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Bestimmung der Kennwerte von Tunneldioden

von E. Baldinger und U. Spycher
Institut für angewandte Physik der Universität Basel

(28. X. 62)

Als die ersten Tunneldioden in Laborausführungen erhältlich waren, galten unsere
Messungen ihrem Impulsverhalten. Dabei beobachteten wir Verzögerungseffekte, die

zwar qualitativ erklärt werden konnten1), es aber angezeigt erscheinen liessen, den

Kenngrössen dieser Elemente detailliertere Untersuchungen zu widmen. Daraus ist
die vorliegende Arbeit entstanden. Die darin enthaltenen quantitativen Angaben und
Messungen beschränken sich auf Germaniumdioden, die grundsätzlichen Überlegungen

gelten jedoch auch für Dioden aus anderen Materialien.

1. Gleichstromkennlinie

Der Verlauf der Gleichstromkennlinie (Figur la) und insbesondere der Spitzenstrom

als Schwellenwert sind für die Anwendungen von grosserBedeutung. Die Theorie
der Kennlinie soll im folgenden dargestellt und daraus auf das Temperaturverhalten
von Ip geschlossen werden.

7.7. Theorie der Kennlinie

Links vom Punkt A (vgl. Figur la) ist der Strom durch innere Feldemission
(Tunneleffekt) gegeben und kann in folgender Form dargestellt werden2)3) :

I=KFrPJ. (1)

Darin bedeutet K eine materialabhängige Konstante, F das Feld in der Raumladungszone,

P die Tunnelwahrscheinlichkeit und / das sogenannte Esaki-Integral (vgl. (3)).
Je nach den zugrunde gelegten Annahmen erhält man für den Exponenten r Werte
zwischen 1 und 3.

Die Tunnelwahrscheinlichkeit ist in guter Näherung gegeben durch3)

P^exp(--2^;^) (2)

mit dem Planck'schen Wirkungsquantum h, der Elementarladung e und der Breite
der verbotenen Zone AE. Über den genauen Wert der in (2) einzusetzenden effektiven
Masse m* herrscht Unsicherheit, m* bestimmt sich aus einer Kombination der effekti-
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ven Massen von Elektronen und Löchern. In der Literatur findet man - entsprechend
den verschiedenen Approximationen - für Ge-Angaben zwischen 0,1 m0 bis 0,4 m0,
wobei die experimentell ermittelten Werte im allgemeinen höher liegen als die theoretisch

abgeschätzten3)4).
Bei Tunneldioden sind sowohl n- wie p-Seite über die Entartungsgrenze dotiert.

Bei kleinen Vorspannungen erfolgen deshalb die Elektronenübergänge zwischen dem

Leitungsband der «-Seite und dem Valenzband der p-Seite in beiden Richtungen
(Esaki-Strom Ipn und Zener-Strom Inp gemäss Figur lb). Der Zuwachs dlpn (E) bzw.
dlnp (E) je Änderung dE ist für jeden Energiewert E durch das Produkt aus der Zahl
der dort verfügbaren Elektronen und der Anzahl der auf der anderen Seite vorhandenen

unbesetzten Zustände gegeben. Unter der Voraussetzung gleicher
Tunnelwahrscheinlichkeit für Übergänge in beiden Richtungen lassen sich die Integrale für den
Gesamtstrom zum Esaki-Integral / zusammenfassen :

{f,(E)-fv(E)}Ql(E)Qv(E)dE (3)

mit den Fermi-Verteilungen /,(£) und /„(£) für das Leitungsband bzw. Valenzband,
den Zustandsdichten q,(E) bzw. qv(E) und den Bandrändern E{ und Ev (Figur lb)5)6)7).

TÌScVA

unbes. Zust
ElektronenClt'KKUI ICI I

'ZZZZZÈ

Fig. la
Gleichstromkennlinie

Fig. lb
Bändermodell und Teilströme

Bei grösseren negativen Vorspannungen fliesst praktisch nur noch der Zener-Strom Inp
Und das Esaki-Integral darf in erster Näherung proportional zur Spannung gesetzt
werden (vgl. Abschnitt 4.2.1.). Für positive Vorspannungen < 150...200 mV ist es

jedoch gerade dieses Integral, das der Kennlinie ihr Gepräge gibt. Entsprechend
seinem Verlauf wäre rechts vom Punkt A (Figur la) ein steilerer Stromabfall, praktisch

bis auf Null, zu erwarten. Es scheint heute hinlänglich gesichert, dass der im
Gebiet A-B auftretende Zusatzstrom, der sogenannte Exzeß-Strom, durch
Tunnelprozesse über Störterme in der verbotenen Zone hervorgerufen wird. Sein Verlauf lässt
sich durch einen ähnlichen Ansatz wie für den Tunnelstrom erfassen8)9).
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Rechts vom Punkt B geht die Kennlinie bei steigender Spannung allmählich in
diejenige einer normalen vorwärtsgepolten Flächendiode über, für die der bekannte
Zusammenhang

'-'-Mir-)"1) (4)

gilt.
7.2. Temperaturverhalten des Spitzenstromes

Bei Dioden verschiedener Herkunft wurde der Spitzenstrom im Temperaturbereich

von 0 bis 60°C gemessen. Dabei ergab sich, dass Dioden ein und desselben
Herstellers meistens einen ähnlichen Temperaturgang zeigen. Zwischen den verschiedenen

