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Speculation on the Band Structure of the Layer Compounds
GaS and GaSe

by Gaston Fischer*)
Division of Pure Physics, National Research Council, Ottawa, Canada.

(20. X. 62)

Abstract. The two compounds GaS and GaSe are characterized by structures built up by the
stacking of distinctive layers and it is therefore tempting to consider each layer as a two-dimensional

conductor. Each single layer has trigonal symmetry, with the trigonal c-axis being perpendicular

to the layer. The reduced Brillouin zone of these two-dimensional crystals is therefore a
hexagon. The number of molecular units, e.g. GaSe, per unit cell is two, so that there are 18
valence electrons. The compounds are semiconductors and thus the first nine zones are full, with
the energy gap lying between the 9th and 10th zones. Construction of the free electron sphere,
here a circle, suggests that the valence band has either a single or a two-fold maximum at the zone
centre. The conduction band, on the contrary, appears to have extended minima on the zone
sides and a single minimum at the zone corner. These theoretical considerations are compared with
the experimental data and a more detailed band structure is then proposed.

1. Introduction
A great deal of experimental data has recently been collected about the three

compounds, GaTe, GaSe and GaS. In particular the structures of all three substances
are now known unequivocally (Basinski et al 1961, Bryden 1963). Optical,
galvanomagnetic, and photoconductive data at various temperatures are also available
(specific references will be given at appropriate places). It is therefore tempting to
make use of this material in order to deduce a plausible band structure.

The determination of the band structure of a given solid is generally approached
from theoretical as well as experimental sides, whereby theory provides an overall
band picture and experiments then give more precise information on certain details.
For the gallium compounds under investigation no theoretical band calculation is

presently available. Our purpose is to derive a band picture by making use of two very
simplifying assumptions. We shall then check whether this speculative band picture
is consistent with available experimentel data.

2. First Simplifying Assumption

The 'nearly-free-one-electron' approach having proved very successful when
applied to metals, we shall follow the geometrical methods that have been used by

*) Now at Laboratories RCA, Zurich, Switzerland.
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Gold (1958) and Harrison (1959) in the derivation of the Fermi surfaces of lead and
aluminium respectively. The validity of this approach has recently been the object of
extensive theoretical investigations (e. g. Ehrenreich and Cohen 1959) and will not
be discussed here. Our purpose is to describe briefly and apply the methods which
evolved from these recent studies. What has been shown is that over most parts of
wave-vector space (or fc-space) the relation between energy E and wave-vector k is

nearly identical to that holding for free electrons :

E(k) %2 £2/2 m0 (1)

In this relation 2 n % h Planck's constant, k | k | and m0 free electron mass.
Major deviations occur only in the vicinity of Brillouin zone boundaries, being generally

such that constant energy surfaces intercept zone boundaries perpendicularly. To
obtain the shape of the Fermi surface in the various Brillouin zones a sphere is drawn,
the energy of which is equal to the Fermi energy EF. Small changes are made to the
sphere to ensure perpendicular interception with all zone boundaries. The different
zones are then reduced into the first one, yielding various portions of Fermi surface
in the different zones. This method has been followed by Gold (1958) to obtain an
overall picture of the Fermi surface of lead. Gold (1958, 1960) then refined this first
approximation with the help of experimental data that he had obtained mainly from
de Haas-van Alphen experiments. Harrison (1959) found an ingenious method which
does away with the problem, sometimes difficult, of the reduction of Brillouin zones.
The first zone is drawn as a repeating unit in fe-space. A sphere corresponding to the
Fermi energy EF is drawn around each zone centre. Harrison has shown that points
which are in one sphere correspond to states which are occupied in the first zone only.
Points which are in two spheres simultaneously represent occupied states of the first
and second zones. Points wich are in n spheres correspond to states occupied
simultaneously in the first n zones. The surface which encloses all the points that belong
to the nth zone is the portion of Fermi surface in that zone. In general each portion
of Fermi surface so derived reveals some 'kinks' or lines along which the surface
slope is discontinuous. Smoothing out these 'kinks' corresponds, in the present
method, to the corrections introduced previously to guarantee perpendicular intercepts
between Fermi surface and zone boundaries.

