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Quelques propriétés de ’espace de MINKOWSKI sur les complexes

par J.-J. Loeffel
CERN, Geneve, Division Théorique

(15. VIII. 62)

Résumé. La fonction de Wightman (fonction W) & » + 1 points pour un champ scalaire se
présente comme une fonction analytique de » quadrivecteurs qui est holomorphe dans le tube
futur. D’aprés Hall et Wightman, on peut élargir ce domaine d’holomorphie au tube étendu (par
tube étendu, nous entendons le plus petit domaine invariant par L+ ((*) qui contient le tube
futur). Si I'on admet 'invariance par réflexion spatiale, on peut considérer la fonction W comme
une fonction analytique des produits scalaires des # vecteurs. Elle est alors holomorphe dans
I'image du tube futur par I'application st qui fait passer des vecteurs aux produits scalaires.

On montre ici que, dans le cas ol # < 4, on peut obtenir cette image en partant d’un espace
de Minxowskr de dimension #, et en appliquant zr au tube correspondant.

Ce résultat s’obtient grace au théoréme suivant, qui a été formulé par Jost: Tout sous-espace
qui contient des points du tube futur peut se transformer par une famille continue de transforma-
tions de LoRENTZ complexes de maniére a ce que: 1° les carrés des parties imaginaires des vecteurs
de ce sous-espace croissent de maniére monotone; 2° I'espace finalement obtenu soit réel (Théo-
réme 4). '

Pour démontrer ce théoréme, on utilise les propriétés de décomposition biorthogonale des
sous-espaces complexes (Théorémes 1, 2 et 3).

Introduction

a) Au cours de recherches récentes sur la structure mathématique de la théorie
des champs quantifiés, on a été amené a considérer des fonctions de n-tuples (x4, ..., %,) =
(x), de vecteurs pris dans un espace de MINKOWSKI sur les complexes, définies et
holomorphes dans le tube T" = {(x), | Jm x; € V.} (V, désigne le cone futur), et inva-
riantes pour les transformations du groupe de LORENTZ (réel) orthochrone L'). Le
théoréme de BArRGMANN, HALL et WiGHTMAN?) affirme que ces fonctions peuvent
étre considérées comme des fonctions holomorphes des produits scalaires f(x;, x;) des
n vecteurs x,..., x,,.

L’objet de ce travail est d’établir une propriété de la relation qui lie les n-tuples de
vecteurs a leurs produits scalaires.

1) Fonctions de WiGHTMAN (WIGHTMAN [1]); transformées de FOURIER des fonctions retardées
(LEEMANN, SYMANZIK, ZIMMERMANN [2]).

%) HaLL et WiGHTMAN ont donné de ce théoréme une démonstration valable lorsque la dimen-
sion de 'espace de MINKOWSKI est égale a 4 [3]. R. Jost [4] et K. HEPP [5] ont généralisé le théo-
ré¢me a une dimension quelconque.
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b) Considérons une suite B; C B, C ... d’espaces vectoriels emboités; x € B, est
de la forme (9, {1,..., Zm-1,0,0,...). Le produit scalaire de deux vecteurs x et y de
B, sera défini par

flx, v) =0 — gt — L, — fm—1gm—1

B, sera appelé espace de MINKOWSKI sur les complexes de dimension m?). I, sera
I'ensemble des vecteurs de B,, tels que: a) Jm 2> 0, b) AJImx, Imx) > 0. Si
m <m', on a évidemment ¥, = T,, N B, Nous désignerons par I,, 'ensemble des
n-tuples de vecteurs de I,

Désignons par S(n) 'ensemble des matrices symétriques complexes a # lignes et »
colonnes. Définissons une application & de I}, dans S(n): (x), > 7w(x), = (2;;), 2;; =
(x;, x;). Posons n(¥,) — M, (n). Les matrices zz(x), ont leur rang <C m ; par conséquent
M, (n) C S™(n), S™(n) désignant I’ensemble des matrices de S(n) dont le rang est << m.

Désignons I'ensemble des fonctions holomorphes sur I, et invariantes par les
transformations de L' par (I),); désignons par (M, (n)) I'ensemble des fonctions
holomorphes sur M, (n). Le théoréme de BARGMANN, HALL et WIGHTMAN s’énonce
alors: pour tout W e (I,), il existe un ¢ € (M ,(n)) tel que W = p .

On a évidemment

M, (n) C Myn) C...C S(n).

Si M, (n) désigne I'ensemble des matrices de M, (n) dont le rang est < m (< m'),
c’est-a-dire si M, (n) = M,,.(n) O S™ (n), on peut écrire M,,(n) C M, (n).
Le but de ce travail est de montrer que

M, (n) = M, (n) .

¢) En utilisant le théoréme de BARGMANN, HALL et WIGHTMAN, on peut tirer de ce
résultat la conséquence suivante: les valeurs que W € (I7,) prend dans les points (x),
de I, tels que m(x), € My, (n) (m << m') sont déja prises par la restriction de W &
I, =3.0%,. ,

Sim' > n, M, (n) = M,,(n). Notre résultat appliqué a M, (n) permet d’affirmer
que

M,.(n) = M (n) (m" > n).
De cette derniére relation, on déduit que les fonctions «de trois points» (# = 2) peuvent
étre discutées dans un espace de MinkowsKI de dimension 2, tandis que les fonctions
«de quatre pointsy (n = 3) peuvent étre discutées dans un espace de MINKOWSKI de
dimension 3. R. JosT [6] est déja parvenu par d’autres moyens a la méme conclusion.
On en trouvera une application dans un travail de D. RUELLE [7] sur le domaine
d’holomorphie de la fonction «de trois points».

Je tiens a remercier M. le Professeur R. JosT de m’avoir suggéré ce travail. J'ai
trouvé dans le cours qu’il a fait A 'E. P. F. en hiver 1960/1961 les précieuses indications
qui m’ont permis de résoudre le probléme posé. Les emprunts que j’ai faits a ces
legons sont trop nombreux pour que je puisse en donner la liste.

3) Cette définition sera formulée en des termes un peu différents au § 1.4.
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Que MM. les Professeurs M. FiErz et R. JosT trouvent ici I'expression de ma
gratitude pour I'hospitalité qu’ils m’ont accordée au Séminaire de Physique Théorique
de 'E.P.F. Je remercie également la Commission pour la Science Atomique (Fonds
national suisse) de son appui financier.

Chapitre I
L’espace de MINKOWSKI sur les complexes

Les moyens mis en ceuvre dans ce travail sont ceux de I'algébre linéaire des espaces
vectoriels de dimension finie. _

Nos notations et notre terminologie en ces matiéres sont le plus souvent emprun-
tées a l'ouvrage de E. ARTIN: Geometric Algebra (Interscience Publishers 1957) et a
celui de J. DIEUDONNE: La Géométrie des groupes classiques (Ergebnisse der Mathe-
matik, Neue Folge, Heft 5, 1955). Nous renverrons fréquemment i des propriétés
établies dans ces deux traités. |

Dans ce chapitre, nous allons introduire quelques notions et exposer quelques faits
simples dont nous aurons besoin dans les chapitres suivants.

L.1. L'espace de MINKOWSKI sur les réels

Par espace de MINKOWSKI sur les réels, nous entendons un espace vectoriel 9t de
dimension N sur £, muni d’une forme symétrique non dégénérée f,, de signature
(1, N — 1). L’indice de f, vaut 1%). Nous désignerons par @, la forme quadratique
associée a f,:

Qo(%) = folx, x), x e M.

x & M est dit du genre temps si Qy(x) > 0, etc. Si x est du genre temps, et si y est
non nul et orthogonal a x, ¥ est du genre espace. Si x est du genre temps, tous les
vecteurs non nuls de I'hyperplan {x>* sont du genre espace.

