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Classical Statistical Mechanics of a System of Particles

by D. Ruelle*)
Eidgenössische Technische Hochschule, Zürich

(15. VIII. 62)

Abstract. The free energy of a system of particles interacting by a two-body potential is
investigated for the canonical ensemble. The existence of a limit for the free energy per particle
when the system becomes infinite and the stability conditions are proved rigorously for a large
class of potentials. It is also shown that the pressure is a continuous function of the volume for
bounded potentials. The grand canonical ensemble is investigated in a similar manner and a
generalization of the results of Yang and Lee is given.

Introduction

Let us consider a classical system formed by n particles enclosed in a region A and
interacting through a spherically symmetric two-body potential. Statistical mechanics

yields an expression for the free energy F of the system at temperature T (canonical
ensemble). In order to identify F with the thermodynamical free energy one is led to
consider the limit of F\n when n and the volume of A tend to infinity in such a way
that the specific volume has a finite limit. The problem of the existence and of the
properties of the limit of F\n was studied by Van Hove4) and a similar problem was
treated by Yang and Lee6) for the grand canonical ensemble.

These two investigations have however been restricted to the case of potentials
with a hard core. It is indeed clear that a system of particles interacting classically
through a two-body potential does not always lead in the limit to the definition of
the usual thermodynamical functions**).

In what follows we will give less restrictive sufficient conditions on the potential so

that the system behaves in the limit as a thermodynamical system. We will then

prove the existence and stability properties of the thermodynamical potentials for
the canonical and grand canonical ensembles. We will always assume here A to be

a cube, but a generalization to other shapes is straightforward.
A detailed knowledge of the analytic properties of the thermodynamical functions

could be obtained up to now only for one-dimensional systems (Van Hove5)). We

*) Present address: Institute for Advanced Study, Princeton, New Jersey.
**) This difficulty appears when the potential does not decrease fast enough at infinity or

when it is not sufficiently repulsive. Suppose for instance that the potential 0 is continuous and
n n

that there exist points Xp i 1,..., n, such that Z! £ & (Xj — xt) < 0, it is then easy to see
i - 1 j 1

that the minimum energy of a system of N particles becomes negative and diverges quadrati-
cally as N goes to infinity. The definition of the usual thermodynamical functions is then no
longer possible.
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have therefore also given here a proof, valid for bounded potentials, of the continuity
of pressure as a function of specific volume at constant temperature.

1. Conditions on the potential

Let us consider a system of n undistinguishable particles having only the translation
degrees of freedom and interacting classically through a two-body potential. The total
energy is given by

En(p,x) Tn(P) + Un(x), (1)

np)-Z{%' (2)
1 1

UB(x)=Z;0(xJ-xi) (3)
i < i

where x,,... ,xn are the particle coordinates and p,,..., pn the corresponding
momenta.

We will now restrict our attention to the family of potentials defined by the
following properties.

Properties A. One may write

0(x) 0,(x) A- &t{x) (4)

where the functions 0x(x) and 02(x) depend only on \ x \ and satisfy the following conditions.
A,. 0,(x) is Lebesgue-measurable with values in the closed interval [0, 4- oo] (It would

be sufficient to assume that 0,(x) is non-negative almost everywhere). The set

{x : 0,(x) A- co} is a sphere of radius a > 0 centered at the origin. There exists a
number R > 0 such that 0,(x) is Lebesgue-integrable for \x\ > R-

A2. 02(x) is continuous and Lebesgue-integrable. If one writes

02(x) (2 Ti)-*2Jdp e'P*ê2(p) (5)

02(p) is non-negative and 02(O) > 0.

02{x) is thus a continuous function of positive type and therefore bounded,

02(p) is continuous and Lebesgue-integrable.
Let now yl be a closed cube with the volume V I3.
Let AAIAA-M be the family of all positive measures which have their support in A.

If n(x) e OITA-A) we may write

n(x) (2 ti)-*2 fdp e'?* n(p) (6)

where n(p)* h (— p) and n(p) is entire analytic by the Paley-Wiener theorem3).
One has

Jdy n(y) n (x + y) j dp eipx n(p) n (-p), (7)

dx dy 02 (y - *) n(x) n(y) (2 tz)s'2 I dp 02(p) n(p) n (- p) (8)
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If u is any unit vector, the function n(p u) n (— p u) is entire analytic, non-negative
for real p. Term by term minorization of its power series expansion at the origin yields

&_* (&...
6!

2 / Ch 1/3 rl p — cos 1/3 X p
(9)

n(p u)n (- /> u) > (2 tc)-3 fdx n(x)Y 1

(2tï)-3(/^*M(tf))

The continuous non-negative function f(p) max (0, 1 — (Ch j/3 2 p — cos )/3 A p)\2)
satisfies /(0) 1 and

fdx n(x)y > (2 tt)3 n(p) » (- p) > /"*» »(*))" /(Ap).