3. Second Simplifying Assumption
The second simplifying assumption is related to a particular structural property

of the compounds under investigation which all crystallize as layer structures. The
atomic arrangement within a single layer is the same for GaSe and GaS, and is
illustrated in Figure 1. The two compounds differ, however, in the way their layers are
stacked. Each single layer is itself composed of four close-packed sub-layers in the
order Se Ga Ga Se (or S Ga Ga S). Figure 1 suggests that the chemical bonds within
the layers are between Ga-1 and Se+1 (or S+1) ions, whereby Ga-1 obtains a tetrahedral

sp3 coordination and Se + 1 (or S + 1) a trigonal pyramidal p3 coordination with a
saturated s2 subshell. The bonds between the layers are essentially of the van der
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Waals type, with the possibility of a very small ionic contribution. The layer
separation of 3.18 Â is quite large and the shortest Se-Se distance from one
layer to another is 3.84 Â, whereas the Ga-Ga and Ga-Se bond lengths within one
layer are 2.39 and 2.37 Â respectively. For GaS the four corresponding lengths are

very similar, being about 3.09, 3.75,2.46 and 2.43 A. From the foregoing considerations
it would appear that each layer is a self-contained unit which is bound only very
loosely to other such units. Since there is practically no overlap of the electronic wave
functions from different layers we may ask whether most electronic properties of
these two compounds might not be better explained with a two-dimensional rather
than the usual three-dimensional band model. We believe that the almost complete
absence of wave-function overlap between adjacent layers implies that electric
conduction in a direction perpendicular to the layers should not be described with the
standard concept of mobility. Instead, conduction in this direction, parallel to the
c-axis, probably takes place by random hopping processes whereby electrons jump
from one layer to another. The random mechanism may be tunnelling through the
potential barrier existing between adjacent layers. We shall therefore attempt to
derive the band structures of GaSe and GaS on the assumption that they reduce to
only two dimensions of fc-space.

o

V-

©

Figure 1

Structure of one of the four-fold layers of GaS and GaSe; Ga atoms, O S or Se atoms.

The crystal structure of GaTe (Bryden 1963) is much more complex than that of
the other two compounds. The very large three-dimensional monoclinic unit cell
contains 12 molecular units as against two for the two-dimensional cells of GaSe and
GaS. This means that there are in all 108 valence electrons, and a band structure
derivation by the method outlined in Section 2 is probably meaningless. In addition,
the separation between layers is much smaller in GaTe ; it is therefore less likely that
a two-dimensional approach is permitted. Consequently, we expect the band structure
of this compound to be very complex. This conclusion is supported by the complexity
of the optical absorption spectrum (Brebner and Fischer 1962).
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4. Derivation of the Band Structure

The first step in any band calculation is to construct the Brillouin zone. Since the
isolated layer shown in Figure 1 has trigonal symmetry we have a two-dimensional
rhombic Bravais net with base. Our primitive cell (Barron and Fischer 1959) is a
rhombus with an acute angle of 60°. This primitive cell is identical with the one
pertaining to a hexagonal network. The first Brillouin zone, hence, is a regular
hexagon which we have drawn in Figure 2 as a repeating unit in jfe-space. Each cell
contains two atoms of Ga and two of Se (or S), yielding a total of 18 valence electrons.

„ \J

f

Figure 2

First Brillouin zone, drawn as a repeating unit of wave-vector space, of the two-dimensional
structure shown in Figure 1. This diagram serves to the derivation of the band structures of GaS

and GaSe by a method described in the text.

The Fermi sphere in three dimensions reduces here to a circle which contains 18

electronic states per primitive unit cell. In other words, the surface area enclosed by
the Fermi circle must be equal to the total area of nine hexagons, since each zone
contains 2 electronic states for each primitive cell. In Figure 2 we have drawn one
such circle around a zone centre 0. If a circle is drawn around each zone centre and all
points of fe-space are identified according to the number of circles to which they belong
simultaneously, we arrive at the distribution depicted in Figure 2. Zones 1 to 7 are
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completely filled, zones 8 and 9 are filled for the main part but have a pocket of holes
at the zone centre. Zone 10 contains electrons only in the shaded areas along the zone
boundaries, and zones 11 and 12 have very small pockets of electrons at the zone
corners. If this were the actual distribution of electrons we would be dealing with a
metal. Since, however, GaSe is a semiconductor we have to postulate that, except for
thermally activated holes, all zones from 1 to 9 are fully occupied. All higher zones, on
the other hand, are empty. What Figure 2 then suggests is that zones 8 and 9

correspond to valence bands which have a maximum of energy at the zone centre 0. Zones