Un sous-espace A de It est appelé sous-espace de MINKOWSKI, ou sous-espace du
genvre temps, si A contient un vecteur du genre temps. Si N est du genre temps, 1l est
non singulier4). Un sous-espace sera dit du genre espace si A* est du genre temps;
Q(y) < 0 pour y non nul de UA; A est non singulier. Si A est non singulier, A est soit
du genre temps, soit du genre espace. Si U est un sous-espace singulier de I, la
dimension de rad %) est 1; A ne contient alors aucun vecteur du genre temps.

L’ensemble V' des vecteurs du genre temps est un céne ouvert. V' se décompose en
deux composantes disjointes, connexes par arcs, V, et V_. Si x est dans 'une, — x est
dans l'autre. V, et V_ sont des demi-cones ouverts connexes.

Tous les espaces de MINKOWSKI de méme dimension sont isométriques?). Un
sous-espace U du genre temps, de dimension @, d'un espace de MINKOWSKI, est iso-
métrique a un espace de MiNKowsKI de dimension a. C’est pourquoi nous désignons
les sous-espaces du genre temps par le terme de sous-espaces de MINKOWSKI.

%) Pour ces notions, cf. J. DIEUDONNE, op. cit, Chap. I, en particulier les §§ 5-8, 11; E. ARTIN,
op. cit, Chap. 3, § 3.
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Le groupe orthogonal de 9t relativement & f%) sera désigné par L: c’est le groupe
de LORENTZ (réel).

1.2. La notion de réalité dans les espaces vectoriels sur les complexes®)

Un espace vectoriel B de dimension N sur (~ peut étre considéré comme un espace
vectoriel de dimension 2 N sur /£. Nous disons qu'un ensemble U de vecteurs de B
est un ‘f-sous-espace si o x + By est dans A (v, y e W, &, Be A). Si B est un ensemble
de vecteurs de 8B, nous désignerons le plus petit /f-sous-espace de B contenant B par
le symbole (B> R ((B> désignera le plus petit sous-espace de B contenant B).

Soit I" une application de B sur lui-méme, satisfaisant a:
1) I (% + x5) = I'(x,) + T'(x,), %1, %56 B,
2) Noax)=al(x),xeB,a,ae &,
a: conjugué complexe de a.
3) I'(x) =x,x¢ .

Nous disons que I” est une anti-involution sur B. I" apparait comme une involution de
B considéré comme espace vectoriel sur ‘4. L’ensemble I3+ des vecteurs x de B qui
satisfont & I'(x) = x est un ‘A-sous-espace de B. Il en est de méme pour I'ensemble
W- des vecteurs x avec I'(x) = — x. On a W~ =7 W+, et B = W+ @ W~. Nous
définissons deux applications /4-linéaires de B sur W+ par

Re = (L+1), Jm=i@1-1).

Les vecteurs de W+ sont appelés réels, ceux de W—, imaginaires. Re(x) est appelée
partie véelle de x, Im(x) est appelée partie imaginaive de x.
Notons quelques relations. Pour tout sous-espace %, on a:

A+ L(A) = (Re(W> = (ImA)>,
Re(A) = Im() .

Si I'(A) = A, on dira que N est 7éel (ne pas confondre un sous-espace réel avec un
R-sous-espace). A N I'(A) est le plus grand sous-espace réel contenu dans A, A + 1'(A)
est le plus petit sous-espace réel contenant U. Les trois énoncés suivants sont équi-
valents:

1) I'() =A,
2) W= {(Re(N)>,
3) A a une base réelle.

Pour qu’'une droite (x> soit réelle, il faut et il suffit que Re(x) et JIm(x) soient
linéairement dépendants. Un vecteur x satisfaisant & cette derniere condition sera dit

5) Cf. DIEUDONNﬁ, op. cit, Chap. I, § 3.
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semi-réel. S'1l n'y satisfait pas, nous dirons qu'il est complexe. Un sous-espace U sera
dit complexe si tous ses vecteurs non nuls sont complexes. Pour que U soit complexe,
il faut et il suffit que AN I'(A) = 0%) (ne pas confondre un sous-espace complexe
avec un espace sur les complexes).

Une application linéaire A de B dans B sera dite réellesi A ['= I' A.

Posons A = (AN I'(N) ® B; on a alors BN I'(B) = 0.

Remarquons pour finir que si 9 est un f-sous-espace de dimension N dans B, tel
que ANz A = 0, on peut écrire B = A @ ¢ A. On peut alors définir une anti-involu-
tion I'" sur B en posant ['(x) = x pour x e A, et I'(x) = — x pour x e ¢ A.

1.3. Anti-involution et forme symétrique

a) Soit B un espace vectoriel de dimension N sur (), muni d’une forme symétrique
f et d'une anti-involution /.
Si la condition

est satisfaite, nous dirons que f et I" sont compatibles.

Si f et I" sont compatibles, la restriction f, de f & W+ est une forme symétrique
(R-bilinéaire) sur W+. Une base orthogonale de W+ étant une base orthogonale de B,
on peut énoncer’):

Pour que f, soit non dégénérée, il faut et il suffit que f soit non dégénérée.

Des raisonnements analogues nous permettent d’affirmer que:

Pour que A + I'(A) ne soit pas singulier, il faut et il suffit que Re(A) ne soit pas
singulier.

Si x est orthogonal a y, I'(x) est orthogonal & I'(y). Si B n’est pas singulier, il s’en
suit que

Ty = (FE))*. (1)
Par conséquent
rad I'(A) = I'(rad A) (2)
et
si ) = A, T = A*. (3)

Un sous-espace réel admet une base orthogonale réelle.

Une isométrie A de B sur lui-méme qui satisfait & I' A = A I sera dite réelle.

On montre aisément la proposition suivante:

Pour que I" et f soient compatibles, il faut et il suffit que la forme 4, définie sur
B par

W, g) = KT (3), 9)

soit hermitienne.

{ et & coincident sur 2B+, On peut donc énoncer: pour que /4 ne soit pas dégénérée,
il faut et il suffit que f ne soit pas dégénérée.

6) 0 désigne le sous-espace qui ne contient que le vecteur nul.
7) Cf. ArTIN, théoréme 3.7.
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Nous désignerons par H la forme quadratique associée a &: H(x) = h(x, x) pour
x e B.

b) L’'une des questions qu’on se pose avec profit au sujet d'un espace vectoriel
muni d’une forme sesquilinéaire réflexive est celle des sous-espaces irréductibles®)
(un sous-espace est irréductible s’il ne peut s’écrire sous forme de somme orthogonale
de deux sous-espaces + 0). La solution de cette question permet par exemple, lorsque
la forme n’est pas alternée, d’établir 'existence de bases orthogonales de 8. On connait
I'importance de ce théoréme d’existence.

Si B est un espace vectoriel sur (*, muni d'une forme symétrique f et d'une anti-
involution /' compatible avec f, on est amené a introduire la notion de «biorthogona-
litén: x est biorthogomal & y si f(x,y) = h(x,y) = 0. Ou a: si x est biorthogonal a v,
Re(x) est orthogonal a Re(y) et & Fm(y). Si A et B sont deux sous-espaces orthogonaux,
et si A est réel, A et B sont biorthogonaux.

Nous allons nous poser au chapitre II la question de la décomposition des sous-
espaces de B en des sommes biorthogonales de sous-espaces biorthogonalement
irréductibles. La solution que nous trouverons (théorémes 1, 2 et 3) nous permettra
de résoudre au chapitre III le probléme qui fait l'objet de ce travail.