Fabrikaten stellt man jedoch erhebliche Unterschiede fest. In Figur 2 ist der
Verlauf für drei Diodentypen dargestellt*). Es soll im folgenden gezeigt werden, dass
dieses Verhalten qualitativ verstanden werden kann. Wir untersuchen dazu die
Temperaturabhängigkeit der einzelnen Faktoren in Gleichung (2). Zunächst betrachten

wir das Esakiintegral :

MT
IdO

50 T CC)

o gemessen
X gerechnet für Diode 2

Fig. 2

Temperaturkoeffizient
1 Clevite Labordiode, 2 Standard JK 10 A, 3 Bell Labordiode

Bei entarteten Halbleitern ist die Lage des Ferminiveaus nur schwach temperaturabhängig,

d.h. die Zahl der freien Ladungsträger bleibt praktisch konstant. Hingegen
ändert sich ihre Energieverteilung. Bei steigender Temperatur stehen im Intervall
Ei... Ev im Leitungsband weniger Elektronen und im Valenzband weniger freie Plätze
zur Verfügung, so dass der Wert des Integrals (3) abnimmt. Wie von Winstel gezeigt
wurde9) kann Gleichung (3) in erster Näherung wie folgt dargestellt werden:

J**J'=(Zn + Zp-e U)2 ¦ tanh [AAf (5)

*) In der Literatur findet man ebenfalls Messungen und Abschätzungen, die auf einen positiven
oder negativen Temperaturkoeffizienten führen4)8)9)10).
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wobei Zn bzw. Zp den Abstand des Ferminiveaus vom entsprechenden Bandrand
angibt. Damit ist J(T) näherungsweise analytisch gegeben.

Die Tunnelwahrscheinlichkeit P ist wegen der variablen Breite der verbotenen
Zone ebenfalls temperaturabhängig. Um über P quantitative Aussagen machen zu
können, muss Gleichung (2) vorerst umgeformt werden :

Über der Raumladungszone liegt die Spannung

V Vi-U=\ (AE+Zn + Zp)-U.

Aus typischen Werten für Ge (Z„ bzw. Zp40... 100 meV, Up 35... 100 mV, AE
660 meV) schliessen wir, dass für die Spitzenspannung näherungswiese gilt

Bei einem abrupten ^»-«-Übergang erhält man für die Breite der Raumladungszone d

_ I 2 e V (p + n) \i/2
_

/ 2 e V \i/2 /1 1 \i/2 / 2 e V U/s
\ en p \ e j \ n p / \ e /

mit * [(1/w) + (1IP)A2 und der Dielektrizitätskonstanten e in MKS-Einheiten.
Für die maximale Feldstärke folgt aus der gleichen Voraussetzung

F =lü.max j
Gleichung (2) beruht auf der Annahme eines konstanten Feldes. Chynoweth et al.3)
fanden beste Übereinstimmung mit ihren Messresultaten, wenn für die Feldstärke

Fmax V y 2
P __ ___. _

gesetzt wurde.
Das heisst mit unserer Näherung :

"- f* (X)'X - (X)'X-
Die Tunnelwahrscheinlichkeit ergibt sich damit zu

„ / n2 (m*)1'2 e1'2 AE x \P eXP 1 ^Ä ' (6)

Zwischen ln (Ip) und x ist also ein linearer Zusammenhang zu erwarten. Von Füru-
kawa sind entsprechende Messungen für die Spitzenstromdichte veröffentlicht
worden11). Bemerkenswert ist in diesem Zusammenhang, dass unter der Annahme einer
effektiven Masse m* 0,1 m0 die von Furukawa gemessene Steigung [A ln (IJA)~\IAx
einer verbotenen Zone AE 580 meV entspricht. Dies ist in guter Übereinstimmung
mit dem von Winstel und Heywang für solche Dotierungen und diesem m* berechneten

Wert12). Der Parameter x in Gleichung (6) kann somit der Arbeit von Furukawa

entnommen werden, vorausgesetzt, dass wir die Junctionfläche unserer Dioden
kennen. Diese lässt sich aber mit Hilfe einer Kapazitätsmessung ermitteln:
22 H. P. A. 36, 3 (1963)
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Bei einem abrupten Übergang ist die Raumladungskapazität pro Flächeneinheit
ebenfalls eine Funktion von x :

das heisst

Ce
A ~ d [e2Ey) -, {A Jun tionflä he)

x I e e \l
A \ 2 F

Vl/2 1

c -

X

(8)

Ip
cm2

10J

(A)

102

10'

10"'

«10 cm

¦*" ««'
Fig. 3

Spitzenstromdichte in Funktion der Dotierung (As) für Ge-Dioden

a nach Furukawa n) ,b aus den gemessenen Grössen /„und C mit der Junctionfläche A als Parameter
Der Schnittpunkt von a) und b) liefert die gesuchten Grössen x und A.

0,1 •

•

s-^ _^—s

lptfl

50'C T

""-^ Moj£!2l
MO) Ir 2

le - Fr(T)p(T) .j'en
- '°S -£gj

0.1-

Fig. 4

Temperaturverhalten dos Spitzenstromes I gerechnet für Diode 2

Aus den gemessenen Grössen Ip und C (siehe Abschnitt 4.1. und 4.2.2.) lassen sich mit
Hilfe von Gleichung (8) und dem in Figur 3 wiedergegebenen Zusammenhang
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In (IpjA) f(x) die Werte x und A graphisch bestimmen und daraus der Temperaturgang

der TunnelWahrscheinlichkeit berechnen.
Der Faktor Fr ist von viel geringerem Einfluss als Esaki-Integral und

Tunnelwahrscheinlichkeit. In Figur 4 sind die einzelnen Beiträge sowie der resultierende
Temperaturkoeffizient des Spitzenstromes für die Versuchsdiode Nr. 2 (Standard JK 10A,
Ip 4,9 mA, Up 42 mV) eingetragen.

