wird erzeugt durch das
einzige Tensorpolynom:

Q2,5 = 8§ [T 2o (3.10)
“’é =1

Fir n = 2 ist das Erzeugendensystem von Py, (2, 29)

[r—s]|

] x min (7, s] — » 2 ’
Qa2 =8 | [[ =) [T () [] Mc(e,2)| | (3.11)
o ﬁ =1 m=1 n=1 o f

(0 <% < min {r, s}) linear unabhidngig im &, falls z, und 2z, linear unabhingig
und nicht total isotrop sind (vgl. § 4.).

Fiir n = 3 wird &@”*! durch die Standardkovarianten (3.5) aufgespannt, falls die
Gram’sche Determinante G(z,, 25, 23) =+ 0 ist. Fiir die Darstellungen vom Typ [, 7],
[2,0] und [0, 2] bilden die QI *)(z) dann eine Basis. Fiir Darstellungen [7, s] mit

| ¥ — s | = 2 sind fiir G(z, z,, 23) + 0 die einzigen Abhingigkeitsrelationen iiber dem
Konstantenkérper C, und zwar von der Art:
S (2 Ma(2s, 25) + 29 Mi(23, 21) + 23 Mx(2y, Z9)]ap=0. (3.12)

af
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Daher kann hier das Erzeugendensystem {Q*(z)} global und singularitdtenfrei zu
einer Basis von GU" ¥ verkiirzt werden. Fiir | » — s | > 2 treten dann weiter Relationen
tiber P,(z) auf, wie:

S' [(21, 21) Muy(2g, 23) M(29, 23) + (29, 29) Me(z3, 31) Ma(23, 2,) ]
o, 8

+ (25, Zg) Mu(zy, 25) Mal(zy, 25) + 2(21, 25) Ma(2y, 25) Me(23, 24) J (3.13)
+ 2(2y, 25) Mu(zy, z1) Mi(zy, 25) + 2(23, 21) Mi(2y, 20) M(2,, Zsﬂaﬁ =

Hier ist keine globale singularititenfreie Verkiirzung des Erzeugendensystems mehr
moglich.

Fiir n = 4 sind in der Darstellung [0, 0] die Erzeugenden 1 und [z, 2, 23 2,] unab-
héngig iiber PB,(z) und ebenso in (1.1) die Vektoren z,, 2,, 23, 2, und die Pseudovektoren
2y N\ Zg N\ 23, Zy N\ g N\ By, Bg A 24 N 2y, 24 N\ 21 A %9 Sonst existiert hier und fiir héhere n
keine globale Polynombasis von P */(z).

Wenn auch die Darstellung (3.4) nicht eindeutig ist, so kann man dennoch Zer-
legungen angeben, bei denen die auftretenden Terme «nicht zu gross» werden. Ge-
nauer heisse eine Einheit vom Grade 4 die [7, s]-Kovariante:

A-%
2
[r, 5] . . < T
Qx (z)oc1 e op Py By q,j—il bp (me +2a—1 g z”m-!-zu 8) a

d-r d—s

(3.14)

mit m = max {7, s} (bzw.m = r, 7 + 2fiirr = s + O)und mitd —r,d —s =0, 2,4, ...
und QU%1(z) nach (3.5). Der Betrag eines numerischen Faktors vor (3.14) heisse Ge-
wicht der Einheit. Dann gilt das

o ; vom Grade 4 in eine
(X

d

Lemma 3: Es gibt eine Reduktion des Monoms H (2x,)

i=1
Summe von Einheiten (3.14) vom Grade 4 und héchstens einem Gesamtgewicht B¢
(B < oo konstant, unabhingig von z und d).

Der Beweis erfolgt induktiv nach d durch wiederholte Anwendung der Clebsch-
Gordan-Reihe. Auf die Bereitstellung der notwendigen Spinoridentitdten (vgl. (3.3))
sei hier verzichtet, da die Hauptresultate dieser Arbeit — Satz 2 und 3 — ebenfalls aus
einem allgemeinen Satz von GRAUERT und ReEMMERT!?) (vgl. 8)) gefolgert werden
koénnen.

§ 4. Der Fall n = 1, 2 und ein Gegenbeispiel fiir n = 3

Lorentz-kovariante analytische Funktionen von einer oder zwei Vierervektor-
variablen lassen stets eine eindeutige holomorphe Standardzerlegung (1.2) zu. Dieser —
von H. ARAKI entdeckte Sachverhalt*) — beruht wesentlich auf der Existenz von

*) Ich danke Herrn Dr. H. Arax1 fiir die Benutzung seiner Resultate an dieser Stelle.
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Isotropiegruppen G. (z) von L_(C), unter denen auf Grund der L (C)-Kovarianz (1.1)
das Tensorfeld F, 4(z) invariant sein muss. Die spezielle Gestalt dieser G (z)-invarian-
ten Tensoren liefert zusammen mit der linearen Unabhédngigkeit der Standardkova-
rianten (3.10), (3.11) fiir » = 1,2 die Behauptung.

Eine Verallgemeinerung dieser Resultate auf holomorphe Tensorfelder mit 3 und
mehr Argumentvektoren ist dagegen nicht mehr uneingeschrinkt méglich, wie es ein
typisches Gegenbeispiel fiir den Fall # = 3 am Ende dieses Abschnittes illustrieren
wird.