1.4. L’espace de MINKOWSKI sur les complexes

Nous allons formuler dans ce paragraphe une définition de I'espace de MINKOWSKI
sur les complexes qui sera mieux adaptée & nos besoins que celle que nous avons
donnée dans notre introduction. Nous énoncerons ensuite quelques propriétés de
I'espace de MINKOWSKI sur les complexes.

a) Nous partons d'un espace de Minkowskl It de dimension N sur les réels.
L’ensemble B = <IN> des combinaisons linéaires a coefficients complexes de vecteurs
de M est un espace vectoriel de dimension N sur les complexes. Nous pouvons définir
une forme symétrique f qui prolonge la forme symétrique f, de 9 a tout I'espace B.
Cette extension est unique®). Pour retrouver 9t comme «partie réelle» de B, nous
remarquons que B peut étre considéré comme la somme directe de I et de z M, puis
nous definissons une anti-involution I" sur B par :

I'(x) =x pour xeIM,
I'x) = —x pour xeiIM

(cf. § 1.2.). Nous avons bien Re(B) = M.
La forme symétrique f et 'anti-involution " sont compatibles:

De plus,
La restriction de fa M = {x | x& B, ['(x) = x} (2)
(qui est réelle: cf. § 1.3) a la signature (1, N — 1).

8) ARTIN, p. 119; cf. en particulier le théoréme 3.7.
%) CHEVALLEY, [10], Chap. I.
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Or, deux espaces vectoriels B, et B, de dimension N sur (*, munis de formes
symétriques et d’anti-involutions ([7;, resp. I',) satisfaisant aux conditions précé-
dentes, sont équivalents dans ce sens qu’il existe une isométrie /A de B, sur B, qui
«conserve les relations de réalitén, c’'est-a-dire telle que A 1", = ', A (cf. §1.3. a)).
L’espace B que nous venons de construire peut étre considéré comme le type des
espaces vectoriels satisfaisant 4 (1) et (2). Nous sommes ainsi amenés a formuler la
défination suivante: un espace de M INKOWSK I sur les complexes, de dimension N, est un
espace vectoriel de dimension N sur (* muni d'une forme symétrique f et d’'une anti-
involution /" satisfaisant aux conditions (1) et (2).

Puisque la restriction f, de f & MM = Re(B) n'est pas dégénérée, f ne 'est pas non
plus (§ 1.3. a); un espace de MINKOowsKI sur (* n’est donc pas singulier.

Le groupe des isométries de B sera appelé groupe de LORENTZ complexe L((5).
Les isométries réelles de L((*) (§ 1.3. a)) forment le groupe de LORENTZ réel L.

Un sous-espace réel A de B(§ 1.2. b)) tel que Re(A) soit du genre temps (§ I.1.)
sera appelé sous-espace de M INKowSKI (sur (7). Tous les sous-espaces de MINKOWSKI de
méme dimension dans B sont équivalents dans ce sens qu'on peut passer de l'un a
l'autre par une isométrie de L'.

b) SiQ(x) = 0, Re(x) et Im(x) sont orthogonaux, et Q(Re(x)) = Q(Im(x)) ; par consé-
quent, Q(Re(x)) = Q(Im(x)) <0 (§1.1.), et H(x) < 0. SiQ(x) = H(x) =0, x est semi-réel.

Lemme 1: Si A est un sous-espace complexe et isotropel®) de B, W I'(A) n'est
pas singulier.

Démonstration: Puisque A est complexe, c’est-d-dire puisque AN L(A) =0, le
seul vecteur réel de U est le vecteur nul (§ I.2.); par conséquent, si x ¢ A n’est pas nul,
Re(x) est du genre espace. L’ensemble des parties réelles des vecteurs de U, qui est
Re(A), est donc du genre espace; donc Re(A) n’est pas singulier (§ I.1.). Donc
A @ [(A) ne l'est pas non plus (§ 1.3. a)); c.q.f.d.

Lemme 2: St U est réel, dim. rad (A) < 1.

Démonstration: Puisque I'(A) = A, A posséde une base dans Re(A) (§ I.2.). Or,
Re(A) C M, qui est un espace de MINKOWSKI sur £ ; U'indice de M étant égal 4 1,
dim. rad Re(A) < 111). ¢.q.1.d.

Chapitre II

La décomposition biorthogonale des sous-espaces
d’un espace de MINKOWSKI sur les complexes

Les sous-espaces de l'espace de MiNkowskl B admettent-ils tous une base bi-
orthogonale ? Si ce n’est pas le cas, quels sont ceux qui en ont une, et que dire de ceux
qui n’en ont pas? Ce sont la des questions que nous avons déja soulevées au § I.3.
Nous avons souligné alors leur intérét et mentionné qu’en les élucidant, nous trouvons
un moyen de résoudre le probléme qui nous est posé.

Les trois paragraphes de ce chapitre exposent et démontrent une série de résultats
qui sont rassemblés dans les théoremes 1 (§ I1.2.), 2 et 3 (§ I1.3.). Ces théoreémes
donnent une réponse compléte aux questions que nous venons de rappeler.

10) «Isotrope»: cf. ArTIN, définition 3.7. DIEUDONNE dit «totalement isotrope», Chap. I, § 7.
11) cf. ArTIN. Théorémes 3.7 et 3.10.
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I1.1. Les sous-espaces de B.

Il est utile d’avoir dés le début le tableau suivant présent a l'esprit. Les sous-
espaces A de B y sont classés en quatre types, suivant le caractére de W N I'(A) et de

€A+ I'(N):

A + I'(NW AN I Type Classe
n.s. n. (ee) l

8. n. (B) ( I

B . ()

n. s. s. (9) IT

(s. = singulier, n.s. = non singulier)

On montre aisément que si U admet une base biorthogonale, et si A + I'(A) n’est
pas singulier, A N I'(A) n’est pas non plus singulier. Un coup d’ceil au tableau ci-
dessus nous convainc que cet énoncé est équivalent A celui-ci:

Théoréme 1a: Pour que W posséde une base biorthogonale, il faut qu'il appartienne
a la classe 1I.

Nous démontrerons que cette condition est suffisante (Théoréme 1, § I1.2.).

I1.2. Les sous-espaces de la classe I

Nous entreprenons maintenant de démontrer que les sous-espaces de la classe I
admettent une base biorthogonale.
a) S1 le sous-espace U est réel, on a

A=A+ TW=ANT();

tous les sous-espaces réels sont ainsi du type () ou du type (y), et ils appartiennent
donc tous a la classe I. Or, si U est réel, A admet une base orthogonale réelle. Une base
orthogonale réelle est une base biorthogonale. Donc,

Lemme 3: Tous les sous-espaces réels de B admeltent une base biorthogonale.

b) Si A est complexe, W '(A) = 0 n’est pas singulier; et A est soit du type (),
soit du type (f). Ainsi, tous les sous-espaces complexes de B sont dans la classe I.

Distinguons deux cas: 1) U isotrope; 2) A non isotrope?).

Dans le premier cas, nous argumenterons de la maniére suivante: U posséde une
base {e;} (1 < ¢ < dim. ) telle que Ale;, ¢;) = 0 pour 7 % 7. Puisque U est isotrope,
on a en particulier f(e;, ¢;) = 0 pour 7 % ;. La base {ei} est donc biorthogonale.

Tout sous-espace complexe isotrope posséde une base biorthogonale. (1)

c) Lorsque A est complexe, mais non isotrope, la démonstration que A posséde une
base biorthogonale est plus délicate. Pour la faire, nous devrons utiliser ’hypothése
que B est un espace de MINKOWSKI, c’est-a-dire que la condition (2) du § I.4. est
satisfaite.
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Notre démonstration repose sur les propriétés d’une fonction a valeurs réelles F
définie sur I'ensemble B’ des vecteurs non isotropes de B:
H(x)
Flx) = ——

W = Tom)

F(x) est évidemment continue sur B’. On vérifie aisément que pour tout x ¢ B’ et pour
tout 4 & 0 dans (%, F(4 x) = F(x). Ainsi, pour étudier les valeurs que F prend sur 8,
on peut se borner aux vecteurs de B’ qui satisfont a Q(x) = 1.