From (8) and (10) we obtain

fdxdy02 (y - x) n(x) n(y) > (2tc)~3I2 ^ fdx n(x)^2 fdp02(p) f(Xp)

and there exist positive constants A and X0 such that for A > A0 one has

A

(10)

(H)

(2Ti)-3'2Jdp02(p)f(Xp)> v

dx dy 02 (y — x) n(x) n(y) > I I dx n(x) I -y.

(12)

(13)

Let now x (x„ xn), xteA for i 1, «.
We get for the potential energy Un(x) the inequality

Un(x) =£0 («, - *,) >27<P, («, - »,)

— I dxdy02(y — x) n(x) n(y) — n B\,

£ £02 (Xj -*,)-» #,(0)
t-1;=1

where we have written

(13) and (14) give

02(O) B > 0, n(x) =2Jò(x-x{).
i-l

U„(x)>^(a^-B) for X>X0.

(14)

(15)

(16)

We will base our discussion in the next sections mainly on inequality (16) and on a new
condition which we will impose on the potential 0(x).

Property B. There exists a number R > 0 such that 0(x) < 0 for \ x\ > R.

This condition emphasizes the integräbility condition for 0,, given by A,. It seems

likely that B is not essential for the proof of the results below, and that the properties
A might be sufficient. In any case there exist many interesting potentials which
satisfy both A and B. Some of them are indicated in the appendix.

2. Existence of the free energy per particle

Let us consider a system of n particles enclosed in a cube A with edge X and
volume V X3, let also ß be a positive number.
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One defines functions / and cp by the following formulae

e-nßM-, a,») (2n)-3«^YJdp1 ...dpfdx,... dxne-e^tA (1)

(A)"

e-»ß<p(ß-,A,n) Q(ß;A,n) -i- f dx,...dxne-f>UnA (2)

(A)«

We have thus

t-k**^**- (3)

For X > X0 we have according to (1.16)

Ç(M,») < -lr<J-/»W«M(Wn-B)]i (4)

cp(ß;A, »)>ì(i}-8) - j(log^ + l). (5)

Let now /l£, be a cube with the edge 2m X — R,m: non-negative integer. We will
assume in what follows that X — R > X0 and X — R > (w/j/2)1'3 a in order to obtain a

density smaller than that of closest-packing. Let

Ql=Q(ß;Al,2*»-n), <pxm cp(ß; Ai, 2»" n). (6)

One can place eight cubes Axm inside of a cube Axm +, in such a manner that the distance
between two A*m is never smaller than R.

From this one concludes by using property B that

Ql+i>{QxS. <pì+i<<pL- (7)

The sequence (çv)0 < TO < oo being decreasing (7) and bounded (5), has a finite limit cpx,

^>i(4-ß)-jK + 1)' (8)

If X < X' one has Q*m < Qxm, thus

?A>/ (9)

which shows that cp*- is a decreasing function of X.

Let Ax (X A- X') /2 one can then place seven cubes A1» and one cube Axm inside of

An + \ in such a manner that the distance between two/lmis never smaller than R.

From this one concludes that Q„ + 1 < (Ql,)7 QKm, thus

^<-sV + -§V'- (10)

(9) and (10) imply that çt* is a continuous function of X for X > R A- max (X0, (w/ij/2)1'3 a).
One proves indeed without difficulty semi-continuity to the left, then to the right.
Consider now a sequence (N/)1<i<00 of positive integers such that Nt ->- oo and a

sequence (Fj)1<i<00 of positive numbers such that VijNi^-v> a3l\/2. We will
denote by V{ again the cube with volume Vt.
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One may then choose numbers n (positive integer) and V X3 such that v Vfn
and X > R A- max (X0, (w/i/2)1'3 a).

cp* being continuous, for any e > 0 one may choose X', X" such that

R A- max (X0, XX3 a\ < X' < X < X" and X - tpx < e cpx - cpx" < e

Let E(x) represent the biggest integer not greater than x, one may then find an
integer i' such that for i > i' one has

(E[(^] + l)X'<(V^. (11)

Let then 2m < EKNJn)1'3] < 2m + 1, m integer.
Inside of V{ one can place, starting from one corner and at mutual distances

greater than R the following cubes containing in all N{ particles.
1. One cube Axm containing 23m n particles.
2. Successive layers of cubes /1^< containing 23m'w particles, m' < m, m' strictly

decreasing.
3. A certain number of cubes Ax0 containing n particles.
4. A cube /1q containing n' particles, 0 < n' < n.

