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Quelques propriétés de l'espace de Minkowski sur les complexes

par J.-J. Loeffel
CERN, Genève, Division Théorique

(15. VIII. 62)

Résumé. La fonction de Wightman (fonction W) à n + 1 points pour un champ scalaire se

présente comme une fonction analytique de n quadrivecteurs qui est holomorphe dans le tube
futur. D'après Hall et Wightman, on peut élargir ce domaine d'holomorphie au tube étendu (par
tube étendu, nous entendons le plus petit domaine invariant par Z.+ (A) qui contient le tube
futur). Si l'on admet l'invariance par réflexion spatiale, on peut considérer la fonction W comme
une fonction analytique des produits scalaires des « vecteurs. Elle est alors holomorphe dans
l'image du tube futur par l'application n qui fait passer des vecteurs aux produits scalaires.

On montre ici que, dans le cas où n < 4, on peut obtenir cette image en partant d'un espace
de Minkowski de dimension n, et en appliquant n au tube correspondant.

Ce résultat s'obtient grâce au théorème suivant, qui a été formulé par Jost : Tout sous-espace
qui contient des points du tube futur peut se transformer par une famille continue de transformations

de Lorentz complexes de manière à ce que: 1° les carrés des parties imaginaires des vecteurs
de ce sous-espace croissent de manière monotone; 2° l'espace finalement obtenu soit réel (Théorème

4).
Pour démontrer ce théorème, on utilise les propriétés de décomposition biorthogonale des

sous-espaces complexes (Théorèmes 1, 2 et 3).

Introduction

a) Au cours de recherches récentes sur la structure mathématique de la théorie
des champs quantifiés, on a été amené à considérer des fonctions de «-tuples (x,,..., xn)

(x)n de vecteurs pris dans un espace de Minkowski sur les complexes, définies et
holomorphes dans le tube X" {(x)n | 3m xt e F+} (V+ désigne le cône futur), et
invariantes pour les transformations du groupe de Lorentz (réel) orthochrone Ü1). Le
théorème de Bargmann, Hall et Wightman2) affirme que ces fonctions peuvent
être considérées comme des fonctions holomorphes des produits scalaires f(x{, x-) des

n vecteurs x,,..., xn.

L'objet de ce travail est d'établir une propriété de la relation qui lie les «-tuples de

vecteurs à leurs produits scalaires.

1) Fonctions de Wightman (Wightman [1]) ; transformées de Fourier des fonctions retardées
(Lehmann, Symanzik, Zimmermann [2]).

2) Hall et Wightman ont donné de ce théorème une démonstration valable lorsque la dimension

de l'espace de Minkowski est égale à 4 [3]. R. Jost [4] et K. Hepp [5] ont généralisé le théorème

à une dimension quelconque.
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b) Considérons une suite ty, C 952 C • • • d'espaces vectoriels emboîtés; x e 23
m est

de la forme (f°, f1,..., f™-1, 0, 0,...). Le produit scalaire de deux vecteurs x et y de

93m sera défini par
f(x,y) A>rf - A-rf - ¦¦¦ - Cm_1 ?f-1-

23
m sera appelé espace de Minkowski sur les complexes de dimension m3). Xm sera

l'ensemble des vecteurs de 23
m

tels que: a) 3mf°> 0» b) f(^m x, 3m x) > 0. Si

w < w', on a évidemment ïm ïm, n 23m. Nous désignerons par Xm l'ensemble des

«-tuples de vecteurs de Xm.

Désignons par S(n) l'ensemble des matrices symétriques complexes à n lignes et «
colonnes. Définissons une application ti de Xnm dans S(n) : (x)n ->Tc(x)n (z(j), ztJ

f(xit Xj). Posonsn(Xnm) Mm(n). Les matricesn(x)n ont leur rang < m; par conséquent
Mm(n) C Sm(n), Sm(n) désignant l'ensemble des matrices de S(n) dont le rang est < m.

Désignons l'ensemble des fonctions holomorphes sur Xm et invariantes par les

transformations de Ü par (X„) ; désignons par (Mm(n)) l'ensemble des fonctions
holomorphes sur MJA)- Ve théorème de Bargmann, Hall et Wightman s'énonce
alors: pour tout W e (XI,), il existe un cp e (Mm(n)) tel que W cp n.

On a évidemment

M,(n) C M2(n) C C S(n)

Si M2'(n) désigne l'ensemble des matrices de Mm.(n) dont le rang est < m (< m'),
c'est-à-dire si M£(») Mm,(n) nSm'(n), on peut écrire Mm(n) C ^Z'in)-

Le but de ce travail est de montrer que

MJn) MZ(n)

c) En utilisant le théorème de Bargmann, Hall et Wightman, on peut tirer de ce

résultat la conséquence suivante : les valeurs que W e (£* <) prend dans les points (x)n

de XAm' tels que n(x)n e MZ'(n) (m < m') sont déjà prises par la restriction de TF à

t» xn, n 2V
Si m' > n, Mm\n) Mnm,(n). Notre résultat appliqué à Mm\n) permet d'affirmer

que
Mm,(n) Mn(n) (m' > n)

De cette dernière relation, on déduit que les fonctions «de trois points» (« 2) peuvent
être discutées dans un espace de Minkowski de dimension 2, tandis que les fonctions
«de quatre points» (n 3) peuvent être discutées dans un espace de Minkowski de

dimension 3. R. Jost [6] est déjà parvenu par d'autres moyens à la même conclusion.
On en trouvera une application dans un travail de D. Ruelle [7] sur le domaine

d'holomorphie de la fonction «de trois points».
Je tiens à remercier M. le Professeur R. Jost de m'avoir suggéré ce travail. J'ai

trouvé dans le cours qu'il a fait à l'E. P. F. en hiver 1960/1961 les précieuses indications
qui m'ont permis de résoudre le problème posé. Les emprunts que j'ai faits à ces

leçons sont trop nombreux pour que je puisse en donner la liste.

Cette définition sera formulée en des termes un peu différents au § 1.4.
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Que MM. les Professeurs M. Fierz et R. Jost trouvent ici l'expression de ma
gratitude pour l'hospitalité qu'ils m'ont accordée au Séminaire de Physique Théorique
de l'E. P. F. Je remercie également la Commission pour la Science Atomique (Fonds
national suisse) de son appui financier.

Chapitre I

L'espace de Minkowski sur les complexes

Les moyens mis en œuvre dans ce travail sont ceux de l'algèbre linéaire des espaces
vectoriels de dimension finie.

Nos notations et notre terminologie en ces matières sont le plus souvent empruntées

à l'ouvrage de E. Artin: Geometrie Algebra (Interscience Publishers 1957) et à
celui de J. Dieudonné: La Géométrie des groupes classiques (Ergebnisse der Mathematik,

Neue Folge, Heft 5, 1955). Nous renverrons fréquemment à des propriétés
établies dans ces deux traités.

Dans ce chapitre, nous allons introduire quelques notions et exposer quelques faits
simples dont nous aurons besoin dans les chapitres suivants.

1.1. L'espace de Minkowski sur les réels

Par espace de Minkowski sur les réels, nous entendons un espace vectoriel 9JÏ de
dimension N sur AR, muni d'une forme symétrique non dégénérée /0, de signature
(1, N — 1). L'indice de /0 vaut l4). Nous désignerons par Q0 la forme quadratique
associée à /0 :

QoiA f0ix,x),xeW.

x e 9JÌ est dit du genre temps si Q0(x) > 0, etc. Si x est du genre temps, et si y est

non nul et orthogonal à x, y est du genre espace. Si x est du genre temps, tous les

vecteurs non nuls de l'hyperplan <x>* sont du genre espace.
Un sous-espace 21 de 931 est appelé sous-espace de Minkowski, ou sous-espace du

genre temps, si 21 contient un vecteur du genre temps. Si 21 est du genre temps, il est

non singulier4). Un sous-espace sera dit du genre espace si 21* est du genre temps;
Q(y) < 0 pour y non nul de 21; 21 est non singulier. Si 21 est non singulier, 21 est soit
du genre temps, soit du genre espace. Si 21 est un sous-espace singulier de 9JÌ, la
dimension de rad 214) est 1; 21 ne contient alors aucun vecteur du genre temps.