10,11 and 12, on the contrary, correspond to conduction bands which all have minima
of energy at points like S, C, or C of the zone edges. Zone 10 has been redrawn as

zone 10' after translating the zone boundaries ; a corner point, C or C, then becomes
the zone centre. Another translation has been effected for zones 11 and 12 which
become zones 11 " and 12 ". The sole purpose of these translations is one of convenience,
as the electron pockets of zones 11 and 12 would otherwise be split up into six small
pieces scattered around at the corners of a zone centred in 0. It must be remembered,
however, that the new centre S of these translated zones is not equivalent with the
true origin 0 of the Brillouin zones for which k 0. It should also be noted that all
zones have hexagonal symmetry. The apparent reduction to trigonal symmetry of
zone 10', for example, stems from the translation and the existence of two sets of
corner point, C and C, which differ by a 60° rotation. Anything holding for C also
holds for C in the appropriate orientation.

We are now in a position to give a sketch of the band structure of GaSe and GaS.

In Figure 3 we plot the energy E versus the magnitude k of the wave vector along the
three directions, OC, OS and CSC. For convenience we call V, and \\ the valence
bands corresponding to zones 8 and 9 ; whereas C3, C4 and C6 are the conduction bands
corresponding respectively to zones 10, 11 and 12. At any given point of fe-space V2 is

always above V, but their maximum at 0 need not be very different. It is even possible
that V, and V2 are degenerate at the origin 0. Zone 10 appears to have constant
energy contours that run almost parallel to the zone boundaries CSC, and perhaps
minima in both C and S. In directions away from the zone boundaries, however, the

energy increases rapidly. The E (k) diagram of Figure 3 accordingly shows C3 to
remain almost level along CSC and to increase rapidly from C and S towards 0.

Bands Ci and C5 appear to have minima at C which are energetically very close

together and increase very quickly as one moves from C. Again these two bands may
be degenerate at their minimum.

We shall in the following section discuss various implications of the above band
model in some detail, but we can already single out two of its most important
properties. The small curvature in the viciniyt of the minima of band C3 leads to a heavy
effective mass and consequently a low mobility. We would therefore expect intrinsic
GaSe and GaS to be /»-type, a conclusion borne out by the Hall effect measurements
on GaSe shown in Figure 4. Since the maximum of valence band V2 and the minimum
of conduction band C3 occur at different points of the Brillouin zone we would expect
the fundamental edge of the optical absorption spectra of GaSe and GaS to
correspond to indirect transitions. This conclusion is also supported by experimental data,
although the spectra of Figures 5 and 6 show some additional complexity that we
shall discuss later.

21 H. P. A. 36, 3 (1963)
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Schematic band structure of GaS and GaSe.
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Hall coefficient ^4 h and resistivity q l of a single crystal of GaSe against the inverse of temperature.
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5. Statistics of the Two-Dimensional Band Model

(/) Density of holes in Vx and V2 and electrons in Ci and C5

Let us consider valence band V2 of Figure 3. The number of holes p2 in this band

may be calculated according to the well-known expression:

p2 S 2 J D2(E) F(E) dE (2)

-OO

The factor 2 accounts for spin degeneracy, and

F(E)=[exv(IA-^) + l}-1 (3)

is the Fermi-Dirac statistics as it applies to holes, EF being the Fermi energy and k0

the Boltzmann constant. D2(E) is the density of states function. We shall assume
bands V,, V2, C4 and C5 to be isotropic, so that E can be expressed as a monotonie
function of the magnitude k of the electronic wave-vector k D2(E) then takes the
simple form:

w) (!)(|5-|). w

where p'2(k) expresses the number of states within the sphere (or circle in 2 dimensions)

of radius k.