On montre aisément 'inégalité suivante:

pour x&B’,

F(x) <1 pour x¢B'. 2)

Soit A un sous-espace complexe non isotrope. Désignons par A’ 'ensemble (non vide)
des vecteurs non isotropes de . Soit v un vecteur isofrope non nul de . A étant
complexe, y est complexe (§1.2.), et par conséquent, H(y) < 0 (§1.4. b)). On peut
montrer que:

Pour tout nombre réel positif o (si grand soit-il), il existe un voisinage U, 12)
de y tel que x e W, "W entraine F(x) < — o (autrement dit: sz x e W’ (3)
tend vers y, F(x) tend vers — o0).

La fonction G, définie par

Glx) = Z—L(J?(;})' pour xeW,
[cf. T'inégalité (2)] est continue sur A’. En vertu de (3), si x ¢ A’ tend vers ye U,
isotrope, non nul, G(x) tend vers — 1; nous pouvons compléter la définition de G en
posant (y) = — 1 pour y isotrope non nul. La fonction G ainsi prolongée est définie et
continue sur l'ensemble A" des vecteurs non nuls de A. On a encore G(A x) = G(x)
pour x ¢ A”, et A = 0 dans (.

G(x) atteint sa borne supérieure sur A’

En effet, soit {ei} (1 << 7 << dim. A) une base arbitraire de A. Formons la sphére
C—{x|x=22%¢, Y|4 |2=1}; GC A" Puisque G(A ) = G(x), G prend toutes ses
valeurs sur ©. Or, & est compact. Il existe donc un %, ¢ S tel que G(x,) > G(x) pour
tout x ¢ A”. La borne supérieure de G est supérieure & — 1, donc x5 & A’ (c’est-a-dire
que x, n'est pas isotrope).

La fonction 4 (2 — A)~! (4 réel, + 2) étant monotone croissante, on a

F(x,) = F(x) pour xeq'. (4)

d) Cet %, dont nous venons de montrer 1’existence posséde la propriété décisive
suivante:

St y e W est orthogonal a x,, v est biorthogonal a x,. )

En effet, puisque x,n’est pas isotrope, nous pouvons supposer que Q(x,) = 1 (F(4 x,) =
F(x)!). Pour tout ye U, g (v) = F(x, + 7y) est une fonction rationnelle de 7 réel,

113) Au sens de la topologie affine.
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continue pour | 7 | inférieur & une certaine quantité positive (qui peut dépehdre de ).
On a:

| Re (hlxy, 3) — Flwo) 150, 9))

de (4), on tire
Re (h(xo, ¥) — F(x) f(%, %)) =0 pour yeU.

En remplagant y par ¢'? y (p réel, arbitraire), on obtient

h(xg, V) = F(xg) f(%9,y) pour ye.

L’énoncé (5) suit de cette relation.
Nous sommes maintenant en mesure de démontrer le

Lemme 4: Tout sous-espace complexe W de B possede une base brorthogonale.

Démonstration: Nous avons déja démontré cette propriété dans le cas ou U est
isotrope (énoncé (1)). D’autre part, si la dimension de A est 1, la propriété est évidente.
Supposons qu’elle soit démontrée pour tous les sous-espaces complexes de dimension
a — 1. S5i A est un sous-espace complexe de dimension «, non isotrope, U contient un
vecteur x, non isotrope qui satisfait a (5), c’est-a-dire que la décomposition A =
(Zg> | B (B = (x>* N AY12) est biorthogonale. B étant complexe, de dimension
a — 1, la propriété est démontrée pour U ; c.q.f.d.

e) Les lemmes 3 et 4 nous permettent de faire la démonstration annoncée au début
de ce paragraphe.

Commengons par les sous-espaces des types (o) et (f): si W est de 'un de ces deux
types, AN I'(A) n’est pas singulier, et nous pouvons écrire:

A= (ANTA) | B (6)

avec B =AN (A0 I'(A)*1?). On sait de plus que B N I'(B) = 0 (§ 1.2.). Puisque
A I'(A) est réel, (6) est une décomposition biorthogonale de A (§ I.3.). Le lemme 3,
appliqué a A N I'(A), et le lemme 4, appliqué & B, nous permettent d’affirmer que
A posséde une base biorthogonale.

f) 11 nous reste a régler le cas des sous-espaces du type (y).

Par définition, si A est du type (y), A0 L'(A) et A + I'(A) sont tous deux singu-
liers. Ces deux sous-espaces étant réels, leurs radicaux sont réels (§ I.3. a), de dimen-
sion 1 (§I.4.b): lemme 2); posons rad (AN I'(A)) = <y,>, rad (A + T'(A)) = <{yy,
y; et v, réels, isotropes (non nuls); puisque A N I'(A) C A + I'(N), on a f(y,, ys) = 0;
or, deux vecteurs réels, isotropes et orthogonaux sont collinéaires (cf. § I.1.); par
conséquent, ‘

rad (AN I'(N)) =rad (A + (W) = )

(y isotrope, réel, + 0). Puisque B C D entraine B Nrad D C rad B, ona (avec B = U,
D=A+T(W):
{y> Crad . (7)

12) Si U et B sont deux sous-espaces d’un espace B non singulier, si AW C B et si A est non
singulier, on peut écrire B = A | (A* N B).

15 H. P. A. 36, 2 (1963)
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W I'(N) étant réel, AN I'(A) admet une base orthogonale réelle, qui contiendra
nécessairement Ay (A # 0), car <(y> = rad (AN I'(N)) 7).

On voit ainsi qu'il est possible d’écrire AW N I'(A) = B | <{y>, avec B réel. Nous
savons que B n’est pas singulier3). Donc, A = B | D, avec D = B* N A'2). B étant
réel, cette somme est biorthogonale. D contient <y>; c’est I'unique droite réelle de D,
donc, dans © = (y> ® €, € satisfait a EN I'(E) = 0 (§1.2.). Puisque D C A, et que
<yy> Crad A(ct. (7)),ona D = y> | €;<{y> étant réel, la somme est biorthogonale.
Donc, on a construit pour U la décomposition biorthogonale suivante:

=B | ¥y 1LE. (8)

Le lemme 3 appliqué a B et le lemme 4 appliqué & € montrent que U admet une base
biorthogonale. Réunissons 4 ce dernier résultat celui de la section e), et combinons-les
avec le théoréme 1a du paragraphe précédent: il vient le

Théoréme 1: Pour qu'un sous-espace d'un espace de M INKOWSKI posséde une base
biorthogonale, il faut et 1l suffit qu'il appartienne a la classe I.

IL.3. Les sous-espaces de la classe 11

Nous avons appris au § I1.1. que les sous-espaces de la classe I1 ne possedent pas
de base biorthogonale. Nous allons voir dans ce paragraphe quels sont ceux qui sont
(biorthogonalement) irréductibles, et comment les autres peuvent se décomposer en
une somme biorthogonale d’éléments irréductibles.

a) Nous avons déja remarqué que la classe IT ne contient ni sous-espaces réels,
ni sous-espaces complexes (§ I1.2. a) et b)); en particulier, elle ne contient aucune
droite de B, car les droites sont soit réelles, soit complexes.

Passons aux plans (dimension 2) de 8B. Si le plan 3 est de la classe II, il suit du
théoréme 1 qu’il est (biorthogonalement) irréductible. Nous allons construire un tel
plan.

B ne pouvant étre ni réel ni complexe, O =L N I'(P) = P = P + I'(*P), donc
dim. (B I'(P)) =1, dim. (P + I'("P)) = 3. Ainsi, la classe 11 n'est pas vide
que st la dimension de B est > 3. '

La droite réelle P N I'(P) devant étre singuliere, on a P N I(P) = (y> avec
y réel, isotrope, non nul. Soit x un vecteur tel que P = <y> ® <x)>. Puisque P + I'(*P)
ne peut étre singulier, x n’est pas orthogonal a v, et, par conséquent, f n’est pas
singulier. 3, contenant une droite isotrope, et n’étant pas singulier, est un plan
hyperbolique). Soit y; le vecteur isotrope de P avec f(v,y,) =11%). On a P =
{y»> @ {y,>, ce qui montre que ¥, est complexe.