L'ensemble V des vecteurs du genre temps est un cône ouvert. V se décompose en
deux composantes disjointes, connexes par arcs, V+ et V_. Six est dans l'une, — x est
dans l'autre. V+ et F_ sont des demi-cônes ouverts connexes.

Tous les espaces de Minkowski de même dimension sont isométriques4). Un
sous-espace 21 du genre temps, de dimension a, d'un espace de Minkowski, est

isométrique à un espace de Minkowski de dimension a. C'est pourquoi nous désignons
les sous-espaces du genre temps par le terme de sous-espaces de Minkowski.

4) Pour ces notions, cf. J. Dieudonné, op. cit, Chap. I, en particulier les §§ 5-8, 11; E. Artin,
op. cit, Chap. 3, § 3.
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Le groupe orthogonal de SR relativement à /04) sera désigné par L : c'est le groupe
de Lorentz (réel).

1.2. La notion de réalité dans les espaces vectoriels sur les complexes5)

Un espace vectoriel 23 de dimension N sur (A peut être considéré comme un espace
vectoriel de dimension 2 N sur AR- Nous disons qu'un ensemble 2t de vecteurs de 23

est un ^-sous-espace si a x -A- ß y est dans 21 (x, y e 21, a, ß e A/i). Si 23 est un ensemble
de vecteurs de 23, nous désignerons le plus petit ^-sous-espace de 23 contenant 23 par
le symbole <23> n> «23> désignera le plus petit sous-espace de 23 contenant 23).

Soit F une application de 33 sur lui-même, satisfaisant à :

i) r (x, a- x2) r(x,) + r(x2), x„ x2 E 23,

2) r(a. x) a F(x), x e 23, a, a e (r,

ce: conjugué complexe de a.

3) r2(x) =x,xeW.
Nous disons que r est une anti-involution sur 33. r apparaît comme une involution de
23 considéré comme espace vectoriel sur AR. L'ensemble 2B+ des vecteurs x de 23 qui
satisfont à r(x) x est un /Xsous-espace de 23. Il en est de même pour l'ensemble
SB- des vecteurs x avec F(x) - x. On a 9B~ i 2B+, et 33 2B+ e 9B~. Nous
définissons deux applications ^-linéaires de 33 sur 2B+ par

5Rc |(l + r), %m=\iil-r).
Les vecteurs de 2B+ sont appelés réels, ceux de 2B_, imaginaires. 9îe(#) est appelée
partie réelle de x, %m(x) est appelée partie imaginaire de x.

Notons quelques relations. Pour tout sous-espace 21, on a:

21 + rm <5îe(2I)> <3m(2I)>

3îe(2I) 3m(2I).

Si rÇH) 21, on dira que 21 est réel (ne pas confondre un sous-espace réel avec un
^?-sous-espace). 21 D .T(2I) est le plus grand sous-espace réel contenu dans 21,21 + /'(21)
est le plus petit sous-espace réel contenant 21. Les trois énoncés suivants sont
équivalents :

1) T(2l) 21,

2) 2I=<5te(2I)>,

3) 2Ï a une base réelle.

Pour qu'une droite ix) soit réelle, il faut et il suffit que SRe(#) et ^m(x) soient
linéairement dépendants. Un vecteur x satisfaisant à cette dernière condition sera dit

Cf. Dieudonné, op. cit, Chap. I, § 3.
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semi-réel. S'il n'y satisfait pas, nous dirons qu'il est complexe. Un sous-espace 21 sera
dit complexe si tous ses vecteurs non nuls sont complexes. Pour que 21 soit complexe,
il faut et il suffit que 21 O/"(21) O6) (ne pas confondre un sous-espace complexe
avec un espace sur les complexes).

Une application linéaire A de 33 dans 33 sera dite réelle si A T rA.
Posons 21 (21 O r(2I)) © 23 ; on a alors 23 n r(23) 0.

Remarquons pour finir que si 21 est un ,^-sous-espace de dimension N dans 33, tel
que 21 n i 21 0, on peut écrire 33 21 © i 21. On peut alors définir une anti-involu-
tion r sur 23 en posant f(x) x pour x e 21, et r(x) — x pour x e i 21.

1.3. Anti-involution et forme symétrique

a) Soit 23 un espace vectoriel de dimension N sur (p, muni d'une forme symétrique
/ et d'une anti-involution i\

Si la condition

fir(x),r(y)) f(x,y)

est satisfaite, nous dirons que f et T sont compatibles.
Si f et T sont compatibles, la restriction /0 de / à 2B+ est une forme symétrique

(XXilinéaire) sur 2B+. Une base orthogonale de 2B+ étant une base orthogonale de 23,

on peut énoncer7) :

Pour que /0 soit non dégénérée, il faut et il suffit que / soit non dégénérée.
Des raisonnements analogues nous permettent d'affirmer que:
Pour que 21 + FÇil) ne soit pas singulier, il faut et il suffit que 9îe(2I) ne soit pas

singulier.
Si x est orthogonal à y, r(x) est orthogonal à T(y). Si 33 n'est pas singulier, il s'en

suit que
X2t*) (T(2I))*. (1)

Par conséquent

radr(21)=r(rad2I) (2)

et

siX2I)=2I, X2t*)=2I*. (3)

Un sous-espace réel admet une base orthogonale réelle.
Une isométrie A de S3 sur lui-même qui satisfait à rA A T sera dite réelle.
On montre aisément la proposition suivante :

Pour que r et f soient compatibles, il faut et il suffit que la forme h, définie sur
33 par

h(x,g)=fir(x),y)
soit hermitienne.

/ et h coïncident sur 2B+. On peut donc énoncer : pour que h ne soit pas dégénérée,
il faut et il suffit que / ne soit pas dégénérée.

6) 0 désigne le sous-espace qui ne contient que le vecteur nul.
7) Cf. Artin, théorème 3.7.
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Nous désignerons par H la forme quadratique associée à h: H(x) h(x, x) pour
x e 23.

b) L'une des questions qu'on se pose avec profit au sujet d'un espace vectoriel
muni d'une forme sesquilinéaire reflexive est celle des sous-espaces irréductibles8)
(un sous-espace est irréductible s'il ne peut s'écrire sous forme de somme orthogonale
de deux sous-espaces 4= 0). La solution de cette question permet par exemple, lorsque
la forme n'est pas alternée, d'établir l'existence de bases orthogonales de 23. On connaît
l'importance de ce théorème d'existence.

Si 23 est un espace vectoriel sur (A, muni d'une forme symétrique / et d'une anti-
involution T compatible avec /, on est amené à introduire la notion de «biorthogona-
lité » : x est biorthogonal a y si f(x, y) h(x, y) 0. On a: si x est biorthogonal à y,
9îe(x) est orthogonal à $Re(y) et à3m(y). Si 21 et 23 sont deux sous-espaces orthogonaux,
et si 21 est réel, 21 et 23 sont biorthogonaux.

Nous allons nous poser au chapitre II la question de la décomposition des sous-

espaces de 33 en des sommes biorthogonales de sous-espaces biorthogonalement
irréductibles. La solution que nous trouverons (théorèmes 1, 2 et 3) nous permettra
de résoudre au chapitre III le problème qui fait l'objet de ce travail.

1.4. L'espace de Minkowski sur les complexes

Nous allons formuler dans ce paragraphe une définition de l'espace de Minkowski
sur les complexes qui sera mieux adaptée à nos besoins que celle que nous avons
donnée dans notre introduction. Nous énoncerons ensuite quelques propriétés de

l'espace de Minkowski sur les complexes.
a) Nous partons d'un espace de Minkowski 9ft de dimension N sur les réels.