For a two-dimensional band structure

d% =^,2nk=-0k-. (5)
dk An2 2 n v '

It is reasonable to assume band V2 to be parabolic near the maximum E2 at k 0.
We thus write

E2~E ^' W

and derive a density of states expression independent of E or k :

D2(E) -AAl-ï for E < E2 ; D2(E) 0 for E > E2. (7)

In these expressions m2 is an effective mass. Equation (2) then becomes

-oo

Unlike the corresponding expression that would obtain in the three-dimensional
situation, the integral of (8) can be calculated in closed form. With two substitutions,

--^ andA2^VT- (9)

one obtains eventually

P2Z N2in(e~a*A- 1) (10)
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This expression is interesting because it involves simplifying assumptions with respect
to the band structure only, but not with respect to the degree of degeneracy of the
statistics; that is to say it is valid for any positive or negative value of a2. A non-
degenerate valence band means

oc2>l, and p2^N2e~a', (11a)

which has a form familiar in semiconductor physics. A highly degenerate band leads

to a more unusual formula:

— a2 ;> 1, yields p2 2 — N2 a2. (Hb)

We should like to point out that formulae (10) to (lib) give the hole density in V2 per
unit area of the two-dimensional conductor, or in other words, per cm2 of one layer.

Formulae similar to (11a) and (lib) hold for bands V,, C4 and C5, but since the
last two of these bands have two minima, at C and C, the substitutions for the effective
mass m2 have to be respectively m,, 2 mi and 2 m5.

(2) Density of electrons in band C3

Before attempting to evaluate the number n3 of electrons in band C3 we shall make
some assumptions about the structure of this band. We assume that lines of constant

energy run parallel to the sides of the hexagonal zone boundaries of Figure 2. These
lines then form a pattern of concentric hexagons within each zone. In directions
perpendicular to the zone boundaries, for example OS, we assume the energy to
depend quadratically upon the distance Ak from the boundary, and we describe this
quadratic dependence with an effective mass m3.

E-E.-^-. (12,

In terms of the effective mass, then, we have assumed that it is infinite in directions
parallel to the zone boundaries.

With the foregoing assumption the number dn'3 of electronic states between two
hexagons of side I separated by an interval dk is given by

dn'* -—, dk (13)0 A n2 v '

Since the only states that come into consideration are those of lowest energy, lying
along the zone boundaries, the length / is, for all present purposes, equal to the
distance CC of Figure 2. Our primitive cell being a rhombus of side a, this distance is

equal to 4nj3 a. Combining equations (12) and (13), where dk means d(Ak), we obtain
for the density of states function D3(E) of band C3:

D3(E) H Jg£ (E - EJ-w. (14)
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The number of electrons in C, then is'3

%3 =z yyy J Twrnr-r, ¦ (|J)
E, exP (E_Zef\

A k„T I

The integral of this expression cannot be evaluated in closed form. However, for
p-type material the exponential in the denominator is always very much larger than
unity, so that (15) then becomes

n s 2 X ^m3k0T e-{E3-Ep)/keT (16)

(3) Intrinsic behaviour

If we consider only bands V2 and C3 neutrality requires that in the intrinsic range

p2 n3 (17)
With (11a) and (16) we derive

_ £2 + £3 «0 T _ 8 n n mz /ta\EF=~A A-ln-a2k0Tmi- ^>

It is easy to convince oneself that EF decreases with temperature. Equation (18)

finally gives, when put back into (11a) or (16):

p2~n3~(rA^r_fe-*m>.T (19)

where A E E3 — E2 is the energy gap.

(4) Extrinsic range

At low temperature our GaSe is /»-type. We shall therefore assume that we have Na

acceptors of an energy Ea. We shall, however, also assume a certain degree of compensation

K, that is Nd donors at an energy Ed such that

0 < K ^f < 1. (20)

The number na of electrons in the acceptor sites is

N„.

-(XX)
(21)

In the extrinsic range the Fermi level is far below Ed and E3 so that donors and
conduction band can be considered empty. The neutrality condition then requires

na p2 + Nd. (22)

In the high temperature limit of this approximation na s Na and we derive

p2 S Ntt (1 - K). (23)
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This condition prevails at temperatures below the intrisic range for which (EF — Ea)

> 4 k0 T. On the low temperature side one can write p2 <^ Nd < Na, and derive at once

£F S E„ — k„T ln-F AA) <*>

and

P2 N2(l-K^-)e-^-EA^A (25)

We should note that EF decreases with T for K < 1/2 and increases for K > 1/2. The
significant feature of (25) is the exponent, which has twice the value pertaining to
uncompensated material.