Les plans de la classe 11 sont donc nécessarrement des plans hyperboliques dont I'une
des droites est véelle, I'autre étant complexe. (On peut montrer inversément que tous les
plans de ce type sont de la classe 11, donc irréductibles.)

Lorsque nous parlerons de plan «irréductible», nous entendrons des plans hyper-
boliques de ce type (nous laisserons donc l'adverbe «biorthogonalement» de c6té).

Pour finir, un exemple de plan irréductible. Soit {e,.} (1 <7< N, N = 3)une base
orthogonale réelle de B, avec Qe) =1, Q) = ... = Qey) = — 1. On vérifie

13) Cf, ARTIN, p. 116.
14) ArTiN: Définition 3.8.



Vol, 36, 1963 Quelques propriétés de 1'espace de MINKOWSKI sur les complexes 227

aisément que le plan sous-tendu par les vecteurs y = ¢, + ¢, et v, = — ¢, + 7 €5 est
irréductible.

b) Soit A un sous-espace de la classe II, dont la dimension @ soit supérieure a 2.
A 4 I'(A) n’est pas singulier, AN I'(A) Vest; notons rad (AN T'(A)) = <y, v réel,
isotrope, non nul (cf. lemme 2).

{y>¢rad AN. | (1)

En effet, si (y> était dans rad A, (y> serait dans rad (U -+ I'(N)) (v est réell);
or, rad (A + I'(N)) = 0. (Comparer avec la relation (7) du paragraphe précédent.)
Nous pouvons écrire W N I(A) = B | <{yp, avec B réel, non singulier'd); puis

A= 1 D,

avec D = B* N W12); cette somme est biorthogonale. D contient {y>; cette droite est
l'unique droite réelle de D (cf. § I1.2. f)). Montrons que <y» ¢ rad D: en effet, si
<y>Crad D, {y> serait dans rad U, contrairement & (1). D’ott:

D contient un vecteur x avec f(x,y) £ 0. (2)

x est nécessairement complexe (si x ¢ D n'est pas complexe, x & {y>, et f(x, v) = 0).

C'est de la propriété (2) que provient la difficulté. Tout d’abord, elle nous enléve
la possibilité de décomposer D, puis A comme nous l'avons fait 4 la section f) du
paragraphe précédent (cf. relation (8) de ce paragraphe). Ensuite, elle a pour consé-
quence que D contient des plans irréductibles. En effet, on vérifie immédiatement que
le plan B, = <x, y> est un plan irréductible; de plus, si la dimension d de D est
supérieure a 2 (si D ne coincide pas avec ,), D contient des vecteurs orthogonaux a
Po;si zenestun, P, = vy, x + 2> est également un plan irréductible contenu dans .

Soit B un plan irréductible dans D (4 > 2). Nous pouvons écrire D =P | €,
avec € = P* N D12 (étant hyperbolique, P n’est pas singulier); on a En [(E) = 0
(la seule droite réelle de D, qui est (y>, est dans PB). _

En général, P et € ne sont pas biorthogonaux. Nous montrerons dans I'appendice
comment on peut construire un % et un € qui le soient. Lorsque nous aurons démontré
ainsi I'existence d'une décomposition biorthogonale de © en P et E, nous pourrons
alors écrire la somme biorthogonale suivante:

A=%B | B | G, (3)

(cf. la relation (8) du § I1.2.), avec B réel, € complexe, P irréductible. En utilisant les
lemmes 3 et 4 du paragraphe précédent, nous pourrons énoncer le

Théoréme 2: Tout sous-espace de la classe 11, de dimension a = 3, peut se décom-
poser en une somme brorthogonale d’ un plan trréductible et de a — 2 droites.

Il serait facile de démontrer ensuite que toute somme biorthogonale d’un plan
irréductible et de quelques droites est un sous-espace de la classe IT. Nous y renongons
cependant.

Avant de passer a la construction annoncée, notons une conséquence des théorémes
1et2:

Théoréme 3: Les (seuls) espaces biorthogonalement irréductibles d'un espace de
MINKOWSKI sur les complexes sont 1) les drottes; 2) les plans hyperboliques dont I'une des
droites isotropes est réelle, I'autre élant complexe.
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Chapitre III
Le théoréme 4

II1.1. Géomeétrie du tube I. L’ application ©

Soit B un espace de MINKOWSKI sur les complexes; dim. B = N.

Nous désignons par T le tube {x | Jm(x) e V,} de B. T est invariant par les
isométries de L.

a) Nous établissons tout d’abord quelques propriétés de T et des sous-espaces de
B qui ont une intersection non vide avec I.

X ne contient pas de vecteurs isotropes.

En effet, Q(x) = O entraine Q(Jm(x)) < 0.

Soit 9 un sous-espace de B. Pour que A N T ne soit pas vide, il faut et il suffit que
Re(A) = Jm(A) contienne des vecteurs du genre temps. Re(W) n’est donc pas
singulier (§I.1.). D’aprés le § 1.3., section a), nous pouvons énoncer le

Lemme 5: StANT + ¢, W+ L(N) est un sous-espace de M INkowSKI (cf. §1.4. a)).
Comme tel, A + I'(A) n’est pas singulier. En particulier, si A = I'N), AN T + ¢
entraine que 9 est un sous-espace de MINKOWSKI.

Lemme 6: St AN T =+ ¢, rad A est complexe.

Démonstration: Si x est un vecteur réel de rad U, et siy est un vecteur de A N T,
f(x,v) = f(x, I'(y)) = 0, donc f(x, Im(y)) = O; puisque Jm(y) est du genre temps, et
que Q(x) = 0, x = 0. c.q.f.d.

Il découle de ce lemme que si y est un vecteur non nul de rad A, H(y) < 0.

Nous pouvons préciser le lemme 6 de la maniére suivante: Sz AN T + ¢,
A I'(rad A = 0. En effet, si x e W I'(rad N), il existe y e rad A tel que x = I(y).
Nous avons f(x, v) = 0, car x ¢ A; autrement dit, H(y) = 0. Donc y = 0, et x aussi,
c.q.f.d.

Lemme 7: St AN T =+ ¢, il existe un sous-espace B C W tel que A = rad A | B,
cette somme étant biorthogonale.

Démonstration: Du lemme 6 et du lemme 1 (§ I.4. b)), il suit que € — rad A &
I'(rad A) n’est pas singulier. Posons © =N @ ["(rad A). € C D. Puisque € n'est
pas singulier, on peut écrire

D=0C 113, (1)

avec B =C*N D12, B est ainsi orthogonal & rad A et a I'(rad A), donc B est
biorthogonal a rad 9. '
Montrons que B C A. Soit xe B; x peut s’écrire y+ I'(2), ye A, zerad UA;
x étant orthogonal & €, f(x,7) =0 pour ¢¢E, en particulier, pour #erad U; or
f(x, t) = f(I'(2), t) = h(z, t) pour ¢ e rad A; en particulier, avec ¢ = z, k(z, 2) = H(z) =
0 :z est donc nul, et x = y est dans . Ainsi rad A | B C A.
Or, de (1), on tire que

2 dim. (rad %) + dim. B — dim. D = dim. % + dim. rad %
donc
dim. B + dim. rad A = dim. A .
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Par conséquent,?)

N=radA | B c.q.f.d.