L'ensemble 23 <9JÌ> des combinaisons linéaires à coefficients complexes de vecteurs
de 3CR est un espace vectoriel de dimension N sur les complexes. Nous pouvons définir
une forme symétrique / qui prolonge la forme symétrique /0 de 9JÎ à tout l'espace 23.

Cette extension est unique9). Pour retrouver 931 comme «partie réelle» de 33, nous

remarquons que 23 peut être considéré comme la somme directe de 9JÎ et de i 9JÌ, puis
nous définissons une anti-involution F sur 23 par

P(x) x pour x s 9JÌ,

r(x) — x pour x e i 9JÎ

(cf. § I.2.). Nous avons bien 9?e(23) M.
Va forme symétrique / et l'anti-involution r sont compatibles:

fir(x),r(y)) ](x7y). (i)
De plus,

La restriction de f kW {x\ x e$i, F(x) x} (2)

(qui est réelle: cf. § 1.3) a la signature (1, N — 1)

8) Artin, p. 119; cf. en particulier le théorème 3.7.
8) Chevalley, [10], Chap. I.
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Or, deux espaces vectoriels ^8, et 232 de dimension N sur Q, munis de formes

symétriques et d'anti-involutions (T,, resp. r2) satisfaisant aux conditions
précédentes, sont équivalents dans ce sens qu'il existe une isométrie A de 23x sur 232 qui
«conserve les relations de réalité», c'est-à-dire telle que AT, T2A (cf. §1.3. a)).

L'espace 33 que nous venons de construire peut être considéré comme le type des

espaces vectoriels satisfaisant à (1) et (2). Nous sommes ainsi amenés à formuler la
définition suivante : un espace de Minkowski sur les complexes, de dimension N, est un
espace vectoriel de dimension N sur (A muni d'une forme symétrique / et d'une anti-
involution F satisfaisant aux conditions (1) et (2).

Puisque la restriction /0 de / à 9W 9?e(33) n'est pas dégénérée, / ne l'est pas non
plus (§ 1.3. a); un espace de Minkowski sur (p n'est donc pas singulier.

Le groupe des isométries de 33 sera appelé groupe de Lorentz complexe L((A).
Les isométries réelles de L((A) (§ 1.3. a)) forment le groupe de Lorentz réel L.

Un sous-espace réel 21 de 33(§ 1.2. b)) tel que 9îe(2I) soit du genre temps (§ 1.1.)

sera appelé sous-espace de Minko WSK i (sur (A) Tous les sous-espaces de Minkowski de

même dimension dans 23 sont équivalents dans ce sens qu'on peut passer de l'un à

l'autre par une isométrie de I).
b) SiQ(x) 0,5Re(*) et Jm (x) sont orthogonaux, etÇ(5Re(«)) Qfömix)); par

conséquent, Ç(9îe(%)) <?(3m») < 0 (§1.1.), etH(x) < 0. SiQ(x) H(x) 0,x est semi-réel.

Lemme 1: Si 21 est un sous-espace complexe et isotrope10) de 23, 21 © ^(21) n'est

pas singulier.
Démonstration: Puisque 21 est complexe, c'est-à-dire puisque <Hor(W) 0, le

seul vecteur réel de 21 est le vecteur nul (§ 1.2.) ; par conséquent, si x e 21 n'est pas nul,
yit(x) est du genre espace. L'ensemble des parties réelles des vecteurs de 21, qui est
5Re(21), est donc du genre espace; donc 9te(2l) n'est pas singulier (§ I.I.). Donc
21 © rÇH) ne l'est pas non plus (§ 1.3. a)); c.q.f.d.

Lemme 2: Si 21 est réel, dim. rad (21) < 1.

Démonstration: Puisque 7^(21) 21, 21 possède une base dans 9?e(2I) (§ I.2.). Or,
5îe(2I) C 9JÎ, qui est un espace de Minkowski sur AR', l'indice de 9JÎ étant égal à 1,

dim. rad9îe(3I) < l11). c.q.f.d.

Chapitre II
La décomposition biorthogonale des sous-espaces

d'un espace de Mevkowski sur les complexes

Les sous-espaces de l'espace de Minkowski 23 admettent-ils tous une base bi-
orthogonale Si ce n'est pas le cas, quels sont ceux qui en ont une, et que dire de ceux
qui n'en ont pas? Ce sont là des questions que nous avons déjà soulevées au § 1.3.

Nous avons souligné alors leur intérêt et mentionné qu'en les élucidant, nous trouvons
un moyen de résoudre le problème qui nous est posé.

Les trois paragraphes de ce chapitre exposent et démontrent une série de résultats
qui sont rassemblés dans les théorèmes 1 (§ IL2.), 2 et 3 (§ II.3.). Ces théorèmes
donnent une réponse complète aux questions que nous venons de rappeler.

10) «Isotrope»: cf. Artin, définition 3.7. Dieudonné dit «totalement isotrope», Chap. I, § 7.

") cf. Artin. Théorèmes 3.7 et 3.10.
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ILI. Les sous-espaces de 23.

Il est utile d'avoir dès le début le tableau suivant présent à l'esprit. Les sous-

espaces 21 de 23 y sont classés en quatre types, suivant le caractère de 21 D 7^(21) et de
21 + T(21) :

21 + rm 91 n /W Type Classe

n. s. n. s. («) I

s. n. s. W I
s.

n. s.

s.

s.

(Y)
1

(6) II

(s. singulier, n. s. non singulier)

On montre aisément que si 21 admet une base biorthogonale, et si 21 + -^(21) n'est
pas singulier, 21 D /"(21) n'est pas non plus singulier. Un coup d'œil au tableau ci-
dessus nous convainc que cet énoncé est équivalent à celui-ci :

Théorème la: Pour que 21 possède une base biorthogonale, il faut qu'il appartienne
à la classe I.

Nous démontrerons que cette condition est suffisante (Théorème 1, § II.2.).

II.2. Les sous-espaces de la classe I
Nous entreprenons maintenant de démontrer que les sous-espaces de la classe I

admettent une base biorthogonale.
a) Si le sous-espace 21 est réel, on a

2I 2t + r(2I) 2Inr(2I);
tous les sous-espaces réels sont ainsi du type (a) ou du type (y), et ils appartiennent
donc tous à la classe I. Or, si 21 est réel, 21 admet une base orthogonale réelle. Une base

orthogonale réelle est une base biorthogonale. Donc,

Lemme 3: Tous les sous-espaces réels de 23 admettent une base biorthogonale.

b) Si 21 est complexe, 21 n -T(^0 0 n'est pas singulier; et 21 est soit du type (a),
soit du type (ß). Ainsi, tous les sous-espaces complexes de 33 sont dans la classe I.

Distinguons deux cas : 1) 21 isotrope ; 2) 21 non isotrope10).
Dans le premier cas, nous argumenterons de la manière suivante : 21 possède une

base {e,} (1 <i < dim. 21) telle que h(ei, eA 0 pour i 4= /. Puisque 21 est isotrope,
on a en particulier f(eit e}) 0 pour i 4= /. La base {e,} est donc biorthogonale.

Tout sous-espace complexe isotrope possède une base biorthogonale. (1)

c) Lorsque 21 est complexe, mais non isotrope, la démonstration que 21 possède une
base biorthogonale est plus délicate. Pour la faire, nous devrons utiliser l'hypothèse
que 33 est un espace de Minkowski, c'est-à-dire que la condition (2) du § 1.4. est
satisfaite.
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Notre démonstration repose sur les propriétés d'une fonction à valeurs réelles F
définie sur l'ensemble 33' des vecteurs non isotropes de 23:

FiA- jg^i Pour *Ê33,

F(x) est évidemment continue sur S3'. On vérifie aisément que pour tout x e 23' et pour
tout X 4= 0 dans (p, F(X x) F(x). Ainsi, pour étudier les valeurs que F prend sur 23',

on peut se borner aux vecteurs de 23' qui satisfont à Q(x) 1.