When compensation is small, K <^ 1, one can show that there is an intermediate
range of temperature where (24) and (25) are to be replaced by:

EF^E-^- Y"111©' (26)

p2 /ÄXV "{Ea - Ef)!2 K T
• (27)

In the limit of vanishing compensation, K — 0, these last two formulae cover the
entire low temperature part of the extrinsic range.

6. Comparison With Experiments

We have mentioned already the agreement between the broad predictions of our
band model and available experimental data. We shall attempt to carry the comparison
between experiment and theory a step further and point to certain difficulties that
such a comparison involves.

(7) Optical absorption

The absorption spectra of GaSe and GaS, shown in Figures 5 and 6, are relatively
simple. At energies above the edges the absorption coefficient K has a low value
of about IO3 cm-1. In the same energy range we see that K increases when temperature

increases, particularly above 150° K. These two properties are generally typical
of indirect transitions. The two spectra are, nevertheless, remarkably different. The
rate of increase in absorption vs. energy is extremely large for GaSe and very small
for GaS. The edge extends over close to 1 eV for GaS and a mere 0.05 eV for GaSe.

In addition there is a very strong line structure in the edge of GaSe and a very weak
structure, visible only at low temperatures, in the edge of GaS. Although we quoted
evidence that a similar line structure found in GaTe is not of an excitonic nature
(Brebner et al. 1962) we have now reason to believe that the lines found in the
absorption spectra of GaTe, GaSe and GaS may be produced by the creation of
excitons.
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Figure 5

Optical adsorption coefficient of a GaS single crystal at temperatures of 295, 150, 77 and 4.2°K.
Unpolarized radiation incident normal to the layers of a 74,5 microns thick crystal.

For the band structure of Figure 3 the edge is likely to arise by the
superposition of several types of indirect transitions all involving similar energies.
Transitions between two isotropic and parabolic bands, for which the density of
states functions were found to be constant (e.g. (7)), yield an absorption coefficient a

linearly dependent on the photon energy E hv. For example transitions from band
V, to band C4 give (c. f. for example Smith 1959)

(0 for h v < Et — E, A- Ek

\Aue (h v - Ei + X - X) for hv> Et- E,
(28)

In this formula A,ie is a constant which depends on the transition probability and the
phonon distribution, while the index e signifies that the transition involves emission
of a phonon of appropriate wave-vector k and having an energy Ek. Equation (28)

only holds for a limited range of positive values of the argument (hv — Ei A- E, 4- Ek).
For large values of the argument the absorption coefficient generally levels off and
eventually diminishes, in a way dependent upon the band shapes. a14e refers to a

specific type of phonon and the various acoustical and optical modes of vibration of
the lattice will each contribute an absorption coefficient similar to o.lie. Since the
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transitions can also take place by phonon absorption there will be terms of the type

la(*"-

for hv < Et— E,

E, A- Ek) for hvy Ei— E,
(29)

Transitions from an isotropic and parabolic band, like valance band V,, to a band
like C3, the density of states function of which we assumed to be given by (14), leads
to absorption coefficients ß of another type. For example :

/a
1° for h v Ei

(h v E, - £,)i« for hv>E3-Et + Ek
(30)

The edge therefore arises through the super-position of several terms of both types a
and ß. In addition a line spectrum may be superposed on the edge. Thus it is not a

straightforward matter to determine the energy gap A E E3 — E2, or any other
band parameter, from the measured absorption spectrum.
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Figure 6

Optical absorption coefficient of GaSe single crystals at temperatures of 295, 200, 150, 77 and
4,2° K. Unpolarized radiation incident normal to the layers of the crystals. Thickness of crystals

275 and 33 microns*).

*) Note added in proof: Above 2.5 eV we have found that the absorption increases sharply,
exhibiting several edges. This is in contrast with measurements published earlier where a constant
absorption had been observed, but resulted from a crack in the sample which developed at low
temperature (Brebner and Fischer 1952).
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The absorption spectra of Figures 5 and 6 show essentially only a single edge
and a line structure. From the sharpness of the edge in GaSe we conclude that it is
the fundamental edge that arises from transitions between bands V2 and C3 only,
and that all other bands are energetically well separated from these two. The sharpness

of the edge also suggests that band C3 is according to the full line of Figure 3

between C and C, so that the absorption would obtain the sharpness of type ß. In
GaS, however, the edge extends over such a large range of energies that we must
assume this edge to arise from a superposition cf band to band transitions of type a,
whereby energies within the two sets (E,, E2) and (E3, £4, E5) are not very different,
and with band C3 following the dashed curve between C and C of Figure 3. Such a

superposition of linear terms a will tend to appear as a quadratic edge, viz. K oc