Satz 1: (H. ARAKI):

a) Alle [7, s]-holomorphen Tensorfelder F, 4(z;) von einer Vierervektorvariablen
2, € D; C C* sind eindeutig zerlegbar in der Form:

]’;3(21) =

{f(zl) Qnlz,),; fir r=s

0 sonst

mit einer in D, holomorphen L(C)-invarianten Funktion f(z).
b) Fiir [#, s]-holomorphe Tensorfelder F, j(2;, z;) von zwei Vierervektorvariablen
(21, 25) € Dy C C8 gibt es eine eindeutige Zerlegung

min {r, s}

Fjznz) = Q) flan 2) @ Pz 20), 4 (4.2)

x=0

mit in D, holomorphen L(C)-invarianten Funktionen f,(z;, 25).
Dem Beweis dieses Satzes schicken wir zwei Hilfssdtze voraus:

Lemma 4: Sei G_(z,) die Isotropiegruppe von z,, das heisst die Untergruppe der
Elemente von L (C), die den Vektor z; fest lassen, und sei der Spinor y, ; € G *l mit
v + s = 0(2) invariant unter G,(z). Dann ist y,; = 0 fiir » # s oder z; = 0 und fiir
r = s und 2z; + 0 von der Gestalt:

Waﬁ =¥ S H azﬁ;i’ ye C. (43)
ocﬁ"

o 10\ T
Bewers: Seizunéchstz; = [, = (1,0,0,0) (das heisst z; = ( 0 1)) Dannist diereelle

Orthogonalgruppe 0,(3, R) in drei Dimensionen die Untergruppe der reellen Elemente

von G (%;). 0.(3, R) ist iiber den Homomorphismus (2.4) das Bild der Paare (U, U) mit
UeSU_ZC). '

Alle irreduziblen eindeutigen Darstellungen von O,(3, R) sind vom Typ D,
7=0,1,2..., realisiert durch symmetrische Spinoren vom Rang (27, 0) oder, dqui-
valent, (0, 27)?). Daher zerfillt die irreduzible Darstellung [7, s], » + s = 0(2), von
L ,(C) als Darstellung von O.(3, R) wie ein Tensorprodukt:

[7’, SJ ~ ‘Drf’E ® D2~ D(r+s)/2 @...0 D r—sli2 (44)
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Ein Spinor o, ; + 0 aus Sl ist also genau dann invariant unter O (3, R), falls 7 = s
ist und v, ; von der Gestalt:

r

Ilpaf} :"PS H(lo)aiﬁ:i' ’(/)E C. (45)

ozf:‘ =1

Zu einem beliebigen Vektor z; mit (z;, z;) *+ O gibt es stets ein A€ L (C) mit z, =
aAly, acC. Falls y, ; G,(z)-invariant ist, so ist

Yuj = SANE (4.6)

G (f)-invariant und daher von der Form (4.5). Also gilt (4.3), wenn immer (2, 2,) = 0
ist.
Ist nun z, + 0 ein Nullvektor, so kann er immer durch L (C) auf /= (1,0, 0, 1)

# 20
(also l = ( 0 0)) transformiert werden.

In diesem Fall wird die Untergruppe G_(I) erzeugt durch die Bilder der Elemente
von SL(2,C) ® SL(2,C): '

(A(@), B()) mit A(x) = ((1) ‘;) B(p) :(é ’f) ]

(4.7)

o . 402
(C(B), C(G)) mit C(6) = ( 0 e—i6/2) ¢
s
Seip(ra); =vi...1 5. .24 5 die Komponente des G, (/)-invarianten Spinors p, ; € S,
wo 7, der (symmetrischen) Indizes «; = 2 sind. Dann gilt

((A (oc) X ].) ’lp) (7’2)3 = Eg’tp (1’2 -+ M’I»)‘8 (m;; 72) o™ (48)

m=0

Damit vy, ; unter allen A(x) X 1 invariant ist, ist notwendig und hinreichend:
w(r2+m)5=0fﬁralle5und r—re=>m>1. (4.9)

Dabher ist y(r,); = 0 fiir alle ﬁ ausser fiir 7, = 0, und aus einem analogen Argument mit
1 X B(p) folgt das Verschwinden aller Komponenten von ¢, ; ausser von v; ;i _ i

Schliesslich bedingt die Invarianz unter C(f) x C(0) die Gleichheit » = s. Dies be-
weist Lemma 1.

Lemma 2: Sei G (2, z5) die Untergruppe der Elemente von L_(C), die zwei linear
unabhdngige, nicht total isotrope Vektoren z;, z, fest ldsst. Dann ist jeder G (2, 25)-
invariante Spinor y, ;€ G mit » + s = 0(2) von der Gestalt

min {r, s}

Vap= O P 00Nz, 20), 5 (4.10)

=0
mit eindeutig bestimmten komplexen Koeffizienten w(x).
Beweis: 2 Vektoren z;, z, mit det | (2, 25) | # 0 konnen stets durch L (C) in den
durch 7, = (1,0,0,0) und /; = (0,0, 0, 1) aufgespannten Teilraum gedreht werden.
G, (l, I3) besteht aus den Elementen A(C(6), C(0)) iiber den Homomorphismus (2.4).



366 Klaus Hepp H. P. A.

Sei y(ry, s;) eine Komponente des Spinors y, ;€ & mit #, der «; = 1, s; der
. = 1. Diese transformiert sich unter G_(/,, I,) wie folgt:
ﬁ; +\gs U3 g
((C(G) % é(ﬂ)) ’l/)) (1,1’ Sl) — 6@'6/2 (2r1“r+s»-2sl}w(?,1, 31) ) (4_.11)

Daher folgt aus der G (/y, /;)-Invarianz von v, ;:
= f-;i- + 5. (4.12)

Im Falle » > s ist somit der symmetrische Spinor ¥, ; eindeutig durch die folgenden
s + 1 Komponenten bestimmt:

(O oo =(1,...1,1...1,2,...2,2,...2); (By...8)=(1,...1,2,...2). (4.13)

S j—" T——— —ar—r om— S—— —— —
5 P=g $— 8 r—s 5 $— 8
2 2
Nun ist

(lg+ 1 ly—1
(ozi)aﬁ = a0l (_Zi)ﬁ = 8202 und M. (l, ly)y, 0, = — (8}, 83, + 0%, 6%) -

Dies erméglicht die Darstellung:

wcxﬁ - Sé: 1}3(81 S,B ]-_[( )Oﬂi 81 f;ljl (E(%—l%)“iﬁéi

Tt , (4.14)

r—s

2
X H1M+(lo; l3)a_;+2k—-1°‘s+2k :
k=1

also:
min {r, s}

wa,t} = Z: "P(%) Qg’ S}(zli z2)af§ .
Aus der Gleichheit der Zahl der Komponenten (4.13) und der Anzahl der QI (2, 2,)
folgt die Eindeutigkeit der Darstellung und die lineare Unabhéngigkeit der Standard—
kovarianten.