On montre aisément l'inégalité suivante :

F(x) < 1 pour x s 23'. (2)

Soit 21 un sous-espace complexe non isotrope. Désignons par 21' l'ensemble (non vide)
des vecteurs non isotropes de 21. Soit y un vecteur isotrope non nul de 21. 21 étant
complexe, y est complexe (§1.2.), et par conséquent, H(y) < 0 (§1.4. b)). On peut
montrer que:

Pour tout nombre réel positif y. (si grand soit-il), il existe un voisinage Ualla) |

de y tel que x e Ua n 21' entraîne F(x) < — a (autrement dit : si x e 21' t (3)
tend vers y, F(x) tend vers — oo). J

La fonction G, définie par

G(x)
2 Jp(x) pour *£2T,

[cf. l'inégalité (2)] est continue sur 21'. En vertu de (3), si xeW tend vers y e 21,

isotrope, non nul, G(x) tend vers — 1 ; nous pouvons compléter la définition de G en
posant G(y) — 1 pour y isotrope non nul. La fonction G ainsi prolongée est définie et
continue sur l'ensemble 21" des vecteurs non nuls de 21. On a encore G(X x) G(x)

pour x e 21", et X 4= 0 dans (p.

G(x) atteint sa borne supérieure sur 21'.

En effet, soit {ej (1 < i < dim. 21) une base arbitraire de 21. Formons la sphère
<5 {x\ x ZXi ei,X\Xi \2 l}; S C 21". Puisque G (X x) G (x), G prend toutes ses

valeurs sur S. Or, S est compact. Il existe donc un x0 e S tel que G(x0) > G(x) pour
tout x e 21". La borne supérieure de G est supérieure à — 1, donc x0 e 21' (c'est-à-dire
que x0 n'est pas isotrope).

La fonction X (2 — X)-1 (X réel, 4= 2) étant monotone croissante, on a

F(x0) >F(x) pour xeW. (4)

d) Cet x0 dont nous venons de montrer l'existence possède la propriété décisive
suivante :

Si y e 21 est orthogonal à x0, y est biorthogonal à x0. (5)

En effet, puisque x0 n'est pas isotrope, nous pouvons supposer que Q(x0) 1 (F(X x0)

F(x0) Pour tout y e 21, gy(x) F(x0 + xy) est une fonction rationnelle de x réel,

Au sens de la topologie affine.
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continue pour [ t j inférieur à une certaine quantité positive (qui peut dépendre de y).
On a:

dg^)- j

^ o
*e (*(*„. y) - F(x0) f(x0, y)) ;

de (4), on tire
9îc {h(x0, y) — F(x0) f(x0, y)) 0 pour y e21.

En remplaçant y par e1<p y (cp réel, arbitraire), on obtient

h(x0, y) F(x0) f(x0, y) pour y ê2I

L'énoncé (5) suit de cette relation.
Nous sommes maintenant en mesure de démontrer le

Lemme 4: Tout sous-espace complexe 21 de 33 possède une base biorthogonale.

Démonstration: Nous avons déjà démontré cette propriété dans le cas où 21 est

isotrope (énoncé (1)). D'autre part, si la dimension de 21 est 1, la propriété est évidente.
Supposons qu'elle soit démontrée pour tous les sous-espaces complexes de dimension
a — 1. Si 21 est un sous-espace complexe de dimension a, non isotrope, 21 contient un
vecteur x0 non isotrope qui satisfait à (5), c'est-à-dire que la décomposition 21

<.x0y _L 23 (23 <*o>* n 21)12) est biorthogonale. 23 étant complexe, de dimension
a — 1, la propriété est démontrée pour 21; c.q.f.d.

e) Les lemmes 3 et 4 nous permettent de faire la démonstration annoncée au début
de ce paragraphe.

Commençons par les sous-espaces des types (a) et (ß) : si 21 est de l'un de ces deux
types, 21 n JP(3I) n'est pas singulier, et nous pouvons écrire:

2I (2tnr(2I)) J_93 (6)

avec 23 21 n (21 n T(21))*12). On sait de plus que 23 O T(23) 0 (§ I.2.). Puisque
21 n rÇR) est réel, (6) est une décomposition biorthogonale de 21 (§ 1.3.). Le lemme 3,

appliqué à 21 n -T(2t), et le lemme 4, appliqué à 23, nous permettent d'affirmer que
21 possède une base biorthogonale.

f) Il nous reste à régler le cas des sous-espaces du type (y).
Par définition, si 21 est du type (y), 21 O /'(21) et 21 + /1(2I) sont tous deux singuliers.

Ces deux sous-espaces étant réels, leurs radicaux sont réels (§ 1.3. a), de dimension

1 (§ 1.4. b) : lemme 2) ; posons rad (21 n T(2I)) <y,>, rad (21 + T(2I)) <y2>,

y, et y2 réels, isotropes (non nuls) ; puisque 21 n /'(21) C 21 + ^(21), on a f(y„ y2) 0;
or, deux vecteurs réels, isotropes et orthogonaux sont collinéaires (cf. § I.I.); par
conséquent,

rad (21 n T(2t) rad (21 + T(21) <y>

(y isotrope, réel, 4= 0). Puisque 23 C D entraîne 23 n rad î) C rad 23, on a (avec 23 21,

î) 21 + X21)) :

<y>Crad2I. (7)

12) Si 31 et 33 sont deux sous-espaces d'un espace 33 non singulier, si 31 C 33 et si 31 est non
singulier, on peut écrire 93 ¦= 31 _L (31* O 93).

15 H. P. A. 36, 2 (1963)
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21 n /"(21) étant réel, 21 n /,(21) admet une base orthogonale réelle, qui contiendra
nécessairement X y (X 4= 0), car <y> rad (210 71(2I))7).

On voit ainsi qu'il est possible d'écrire 21 O /'(21) 23 _]_ <y>, avec 23 réel. Nous
savons que 23 n'est pas singulier13). Donc, 21 23 _]_ X avec î) 23* O 2112). 23 étant
réel, cette somme est biorthogonale. î) contient <y> ; c'est l'unique droite réelle de î),
donc, dans î) <y> © (S, (g satisfait à (£ O T((£) 0 (§ I.2.). Puisque î) C 21, et que
<y> C rad 21 (cf. (7)), on a î) <y> _|_ (£; <y> étant réel, la somme est biorthogonale.
Donc, on a construit pour 21 la décomposition biorthogonale suivante :

2t 23 _l <y> JL e • (8)

Le lemme 3 appliqué à 23 et le lemme 4 appliqué à (£ montrent que 21 admet une base

biorthogonale. Réunissons à ce dernier résultat celui de la section e), et combinons-les
avec le théorème 1 a du paragraphe précédent : il vient le

Théorème 1 : Pour qu'un sous-espace d'un espace de Minkowski possède une base

biorthogonale, il faut et il suffit qu'il appartienne à la classe I.

II.3. Les sous-espaces de la classe II
Nous avons appris au § ILI. que les sous-espaces de la classe II ne possèdent pas

de base biorthogonale. Nous allons voir dans ce paragraphe quels sont ceux qui sont
(biorthogonalement) irréductibles, et comment les autres peuvent se décomposer en

une somme biorthogonale d'éléments irréductibles.
a) Nous avons déjà remarqué que la classe II ne contient ni sous-espaces réels,

ni sous-espaces complexes (§ II.2. a) et b)); en particulier, elle ne contient aucune
droite de 33, car les droites sont soit réelles, soit complexes.

Passons aux plans (dimension 2) de 33. Si le plan 23 est de la classe II, il suit du
théorème 1 qu'il est (biorthogonalement) irréductible. Nous allons construire un tel
plan.

23 ne pouvant être ni réel ni complexe, 0 4= 23 n r(ty) 4= 23 4= 23 + -T(^)> donc
dim. (23 O rffî)) 1, dim. (23 + r(Sß)) 3. Ainsi, la classe II n'est pas vide

que si la dimension de 23 est > 3.