(E — AE)2. We shall attempt now to determine the energy gaps AE of the two
substances from their absorption spectra. In the case of GaS we have plotted K112, K
and K2, where K is the experimental absorption coefficient at 295° K, against the
photon energy E hv. We found that Kll2(E) approaches a straight line over much
the largest range of E values and extrapolates to zero at 2.49 Az 0.02 eV.
Extrapolations from the K and K2 plots intercept the abscissa at 2.76 and 2.95 eV respectively.

Since Bube and Lind (1960) report a sharp maximum in the room temperature
photo-conductive response at 2.58 eV, we believe this values to be a reliable estimate
of the energy gap AE. To obtain a measure of the variation with temperature of AE
we have assumed it to vary in proportion to the energy E,j2 for which the absorption
coefficient reaches half its maximum value. Figure 7 is a graph of the values so derived.
An alternative derivation of AE vs. temperature is given elsewhere (Brebner and
Fischer 1963).
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Figure 7

Temperature dependence of the energy gap of GaS.

In the spectra of GaSe (Figure 6) the line structure appears to cover a larger range of
energies than the width of the absorption edge. In the absence of a detailed knowledge
about the origin of the lines it is not possible to derive an accurate value for the energy
gap AE. Figure 8 is a plot against temperature T of the three energies E(K) for which
the absorption coefficient K is (1) equal to 500 cm^1, (2) is maximum, and (3) is

minimum between the two lines. The three curves obtained are practically parallel
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and give, we believe, a good measure of the temperature dependence of AE. We also

think that the actual value of AE is comprised between the lowest and uppermost
curves of Figure 8.

GaSe

100 200
TEMPERATURE (°K)

Figure 8

Variation with tempsrature of the position of the line structure observed in the absorption spectrum

of GaSe. The central curve also describes, with an accuracy of Az 0.02 eV, the behaviour of
the energy gap of GaSe.
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Figure 9

Temperature dependence of the mobility of holes in GaSe in direction parallel to the layers.
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(2) Resistivity and Hall effect

Resistivity, q±, and Hall effect, AH, of a single GaSe crystal have been measured
between 120 and 1000° K and are plotted in Figure 4. The experimental method is
described elsewhere (Fischer and Brebner 1962). The curves on Figure 4 refer to
conduction parallel to the layers (j_ to c-axis) and the hole mobility, fip, derived with
formula (31) is shown in Figure 9.

8 AH «i»^-ts-tT' }

It must be said that the coefficient 8/3 n in the above formula is probably not appropriate

to a two-dimensional conductor. The error, however, is not likely to exceed

10%. It is also worth noticing that at high temperatures the mobility varies as T~ie,
a behaviour typical of thermal scattering in three dimensional crystals. We would not,
a priori, expect the same power law to hold for the mobility within a single layer.

We should like to derive effective mass parameters from the Hall effect curve. The
available experimental data is too scarce, however, to warrant much detailed
calculations. Experiments with systematically doped material should be undertaken before
attempting to use the formulae derived in section 5. Let us nevertheless consider the
intrinsic behaviour at 1000° K. The density of electrons and holes are then equal and,
we shall assume, given by equation (19). To obtain AE at 1000° K we extrapolate the
upper curve of Figure 4. Equation (19) finally gives:

^P- - 1.9 x 10-2 (32)

which is a reasonable value. We should like to recall that this result is derived under
the assumption that band C3 is of the special non-isotropic shape discussed in
section 5. Had we assumed C3 to have a single minimum with an isotropic and parabolic

mass m'3 we would have derived under otherwise similar conditions,

^AAi 6.7 (33)

a result much less plausible than (32).
The extrinsic Hall coefficient of our GaSe sample shows a rather complex behaviour

which, in the absence of more experimental data, we do not know whether to explain
by a single sort of impurity level and the band structure proposed, or by several kinds
of impurity level.