Ist fiir lineare unabhingige z,, z, die Skalarproduktmatrix vom Rang 1, so kénnen
2y, 23 durch L (C) in den von /, = (0, 0, 1, 0) und / = (1, 0, 0, 1) aufgespannten Teil-
raum gedreht werden. G_(J,, /) besteht aus den Elementen A(A4(x), B(x)) mit (4.7).
Sei 9(r,, s,) eine Komponente des Spinors y, ; € S *I mit 7, der «; = 2, s, der §; = 2.
Dann gilt unter G_(/,, )

((A(x) x Bla)) ) (73, s5) 72:2 32:2 o+ (72 + m) (82 ;: n) Y (ro+ m, Sy + n) . (4.15)

m=0n=0

Notwendig und hinreichend fiir die G (l,, /)-Invarianz ist:

i Rl SR +n
S 3tk el tom, s+ ) =0 (4.16)
m=0n=0

mt+n=M
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firl <M <74 s— 7, — s, Setzt man M = 1, so folgt

s+ 1,8) = =79 (1 5+ 1) (4.17)
2
und mit s, = s: (7, 5) = 0fir 1 < v, <7vundmitz, =7:9{r,s,) =0fiirl <s, <s.

Also gilt: I
so gilt 0 fir 7,4+ s, > min {r, s}

w7, Sg) = ’ ; (4.18)
. (— 1)“(7'2:—32)1;)(0, 74 + S,) sonst
T
Wegen (Z),_-O—l l._(zo
205[3—@ 1 0 a[;, ()aﬁ'—\ooa,é

ma M (ly D)y = =20 0% 0%, M_(ly, g5, =240} 0}

sind wieder alle G (/,, /)-invarianten Spinoren eindeutig in der Form (4.10) darstellbar
und die Standardkovarianten QU:¢l(l,, ) sind linear unabhingig. Dies beweist die
Behauptung.

Zum Beweis von Satz 3 im Falle » = 1 betrachten wir ein 0 + 2z, € D, und A aus
der Isotropiegruppe G, (z;). Dann folgt aus der [, s]-Kovarianz von F, ; :

E,jo) = Bg (Az) = SAF Fy () (4.19)

und nach Lemma 1 die Gestalt (4.1) fiir F, 4(z,) mit eindeutig bestimmtem Koeffi-
zienten f(z,). Eingesetzt in (4.19) folgt aus der Eindeutigkeit von f(z,) die L_(C)-In-

varianz und die Holomorphie: fiir z; = 0 ist stets eine Komponente a4, von

Q[f"ﬂ (z) = 0 und daher

af Fogo 'éa(zl)

Q[r’ r'](zl)

% Bo

Hz) = (4.20)

holomorph. Da der Nullpunkt z, = 0 von niederer Dimension ist, folgt die Holo-
morphie und L, (C)-Invarianz von f(z) in ganz D;. “

Analog schliesst man fiir #» = 2 durch Betrachtung von G_(z,, 2,) fiir linear un-
abhingige, nicht total isotrope z;, z,. In solchen Punkten folgert man die Zerlegbar-
keit von F, 4(z, z,) nach (4.3), und, da die Standardkovarianten hier linear unab-
hingig sind, ist (4.3) eindeutig nach den Koeffizientenfunktionen f,(z;, z,) 16sbar.
Diese sind daher wieder L_(C)-invariant und holomorph in ganz D,, da die Menge der
Ausnahmepunkte nur nach dem Riemann’schen Fortsetzungssatz hebbare Singulari-
tdten beitragen kann. Damit ist Satz 3 bewiesen.

Fiir drei Vierervektoren zy, %, 25 existieren im allgemeinen keine nichttrivialen
Isotropiegruppen mehr. Falls die Gram’sche Determinate G(z) + 0 ist, spannen
21, %, 23 UNd 2; A 25 A 23 den 4-dimensionalen komplexen Minowski-Raum C* auf. Fiir
G(7) = 0 dagegen liegen z,, 25, 23 und z; A 2, A 23 in einem durch Einheitsvektoren
ly, 15, I aufgespannten singuldren Teilraum </,, I,, I> C C*:

mit (0;, ;) = —0;,;, (0;, ) = (1) =01 <4,7<3)undj AlyAl=0l,6= 4 1jenach
der Orientierung der z,.
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Offenbar gilt:
Py s By |
21N 2y A zg=odet .y (4.22)
| €3y ... Cag
und
| (22, 23), (22, 23) Co1 €92 |
C,(2) = det | | = det? | | (zykl.) . (4.23)
| (20, 23), (25, Za) €3 Cgo

Aus (4.22) und (4.23) folgt bei geeigneter Wahl der Zweige von |/C;(2) fiir G(z) = 0 die
L (C)-invariante Relation:

Zl/C )2 —a (2, A 23 A 2)*=0. (4.24)

Nach dieser geometrischen Uberlegung lisst sich leicht eine L, (C)-kovariante analy-
tische Funktion F(z,, z,, 23) konstruieren, die nicht in ihrem ganzen Definitionsbereich
eine lokale holomorphe Zerlegung gestattet. Offenbar ist