La droite réelle 23 D jT(^B) devant être singulière, on a 23 O r(ty) <y> avec

y réel, isotrope, non nul. Soit x un vecteur tel que 23 <y> © <%>. Puisque 23 + X^P)
ne peut être singulier, x n'est pas orthogonal à y, et, par conséquent, 23 n'est pas
singulier, ^3, contenant une droite isotrope, et n'étant pas singulier, est un plan
hyperbolique14). Soit y, le vecteur isotrope de 23 avec /(y, y,) l14). On a 23

<y> © <yi>. ce qui montre que y, est complexe.
Les plans de la classe II sont donc nécessairement des plans hyperboliques dont l'une

des droites est réelle, l'autre étant complexe. (On peut montrer inversement que tous les

plans de ce type sont de la classe II, donc irréductibles.)
Lorsque nous parlerons de plan «irréductible», nous entendrons des plans

hyperboliques de ce type (nous laisserons donc l'adverbe «biorthogonalement» de côté).
Pour finir, un exemple de plan irréductible. Soit {«,} (1 <. i < N, N > 3) une base

orthogonale réelle de 23, avec Q(e,) 1, Q(e2) Q(eN) — 1. On vérifie

13) Cf. Artin, p. 116.
14) Artin: Définition 3.8.
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aisément que le plan sous-tendu par les vecteurs y e, + e2 et y, — e2 + i e3 est
irréductible.

b) Soit 21 un sous-espace de la classe II, dont la dimension a soit supérieure à 2.
21 + T(2l) n'est pas singulier, 21 n T(21) l'est; notons rad (21 n r(21)) <y>, y réel,
isotrope, non nul (cf. lemme 2).

<y><£rad3I. (1)

En effet, si <y> était dans rad 21, <y> serait dans rad (21 + /T(2I)) (y est réel!);
or, rad (21 + JT(2l)) 0. (Comparer avec la relation (7) du paragraphe précédent.)

Nous pouvons écrire 21 n r(%) 23 _L <y>, avec 23 réel, non singulier13); puis

21=23_L£,
avec î) 23* n 2112); cette somme est biorthogonale. î) contient <y>; cette droite est

l'unique droite réelle de î) (cf. § II.2. f)). Montrons que <y> tf: rad X>: en effet, si

<y> C rad D, <y> serait dans rad 21, contrairement à (1). D'où:

î) contient un vecteur x avec f(x, y) 4= 0 (2)

x est nécessairement complexe (si xe £> n'est pas complexe, x e <y>, et f(x, y) 0).
C'est de la propriété (2) que provient la difficulté. Tout d'abord, elle nous enlève

la possibilité de décomposer D, puis 21 comme nous l'avons fait à la section f) du
paragraphe précédent (cf. relation (8) de ce paragraphe). Ensuite, elle a pour
conséquence que î) contient des plans irréductibles. En effet, on vérifie immédiatement que
le plan ^30 y, y> est un plan irréductible; de plus, si la dimension d de X> est
supérieure à 2 (si î) ne coïncide pas avec *Ï30), î> contient des vecteurs orthogonaux à

^P0; si z en est un, S$z < y, x + z} est également un plan irréductible contenu dans î).
Soit 23 un plan irréductible dans î) (d > 2). Nous pouvons écrire î> 23 _|_ ffi,

avec (£ ^3* n î)12) (étant hyperbolique, 23 n'est pas singulier) ; on a (g n r(<£) 0

(la seule droite réelle de £), qui est <y>, est dans *ß).
En général, 23 et (g ne sont pas biorthogonaux. Nous montrerons dans l'appendice

comment on peut construire un 23 et un (£ qui le soient. Lorsque nous aurons démontré
ainsi l'existence d'une décomposition biorthogonale de î) en 23 et (g, nous pourrons
alors écrire la somme biorthogonale suivante :

SI 23 J_ 23 _L S, (3)

(cf. la relation (8) du § H.2.), avec 23 réel, (g complexe, 23 irréductible. En utilisant les
lemmes 3 et 4 du paragraphe précédent, nous pourrons énoncer le

Théorème 2: Tout sous-espace de la classe II, de dimension a > 3, peut se décomposer

en une somme biorthogonale d'un plan irréductible et de a — 2 droites.

Il serait facile de démontrer ensuite que toute somme biorthogonale d'un plan
irréductible et de quelques droites est un sous-espace de la classe IL Nous y renonçons
cependant.

Avant de passer à la construction annoncée, notons une conséquence des théorèmes
1 et 2:

Théorème 3: Les (seuls) espaces biorthogonalement irréductibles d'un espace de

Minkowski sur les complexes sont 1) les droites ; 2) les plans hyperboliques dont l'une des

droites isotropes est réelle, l'autre étant complexe.
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Chapitre III
Le théorème 4

ULI. Géométrie du tube X. L'a

Soit 33 un espace de Minkowski sur les complexes; dim. 23 N.
Nous désignons par X le tube {x \ %m(x) e F+} de 23. X est invariant par les

isométries de Ü.
a) Nous établissons tout d'abord quelques propriétés de X et des sous-espaces de

23 qui ont une intersection non vide avec X.

X ne contient pas de vecteurs isotropes.

En effet, Q(x) 0 entraîne Q(%m(x)) < 0.

Soit 21 un sous-espace de 23. Pour que 21 O X ne soit pas vide, il faut et il suffit que
5Re(21) 3TrtW contienne des vecteurs du genre temps. 5?e(2I) n'est donc pas
singulier (§ LI.). D'après le § I.3., section a), nous pouvons énoncer le

Lemme 5: Si 21 D X 4= tf), 21+ jP(2I) est un sous-espace deMiNKOWSKl (cf. § 1.4. a)).
Comme tel, 21 + T(%) n'est pas singulier. En particulier, si 21 rÇH), 21 n ï 4= </>

entraîne que 21 est un sous-espace de Minkowski.

Lemme 6: Si 21 O X 4= cf>, rad 21 est complexe.

Démonstration: Si x est un vecteur réel de rad 21, et si y est un vecteur de 21 O X,
f(x, y) f(x, r(y)) 0, donc f(x, %m(y)) 0; puisque %m(y) est du genre temps, et

que Q(x) 0, x 0. c.q.f.d.
Il découle de ce lemme que si y est un vecteur non nul de rad 21, H (y) < 0.

Nous pouvons préciser le lemme 6 de la manière suivante: Si 21 n X 4= cf>,

21 O F(rad 21) 0. En effet, si x e 21 n T(rad 21), il existe y e rad 21 tel que x T(y).
Nous avons f(x, y) 0, car x e 21; autrement dit, H (y) 0. Donc y 0, et x aussi;

c.q.f.d.
Lemme 7: Si 21 n X 4= <f>, il existe un sous-espace 23 C 2t tel que 21 rad 21 ± 23,

cette somme étant biorthogonale.

Démonstration: Du lemme 6 et du lemme 1 (§ 1.4. b)), il suit que (E rad 21 ©

P(rad 21) n'est pas singulier. Posons T) 21 ® F'(rad 21). £ C £>• Puisque E n'est

pas singulier, on peut écrire
D C _|_ 93 (1)

avec 23 (£* n î)12). 23 est ainsi orthogonal à rad 21 et à /'(rad 21), donc 23 est

biorthogonal à rad 21.

Montrons que 23 C 21. Soit %e23; x peut s'écrire y A-T{z), y e 21, zerad2I;
x étant orthogonal à G, f(x,t) 0 pour ts(£, en particulier, pour t e rad 21; or
f(x, t) f(F(z), t) h(z, t) pour t e rad 21; en particulier, avec t z, h(z, z) H(z)
0 : z est donc nul, et x y est dans 21. Ainsi rad 21 _L 23 C 2t.

Or, de (1), on tire que

2 dim. (rad 21) + dim. 23 dim. D dim. 21 + dim. rad 21

donc
dim. 23 + dim. rad 21 dim. 21.
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Par conséquent,15)
21 -= rad 21 1 23 c. q. f. d.