Une conséquence du lemme 7: soit x e A; nous pouvons écrire x = y, + y, avec
yo e tad U, v £ B, et y, est biorthogonal & v; par conséquent, Jm(y,) est orthogonal a
y. Posons x(¢) = y + (1 — #) y, (¢ réel). Nous avons x(0) = x, x(1) =y. Q(Tm(x(?))) =
(192 Q(3m(yy) + Q(Im(y)). Puisque ¥, est isotrope, Q(Im(yy) < 0; et puisque
(1 — #)? est monotone décroissante (0 < ¢ << 1), Q(Im(x(f))) est monotone croissante.
Par conséquent, si Jm(x) ¢ V, Im(x(f)) reste dans V pour 0 < ¢ < 1; en particulier,
si Jm(x) e V,, Im(y) est également dans V,. Nous pouvons ainsi affirmer

St x est dans T, vy est ausst dans I. (2)

Ce résultat trouvera son application dans la section c) de ce paragraphe.

b) L’application 7.

Comme dans I'introduction, nous poserons B” = B x ... x B (n fois) ; les points de
B sont donc les n-tuples (x), = (x,..., x,) de vecteurs de B. Nous associerons a
(x), € B* le sous-espace A = (x,,...,x,> — <x>, de B. Si dim. A = a, nous dirons
que (x), a la dimension «; nous dirons que (x), est singulier, isotrope, etc., si U est
singulier, isotrope, etc. A toute application A de B dans B, nous ferons correspondre
une application A" de B* dans B*: A*(x), = (A(x,), ..., A(x,)) = (41 x),.

7 est une application de B" dans 'ensemble S(#) des matrices symétriques com-
plexes a # lignes et # colonnes:

Z; 1 == Tl ]

n: (%), = 7(x,) = (215), ij ir 7y

S,(n) désignera l’ensemble des matrices de S(z) dont le rang est inférieur ou
égal a r.
Nous énongons sans démonstration deux propriétés de z:

Lemme 8: Soif a la dimension de W = {x),, a, la dimension de rad N, et v le rang
de n(x),. On a r + ay = a. '

Lemme 9: Su (x), et (v), ne sont pas singuliers, et si m(x), = 7(V),, 1 existe une iso-
métrie A e L(() telle que (A x), = (v),. St dim. (x), < dim. B, A peut étre choisi dans
L, (C).

c) T désignera le produit direct T x ... x T (» fois); T C B~

Lemme 10: Si (y), & T" est véel, (y), w'est pas singulier.
Démonstration: Le lemme 10 est une conséquence immédiate du lemme 5.

Lemme 11: St (x), & 7, il extste dans T* un (y), non singulier, tel que n(y), = mw(x),.

Démonstration: Posons A = (x),. Si » désigne le rang de n(x),, et si a désigne la
dimension de 2, on a 7 > a (lemme 8). A N T n’est pas vide; on peut y appliquer le
lemme 7, et poser A = rad A | B, ot B est orthogonal & ['(rad A). Du lemme 8§, il
suit que dim. B = 7. Ecrivons x; = y; + v,; (1 <7 < n), avec v, e B, y,; ¢ rad U;
nous avons évidemment x(x), = n(y),, ot (¥), = (¥y,..., y,). D’autre part, (y), & T":
c’est I'énoncé (2). Montrons pour finir que (y), n’est pas singulier. En effet, dim.

n

15) Si Y C B (A, B: sous-espaces), et si dim. Y = dim. B, A = B.
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(v), <7, car {y>,C B; dim. (y), =7, car rang z(y), = r; donc dim. (y), = rang
7(v),, donc (y), n’est pas singulier (lemme 8). c¢.q.f.d.

I11.2. Considérations préliminaires

a) Soit 98 un sous-espace de MinkowskI dans B ; dim. I3 = 7,. Posons t = T N W,;
t est un tube de 2.

Comme nous I'avons annoncé dans notre introduction — en des termes un peu
différents — le but de ce travail est de démontrer I'énoncé suivant:

(A) Pour tout W, m(t") ==(T*) NS, (n). (Cest-a-dire: I'ensemble des matrices
images de points de t* coincide avec 'ensemble des matrices images de points de I*
dont le rang est inférieur ou égal a #,.)

Je prétends que 'énoncé (A) est équivalent a I'énoncé (B) suivant:

(B) Pour tout point (x), e I, il existe un point (v), e I* tel que

ﬂ(y)n = n(x)n ) (a)
(Y, soit réel . (b)

Démonstration: (A) > (B): Soit (x), un point de I*, et soit 7 le rang de m(x),:

n(x), ex(ITY O S, (1) .

D’apreés (A), pour tout 7y > 7, et pour tout sous-espace de MiNkKowskl 1B de
dimension 7,, 7t(x), € 7(t"), c’est-a-dire qu'il existe un point (v), de t* tel que z(y), =
n(x),. Or, dim. (y), > rang n(y), =7 (lemme 8); d’autre part {y>, C I, donc
dim. (y), << 7, = dim. 2. Choisissons de faire 7, = ». On a alors dim. {y>, = dim. W,
donc (y>, = W), Par conséquent, (y>, est réel.

(B) > (A). Il est clair que pour tout I, =(t") C =(T"), et que, si (y),et", rang
n(y), < dim. (y), < 7, = dim. . Donc z(t") C #(T*) N S,, (r). Soit maintenant une
matrice Z dans #(T") N S, (n): il existe un point (y), e T* tel que n(y), = Z, et d’apres
(B), on peut admettre que <v), est réel. (y>, étant réel, et son intersection avec T
n’étant pas vide, {(y>, est un sous-espace de MINKOWSKI (lemme 10), non singulier.
Par conséquent, dim. <y}, = rang Z < #,. Soit B un sous-espace de MINKOWSKI
contenu dans I avec dim. B = dim. (y>, . Il existe une isométrie A dans L' appli-
quant {y>, sur B (§ 1.4. a)). (A y), est encore dans T", donc dans t* = IT* N IW", et
aldy),=7. c.q.f.d ,

b) Au paragraphe suivant, nous démontrerons le théoréme 4 :

Pouy tout sous-espace non singulier W de B, tel que W T + 1), il existe une 1so0-
métrie A e L () telle que

1) A (A) soit réel,

2) 1l extste un chemin A(f) (0 <t << 1) allant de U'identité de L. () @ A, tel que
Q(Im(x(2)) soit monotone croissant (aw sens large) pour tout x de W (x(t) = A(f) (x)).

Ce théoréme est di a R. JosT, qui I’a énoncé dans son cours a 'E. P. F. (Zurich), en
hiver 1960-1961. Nous allons démontrer qu’il entraine 1’énoncé (B).

16) 11 suffit & vrai dire d’exiger que A + I'(A) ne soit pas singulier. SIA NI =+ ¢, A + I'(A)
n’est pas singulier (lemme 5, § 111.1.).
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Démonstration: D’aprés le lemme 11 du paragraphe précédent, pour tout (x), ¢ I*,
il existe un (z), non singulier dans I tel que 7(2), = n(x),. Nous pouvons donc nous
borner a montrer que le théoréme 4 entraine 1'énoncé (B) pour des (x), non singuliers.

Soit (¥), un point non singulier de I#; désignons par U le sous-espace <x),; soit
A T'isométrie dont l'existence est affirmée par le théoréme 4; posons (y), = (4 x),.
Puisque {x,,..., %,} sous-tend U, {y,..., y,} sous-tend A(A). D’apres le théoréme 4,
{y>, est donc réel.

Je prétends que y, ¢ T (1 < 7 << ). En effet, puisque Q(JIm(x;(f))) est monotone
croissant, et que Jm(x;) = Jm(x;(0)) est dans V, IJm(y,) est dans la méme composante
de V' que JIm(x,). Or Jm(x,) e V,, donc Jm(y,) e V,, et y,eT. c.q.f.d.

c) Avant de passer a la démonstration du théoréme 4, faisons quelques remarques.

Nous dirons qu’'une isométrie A de B est accroissante sur le sous-espace A de B si
Q (Im(A(x))) = Q (Im(x)) pour tout x de A.