7. Excitons in Layer Structures

It would at first appear that the formation of excitons should be more restricted in
a layer crystal because of the restriction of motion into only two dimensions imposed
on the charge carriers. We think that this condition provides, on the contrary, for a new
mechanism of exciton formation. In analogy with the kind of exciton found in three
dimensional crystals the interaction of electrons and holes within one layer leads to
allowed states for electron-hole pairs, the energy Wnex of which is smaller than the
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sum of the energies of the unpaired electron and hole of corresponding wave vectors.
This comes about because the 'one-electron' approximation neglects direct coulomb
interaction between single electrons and holes and the electron hole pairing into
excitons arises as a perturbation of the 'one-electron' approach. In the case of layer
structures it is possible to imagine that an electron-hole pair, with one particle in each
of two adjacent layers, will also bring about a lowering of the energy of the two
particles by formation of an excitonic state. This second type of exciton, which one
might call 'transverse exciton', may well occur with very much greater probability
than the first type which, in opposition, one might label 'longitudinal exciton'. In
the state of lowest energy both particles of a 'transverse exciton' are probably at
rest, relative motion occurring only in higher excited states. Relative motion between
the two partners of a 'longitudinal exciton', however, is always necessary and we
think that this important difference may favour the existence of 'transverse excitons'
in layer structures.

The origin of the strong lines in the absorption spectra of GaSe and GaTe is still
unexplained. Several possible mechanisms may be invoked, in particular exciton
formation. If excitons can be created very easily they are likely to have a very long
life time. As a consequence the excitonic states are easily saturated and any mechanism

that tends to increase the lifetime of the excitons, like annealing, will reduce the
strength of the absorption lines. Mechanical working and the accompanying formation
of defects which reduce the exciton lifetime should, on the contrary, increase the
strength of the lines. The line structure of GaTe appears to behave in this fashion and
at first this had been interpreted as evidence against exciton formation (Brebner et al.

1962).

It is interesting to note that GaTe shows two sets of lines (Brebner et al. 1962).
There are strong lines in the fundamental edge similar to those found in GaSe. Two
more lines at energies of about 2.4 eV are probably of the same nature but arise from
transitions involving a lower valence band or higher conduction band.

The line structure in the absorption edge of GaS is much weaker than in the other
two compounds. It occurs at energies appreciably higher than the gap (about 0.25
eV above AE). This structure has been found at the same energies in materials from
a different source by Gross etal. (1959) and may also arise through exciton production.

8. Conclusion

(7) Band structure of GaS

With reference to Figure 3, which gives the general outline of the band structure
proposed for GaS, we shall rapidly review the parameters which have been determined.
At 4.2, 77, and 295° K respectively, the energy gap E3- E2 2.80, 2.76, and 2.58 eV.
The relative accuracy of these figures is about Az 0.01 eV, the absolute accurary being
that of the room temperature figure quoted by Bube and Lind (1960). We believe
E2 < E,, E,, < E3, and £5 < £4, although these differences are probably only of
the order of a few tenths of an electron-volt. We also think that the E(k) curve along
CSC of wave-vector space is not as constant as indicated by the full line of Figure 3

but varies appreciably, as does for example the dashed line.
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(2) Band structure of GaSe

The general outline of the band structure proposed for GaSe is also given by
Figure 3. However, in contrast to GaS, we believe that E, =*> E2, and E3 =r- E„ =t> Es,
these differences being of the order of half an electron-volt, and we think that E(k)
along CSC is nearly constant. At 4.2, 77 and 295°K the band gap E3 — E2 is

respectively about 2.13, 2.12 and 2.02 ± 0.02 eV.

(3) General conclusions

Although rather speculative the method proposed in sections 1 to 3 for the
derivation of the band structure of semiconductors with layer structures proved
successful in suggesting a band model consistent with known properties of GaSe and
GaS. The method may be valid generally when there are no proper chemical bonds
between adjacent layers other than for example van der Waals' bonds. Experimental
data help to refine the broad outline derived by the method. The band structure
predicts that intrinsic GaSe and GaS is p-type, and subsequent experiments with
GaSe confirmed this prediction.

It is proposed that layer structures satisfying the bonding conditions mentioned
above favour the existence of a new kind of exciton. The electron and hole of this
exciton would be in adjacent layers and the name 'transverse exciton' is therefore
suggested, 'longitudinal excitons' then having both electron and hole in the same
layer.
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