G(z)=1 X¥(z) = {ZVC 2) 2 — o ( zl/\z2A23)} (4.25)

holomorph fiir alle z mit G(z H C;(2) = 0. Ferner ist ein Punkt w mit G(w) = 0 aber
mit HC += 0 und hnear unabhangigen w; =b;10,+ b5l + 0,50 (1 <12 <3)

ein regularer Punkt von {G(z) = 0}. Denn fiir einen Einheitsvektor /, mit (7, /,) = 1,
(ly, 1) = 0, ist die Variablensubstitution (2, /,) <> G(2) bei festen restlichen Kom-
ponenten von 2, %, 23 biholomorph in einer Umgebung von w wegen

0G(z) |
1PN )—‘z;w=—2(w1/\w2/\w3,l0/\w2/\wg)
}bu...bwi by by | (4.26)
= 2(ly, ) det | : | det | +0.
by by a1 bz

Daher ist in einem solchen Punkt w G—1(z) X%(2) holomorph, obwohl die eindeutig
bestimmten (vgl. § 3.) L(C)-invarianten Koeffizientenfunktionen G—1(z) |/Cz(—z) und
G~(z) dort singuldr werden. Dieses Gegenbeispiel ist typisch fiir alle Darstellungen
[7, s] fiir n > 3.

Ein Punkt (z,, ... z,) € G*” heisse regulidr, wenn der Rang 7, seiner Skalarprodukt-
matrix Z = ((z;, z;)) gleich der Dimension des durch ihn aufgespannten Teilraums
{21, ... %,» C G*ist. Nach 9) ist im Falle », = 3,4 jeder Punkt z € C*" reguldr.

Ein zu dem obigen w reguldrer Punkt »° mit gleichen Invarianten ist gegeben
durch @ = b;, 1, + b; 4 l5. Man iiberzeugt sich leicht, dass in einer hinreichend kleinen
Umgebung U(w®) stets auf {G(z) = 0}, falls dim <z, 25, 23> = 3 ist, G(2)~* X% (2)
holomorph und G(z)~! X* (2) singulir (oder umgekehrt) ist. Daher ist ©® Randpunkt
des Regularitdtsbereiches von G(z)~* X* (2).
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Ein gemischter Tensor wie G(z)—* X* () X" (z) muss jedoch nach dem Riemann’-
schen Fortsetzungssatz in ganz U(w?) holomorph sein, da fiir dim <z, 25, 23> = 3
eine eventuelle Singularitit von G(z)~! entweder durch X% (z) oder durch X ()
absorbiert wird und die algebraische Menge {dim <z, 2,, 23> <C 3} im C*2 nieder-
dimensional ist. Tatsichlich verschwindet die scheinbare Singularitit G(z)—! als
Koeffizientenfunktion, falls man G(z)~! X* (z) X”_(2) in L, (C)-irreduzible Komponen-
ten zerlegt:

3 B
G 1XE X" = 3 G GYG — 4. Sz, 2)*”
1,k=1

2 3 _ )
+ ‘(_;_Z Z {(z0, 2 ]/Ck M, (25, z5)"" + (22, %) Vck M, (25, z)"

(4.27)

3

e 3 arsen)en

iE=1

Dabei ist S(z;, 2,)*” = 1/2 (2 2, + z; 2%) — 1/4 g#*(z,, z,) der irreduzible symmetrische
Tensor vom Rang 2 mit verschwindender Spur und 4, , das Komplement zu (z;, 2,)
in der Skalarproduktmatrix der z, z,, z3. Die Holomorphie der L(C)-invarianten
Koeffizienten in U(w?) folgt aus den Relationen:

A;(z) = l/Cz(T) Vm_
3 fir G(z) =0. (4.28)

Dz, 2) YGla) = 0

k=1
Die Diskussion dieses Beispiels zeigt also, dass man fiir » > 2 keine holomorphe
lokale Standardzerlegbarkeit mehr beweisen kann, wenn nicht zu jedem Punkt z im
Definitionsbereich D ein reguldrer Punkt 20 mit gleichen L (C)-Invarianten enthalten
ist. Ferner ist nicht jedes System von invarianten Koeffizientenfunktionen in D
singularitdtenfrei, jedoch wird im nichsten Abschnitt fiir eine grosse Klasse von
L ,(C)-invarianten Gebieten D wie in (4.27) die Existenz einer lokalen holomorphen
Zerlegung in Standardkovarianten bewiesen.

§5. L (C)-kovariante analytische Funktionen in I(+)-saturierten Gebieten

Das Gegenbeispiel im letzten Abschnitt zeigte, dass im Falle # > 2 zusitzliche
Voraussetzungen an den Definitionsbereich D zu fordern sind, damit jedes in D
holomorphe L_(C)-kovariante Tensorfeld iiberall eine lokale holomorphe Standard-
zerlegung erlaubt. Als notwendig erwies sich dabei die Bedingung, dass D zu jedem
Punkt z€ D einen regulidren Punkt 2° mit gleichen L, (C)-Invarianten enthdlt oder,
dquivalent 8), dass D saturiert ist beziiglich der Abbildung I+ (vgl § 3.) in die In-
varianten der Gruppe L (C):

D= (It)-1o I*(D). (5.1)

24 H. P. A. 36, 3 (1963)
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In I+-saturierten Gebieten D gelten analog zu den Resultaten von BARGMANN, HALL
und WIGHTMAN (%), Lemma 2 und 3). Sitze iiber den Zusammenhang von Lorentz-
Bahnen und -Invarianten und iiber die Struktur der Abbildung I+: G4 - Cr+ (vgl.
8)13)). Es zeigt sich, dass I*(D) eine algebraische Menge in einem Gebiet G C C™+ ist,
die in jedem Punkt von G als das genaue simultane Nullstellengebilde der Polynome
(3.6) und (3.7) charakterisiert ist.