1) Pour que l'isométrie A soit accroissante sur 2, il faut et il suffit que H(A(x)) >
H(x) pour tout x de .

En effet, on a Re Q(A(x)) = Re Q(x), c’est-a-dire Q(Re(A(x))) — Q(Im(A(x))) =
Q(Re(x)) — Q(Im(x)); par conséquent, HIm(A(x))) > Q(Im(x)) si et seulement si
Q(Re(A(2)) > Q(Re(x)); par conséquent, H(A(x)) = Q(Re(A(x))) + Q(Im (4(x))) >
H(x) = Q(Re(x)) + O(Im(x)), si et seulement si Q(Im(A(x))) > Q(Im(x)).

2) Considérons un sous-espace U de B qui soit une somme biorthogonale de sous-
espaces Aq,..., A, :
Q{ :ml_l_ cee L%a;

soient B,,..., B, des sous-espaces mutuellement biorthogonaux, tels que B, N B, =
0 (7 *7) et que A; C B;; soient A, ..., A, des isométries: A,(B,;) = B;, A, accroissante
sur ;. Je prétends que

A=4,1 ... 1| A

est une isométrie de B = B, | ... | B, accroissante sur A.

En effet, pour x e A, x = x; +...+ x,, avec x; e W;; A(x) = Ay(xy) +...+ A (%,).
Les x; sont biorthogonaux entre eux, les A,(x,) egalement et H(A,(x;)) > H(x,). Par
conséquent,

= 3 H(A, () = D) Hi) = H() cqid

Nous appliquerons ce dernier fait a la démonstration du théoréme 4.

111.3. Démonstration du theovéme 4

Répétons I'énoncé du théoréme 4, avec une légére modification basée sur une
remarque du paragraphe précédent, section c):

Théoréme 4: (R. Jost): Pour tout sous-espace non singulier W de B, avec
ANT + ¢15), il existe une isométrie A e L, (&) telle que
1) A(N) soit réel,

17) ArTIiN. Définition 3.6.
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2) il existe un chemin A(t) (0 < ¢ << 1) allant de I'identité de L( () a A, tel que pour
tout x de W, H(x(t)) soit monotone croissant (au sens large) (x(f) = A(t) (x)).

Démonstration: a) Puisque WN T + ¢, A + ['(A) n'est pas singulier (lemme 5,
§ II1.1.). A est donc du type (o) ou du type (d) (cf. le tableau du § I1.1.). Si A est du
type («), A est de la classe I; le théoréme 1 (§ 11.2.) affirme que U posséde une base
biorthogonale {e,, ..., ¢,} (& = dim. ):

W=Cery | ..o | <ep-

S1 A est du type (0), A est de la classe I1, et le théoréme 2 (§ 11.3.) affirme que A peut
étre décomposé en une somme biorthogonale de 2 — 2 droites et d'un plan hyperbolique
irréductible:

U=7" ey | ... 1<, 20 1 B

A n’étant pas singulier, aucune des droites de la décomposition biorthogonale de
A n’est isotrope?).
Posons B, = <¢;, I['(e;)> (1 <i< a2oua), By=P -+ (V).
On a
W+ I'A) =B, + ... + B, si West du type («) ,

W+ T =B, + ... + B,_5 + By si West du type (6) .

Les B, étant mutuellement orthogonaux, et A 4 I'(A) n’étant pas singulier, la somme
est directe, et aucun des B, n’est singulier!®); on a donc

A+ T'A) =By | By | ...

Les B, étant réels, la somme est une décomposition biorthogonale de A + 1'(2).
(Comparer cette section avec la remarque 2) du § I11.2. c).)

b) Dans les sections ¢) et d), nous montrerons comment on peut construire dans
chaque B, une isométrie /A; de B, sur lui-méme.

1) qui soit accroissante sur <e;>, respectivement sur J3;

2) telle que A,(<e;>), resp. A,(P) soit réel;

3) telle qu’il existe un chemin A,({) (0 < ¢ < 1) d'isométries de B, avec 4,(0) =
1g,19), A,(1) = A, tel que H(x(¢)) soit monotone croissante pour tout x e {e,», resp.
e B (x(t) = A, (¥)).

Supposons que ce résultat soit acquis. Au moyen des isométries A,, A,,..., nous
pouvons construire une isométrie A = A, | Ay 1 ... de A+ I'(A) sur lui-méme.
On a /I(?I) = A,(Ke>) L ... Nous voyons que /i(%[) est réel, puisqu’il se présente
comme une somme d’espaces réels. Comme B = A+ ['(A)) L (WA + I'(N))*
(A + I'(A) n’est pas singulier)2?), nous pouvons former a partir de A Tisométrie
A=d4d 1 Lot + reany+ de B sur lui-méme.

Je prétends que A a les propriétés annoncées dans le théoréeme. En effet, nous
venons de voir que

18) Cf. ArTIN, p. 115-116.
19y ibid., p. 124.
20) Cf. ARTIN: théoréme 3.5., équation (3.35).
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1) AA) = A(A) est réel.

2) Le chemin A(f) = ( ) L Loy reanyx, avec A( ) = A,(2) L Ay(6) 1L ... ménede 1y
a A, et A(f) est une isométrie. SixeW, x =4, ¢, +...4,¢, resp. x = A, e, +...+
Mgz €a_g + Ag€g, avec ¢, € B, et gy P; x(f) = A@) (x) = 4, ,(t) + Az es(f) + ..., avec
e;(t) e B;. Les B, étant mutuellement biorthogonaux, H(x(f)) = |4 |2 H(e(t)) +
| A5 |2 H(ey(t)) +.... Les H(e,(f)) étant monotones croissants (au sens large), H(x(f))
I'est aussi, quels que soient les A;, 4,,... .

c) Construction de A; pour B, = <e;, I'(e;)>.

1) Si e; est semi-réel, <e;> est réel. Posons A, = ly;; cette isométrie satisfait
trivialement a tout ce que nous en exigeons.

Si e; est complexe, nous remarquons que Re({e;>) n'est pas singulier, puisque
B, = (Re(<e;>)> ne l'est pas (§I.3. a)). Par conséquent, Re(<e,>) est soit du genre
temps, soit du genre espace (§ 1.1.).

2) Re (<e,>) est du genre espace.

Puisque ¢; n’est pas isotrope, nous pouvons admettre que Q(e;) = — 1. Posons
e;=x+ 1y, avec x et y réels; puisque ¢; est complexe, x et y sont linéairement
indépendants. Puisque Q(e;) est réel, x et y sont orthogonaux. Puisque Re ({¢;>) =
{x, > est du genre espace, x et vy sont du genre espace (§ I.1.): Q(x) < 0, Q(y) <0
De Qfe) — —1, il suit que e 0le) = Q{x) = Qly)  — 1; done Q) = — 1+ Q)
est inférieur a — 1. Par conséquent, H(e,) = Q(x) + Qy) <

Puisque Q(e;) est réel, x et y sont orthogonaux. Posons x = A %', y = uy’, " et y/’
réels, Q(x') =Q(v')=—1, A et u réels et positifs. 1 et u sattsfont a > — ut=
1(= —Qle;) et a A2 + u? = — H{e;). 1l existe ainsi un nombre réel positif ¢, unique,
tel que A = Ch @, u = Ch @; @ est déterminé par la condition Ch 2¢p = — H(e;) (> 1).
Il existe une rotation A; de B,, et une seule, telle que A,(e;) = x'2'). Cette rotation
est accroissante sur {e;», car H(e;) < H(x') = — 1. La matrice associée a A, dans la
base {#’, y'} de B, est ,

( Che ¢ Shg
.—1She Ch rp) '

Définissons A,(f) par la matrice

( .Cht(p tSht@) 0<t<1).
—15hitp Chip
A,(t) est une rotation; le chemin A,(f) (0 < ¢ << 1) méne de 1g; a A,. x() = A() (x) =
o (¥ Ch(1—12)@+19 Sh(1—1?) @) pour x = ae,.