Une conséquence du lemme 7: soit x e 21; nous pouvons écrire x y0 + y, avec
y0 s rad 21, y e 23, et y0 est biorthogonal à y; par conséquent, ^,m(y0) est orthogonal à

y. Posons x(t) y A- (1 — t) y0 (t réel). Nous avons x(0) x, x(l) y. <2(3™(#(i!)))
(1 - t)2 Qi^MVo)) + <?(3m(y)). Puisque y0 est isotrope, Ç(3m(y0)) < 0; et puisque
(1 — t)2 est monotone décroissante (0 < t < 1), Q[^m(x(t))) est monotone croissante.
Par conséquent, si %m(x) e V, %m(x(t)) reste dans F pour 0 < t < 1; en particulier,
si 3mW e V+, 3""t(y) est également dans V+. Nous pouvons ainsi affirmer

Si x est dans X, y est aussi dans X ¦ (2)

Ce résultat trouvera son application dans la section c) de ce paragraphe.
b) L'application tc.

Comme dans l'introduction, nous poserons 23" 33 x x 23 (« fois) ; les points de
33" sont donc les «-tuples (x)n (x,,..., xn) de vecteurs de 33. Nous associerons à

(x)n e 33" le sous-espace 21 =¦ ix,,..., xy <x>„ de 23. Si dim. 21 a, nous dirons
que (x)n a la dimension a; nous dirons que (x)n est singulier, isotrope, etc., si 21 est

singulier, isotrope, etc. A toute application A de 23 dans 23, nous ferons correspondre
une application A" de 25" dans 23": A"(x)n (A(x,), A(xn)) (A x)n.

Tt est une application de 23" dans l'ensemble S(n) des matrices symétriques
complexes à « lignes et « colonnes :

n : (x)„ -> n(xn) (ztJ), ztj f(x{, x})

Sr(n) désignera l'ensemble des matrices de S(n) dont le rang est inférieur ou
égal à r.

Nous énonçons sans démonstration deux propriétés de tc :

Lemme 8: Soit a la dimension de 21 <#>„, aQ la dimension de rad 21, et r le rang
de 7i(x)n. On a r A- a0 a.

Lemme 9: Si (x)n et (y)n ne sont pas singuliers, et si n(x)n n(y)n, il existe une
isométrie A e L((p) telle que (A x)n (y)n. Si dim. (x)n < dim. 23, A peut être choisi dans

XXX
c) X" désignera le produit direct X x x X (« fois) ; X" C 33".

Lemme 10: Si (y)n s X" est réel, (y)n n'est pas singulier.
Démonstration: Ve lemme 10 est une conséquence immédiate du lemme 5.

Lemme 11 : Si (x)n s X", il existe dans X" un (y)n non singulier, tel que n(y)n n(x)n.
Démonstration: Posons 21 <*>„• Si r désigne le rang de n(x)n, et si a désigne la

dimension de 21, on a r > a (lemme 8). 21 n X n'est pas vide; on peut y appliquer le
lemme 7, et poser 21 rad 21 J_ 23, où 23 est orthogonal à F(racl 21). Du lemme 8, il
suit que dim. 23 r. Ecrivons xt y,- + yoi (1 < i < n), avec yt s 23, yoi e rad 21;

nous avons évidemment n(x)n n(y)n, où (y)n (y„ ...,yn). D'autre part, (y)„ e X":
c'est l'énoncé (2). Montrons pour finir que (y)n n'est pas singulier. En effet, dim.

Si 31 C 93 (91, 33 : sous-espaces), et si dim. 91 dim. 93. 91 93.
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iy)n A r< car <y>„ C 23; dim. (y)n > r, car rang Ti(y)n r; done dim. (y)n rang
Ti(y)n, donc (y)n n'est pas singulier (lemme 8). c.q.f.d.

111.2. Considérations préliminaires

a) Soit 2B un sous-espace de Minkowski dans 23 ; dim. 2B r0. Posons t X n 2B ;

t est un tube de 2B.

Comme nous l'avons annoncé dans notre introduction - en des termes un peu
différents - le but de ce travail est de démontrer l'énoncé suivant :

(A) Pour tout W, Tt(tn) Tt(Xn) n Sr (n). (C'est-à-dire: l'ensemble des matrices
images de points de t" coïncide avec l'ensemble des matrices images de points de X"
dont le rang est inférieur ou égal à r0.)

Je prétends que l'énoncé (A) est équivalent à l'énoncé (B) suivant :

(B) Pour tout point (x)n e X", il existe un point (y)n e X" tel que

My)n Mx)„, iA

<y>„ soit réel. (b)

Démonstration: (A) -> (B) : Soit (x)n un point de X", et soit r le rang de n(x)n:

Tt(x)nETc(X")nSr(n)-

D'après (A), pour tout r0 > r, et pour tout sous-espace de Minkowski 213 de

dimension r0, n(x)n eTi(t"), c'est-à-dire qu'il existe un point (y)n de t" tel que n(y)n
Ti(x)n. Or, dim. (y)n > rang n(y)n r (lemme 8); d'autre part <y>„C2B, donc
dim. (y)n < r0 dim. 2B. Choisissons de faire r0 r. On a alors dim. <y>„ dim. 2B,

donc <y>„ 2B15). Par conséquent, <y>„ est réel.

(B) -> (A). Il est clair que pour tout 2B, Ti(tn) Cn(X"), et que, si (y)n e t", rang
Tt(y)n < dim. (y)„ < r0 dim. 2B. Donc Tc(t") C tc(X") n Su («). Soit maintenant une
matrice Z dans tz(X") n S,o(«) : il existe un point (y)n e X" tel que n(y)n Z, et d'après
(B), on peut admettre que <y>„ est réel. <y>„ étant réel, et son intersection avec X
n'étant pas vide, <y>„ est un sous-espace de Minkowski (lemme 10), non singulier.
Par conséquent, dim. < y>n rang Z < r0. Soit 23 un sous-espace de Minkowski
contenu dans 2B avec dim. 23 dim. <y>„. Il existe une isométrie A dans Ü
appliquant <y>„ sur 23 (§ 1.4. a)). (A y)„ est encore dans Xn, donc dans t" Xn n 2B", et
Tc(Ay)n Z. c.q.f.d.

b) Au paragraphe suivant, nous démontrerons le théorème 4:
Pour tout sous-espace non singulier 21 de 23, tel que 21 O X 4= ^16), il existe une

isométrie A e LA A) telle que
1) A (21) soit réel,
2) il existe un chemin A(t) (0 < t < 1) allant de l'identité de L+ ((p) à A, tel que

Q(%wi(x(t))) soit monotone croissant (au sens large) pour tout x de 21 (x(t) A(t) (x)).
Ce théorème est dû à R. Jost, qui l'a énoncé dans son cours à l'E. P. F. (Zurich), en

hiver 1960-1961. Nous allons démontrer qu'il entraîne l'énoncé (B).

16) Il suffit à vrai dire d'exiger que 91 + -T(3I) ne soit pas singulier. Si 31 D X 4= (f>, 91 4- /^(91)

n'est pas singulier (lemme 5, § ULI.).
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Démonstration: D'après le lemme 11 du paragraphe précédent, pour tout (x)n s X",
il existe un (z)n non singulier dans X" tel que 7i(z)n n(x)n. Nous pouvons donc nous
borner à montrer que le théorème 4 entraîne l'énoncé (B) pour des (x)n non singuliers.

Soit (x)n un point non singulier de X"; désignons par 21 le sous-espace <#>„; soit
A l'isométrie dont l'existence est affirmée par le théorème 4; posons (y)„ (A x)n.

Puisque {%,..., xn} sous-tend 21, {y„..., y„} sous-tend /1(21). D'après le théorème 4,
< y>„ est donc réel. '

Je prétends que yi e X (1 < i < «). En effet, puisque Q(^m(xi(t))) est monotone
croissant, et que 3m(^;) 3mX(0)) est dans V, 3îrt(y,-) est dans la même composante
de V que 3m (*,-). Or 3rrt(X e V+, donc S™^;) eV+, et yt e X. c.q.f.d.

c) Avant de passer à la démonstration du théorème 4, faisons quelques remarques.
Nous dirons qu'une isométrie A de 23 est accroissante sur le sous-espace 21 de 23 si

Q (3m(A(x))) > Q (Zm(x)) pour tout x de 21.