Wihrend es auf algebraischen Mengen M C G C €™+ im allgemeinen verschiedene
indquivalente Holomorphiebegriffe («<komplexe Strukturen») gibt*)!?), kann man fiir
I+(D) beweisen, dass alle diese komplexen Strukturen zusammenfallen und jede auf
I+(D) holomorphe Funktion lokal in eine konvergente Potenzreihe in den Variablen
Ziir % gk, (VL § 3.) des umgebenden Raumes C+(z) entwickelbar ist («starke
Holomorphie»), das heisst [+(D) ist in G C €™ eine normale algebraische Menge.
Der an anderer Stelle 8) gebrachte Beweis stiitzt sich auf klassische Sitze der In-
variantentheorie (vgl. § 3.), auf einen Approximationssatz fiir kovariante analytische
Funktionen in I+-saturierten Gebieten durch kovariante Polynome (8), Lemma 3) und
auf ein Theorem von GRAUERT und REMMERT!?). Dabei ergibt sich in Verallgemeine-
rung zu §3. ein kanonischer Isomorphismus zwischen dem Ring O, (D) der auf D holo-
morphen L (C)-invarianten Funktionen und dem Ring O(/+(D)) der auf I+(D) holo-
morphen Funktionen in den L (C)-Invarianten:

Satz 2: Zu jedem I+-saturierten Gebiet D C C*”ist die L, (C)-Invariantenvarietit
I+(D) eine normale algebraische Menge in einem Gebiet G C C™. Jeder auf D
holomorphen L_(C)-invarianten Funktion f entspricht genau eine auf 7+(D) (stark)

holomorphe Funktion f mit
f(z) = fo I*(z). (5.2)
Bemerkungen.:

1. Der gleiche Satz liefert in sinngemisser Abdnderung fiir die volle komplexe
Lorentz-Gruppe L(C) eine Verallgemeinerung eines Theorems von BARGMANN, HALL
und WicHTMAN ?) auf /-saturierte Gebiete D, ebenfallsmit starkerHolomorphieauf 7(D).

2. Eine auf einer algebraischen Menge M C G C C* (allgemeiner auf einer ana-
lytischen Menge M C G C C*, die in jedem Punkt z€ G das genaue simultane Null-
stellengebilde von in 2 lokal holomorphen Funktionen ist) stark holomorphe Funktion
f(2) ist also lokal Spurfunktion einer im volldimensionalen C* holomorphen Funktion,
das heisst zu jedem 2° € M gibt es eine volldimensionale Umgebung U(2%) C C* und
eine in U(2%) im gewohnlichen Sinne holomorphe Funktion g(z) mit

f(z) = g(z) furalle ze UY) N M. (5.3)

Zwei in U (2°) holomorphe Funktionen g,(z), g,(2) definieren auf U(z°) N M die gleiche
stark holomorphe Funktion, falls sie dort iibereinstimmen (vgl. Lemma 2). Damit ist
eine auf M C G C C* stark holomorphe Funktion eine Aquivalenzklasse von in G

*) z. B. ist die von BareMAaNN, HarL und WicHTMAN?) fiir eine in der «ausgedehnten Rohre»
3, holomorphe L(C)-invariante Funktion f bewiesene komplexe Struktur als Funktion f auf der

Skalarproduktvarietit i, die sogenannten «schwachen Holomorphie»: f ist auf I, stetig und in
den gewdhnlichen Punkten von It, (wo 9, komplexe Mannigfaltigkeit ist) holomorph im klassi-
schen Sinne.
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lokal holomorphe Funktionen. Falls G holomorphkonvex ist, folgt aus einem tiefen
Satz der komplexen Analysis!4), dass es eine in ganz G holomorphe Funktion gibt,
deren Spur auf M f ist. Dies erdffnet eine eventuell interessante Perspektive im
folgenden Abschnitt.

Fir den Modul O, 4(D) wurde in ®) mit den gleichen Methoden bewiesen:

Satz 3: Jedes in einem I+-saturierten Gebiet D [, s]-holomorphe Tensorfeld
F, 4(2) lasst sich lokal zerlegen '

K .
F4z) = D, 0 It(z) Q0 (2), 4 | (5.4)
%=1 s

in die Standardkovarianten (3.5) der Darstellung [7, s] und in auf I+(D) lokal (stark)

holomorphe Funktionen f,. Ist D holomorph-konvex, so wird durch die Standard-
kovarianten {QJ'*(z)} der Modul O, ((D) iber dem Ring O, ¢(D) == O(I*(D))
endlich erzeugt (das heisst eine Darstellung (5.4) gilt global in D).

In Verallgemeinerung von Lemma 1 kann man zeigen, dass O, (D) in I-saturier-
ten holomorph-konvexen Bereichen (L(C) zerfillt in 2 disjunkte Komponenten) D
bereits {iber dem Unterring Oy(D) der L(C)-invarianten Funktionen endlich erzeugt
ist. Dazu muss man — wie es auch in den Beweisen von Satz 2 und 3 moglich ist — das
Theorem von GRAUERT und REMMERT durch eine explizite Abschitzung der appoxi-
mierenden Polynome (vgl. Lemma 3) ersetzen. Dann erhilt man den

Satz 3': In jedem I-saturierten holomorph-konvexen Bereich D wird der Modul
Oy, 9(D) tiber dem Ring Oy(D) =~ O(I(D)) durch die Standardkovarianten {Q%*(z)}
endlich erzeugt. Insbesondere gilt stets in I-saturierten Bereichen eine lokale Stan-
dardzerlegung K

Fie) = 310 1) 00 (e (5.5)
mit auf I(D) lokal (stark) holomorphen Funktionen - ,
Speziell erlaubt jede L, (C)-invariante holomorphe Funktion hier eine Zerlegung

L
f(z) = f(2) + AZ (2) [z, 2, %, %] (5.6)

mit (lokalen) L(C)-invarianten holomorphen Funktionen.