We may then write
m

<p<ß; X n,) < Z cm- <PÌ' + ^- rtß-> <•n') > (12)
m' =0 l

m

with cm- > 0,2Jcm' + n'i^i 1- When i tends to infinity the cm-, for m' smaller than
w' o

a given constant, tend to zero.
Therefore, for i big enough

tp{ßlVt,Ni)<qrv + e. (13)

On the other hand one may find an integer i" such that for i > i"

(^:)ll\(Vi)^+R]<X". (14)

It is then possible to choose m so big that one may place 23m n N2 cubes Vt inside of a
cube with edge 2m Ns X" — R in such a manner that the distance between two V( is

never smaller than R. We get then

(Q(ß; V{, N,)fm,iNì < Q iß; (2™ N{ X" - R)3, 23m n N3) (15)

and if 2*"1 < N{ < 2P, p integer, we obtain

Q (ß; (2- Nt X" - R)3, 23» n N3) (<%)* ^A < Q^+p. (16)

(15) and (16) give

m Vx,na > ^cpx:+p —^9x: a?)
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and if we let m go to infinity

(piß; V^N^Acp1" for i > i", (18)

(13) and (18) show for any given e > 0 one can find i'" such that

cpx - s < cp(ß; Vit N{) < cpx A- 2 e for i > i '" (19)

Therefore
lim cp(ß; VitNt) cpA

l—TOO

Theorem 1. Let (Nt),<i<œ be a sequence of positive integers such that Ni -> oo

and (Vi),<i<ca a sequence of positive numbers such that VJNi -> v > («3/]/2). // one
denotes again by Vi the cube with volume V-t the sequence cp(ß; Vir Ni),<i<^ converges

lim cp(ß; V„ Nt) cp(ß, v) (20)

and its limit depends only on ß and v.

This result has been obtained for cubic domains but it might easily be extended to
more general cases. The function f(ß, v) related to cp{ß, v) by (3) may be interpreted
as the thermodynamical free energy per particle at temperature T ß~x and for
specific volume v.

3. Properties of the free energy per particle

We have found in the last section that cp(ß, v) is a continuous and decreasing
function of v. We will prove that it is also convex*).

Let indeed (a3/]/2) < v < v', vjv' rational. We may then write

A3 A3
v — v —,

and

cp (ß;Axm + „ 23™\(n + »'))< ^A_ cp(ß; Axm, 23™ n) + ^A_tp(ß;Axm, 23™ n') (1)

Letting m go to infinity we get

^•-FTT^ <^ W. v) + J;X^i ?(ß, V) - (2)

(2) and the continuity of cp as a function of v imply its convexity. Let us now come
back to the sequences (Ni),<i<xi, (Vi),<i<aD of theorem 1. If we write

M® 4a J dx,... dxNi Ò [| - UN.(x) + ^(a |i - B)], (3)
1

(Vifi

*) Convexity and concavity will here be defined with respect to the negative part of the
ordinate axis.
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fii is a positive measure, with support in the positive part of the real line and such that
il/XI < {Vf'INA). We have

JdÇe~'!ipii(S)=e-Ni^, (4)

ft(ß) ß [piß: v„ Nt) - \ (a % - b)] (5)

According to (4), y>{ (ß) is an increasing and concave function of ß.
When i goes to infinity it converges pointwise towards \p(ß, v) ß [cp(ß, v)

— i{A/v} — B)j2\. ip(ß, v) is thus an increasing and concave function of ß, and the

same applies to xp'(ß, v) ß [cp(ß, v) - ({A/v2} - S)/2] when («3/j/2J < V < v2.
ip'iß, v) is also an increasing and convex function of v.

Let

0 < ß', < ß1 < ß2 < ß2, a- < v', < v, < v2 < v2,

K' {(ß,v):ß[<ß<ßivi<v<vQ,
K {(ß, v):ß,yß<ß2,v,<!vy v2},

ip'(ß, v) is bounded on K' since ip'(ß[, v1) < y>'(ß, v) < ip'(ß2, v',). From this and the
convexity properties of ip' follows that dip'jdß and dtp'jdv are bounded on K and
therefore that ip' is continuous with respect to (ß, v).

Theorem 2: The function ß cp(ß, v), defined for ß > 0, v > («3/(/2J, is continuous
with respect to (ß, v) concave in ß decreasing and convex in v.

It satisfies the inequalities

ßcp(ß,v)>^(A--B)-(iogvA-l), (7)

ß cp(ß, v) < - 3 log (n1'3 - R) for v > R3 (8)

The first part of the theorem may also be stated as follows: the function cp(ß, v),

defined for ß-1 > 0, v > (a3/|/2), is continuous with respect to (ß-1, v) concave in
ß-1, decreasing and convex in v. The analogous properties for f(ß, v) (3/2 ß)

log (2 ti ß\m) A- cp(ß, v) are immediate.
There only remains to prove (8). To do this we use the notations of section 2 and

take n=l,X> R. Then

iQxofm<Ql, Qi=iX-R)3- (9)

If we let m go to infinity we obtain the inequality

ßcpxm<-iog(X-R)3, (10)

which is identical to (8).
We will conclude this section by a remark on the way in which cp depends upon the

potential.
Let %)\>e the set of all potentials with the properties A and B. XMs then a convex

cone in the vector space it generates.
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Let a', a" be non-negative real numbers such that a' + a" 1.