Man sieht, dass sich das Temperaturverhalten im wesentlichen aus der Differenz
des Einflusses der Tunnelwahrscheinlichkeit und demjenigen des Esaki-Integrals
zusammensetzt. Beide Anteile sind von gleicher Grössenordnung, weshalb der
resultierende Temperaturkoeffizient positiv oder negativ ausfallen kann. Die aus Figur 4

folgenden Werte sind ebenfalls in Figur 2 eingetragen. Die massige Übereinstimmung
erklärt sich zum Teil dadurch, dass die Art des Dotierungsmaterials sowie der Her-
stellungsprozess der Diode die Feldverteilung beeinflussen und damit stark auf die
Tunnelwahrscheinlichkeit einwirken. Nicht berücksichtigt wurde zudem die
Druckempfindlichkeit des Spitzenstromes4). Je nach dem mechanischen Aufbau der
Diodenhalterung kann sie den Temperaturkoeffizienten im positiven oder negativen
Sinn beeinflussen.

2. Ersatzschema

In Figur 5 ist das heute allgemein verwendete Ersatzschema der Tunneldiode
dargestellt. Es wurde bereits von Sommers13) vorgeschlagen und stellt eine gute erste
Näherung dar. Die Kapazität C und der Widerstand R, charakterisieren den eigentlichen

/i-M-Übergang. C ist als Raumladungskapazität nach einem Wurzelgesetz von
der Spannung abhängig. Für grosse Ströme im Diodenast der Kennlinie kommt
allerdings noch eine merkliche Diffusionskapazität dazu. Rj — dUfdl ändert sich
entsprechend dem Verlauf der Gleichstromkennlinie sehr stark. Es ist für U < Up positiv,
für Up < U < Uv negativ und nähert sich schliesslich dem Wert

kT
X/=T7 •

Der Zuleitungswiderstand rs und die Induktivität Ls stellen den Einfluss der
Bahngebiete und der Halterung dar. Sie sind praktisch unabhängig vom Arbeitspunkt. Das
Ersatzschema ist allenfalls zu ergänzen durch die Schaltkapazität Cs.

o—.—cz!—rÜÜCTv-

=^cs C=F Ri

Fig. 5

Ersatzschema

Bei den heute käuflichen Ge-Dioden mit Spitzenströmen im Gebiet von 1 bis
10 mA beträgt C 2 bis 50 pF. Der minimale negative Wert von i£- liegt zwischen 100ü
und 10 Q. rs ist normalerweise < 1 Q und Ls beträgt je nach Halterung 0,5 bis 10 nH.
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3. Stabilitätsbetrachtung

H. P. A.

Eine ins Gebiet des negativen Widerstandes vorgespannte Tunneldiode entdämpft
die mit ihr gekoppelte Schaltung und verursacht deshalb unter bestimmten
Voraussetzungen Instabilitäten. Es soll im folgenden anhand von Näherungslösungen der

Differentialgleichung untersucht werden, unter welchen Bedingungen sich ein Arbeitspunkt

im fallenden Teil der Kennlinie stabil einstellen lässt und welcher Art andernfalls

die Instabilitäten sind.

3.7. Differentialgleichung

Speist man die Tunneldiode aus einer Spannungsquelle über den Innenwiderstand
Ru und die Verdrahtungsinduktivität Lu, so erhält man für Wechselstromgrössen das
Schema nach Figur 6. Die nichtlineare Diodenkennlinie denken wir uns um den

Arbeitspunkt U0, I0 in eine Potenzreihe entwickelt. Für kleine Änderungen ^jjund u
ergibt sich somit

P„(u) a.u + ßu24-yu3 (9)

Die Spannungsabhängigkeit der Diodenkapazität kann für diese kleinen Abweichungen

von U0 vernachlässigt werden.

T" D

"C=£

Fig. 6

Wechselstromschema für Stabilitätsbetrachtung

Aus den beiden Maschengleichungen (Figur 6)

T di 1

rt + L-dt+u 0, c (i — iD) dt —

erhält man die Differentialgleichung des Systems in u :

LC dt2 ' dt
du I „ T diD \7rX + £ 17. )4-uA-riDdu

(10)
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oder mit der Substitution du/dt v

u v, v - -A-6 (1 + r oc) - v {A- + AÇj + Q(Ut v) (lOa)

Im Polynom Q(u, v) sind alle Terme zweiter und höherer Ordnung in u und v zu-
sammengefasst. Der Koeffizient a entspricht dem reziproken Junctionwiderstand
1/Rj nach Figur 5.

Derartige autonome (t nicht explizit enthaltende) nichtlineare Differentialgleichungen

sind von verschiedenen Autoren untersucht worden14^18)25). Eine qualitative
Lösung von (10) findet man graphisch: Für jede Anfangsbedingung (u0, v0) ergibt
sich in der Phasenebene (u, v) eine Phasenkurve, deren Gleichung man in differen-
tieller Form aus (10a) erhält:

v dv

A AA ^ w) ¦

Sie gibt für jeden Punkt (u, v) explizit die Neigung der Tangente. Mit Hilfe einer
Reihe von Isoklinen dvjdu const kann die Phasenkurve rasch approximativ
gezeichnet werden, womit eine Näherungslösung von (10) bekannt ist.