In gewissen Fillen, wo die Standardzerlegung eindeutig ist (vgl. § 3.), kann man
auf die Holomorphiekonvexitit des Bereiches D verzichten und allgemeiner beweisen:

Satz 4. Sei D ein I-saturiertes Gebiet im C*». Dann wird der Modul O, 4(D) iiber
dem Ring Oy(D) durch die Standardkovarianten (3.4) erzeugt, falls #» = 1 oder 2 ist
(vgl. Satz 1) und ferner bei # = 3 fiir Darstellungen [7, s] mit |7 — s| << 2 und bei
n =4 fiir [7, s] = [0, 0] oder [1, 1].

Schliesslich sei noch bemerkt, dass die Sitze dieses Abschnittes ihre Giiltigkeit
behalten, falls man statt Ith-saturierte Gebiete D C C*”» IH-Urbilder M von analy-
tischen Mengen in Gebieten G C C"+) und iiberall die stark holomorphe Struktur be-
trachtet. Ein typisches Beispiel ist die « Massenschale» M im Raum C*” der komplexen
Impulsvektoren (p;, ... p,), definiert durch

Gop)=m (Q<i<n), D=0 (5.7)
i-1
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Nach Beriicksichtigung des Energie-Impuls-Erhaltungssatzes ldsst sich M auch auf
der im C*®-1 der Variablen ¢,, ... p,_, eingebetteten komplexen Mannigfaltigkeit

n-1
(es sei Hm, + 0)
V=A{y - bur): s ) =m}, 1 <1 <n—1} (5.8)

als das genaue Nullstellengebilde eines Polynoms

b1+t buv it Pp) — (5.9)

charakterisieren, dessen Singularititenmenge mindestens 2-codimensional ist. Daher
n—-1

ist fir H m; + 0 die «Massenschale» M eine normale algebraische Menge im G*" auf
i-1

Grund eines Satzes von K. Oka19). In diesem Fall ist die Forderung der starken Holo-
morphie von selbst erfiillt.

§ 6. Anwendungen

Wie wir es schon in der Einleitung ausgefiihrt haben, dient die vorliegende Unter-
suchung der Aufklirung des Zusammenhanges von L_(C)-kovariantem Transforma-
tionsverhalten und Analytizitdtseigenschaften in relativistischen Theorien.

Ein mathematisch klar umrissenes Anwendungsgebiet liegt in der allgemeinen
Quantenfeldtheorie vor. Dazu betrachten wir eine lokale relativistische Quantenfeld-
theorie im Wightman’schen Sinne!)?) mit temperierten Feldoperatordistributionen
PH(x) (k=1,2,3...; 1 <u < mn) in einem Hilbert-Raum § und speziell mit dem
relativistischen Transformationsgesetz

Ula, A) y¥(x) Ula, 4)~1 = SW(A-1, A1) v (A x + a) (6.1)

fiir (@, A) aus der universellen Uberlagerungsgruppe I ' der inhomogenen eigentlichen
orthochronen reellen Lorentz-Gruppe I',, wobei A = A(4, A) nach (2.4) definiert ist
und (¢, A) > U(a, A) eine stetige unitire Darstellung von I', in § ist und

(4, B) — S®W(4, B) (6.2)

eine o. E. irreduzible Darstellung [7, s] von S L(2,C) ® S L(2, C).
Dann sind bekanntlich die Vakuumerwartungswerte

W n(xy, ... x,) = (£, "P,E;‘,")(xo) e P () Q) -. (6.3)

Hn

als temperierte Distribution in den Differenzvariablen & =, —x; ;, 1 <1 <,
Randwerte von holomorphen Tensorfeldern Wﬁi:::iﬁ(cl: ... &), den «(n+ 1)-
Punkt-Funktionen». Nach einem Satz von BArRGMANN, HarL und WIGHTMAN?) ist
W ﬁz(é‘l, ... £,) zunichst holomorph in der «ausgedehnten Rohre» I, :

T, = (G L) TG - L), A€ LY(C) mit ImZleV, i=AL} (64)

(V.. sei der Vorkegel im reellen 4-dimensionalen Minkowski-Raum) und transformiert
sich dort L (C)-kovariant fiir (4, B)e SL(2,C) ® S L(2, C):
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Wﬁ:;z (A(A' B) Clr ./J.(A, B) Cn) l

- (6.5)
— SW(A, B ... SUn(A, By Wh (e, L)

Die Wightman-Funktionen zu zweideutigen Darstellungen (6.5) verschwinden iden-
tisch, wahrend sich die anderen eindeutig analytisch und L (C)-kovariant in die Ver-
einigung der «permutierten Rohren» ¥ = U P(g) I, fortsetzen lassen)3)13). Die
Gebiete T, und T7 sind I-saturiert. 8 n+1

Aus unseren Untersuchungen folgt zunichst eine lokale Standardzerlegung (jeder
irreduziblen Komponente) von Wﬁ‘;jj‘_ﬁ;‘(é‘l, ... ¢,) nach Satz 3. Die Wightman-Funk-
tionen zu Darstellungen vom Typ [0, 0] sind speziell stark holomorph auf der L, (C)-
Invariantenvarietdt 7+(3)) und erlauben lokal eine Zerlegung nach Satz 3, wahrend
man jeder L(C)-invarianten Wightman-Funktion in kanonischer Weise eine auf
MP = I(T]) stark holomorphe Funktion in den Skalarprodukten zuordnen kann.
Stets konvergiert lokal eine Potenzreihe in den Invarianten.