1) Pour que l'isométrie A soit accroissante sur 21, il faut et il suffit que H(A(x)) >
H (x) pour tout x de 21.

En effet, on a <Re Q(A(x)) <RtQ(x), c'est-à-dire QÇJlt(A{x))) - Q(%m(A(x)))
Ç(9?e(x)) — Ç(3nX)); Par conséquent, Q(%m(A(x))) > Q(^m(x)) si et seulement si

Q(^t(A(x)))>Q(i'5\t(x)); par conséquent, H(A(x)) Q(%i(A(x))) + Ç(3m (A(x))) >
H(x) QCÜtix)) + Ç(3m(%)), si et seulement si Q(A>m(A(x))) > QQm(x)).

2) Considérons un sous-espace 21 de 23 qui soit une somme biorthogonale de sous-

espaces 2Ii,..., 2Ia:

* «!_]_... ±2la;

soient 931( ¦ ¦ •, 23a des sous-espaces mutuellement biorthogonaux, tels que 23,- O 23^

0 (i 4= j) et que 21; C 23,- ; soient A„...,Aa des isométries : /1,(23;) SB,-, A{ accroissante
sur 21;. Je prétends que

A A1±...±Att")
est une isométrie de 23 93, L J_ 23„ accroissante sur 21.

En effet, pour x e 21, x %+...+ xa, avec xt e 21; ; A(x) A,(x,) + + Aa(xa).
Les xt sont biorthogonaux entre eux, les XX) également, et H(Ai(xl)) > H(xt). Par
conséquent,

H{A(x)) f H{Ai (x,)) > 2jH(Xi) H(x) c.q.f.d.
«-i »-i

Nous appliquerons ce dernier fait à la démonstration du théorème 4.

II 1.3. Démonstration du théorème 4

Répétons l'énoncé du théorème 4, avec une légère modification basée sur une
remarque du paragraphe précédent, section c) :

Théorème 4: (R. Jost): Pour tout sous-espace non singulier 21 de 23, avec
21 O ï 4= <f>16),il existe une isométrie A s L+ (p) telle que

1) /1(21) soit réel,

17) Artin. Définition 3.6.
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2) il existe un chemin A(t) (0 < t < 1) allant de l'identité de L((p) à A, tel que pour
tout x de 21, H(x(t)) soit monotone croissant (au sens large) (x(t) A(t) (x)).

Démonstration: a) Puisque 21 n X 4= </>, 21 A- rÇH) n'est pas singulier (lemme 5,
§ III.l.). 21 est donc du type (a) ou du type (ô) (cf. le tableau du § ILI.). Si 21 est du
type (a), 21 est de la classe I; le théorème 1 (§ IL2.) affirme que 21 possède une base

biorthogonale {e,,..., ea} (a dim. 21) :

«-<«!> ±...±<0 •

Si 21 est du type (ô), 21 est de la classe II, et le théorème 2 (§ II.3.) affirme que 21 peut
être décomposé en une somme biorthogonale de a — 2 droites et d'un plan hyperbolique
irréductible :

21 n'étant pas singulier, aucune des droites de la décomposition biorthogonale de
21 n'est isotrope7).

Posons 23; Ot, r(e,)> (l<i< a-2 ou a), 330 23 + F(^).
On a

21 + T(2I) 33j + + 930 si 21 est du type (a),

21 + T(2l) 23i + + 33a _ 2 + 230 si 21 est du type (ô)

Les 23; étant mutuellement orthogonaux, et 21 + F(W) n'étant pas singulier, la somme
est directe, et aucun des 23, n'est singulier18) ; on a donc

2t + r(2I) 231±232±...

Les 23; étant réels, la somme est une décomposition biorthogonale de 21+ /'(21).
(Comparer cette section avec la remarque 2) du § II1.2. c).)

b) Dans les sections c) et d), nous montrerons comment on peut construire dans
chaque 23,- une isométrie A} de 23, sur lui-même.

1) qui soit accroissante sur <g;>, respectivement sur Sß;

2) telle que/l;«g;>), resp. A0(S$) soit réel;
3) telle qu'il existe un chemin At(t) (0 < t < 1) d'isométries de 23, avec A{(0)

ljj.19), /1;(1) Aj, tel que H(x(t)) soit monotone croissante pour tout x e <ß;>, resp.
E$(x(t)=Ai(t)(x)).

Supposons que ce résultat soit acquis. Au moyen des isométries A,, A2,..., nous

pouvons construire une isométrie A A, ±A2± de 21 + jT(21) sur lui-même.

On a /1(21) A,((e,A J. Nous voyons que /1(21) est réel, puisqu'il se présente
comme une somme d'espaces réels. Comme 33 (21 + /"(21)) _L (21 + r(%))*
(21 + 7^(21) n'est pas singulier)20), nous pouvons former à partir de A l'isométrie
A A ±_ l(5r+/¦(«))• de 93 sur lui-même.

Je prétends que A a les propriétés annoncées dans le théorème. En effet, nous
venons de voir que

18) Cf. Artin, p. 115-116.
19) ibid., p. 124.
20) Cf. Artin: théorème 3.5., équation (3.35).
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1) /1(21) /1(21) est réel.

2) Le chemin A(t) A(t) J_ l(st r{%))' > avec A(t) A,(t) J_ A2(t) ± mène de 1^
à A, et /t(j^) est une isométrie. Si x e 21, # Aj ^ + Xa ea, resp. x X,e,A- ...A-
Xa_2 ea_2 A- X0 e0, avec e{ e 23; et e0 e ty; x(t) A(t) (x) X, e,(t) A- X2 e2(t) + avec
et(t) e 23;. Les 23; étant mutuellement biorthogonaux, H(x(t)) j X, \2 H(e,(t)) 4-

| X2 |2 H(e2(t)) A- Les H(e{(t)) étant monotones croissants (au sens large), H(x(t))
l'est aussi, quels que soient les X,, X2,...

c) Construction de At pour'93; <«;, r(ef)y.
1) Si g; est semi-réel, <e,> est réel. Posons A{ 1^; cette isométrie satisfait

trivialement à tout ce que nous en exigeons.
Si g; est complexe, nous remarquons que 5?e(<e,>) n'est pas singulier, puisque

33; <9îe«e;»> ne l'est pas (§ 1.3. a)). Par conséquent, 9ie«e;>) est soit du genre
temps, soit du genre espace (§ I.I.).

2) 9îe X;>) est du genre espace.

Puisque ei n'est pas isotrope, nous pouvons admettre que Q(et) — 1. Posons

e{ x + i y, avec x et y réels ; puisque e{ est complexe, x et y sont linéairement
indépendants. Puisque Ç(e{) est réel, % et y sont orthogonaux. Puisque île X,>)
ix, y> est du genre espace, x et y sont du genre espace (§ 1.1.) : Q(x) < 0, Q(y) < 0.

De Q(ei) - 1, il suit que % Ç(e;) - Ç(*) - Q(y) - 1; donc Ç(%) - - 1 + Ç(y)
est inférieur à — 1. Par conséquent, H(e^) Q(x) + Ç(y) < — 1.

Puisque Ç(<?;) est réel, a; et y sont orthogonaux. Posons x X x', y pt y', x' et y'
réels, Q(x') Q(y') — 1, X et pi réels et positifs. X et pi satisfont à X2 — pt2

I — Q(e,)) et à X2 + pi2 — H(eA H existe ainsi un nombre réel positif tp, unique,
tel que X Ch cp, pt Ch cp ; cp est déterminé par la condition Ch 2 ç? — #(e;) (> !)•
II existe une rotation At de 33;, et une seule, telle que/l;(e;) x'21). Cette rotation
est accroissante sur <(?;>, car H(ei) < H(x') — 1. La matrice associée à /1; dans la
base {x', y'} de 33; est

Ch cp i Sh cp

i Sh cp Ch cp

Définissons At(t) par la matrice

Ch tcp i Sh
(0 < t < 1)

i Sh tcp Ch tcp j

A{(t) est une rotation; le chemin At(t) (0 < t < 1) mène de ljg,- à/1;. ^(^) A(t) (x)

a (%' Ch (1 — t) cp A- i y' Sh (1 — t) cp) pour x a e,-.