3.2. Stabilitätsbedingungen für einen Arbeitspunkt im negativen Ast

In der Phasenebene findet man die Gleichgewichtspunkte (singulären Punkte)
unseres autonomen Systems aus der Bedingung u v 0. Entsprechend dem Ansatz
(9) für iD folgt für den Gleichstromarbeitspunkt als einzigen Gleichgewichtspunkt
u v 0.

Zur Untersuchung der Stabilität des Arbeitspunktes genügt es nach einem
Theorem von Liapounov17), die linearisierte Differentialgleichung zu betrachten.
Man erhält dann aus (10a) unter Vernachlässigung des Termes Q(u, v) die charakteristische

Gleichung:

s2 + s(x + f) + /cXi + ^X0
mit den Wurzeln

^=y(-y)±nA+A-AA-
In den positiven Ästen der Diodenkennlinie ist a < 0 und die Lösung S,, S2 liegen in
der linken komplexen S-Halbebene. Ein solcher Arbeitspunkt ist somit immer stabil.
Im Gebiet der fallenden Charakteristik ist a < 0 und es sind verschiedene Fälle
möglich.

1. 1 + ra < 0.

Beide Wurzeln sind reell, aber von verschiedenem Vorzeichen. Der Arbeitspunkt ist
unstabil. Der Nullpunkt der Phasenebene ist ein Sattelpunkt mit hyperbolischen
Phasenkurven (Figur 7a).

1-f-roc ^1/j' ao< LC < 1 X + AA^ 4 \L • C) '
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Beide Wurzeln sind reell und von gleichem Vorzeichen. u(t) verläuft aperiodisch. Für
(r/L) A- (a/C) > 0 ist der Arbeitspunkt stabil und der u(t) charakterisierende Punkt
(u, v) läuft entlang der Phasenkurve gegen den Nullpunkt (Figur 7b). Ist (rjL) 4-

(a/C) < 0, so erhalten wir ein spiegelbildliches Phasenporträt und die Bewegung
strebt vom Nullpunkt weg.

3. r. \ I r a \°< 4-U-+ CJ
- 1 + r a< ^ L C"

Die Wurzeln sind komplex konjugiert. Bei einer Abweichung vom Gleichgewicht
stellt sich dieses mit einer gedämpften Schwingung ein, wenn irjL) + (a/C) > 0

(Figur 7c). Andernfalls ergibt sich eine periodische Schwingung um den Arbeitspunkt,
deren Verlauf durch die nichtlinearen Terme in (10) bzw. (10a) bestimmt wird.

X
¦35 5, ,5o<0I -"1

a) S,>0] reell
S2<0
Sattelpunkt

S, i S2 reell

Knoten

Re Cs] <0

V

c) S1(- S2komplex

Fokus

d) Abgrenzung der
Singularitäten

Fokus H stabiler Bereich

Fig. 7

Stabilitätsbetrachtung in der Phasenebene [u, v].

Die verschiedenen Bereiche sind in Figur 7d dargestellt. Ein Arbeitspunkt im
negativen Ast ist demzufolge nur stabil, wenn gleichzeitig gilt

1

C

ra. > 0

> 0 -

• r < I Rj I

-

L<r\R,\C.
(11)

(12)
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3.3. Schwingungen bei kleiner Abweichung von der Stabilität

Wie bereits erwähnt wurde, nähern sich bei einem nichtstabilen Fokus die Phasenlinien

mit zunehmendem t einer geschlossenen Kurve, dem sogenannten Grenzzykel.
Dieser stellt den von den Anfangsbedingungen unabhängigen periodischen Verlauf
u(t) für grosses t dar.

Die sich einstellende Amplitude soll nachstehend berechnet werden. Zur Lösung
solcher Probleme stehen verschiedene Methoden zur Verfügung14)15)16). Da wir uns
auf eine erste Näherung beschränken wollen, genügen die anschaulichen Überlegungen

nach Adronov und Chaikin17).
Mit co2 (1 + r A)ILC und h - [(rjL) + (a/C)] erhalten wir aus (10a)

ü + ft>ë u Q(u, ii) A- h ù

oder in allgemeinerer Form

ü A- œ2 u (co2 — o)02) u + Q(u, u) A- hit, |

(13)
/(«,»)• I

Wir betrachten
(ca2 - ml) u(t) + Q[u(t); ü(t)] G(t)

zunächst als externe periodische Störung mit der Periode 2vt/oj

oo

G(t) JA Gn ' os in co t) + Hn sin (ncot),
n-l

h sei negativ (Dämpfung). Es ist offensichtlich, dass unter diesen Voraussetzungen die
Lösung u(t) der Differentialgleichung (13) einer reinen harmonischen Schwingung
beliebig nahe kommt, wenn nur h klein genug ist.

Bei der betrachteten Tunneldiodenschaltung ist h im Bereich der fallenden Kennlinie

positiv und verursacht das Anfachen der Schwingung. Gif) ist eine im System
enthaltene, durch die nichtlineare Kennlinie bedingte Störung, welche für kleine
Amplituden periodisch in 2 njco ist und somit der oben gemachten Voraussetzung
entspricht. Wir erhalten in erster Näherung wiederum eine sinusförmige Lösung

U,(t)=Ksincot. (14)

Die Amplitude K ist abhängig von h. Gn und Hn sind ihrerseits Funktionen von K.
In dieser ersten Näherung müssen in (13) die Grundfrequenzterme von f(u, ii)
verschwinden. Daraus folgen die zwei Bestimmungsgleichungen für die Unbekannten
K und co :

G, + co h K 0 1

(15)
H, 0. I

Bevor wir zur expliziten Berechnung von co und K übergehen, soll anhand einer
Abschätzung des Klirrfaktors gezeigt werden, dass die Annahme einer Sinusschwingung
als erste Näherungslösung auch berechtigt ist.
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Wir setzen
00

U(t) £ K„ sin (n co t)
n =1

und nehmen weiterhin an, K, ^> Kn+1, so dass in guter Näherung gilt

G(u, u) G(K, sin (co t), m K, os (co t)).