Fiir die 2- und 3-Punktfunktionen ist nach Satz 4 stets eine eindeutige Standard-
zerlegung in ganz IF moglich mit holomorphen Koeffizientenfunktionen in dem
Gebiet M) der Skalarprodukte (» = 1, 2). Wendet man das Fortsetzungsverfahren
von KALLEN und WicHTMAN¢) oder RUELLEY?) zur Berechnung der Holomorphie-
hiille $(IML) auf diese Funktionen an, so ist bekanntlich das Resultat trivial fiir
n = 1, und fiir n = 2 folgt unmittelbar der

Satz: Die 3-Punkt-Funktionen Wh* (7 ¢) von 3 lokalen Spinorfeldern
y;ﬁfﬂ"’(xo), P (xy), 'q)ﬂf:) (x,) lassen sich stets eindeutig analytisch und L,(C)-kovariant
in das Kéallén-Wightman-Gebiet I-1($(0if)) fortsetzen.

Aus der Diskussion der Randhyperflichen der ausgedehnten Rohren ¥, und der
Skalarproduktvarietat 9t, (13)16)18-22)) folgt bis heute, dass alle I, mit » < 4 Holo-
morphiegebiete sind. Nach Satz 3’ existieren in diesen Gebieten fiir die Wightman-
Funktionen globale holomorphe Standardzerlegungen.

Fiir n > 4 ist die Skalarproduktvarietit i, eine algebraische Menge in einem
Gebiet G C C"=+12, Aus der Charakterisierung der Randpunkte von I, nach KALLEN
und WiGHTMAN ) und JosTt8) folgt, dass man als G das I-Bild I der ausgedehnten
Rohre I’ von n n-Vektoren wihlen kann. Denn der eingehenden Analyse von

WIGHTMAN in 13) folgend kann man zeigen, dass die Randpunkte in
B3 = 0% N 0T} (6.6)

als spezielle Randpunkte von T} (mit jeweils verschwindenden letzten » — 4 Kom-
ponenten) durch keine #-dimensionale komplexe Lorentz-Transformation in das
Innere von 3, gedreht werden konnen, und daraus folgt 1€), dass I, in PV, abge-
schlossen und damit algebraisch ist23). Daher ist I, Holomorphiegebiet, wenn man
beweisen konnte, dass 7' oder, dquivalent nach einem Satz von RUELLE?), i,
Holomorphiegebiet ist. Aus der letzteren Tatsache liesse sich weiter schliessen, dass
sich die L4(C)-invarianten Wightman-Funktionen W -*»({,,...,) von n +1
Skalarfeldern holomorph und L*(C)-invariant in die ausgedehnte Rohre I}’ von #
n-Vektoren fortsetzen liessen. Dies folgt unmittelbar aus der Bemerkung in Anschluss
an Satz 2 in § 5., sogar mit zusitzlichen Aussagen iiber das Wachstum der (nicht ein-
deutig bestimmten) analytischen Fortsetzungen (%), Seite 240). Man hat nur zu be-
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nutzen, dass dann W¥---*(Z ... () holomorph ist auf der in dem (hypothetischen)
Holomorphiegebiet 9t normal eingebetteten algebraischen Menge IN,.

Auch fiir die verallgemeinerten retardierten Funktionen (26-2%)) von Spinorfeldern
yi*) existieren lokale Standardzerlegungen im komplexen Impulsraum.

Als zweite wichtige Anwendung unserer Methoden untersuchen wir das Problem
der invarianten Amplituden in einer S-Matrix-Theorie%). Das S-Matrix-Element
eines Wechselwirkungsprozesses von % einlaufenden und # — % auslaufenden Teilchen
der Impulse p, und der Spinzustinde ay, (p;) (auf eine zusitzliche Isospin-Multiplizitat

werde hier nicht eingegangen) ist im wesentlichen gegeben durch die Feynman-
Amplitude %))

?8'(15, a) = 8(?) ﬁn’ al’ un) |

(6.7)

= @ (P) - A8 T nBrr o B BT (B o (B
WO T, ...0nP1 -+ Pr) = F(p) ein L{!) -kovarianten Tensorfeld ist, und zwar die
Fouriertransformierte des Vakuumerwartungswertes eines zeitgeordneten Produktes
der Feldoperatoren der wechselwirkenden Teilchen mit Differentiationsoperatoren
(0 + m?, (y* 0, + m), je nach Transformationscharakter. Dabei geht in (6.7) nur
der Wert von &,(p) auf der Massenschale (5.7) ein. §,(p) ist kontrahiert mit den
Kovarianten a (p;), die die Polarisationszustinde der in- und out-Teilchen charak-
terisieren.

In den Untersuchungen iiber das Verhalten von Streu- und Produktionsamplitu-
den postuliert man (oder beweist in gewissen Fillen) Analytizitdtseigenschaften fiir
das Tensorfeld §,(p) in den komplexen Vierervektorvariablen p;. Setzen wir also
voraus, dass ,(#) holomorph und L ,(C)-kovariant ist auf einer L ,(C)-invarianten
offenen Menge D auf der Massenschale M der Variablen #,, ... $,. Dann ist es fiir die
Theorie wichtig (zum Beispiel fiir die Aufstellung von Spektraldarstellungen einer
betrachteten Klasse von analytischen Funktionen), ob es einen endlichen Satz von in
D holomorphen L ,(C)-invarianten Amplituden A4,(p), 1 < n < N, gibt und einen
Satz von «kinematischen» Standardinvarianten B,(p, a), 1 << n << N7) gebildet aus
den Impulsen #; und den Spingrissen a/, derart dass die Feynman-Amplitude (p, a)
zerlegbar ist in:

N

5, a) = Z;An(P) B, a) - (6.8)
Dabei soll das Invariantensystem mdoglichst minimal sein und den physikalischen
Nebenbedingungen geniigen (zum Beispiel (2 y p; + m;) n; = 0 fiir Spin 1/2-Teilchen
und p; ¢; = 0 fiir Spin 1-Teilchen).