H(x(t)) — | a |2 Ch 2 (1 — t) cp est donc monotone croissant dans l'intervalle
0 < t < 1, quel que soit x e <e;>.

3) 9te«ß;>) est i« gewre temps.
e{ n'étant pas isotrope, nous pouvons admettre que Q(e{) 1. Comme tout à

l'heure, posons ei x + i y, avec x et y réels; 21e ««;» O, y>- Puisque e; est

complexe, et que Q(et) est réel, x et y forment une base orthogonale de 5Re(ß;).

21) Cf. Artin, théorème 3.17.
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Puisque 5Re(<^{>) est du genre temps et que Qie,) Q(x) — Q(y) 1, nous voyons
que 0 < Q(x) < 1, Q(y) < 0. Done H(et) Q(x) + Q(y) 2 Q(x) - 1 est compris
entre — 1 et + 1 :

- 1 < H(e{) < 1

Comme tout à l'heure, posons x — Xx', y pty', avec x' et y' réels, Q(x') 1,

Q (y') — 1, X et pi réels, positifs. X et pt satisfont à X2 + pi2 1 Q(e{)), X2 — pi2

H(eA H existe un nombre réel cp, unique, compris entre 0 et n\2, tel que X cos cp,

pi sin cp; cp est univoquement déterminé par la relation cos 2 cp H(ei). Il existe
une rotation A{ de 33,-, et une seule, telle que XX') x'20)', X est accroissante
sur <(?;>, car H(et) < H(x') 1. Va matrice associée à At dans la base {x', y'} est

cos cp — i sin cp

- i sin cp cos cp

Définissons Ai (l) par la matrice

cos tcp — i sin tcp \ ,„\(0<1<1).i sin tcp cos tcp J

At(t) est une rotation; le chemin At(t) mène de 1^ à Af. x(t) A{(t) (x)
a (%' cos (1 — t) cp A- i y' sin (1 — f) cp) pour % a e{. H(x(t)) J a |2 cos 2 (1 — /) qs

est donc monotone croissant pour 0 < t < 1, pour tout a; e <<?;>.

d) Construction de A0 pour 330 23 + X23).
Le plan irréductible 93 contient deux vecteurs isotropes non orthogonaux. L'un,

disons y, est réel; l'autre, disons z, est complexe. Nous pouvons toujours admettre que
/(y, z) 1. On a 93 <y, z>, et 230 <y, z, F(z)>.

z étant isotrope et complexe, H(z) est négatif: /ï(z) < 0 (§ 1.4. b)).
Pour tout # e 93, et pour tout isométrie A de 930 laissant y invariant, on a

H(A(x))- H(x) 1 f(y, x) \2 {H(A(z)) - H(z)).

On en déduit que, pour que A soit accroissante sur 93, il faut et il suffit que A soit
accroissante sur <<:>.

Pour qu'un vecteur y0 ay + ß z A- y r(z) de 930 satisfasse aux conditions
QiVo) 0> /(y. yo) T ^ faut et il suffit que ß 4- y 1, « — /3 y -HX- On a alors

#(yoXX-y|2#(X
Posons ß y 1/2, et a — 1/4 iï(z) ; y0 est alors réel, et H(y0) 0.

La rotation A0 de 230 (unique)25) qui satisfait à A0(y) y, A0(z) y0 est accroissante

sur <2>, car //(>r) < H(y0) 0.

Pour trouver la matrice de A0 dans la base {y, z, F(z)} de 330, posons A0(F(z))
y y A- Xz 4- pi F(z). Va matrice de A0 est alors

- I H(z) ;

'

2

1
'

A r
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Le déterminant de cette matrice étant égal à 1, on doit avoir // — /1 2. Puisque y
satisfait à Q(y) 0, f(y, y) 1, on doit avoir fiA-X=l., x - X/t H(z) (cf.
ci-dessus). On trouve ainsi X — 1/2, pi 3/2, x 3/4 H(z), et la matrice de A0 est
ainsi :

tH(z H(z

Définissons A0(t) par la matrice

)«( H(z1 --r- 1

1-

1+^r-

(0 < * < 1)

/10(/!) est une rotation de 230 qui laisse y invariant; le chemin A0(t) relie la!o à /10.
Montrons que H(x(t)) est monotone croissante pour tout x de ^3. Il suffit, d'après
ce que nous avons vu plus haut, de montrer que H(z(t)) est monotone croissante.
z(t) A0(t). z - y tj2 (1 - t\2) H(z) A- z (1 - t\2) + F(z) tj2. Va formule (1) nous
donne

H{z(t)) t (t - 2) H(z)

qui est monotone croissant pour 0 < t < 1 (H(z) < 0 c. q. f. cl.

Appendice

Construction d'un 23 et d'un (g biorthogonaux. (cf. § II.3. b)). Soit 93o un plan
irréductible de î) ; écrivons ^ß0 <y, y0>, avec y0 isotrope, univoquement déterminé

par la condition f(y, y0) 1.

Posons (g0 ^3* n D. Si {#;} (1 < i < <f — 2) est une base de (£0, le plan irréductible
le plus général de î) peut être écrit :

93 <y, y0 + 27 a< *<> -

» i
avec des a,- e arbitraires.

Pour trouver une base de (g 93* n î), partons de la base {xi\ de (g„, que nous
supposerons être orthogonale. Posons e{ x, + ßt y (1 < i < d — 2). Remarquons
que les et, qui appartiennent à î), sont linéairement indépendants (car y ^ (g0),
mutuellement orthogonaux, et orthogonaux à y. Par un choix convenable des ßi: on peut
les rendre orthogonaux à 93; pour cela, il faut et il suffit que / (e;, y0 + 27 a^ x}) 0

(1 < i < d — 2) ; or, ces conditions sont remplies si /3; — a,- Ç (X- Avec ce choix
des p1;, les g; forment une base orthogonale de (g.
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Nous avons ainsi obtenu la paire la plus générale formée d'un 93 irréductible et du
(g 93* O î) correspondant :

93 <y,y0+27aiX.
(è (x, - y x, Q(x,), x2-ya2 Q(x2), ...>

Puisque (£0 n X®o) 0, le lemme 4 du paragraphe II.2. nous permet de supposer
que la base [xi] de (g0 est biorthogonale. Cela nous permettra d'écrire plus simplement
les conditions auxquelles les a.i doivent satisfaire pour que 93 et (g soient biorthogonaux.
Ces conditions sont :

Hen y) ° (l<i<d-2)
ce qui est acquis d'avance (y est réel, et orthogonal aux e,) ;

2) h(eit y0 + J^o, *,) 0 (1 < i < rf - 2),
c'est-à-dire

*(*„ y0) + a,- ff(*,) + a,- Qfa) 0 (2)

Désignons par x,,...,x les vecteurs isotropes de la base {X de (g0; les vecteurs
non isotropes x +,,..., xd_2 seront supposés satisfaire à Q(x{) 1 (q A- 1 < i < d — 2).
Les conditions (2) deviennent :

a; H(x{) - h(x,, y0) 1 < * < q

<*iHiXi) + Xi - h(xlt y0) q + 1 <i < d - 2

Si //'(Af;) 4= 0 pour i < o, et si H(x{) 4= 4- 1 pour i > g 4- 1, ces conditions
peuvent être satisfaites quels que soient les h(x{, y0) ; les a,- doivent alors être choisis
ainsi :

_ H(xt) h(x{, y„) - h(y0, xt)
a*~ "

(H(x{))2 -1 « >e + L

Il est facile de vérifier qu'on a bien //(«;) < 0 pour i < q, et #(%,-) < — 1 pour
i > g + i.
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