Dann findet man, wie sich durch Einsetzen in (13) leicht verifizieren lässt

7^2 Cn A Hn GnA- Hn
n ~~

'AA-AAca'-An2 a>2 h2 < (»2-l)ö>4 „ > i '

Für den Klirrfaktor folgt somit

oo „ oo r2 \ u2
v1 jz2 v ^JiTiJnZ "-n Z — — —

ici _ m-2 »-2 n*-l
K\ < co* K2 ~ ¦

Die Grössen Gn und Hn ergeben sich aus (10) und (13). Unter Annahme eines Polynoms
dritter Ordnung in (9) erhält man zum Beispiel

^ + ^^^^bW + Tow)
CO t& ft)0

Für eine typische Hochfrequenzdiode wurden beim Arbeitspunkt £/0 180 mV mit
den in Abschnitt 5 beschriebenen Messeinrichtungen folgende Werte bestimmt :

Koeffizient nach (9)

/ 650 MHz a - 9,93 • 10~3 [mA/mV],
C 2,4 pF ß - 2,0 • 10-5 [mA/mV2],

K,= 10 mV v 4,5 • IO"7 [mA/mV3].

Nach den obigen Abschätzungen ergibt sich ein Klirrfaktor k < 1,5%. Bei einer
Schwingung über den ganzen Bereich der negativen Kennlinie (K, 100 mV) wird
k < 20%. Die Frequenzverschiebung beträgt ebenfalls nur wenige Prozent, so dass in
guter Näherung co2 « co2 (1 A- ra.)j(L C) gesetzt werden darf. Ferner sieht man,
dass bei Verringerung von r der Klirrfaktor abnimmt, gleichzeitig aber die Frequenz
steigt. Schuller und Gärtner haben das resultierende Amplitudenspektrum mit Hilfe
eines Computers berechnet18). Sie erhalten für Amplituden, die über den negativen
Ast hinausgehen, noch einen Klirrfaktor unter 10%. Dies rührt davon her, dass sie
ihren Rechnungen als Seriewiderstand r nur den Zuleitungswiderstand rs zugru nde
legten, eine Voraussetzung, deren Einfluss infolge der maschinellen Auswertung nicht
direkt ersichtlich ist.

Wir schliessen aus diesen Betrachtungen, dass die Annahme eines sinusförmigen
Verlaufs von U(t) für kleine Schwingungsamplituden berechtigt ist und wollen nun
K und co nach (15) berechnen.
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Die Diodenkennlinie werde durch ein Polynom fünften Grades angenähert :

iD Pb(u) =cr.uArßu2A-yu3A-oui4-cub.

Mit co2 - m\ Ü2 folgt für f(u, u)

f(u, u) Q2u-Kcocos (co t) [{- + X. XJ_M] _ _J_ {Pb(u) _ a u]

mit u K • sin (cot)

Die Bedingung verschwindender Grundfrequenzterme in f(u, u) führt auf die beiden

Gleichungen
3y K2 5 e iv1m K[h 4C 8C 0,

xp(K, Ü)=K (ü2 3yK2r 5 e K*
ALC XH-

(16)

(17)

Figur 8 zeigt den prinzipiellen Verlauf von K als Funktion von h nach Gleichung
(16). Von Bedeutung ist nur die obere Halbebene.

1kK2

-ly
\\

X--. h

Fig. 8

Amplitudenverlauf nach Gleichung (16)

Unsere bisherigen Überlegungen liefern keine Grundlage zur Beurteilung der
Stabilität der Schwingungsamplitude. Hierzu ist eine tiefergehendeAnalyse notwendig,
wie sie zum Beispiel von van der Pol16) mit Hilfe der Darstellung in der Phasenebene

durchgeführt wurde. Durch Transformation auf ein mitrotierendes Koordinatensystem

erhält er die Hilfsgleichung K const &(K), die man als Differentialgleichung
einer geführten Bewegung auffassen kann. Die Gleichgewichtspunkte Ki ergeben sich

aus K 0, was Gleichung (16) entspricht. Das Gleichgewicht ist stabil bei (dK{)l(dK)
< 0. Demnach ist eine Schwingung mit der Amplitude Kt stabil, wenn gilt

d $ (Kt
dK -<o.

Die Lösung K 0 erfüllt diese Bedingung solange h < 0. Mit e > 0*) ist K in der

ganzen oberen Halbebene stabil wenn y > 0.