Die Existenz einer Zerlegung (6.8) ldsst sich formal (das heisst ohne Riicksicht auf
Konvergenz) aus der Storungstheorie plausibel machen?). Ferner existieren Vor-
schriften, wie man in gewissen konkreten Fillen einen Zerlegungsansatz (6.8) mit
vorgegebenen Invarianten B,(p, a) auf die Abwesenheit von «kinematischen» Singu-
larititen priifen kann?3°).

Aus den vorliegenden Untersuchungen bietet sich nun fiir /tP-saturierte offene
Mengen D C M die folgende allgemeine und von der Stdérungstheorie unabhdngige
lokale Losung dieser Aufgabe an: man zerlege das in D stark holomorphe Tensorfeld
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(vgl. die Bemerkungen am Ende von § 5. iiber M) lokal in Standardkovarianten der
irreduziblen Komponenten von &, (#) und in L,(C)-invariante holomorphe Koeffi-
zientenfunktionen. Die QU'*1(p) werden weiter mit den Spingrissen a’/ kontrahiert
und ergeben nach Anwendung der physikalischen Nebenbedingungen?) singulari-
tatenfrei ein fiir Prozesse von Teilchen mit nichtverschwindender Ruhemasse mini-
males System von Invarianten B,(p, a).

Ist D holomorph-konvex, wie im Falle der 2-Teilchen-Streuamplitude mit Holo-
morphie in dem von MANDELsTAM®!) postulierten Gebiet auf der Massenschale, oder
wenn Satz 4 anwendbar ist, so gewinnt man auf diese Weise ein globales System von
holomorphen invarianten Amplituden 4, der Standardinvarianten B,, 1 <<n << N.

Meinem verehrten akademischen Lehrer, Herrn Prof. Dr. R. JosT, méchte ich an
dieser Stelle herzlich fiir seine begeisternde Einfithrung in die mathematische Physik
und sein stetes Interesse danken, dann besonders den Herren Dr. H. ARAKI und Dr.
D. RuELLE fiir viele hilfreiche Ratschlige und wertvolle Kritik und Herrn Prof. Dr.
M. F1Erz und den Freunden am Seminar fiir theoretische Physik der ETH fiir viele
anregende Diskussionen.

Literaturverzeichnis

1) A. S. WicnTtmaN, Phys. Rev. 707, 860 (1956).

%) H.LeumanN, K. SyMmanzik und W. ZIMMERMANN, Nuovo Cim. 7, 205 (1955); ibid. 6, 319 (1957).

%) R. Jost, Quantum Theory of Fields and Elementary Particles, Boulder-Lectures, 1960.

Y) G. F. CHEW, S-Matrix Theory of Strong Inieractions, New York (1961), und dort aufgefiihrte
Literatur. -

. Harr und A. S. WicHTMAN, Dan. Vid. Selsk. Mat.-Fys. Medd. 37 Nr. 5 (1957).

. WevyL, Classical Gvoups, Princeton (1946).

. C. HEARN, Nuovo Cimento 27, 333 (1961).

. HEPP, Dissertation, Ziirich (1962), (ersch. in Math. Ann.).

.L. vANDER WAERDEN, Die gruppentheoretische Methode in der Quantenmechanik, Berlin, (1932).

. S. WIGHTMAN, in Dispersion Relations and Elementary Particles, Paris (1960).

L. vaN DER WAERDEN, Math. Ann. 95, 706 (1926).

. GRAUERT und R. REMMERT, Math. Ann. 736, 245 (1958).

S. WicgaTMAN, J. Indian Math. Soc. 24, 625 (1960).

. CARTAN, Variétés analytiques complexes et cohomologie, CBRM, Briissel (1953).

. Oka, J. Math. Soc. Japan, 3 (1951).

KALLEN und A. S. WicHTMAN, Dan. Vid. Selsk. Mat.-Fys. Skrifter 7 Nr. 6 (1958).

. RUueLLE, Helv. Phys. Acta 34, 587 (1961).

. JosT, Lectures at the Inteynational Spring School of Physics, Napoli (1959).

KALLEN, Nuclear Phys. 25, 568 (1961).

C. MANOHARAN, J.Math. Phys. 3, 853 (1962).

. H. MOLLER, preprint.

Luzzatro, unvertifentlicht.

. REMMERT, Math. Ann. 733, 328 (1957).

. RUELLE, private Mitteilung.

. GRAUERT, Math. Ann. 729, 233 (1955).

STEINMANN, Helv. Phys. Acta 33, 257 und 347 (1960).

. RUELLE, Thése, Briissel, 1959 und Nuovo Cim. 79, 356 (1961).

. Araxki, J. Math. Phys. 2, 163 (1961) und Progr. Theor. Phys., Suppl. 78, 83 (1961).

. L. GOLDBERGER, Dispersion Relations and Elementary Particles, Paris (1960).

. L. GOLDBERGER, M. T. Grisarvu, S. W. McDoweLL and D. Y. Wong, Phys. Rev. 720, 2250

960).

81) S. MANDELSTAM, Phys. Rev. 772, 1344 (1958) und Phys. Rev. 775, 1741 (1959).

3) R. Jost, in Theoretical Physics in the Twentieth Century, New York (1960).

[ =~ v v = =
S S  e W N = O e 0 N ;W
> oo

EES 8B R ERRBEE S8 EEEEE 00 o
FNDEENUOEURNQZPp QR UQRE P I W > B R

(=]
<



	Lorentz-kovariante analytische Funktionen