H(x(t)) = — |« |2Ch 2 (1 — #) ¢ est donc monotone croissant dans Pintervalle
0 < ¢ <1, quel que soit x & {¢,>.

3) Re(<e,>) est du genre temps.

e; n’étant pas isotrope, nous pouvons admettre que Q(¢;) = 1. Comme tout a
I'heure, posons ¢;=x+ 7y, avec x et y réels; Re ({¢;>) = <x, y>. Puisque ¢;est
complexe, et que Q(e;) est réel, x et y forment une base orthogonale de Re(e,).

2y Cf. ArTIN, théoréme 3.17.
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Puisque Re(<¢;>) est du genre temps et que Q(e;) = Q(x) — Q(y) = 1, nous voyons
que 0 << Q(x) <1, Q(y) < 0. Donc He,) = Qx) + Q(y) = 2Q(x) — 1 est compris

entre — 1 et + 1:
T — 1< Hle) <1.

Comme tout a I'heure, posons x = Ax', ¥y = u ', avec x" et y" réels, Q(x') =1,
Q') = — 1, A et p réels, positifs. 4 et u satisfont & 22 + u? =1 (= Q(e¢;)), A2 — u®> =
H(e;). 11 existe un nombre réel ¢, unique, compris entre 0 et /2, tel que 4 = cos ¢,
@ = sin @; @ est univoquement déterminé par la relation cos 2 = H(e,;). Il existe
une rotation /; de B;, et une seule, telle que A,(e;) = ¥'%); A, est accroissante
sur <{e;», car H(e;) < H(x') = 1. La matrice associée a A; dans la base {x’, y’} est

cos@ —1sin @
— 7 sin @ cosp |

Définissons /A, (f) par la matrice

/ 'c'ostgv — ¢ sin tg O<i<1).
— 2 sin tp cos lp

A,(t) est une rotation; le chemin A,;(f) méne de 1lg; a A, x() = A,(t) () =
a(x'cos(l—8)e+iy'sin(l—1¢) @) pour x=ae. H(x(#) =|a|2cos2(l 1)@
est donc monotone croissant pour 0 << ¢ << 1, pour tout x & {¢;>.

d) Construction de Ay pour By = P + I'(P).

Le plan irréductible B contient deux vecteurs isotropes non orthogonaux. L’un,
disons y, est réel; I'autre, disons z, est complexe. Nous pouvons toujours admettre que
f(v,2) =1.0na P =y, 2>, et By = <y, 2, I'(2)>.

z étant isotrope et complexe, H(z) est négatif: H(z) < 0 (§ 1.4. b)).

Pour tout x ¢ B, et pour tout isométrie A de B, laissant y invariant, on a

H(A@) — H@) = |y, %) [2 (HAE) — H().

On en déduit que, pour que A soit accroissante sur B, il faut et il suffit que A soit
accroissante sur {z>.

Pour qu'un vecteur y,=oay -+ fz+y I'(z) de B, satisfasse aux conditions
Qo) =0, f(y, ¥o) = 1, il faut et il suffit que f +y =1, « = — fy H(3). On a alors

H(yg) = |p—y [>H(z). (1)

Posons =y = 1/2, et « = — 1/4 H(z); y, est alors réel, et H(y,) = 0.

La rotation A, de B, (unique)?®) qui satisfait & A,(y) = v, Ay(2) = ¥, est accrois-
sante sur <z, car H(z) < H(y,) = 0.

Pour trouver la matrice de /A, dans la base {y, z, I (z)} de B, posons A, (I'(2)) =
y =1y + Az + u I'(z). La matrice de A, est alors

1
1 — --4—H(z) %
1
0 Ci A
1
0 5 u
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Le déterminant de cette matrice étant égal & 1, on doit avoir 4 — A = 2. Puisque y
satisfait & Q(y) =0, f(y,y) =1, on doit avoir u+A=1., %= —Ap H(z) (cl.
ci-dessus). On trouve ainsi A = — 1/2, u = 3/2, » = 3/4 H(z), et la matrice de /1, est
ainsi: _

1 —+HE o HE)
S
o 5 3
Définissons A,(f) par la matrice
1 —(1 — ) H ;(1 3 --;)H(z)
0 1 - O<t<1)
e

Ay(t) est une rotation de B, qui laisse y invariant; le chemin A(f) relie 1 a 4,.
Montrons que H(x(f)) est monotone croissante pour tout x de P. Il suffit, d’aprés
ce que nous avons vu plus haut, de montrer que H(z(f)) est monotone croissante.
2(t) = Apt). 2=—ytj2(1 —¢t/2) H(z) + z (1 — ¢/2) + I(2) ¢/2. La formule (1) nous
donne

H(z())=1¢ (@ —2) H(2),

qui est monotone croissant pour 0 << ¢ << 1 (H(z) < 0!). c.q.f.d.

Appendice

Construction d'un P et d'un € biorthogonaux. (cf. § I1.3. b)). Soit P, un plan
irréductible de D ; écrivons B, = <v, v,>, avec y, isotrope, univoquement déterminé
par la condition f(y, y,) = 1.

Posons €, = PF N D. Si {x, } (1 <7 < d— 2)est une base de €, le plan irréductible
le plus général de © peut étre écrit:

<ysy0 2“ x

avec des a; & (- arbitraires.

Pour trouver une base de € = P* N D, partons de la base {xz} de €,, que nous
supposerons étre orthogonale. Posons e; = x; 4+ ;v (1 <1 < d — 2). Remarquons
que les e;, qui appartiennent a D, sont linéairement indépendants (car y ¢ €,), mu-
tuellement orthogonaux, et orthogonaux a y. Par un choix convenable des (3,, on peut
les rendre orthogonaux a4 P; pour cela, il faut et il suffit que f (¢;, yo + 2'o; ;) = 0
(1 <7< d— 2); or, ces conditions sont remplies si 8, = — a; Q (¥;). Avec ce choix
des B;, les e; forment une base orthogonale de €.
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Nous avons ainsi obtenu la paire la plus générale formée d'un P irréductible et du
€ = P* N D correspondant :

$:<3’:y0+2“ixi>»
€= d{x—yo; Qxy), ¥ — y o Q%) -..> .

Puisque €, N I(E€,) = 0, le lemme 4 du paragraphe I1.2. nous permet de supposer
que la base {xz} de €, est brorthogonale. Cela nous permettra d’écrire plus simplement
les conditions auxquelles les o; doivent satisfaire pour que P et € soient biorthogonaux.
Ces conditions sont:

1) hle,y) =0 (1<i<d—2),
ce qui est acquis d’avance (y est réel, et orthogonal aux e;);

2) h(ei,y0+2ajxj) =0 (1<i<d—2),
c’est-a-dire

h(xi o) + o H(x,) + a; Q(x) = 0. (2)

Désignons par x,..., x, les vecteurs isotropes de la base {xl} de E,; les vecteurs
non isotropes x, 4, ..., ¥;_sseront supposéssatisfairea Q(x;) =1 (¢ + 1 <7 < d — 2).
Les conditions (2) deviennent:

a; H(x;) = — h(x;,y) 1<1<p,
o (%) +o;=—hx;,90) o+1<i<d—2.

Si H(x;) = 0 pour ¢ <o, et si H(x;) = 4+ 1 pour #>p + 1, ces conditions
peuvent étre satisfaites quels que soient les &(x;, y,); les a; doivent alors étre choisis
ainsi:

N h(x; v,) .
%= H(xy) ig@,
_ H(xy) g, ye) — By, 7y) .
o = T =T i>041.

Il est facile de vérifier qu'on a bien H(x,) < 0 pour 7 < g, et H(x;) < — 1 pour
1 >0+ 1.
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