*) e bestimmt nach (16) das Verhalten für grosses h, wo die Annahme eines sinusförmigen
Verlaufes von u(t) nicht mehr berechtigt ist. Die Amplitude der Schwingung ist dort praktisch
unabhängig von h. Die Annahme e > 0 trägt dem in erster Näherung Rechnung. Sie hat auf kleine
k in der Umgebung des Nullpunktes keinen Einfluss.
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Ist y < 0, so ist nur der Parabelast oberhalb des Scheitels stabil (Figur 8). Wie
erhalten also zwei grundsätzlich verschiedene Verhalten. Mit y > 0 ist für h < 0 die
Amplitude stets null (stabiler Arbeitspunkt). Für h > 0 wächst K kontinuierlich, der
Einsatz der Schwingung ist «weich» (Figur 9a). Ist y < 0, so ist für stark negatives h

die Amplitude null. Lässt man nun h kontinuierlich grösser werden, so springt K bei
h 0 auf einen grossen Wert, der durch die Nichtlinearität der Kennlinie gegeben ist
und unter Umständen ausserhalb der Gültigkeit unserer Näherung liegt. Macht man
nun h wieder kleiner, so nimmt die Amplitude nur schwach ab und fällt bei h h0 ani
null zurück (Figur 9b). Es ergibt sich eine Hysterese, das typische Kennzeichen der
«hart» einsetzenden Schwingung.

K2

Fig. 9a Fig. 9b

Arten des Anschwingens

10' 1

o Kr«, gemessen \ U0 m Theorie

r -*A
U„ mV40 200 240

Fig. 10

Koeffizient y / [/„) des kubischen Gliedes in iD P5 («), gerechnet aus der Messung von Rj

Die Grenze zwischen weichem und hartem Einsatz ist durch y 0 y (Uokrit)
gegeben. Die Spannung Uokril entspricht dem Wendepunkt der Kurve G, \_Rj(U^r\~1.
Der in Figur 16 dargestellte Verlauf von Gj ist typisch für alle Tunneldioden. Man wird
deshalb für U0 < Uokril einen weichen und für U0 < Uokrit einen harten Schwingungseinsatz

erwarten. Beide Arten des Anschwingens konnten experimentell eindeutig
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nachgewiesen werden. Wie Figur 10 zeigt, stimmen Theorie und Messung gut überein,
besonders, wenn man in Betracht zieht, dass der Einsatz der harten Schwingung eine

Arbeitspunktverschiebung von einigen mV verursacht, die hier nicht berücksichtigt
wurde. Das auch von anderen Autoren18) beobachtete, unterschiedliche Anschwingen
lässt sich somit durch die nichtsymmetrische Kennlinie und den daraus resultierenden
VorzeichenWechsel von y erklären.

Für einen Arbeitspunkt mit positivem y (U0 180 mV) wurde die Schwingungsamplitude

in Funktion von h gemessen. Auch hier ergibt sich Übereinstimmung innerhalb

der Messfehler (Figur 11).

mv

Rechnung
Messung

«10' [s']
L-L

Fig. 11

Schwingungsamplitude in Funktion der Induktivität

Aus Gleichung (17) ermittelt man schliesslich die Frequenzkorrektur ü2. In
unserer Versuchsanordnung variierten wir h durch Änderung von L. Da sich co20 und
Q2 mit L gegenläufig ändern, bleibt co2 annähernd konstant. Bei einer Amplitude
K 30 mV ermittelt man in Übereinstimmung mit der Messung eine Frequenzabnahme

um 1%.
Die beschriebene Messung der Amplitude ist ziemlich schwierig. Wie aus Figur 11

hervorgeht, darf die Induktivität nur um einige Prozente über ihren kritischen Wert
vergrössert werden. Dieser liegt für die untersuchten Dioden um 13 nH. Die Differenz
L — L0 liess sich mit einer Genauigkeit von 0,001 • L0 ermitteln. Die Spannungsmessung

ist ebenfalls mit einer systematischen Unsicherheit von ±10% behaftet.
Daraus resultiert der relativ grosse Messfehler in Figur 11.

4. Messeinrichtungen

Zur Bestimmung der Gleichstromkennlinie und der Parameter des Ersatzschemas
sind verschiedene Verfahren angegeben worden19-22). Sie beruhen auf
Impedanzmessungen, wobei die Aufspaltung in die einzelnen Elemente durch spezielle Wahl des

Arbeitspunktes und der Messfrequenz erfolgt.
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Es soll in Abschnitt 4.2. eine weitere Methode beschrieben werden, die unter
Heranziehung der Stabilitätskriterien eine einfache Ermittlung einzelner Parameter
im negativen Ast der Kennlinie ermöglicht.

4.1. Messung der Gleichstromkennlinie

Damit die Charakteristik einer Tunneldiode auch im negativen Teil gemessen
werden kann, hat die Schaltung den Stabilitätsbedingungen nach Abschnitt 3.2. zu
genügen. Der gesamte Seriewiderstand r muss demzufolge kleiner als Rjmin sein. Er
soll aber innerhalb dieser Einschränkung möglichst gross gemacht werden, um die

Anforderungen an die zulässige Induktivität L <
schärfen.

Dek. Spannungsteiler
(GR Typ 1A5A oder Helipot)

R, | C nicht unnötig zu ver-

R;

Fig. 12

Messung der Gleichstromkennlinie

rC=r-ÇZ^-W

220 V-
50 Hz

10 V

Diode

:

2S
H \ ::

4 3 :

I 1: Jm.t»"—*¦£»-/-t
_i AA

:

Fig. 13

a Kennlinienschreiber, b Kennlinie einer HF-Diode: (R, C)min 2 ¦ 10~10

Für Präzisionsmessungen hat sich die Anordnung nach Figur 12 am besten
bewährt. Die Brücke wird zunächst ohne Diode abgeglichen und liefert das
Spannungsteilerverhältnis a R2j(R, + R2). Schaltet man nun die Diode parallel zu R2, so
entsteht über R, ein zusätzlicher Spannungsabfall AU a ¦ R, • ID. Der erneute
Abgleich liefere das Teilerverhältnis b. Daraus folgt für Diodenspannung und -ström:

UD- U und A U b) U=aR,ID
oder

U a-
R, ~

Durch enge Verdrahtung mit einem 1/3 W Schichtwiderstand als R2 konnten alle
unsere Dioden stabil ausgemessen werden. Taucht man die Schaltung in Methylalkohol,
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der hochfrequente Schwingungen stark dämpft, so ergibt sich eine zusätzliche
Stabilisierung23).

Für Routinemessung lässt sich die Anordnung nach Figur 12 in einen einfachen
Kennlinienschreiber abwandeln (Figur 13a). Die Dimensionierung muss dem jeweiligen

Diodentyp und der Empfindlichkeit des Oszillographen angepasst werden.

4.2. Bestimmung der differentiellen Parameter

4.2.1. Zuleitungswiderstand und Junctionwiderstand

Für Tonfrequenzen sind coL und coC vernachlässigbar klein. In einer
Brückenanordnung nach Figur 14 misst man deshalb als Diodenimpedanz die Summe RD

rs + Rj. Wie im vorangehenden Abschnitt gezeigt wurde, muss dabei im negativen
Kennlinienast der Widerstand R2 parallel zur Diode geschaltet werden, so, dass die
Stabilitätsbedingungen erfüllt sind.

@_4kHz

0» o
v«

RjR;»R2

Fig. 14

Brücke zur Bestimmung von Ro rs A Rj

Der Junctionwiderstand wird mit zunehmendem negativem Strom immer kleiner.
rs und Rj lassen sich jedoch selbst bei extremen negativen Vorspannungen nicht
eindeutig trennen. In einer früheren Arbeit24) wurde gezeigt, dass die Bestimmung des

Zuleitungswiderstandes daher am besten durch Vergleich mit der Theorie der Kennlinie

erfolgt:
Über der Raumladungszone liegt die Spannung V Vi — U (vgl. Abschnitt 1.2.)

und für das Feld gilt die Beziehung F ~ V1'2. Aus Gleichung (5) folgt ferner, dass für
kleine negative Vorspannungen das Esaki-Integral annähernd proportional zu U ist.
Nach Gleichung (1) findet man unter diesen Voraussetzungen

/~<7Fe/2exp(-cF-1'2)
und

d(ln I)
d(\n V)

d(\n I)
1Ü U 1

2 V
alA_
2 J78/2

Da j U [ <sç Vi erhalten wir in guter Approximation

d(ln I)
d(in V)

dl U
dû

AL A-
T IA

1 — const U. (18)
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J R

r r. 0,8nIR R

r =o (Messung)

50 100 150 [mV]

Fig. 15

Bestimmung des Zuleitungswiderstandes (Bell Labordiode)

Gj.-L (mS)

U(mV)100 200 300

Fig. 16

Junctionleitwert

d(in I)/d(in U) liefert somit über U aufgetragen eine Gerade. Bezeichnen wir die an den
Klemmen gemessenen Werte mit ID, Un und RD dUDjdID, so wird bei Vorhandensein
eines Seriewiderstandes r

U UT r ID und Rj R,

Wir können also (18) in den gemessenen Werten UD, ID und RD ausdrücken und mit r
als Parameter auftragen. Die Krümmung der Kurve d(inI)ld(lnU) f(U) ist stark
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von r abhängig, so dass der auf eine Gerade führende Wert des Zuleitungswiderstandes
r rs rasch ermittelt werden kann (Figur 15). Der Junctionwiderstand folgt dann aus
Rj RD — rs (Figur 16). Wir erachten diese Methode als die zuverlässigste heute
bekannte Bestimmungsart von rs*)-

RD wurde bei negativen Vorspannungen mit einer Hochfrequenzmessbrücke ebenfalls

bei 100... 900 MHz gemessen. Für Rj ergab sich keineÄnderung mit der Frequenz.
rs zeigte bei einzelnen Diodengehäusen eine auf Skineffekt zurückzuführende
Zunahme24).

4.2.2. Junctionkapazität und Zuleitungsinduktivität

Die Bestimmung von C und Ls ist nach den üblichen Verfahren19)20)21) ziemlich
umständlich, da parallel zu C noch der Junctionwiderstand Rj liegt. Einzig im
Talpunkt und im Spitzenpunkt der Kennlinie fällt diese Einschränkung weg. Die kleinen
Werte der Parameter erfordern jedoch eine Hochfrequenzmessbrücke, wobei mit
verschiedenen Frequenzen gemessen werden muss, um eine Trennung von Ls und C
vornehmen zu können. Zusätzliche Komplikationen ergeben sich, wenn solche Messungen
bei einem Arbeitspunkt im negativen Ast der Kennlinie durchgeführt werden sollen, da
dort noch der zur Stabilität notwendige Dämpfungswiderstand zu berücksichtigen ist.

Diese Stabilitätsvorschriften gestatten hingegen, C und Ls ani andere Weise zu
bestimmen. In Abschnitt 3.2. wurde gezeigt, dass der Arbeitspunkt im negativen Ast
stabil ist, wenn gleichzeitig gilt :

1 + ra r oc ^ „L-r-->0 und -- + ->0.
Man schaltet nun in der Brücke nach Figur 14 eine variable Induktivität L in Serie
zur Diode und verkleinert den Ausdruck [(rjL) + (a/C)] kontinuierlich. Für [(r/L) A-

(a/C)] < 0 wird sich eine Schwingung um den Arbeitspunkt einstellen, denn für kleine
negative Werte von [(r/L) + (a/C)] ist sicher V4 [(r/Z.) + (a/C)]2 < (l + ra)/(ZC).
Nach den Untersuchungen in Abschnitt 3.3. ist die Amplitude dieser Schwingung
davon abhängig, ob die Ruhespannung U0 des Arbeitspunktes grösser oder kleiner als
U0kTit ist. Es sei U0 < Uokrit. Die Schwingung wächst dann mit grösser werdendem Z
stetig an. Man bestimmt die kritische Induktivität L0, bei der die Schwingung einsetzt.
Die totale in Serie geschaltete Induktivität beträgt somit LtBt L0 + Ls und es gilt

Für die Frequenz folgt nach 3.3.

Uxx + ^H- (19)

2 1-r-rq ,„„,
o0 ^-ry. (2°)

wobei wir gezeigt haben, dass bei kleiner positiver Abweichung der Induktivität von
Z0 die sich einstellende Frequenz praktisch unverändert bleibt. Die Messung von co0 ist
daher nicht empfindlich auf den exakt eingestellten Wert L0.

*) Bonin und Biard weisen in einer eben erschienenen Arbeit gleichfalls auf die Unzulänglichkeit
der üblichen Bestimmung von ra hin und schlagen eine analoge Ermittlung aus der Theorie

der Kennlinie vor26).
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Aus den Gleichungen (19) und (20) lassen sich C und Ls bestimmen

C L„A-LS E0A-LS

r\Rj\ col(L0 + Ls)2A-r2 '

L r\Ri\-(r2 + q)2L2) X < X)
r "-0 *-0

Ls folgt aus der Differenz von unabhängig voneinander bestimmten Werten gleicher
Grössenordnung. Es ist deshalb ein grösserer Messfehler zu erwarten.

ZF-Verst.
30 MHz

fi (=)Referenzspannung
je

L-AkHz

rr(t>
a> \

ï
C2=60uF

X
C,=16uF

¥
®

NF-Brücke

Lokalosz.
250-900 MHz

Frequenzmessung

Fig. 17

Messapparatur

In den ersten Versuchen benutzten wir eine Zweidraht-Lecherleitung als variable
Induktivität. Zur Ausmessung schneller Dioden wurde die Apparatur koaxial aufgebaut

(Figur 17). Die zur Ermittlung von Rj dienende Niederfrequenzbrücke ist über
eine Sonde mit dem Innenleiter des Koaxialsystems verbunden und wird während der
Bestimmung von Z0 und a>0 abgetrennt. Durch die Kopplungskondensatoren C, und
C2 wird verhindert, dass sich der Gleichstromarbeitspunkt infolge dieser Abtrennung
verschiebt.

Als Widerstand R2 dient der Wellenwiderstand der Frequenzmessapparatur
(Figur 17). Die Gleichstromzuführung erfolgt hochohmig in den Koaxialteil. Die bei-
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den Attenuatoren (G10) dämpfen restliche Reflexionen. Die Eingangsimpedanz dieser
Messkette wurde auf einer Hochfrequenzmessbrücke (General Radio Typ 1607 A)
geprüft. Innerhalb der Messgenauigkeit konnte kein Blindanteil festgestellt werden.
Die Anzeige des Zwischenfrequenzverstärkers wurde mit einem Meßsender geeicht,
so dass die Schwingamplituden absolut gemessen werden konnten (vgl. Figur 11).

Die Induktivität besteht aus einer kurzgeschlossenen 50-ß-Leitung von 0... 20 cm
Länge (umgebauter GR-Stub). Da die ohmschen Verluste dieser Leitung gegenüber
dem Blindwiderstand sehr klein sind, gilt für ihre Eingangsimpedanz angenähert

Z(co, l) Rt (co, l)+j 50 tg(^L)
mit der Leitungslänge l und der Wellenlänge X.

¦It so n

1 cm
i 1

DIODE

ZENTRIERSCHEIBE

Fig. 18

Diodenhalterung

[pFf
0,2

0,1

1

?TT

100

ks

gemessen auf GR-Brücke

gemessen nach 5.2.2

~x-.

200

Fig. 19

Diodenkapazität

300 [mV]

Mit Hilfe einer blinden Diode, das heisst einer metallischen Nachbildung der
äusseren Diodenform, wurden für die Induktivität samt Diodenhalterung (Figur 18)

entsprechende Eichkurven aufgenommen. Die Messungen erfolgten mit der bereits

23 H. P. A. 36, 3 (1963)
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erwähnten Hochfrequenzmessbrücke. Für den Blindanteil ergab sich eine sehr gute
Übereinstimmung mit dem angegebenen Tangensgesetz.

Der Wirkwiderstand RL(m< l) beträgt bei den gemessenen Frequenzen von
600... 800 MHz ungefähr 1,5 Q. Er ist in Serie zu R2 zu berücksichtigen.

Mit dieser Apparatur liessen sich C und Zç für verschiedene Dioden bei Vorspannungen

zwischen 120.. .240 mV ermitteln.
Die Kapazität wurde zudem mit der Hochfrequenzmessbrücke im Spitzen- und

Talpunkt bestimmt. Typische Resultate sind in Figur 19 aufgetragen. Die beiden
Messmethoden liefern übereinstimmende Ergebnisse. Das erwartete Wurzelgesetz für
die Kapazität findet sich bestätigt. Für die Zuleitungsinduktivität erhält man Ls
0A ± 0,2 nH.

Dem Schweizerischen Nationalfonds danken wir für die finanzielle Unterstützung
dieser Arbeit.
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