If we write 0 a' 0' + a" 0" ;0',0"eVand
Kix) =£0' (Xj - X,) K(X) =2J0" (*, - *,) (H)

ì<j i <i
we obtain by Holder's inequality

Q0(ß; A,n) -\ fdx,... dxn (e-ßv'*>A)«' (e-ßu'k(*y

<[Q0,(ß;A,n)f[Q0Aß;A,n)TA
(12)

9?<p is thus a concave functional of 0 on %):

cp0(ß, v) > a' cp0,(ß, v) + a" cp^(ß, v) (13)

4. Continuity of the function p(v)

We have seen in section 3 (theorem 2) that the pressure

P(ß,v) -^f^ (1)

is, for fixed ß, a decreasing function of v.
We will now prove that for a potential 0 satisfying conditions A and B which is

furthermore bounded, i.e. such that

max 10(x) | M < + oo (2)

the function p(v) is absolutely continuous. It would in fact be sufficient to assume
that 0 is bounded almost everywhere. For a bounded potential we of course have
a 0.

Theorem 3. For a bounded potential satisfying conditions A and B, p is a continuous
decreasing function of v for v > 0 and fixed ß. Its derivative with respect to v is a negative
function, locally integrable and bounded.

In fact, the hypothèse made about 0 are probably too restrictive and one should
be able to prove the continuity of p(v) for v > («3/]/2) in much more general cases

(see for example5)).
The proof of the theorem is based on the following result.

Lemma. // the potential 0(x) satisfies condition A [conditions A and B] one may
write

0(x) 0>(X) + f2(x), (3)

where 0'(x) satisfies condition A [conditions A and B] and tp2(x) is a continuous strictly
positive function of positive type.

Let indeed y>(p) be a continuous non-negative function with compact support
which depends only on | p | and does not vanish identically.
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Then ip(x) ip (— x) ip(x)*, and the function

ip,(x) y(«)> (2 n)-3'2fdp e*»* (2 ti)-3'2j dq f(q) y> (p - q) (4)

is non-negative and of positive type. It depends on | x | only and cannot vanish on
an open set as a consequence of the Paley-Wiener theorem3). Let us now write

Then

V2ÌP) WiiP)2 [i2n)-3l2fdq y>(q) y (p - q)]2.

ip2(x) (2 ?r)-3'2 [dy ip,(y) ipx (x - y)

(5)

is a strictly positive function depending only on \x\ and satisfying condition A2.
If we write the decomposition

0(x) 0-,(x) A- 0*(x),

where 0, and 02 satisfy respectively the conditions A and B one may always choose

¦ip(p) such that 02(x) — ip2(x) satisfies again condition A2. The functions ^2(*) an(i
0'(x) 0,(x) + [02(x) A- ip2(x)] satisfy then the conditions of the lemma.

Let now 0 be a bounded potential satisfying conditions A and B.
By using the inequality of Schwarz for a cube A of volume V one finds

(#+1)! Q(ß;A,n+l)= J dx,... dx„ e-ßV»V f dxn + 1

(A)" *

x exp ßZ® (*.+1 - »à < dx1...dxne-ßU«(x)

(A)"

1/2

dx1... dxn dxn + 1 dxn + 2 e ßU»wfjexr>
(A)" A''

2

7
a-l

ßZ® (*.+« - *i)
1/2

[n\Q(ß;A,n)fi2 dx1...dxn + 2e-ßu»A2Weß'PixnA2-xnAii

(A)" Ai

1/2

Therefore

w + l [Q (ß;A,n + l)]2
n + 2 Q(ß;A,n)

< (n + 2) :
dx-,... dxn+2 e - ß u« a 2<fl e^ * <*» + a -*» +1»,

(^)»-

(7)

For any bounded measurable function W(x) depending only on | x | we write

<${ß;A,n) (W) [ALtp0 + hv(ß;A,n)]h
(j

f dx,... dxn e~ßunA W (xn - xn_,)

__
n — 1 (A)n

f dx,...dxne-ßu«^
(A)"

(8)

(6)
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This definition allows us to rewrite (7) in the form

AA± .^Y>]i » < 1 + -^-r <$ iß- A-n + 2) i*ß • - • P)
w + 2 0(/S; /1, m) Q (ß; A, n + 2) ^ n + 1 r* vr ' ' ' v ' v '

Let now
m PH, V2W - (1°)

ar ^ JX*

where the function y2 is given by the above lemma.
According to (2) and (10), the potential

0(h) =0A-h (eß* - 1) (11)

satisfies the conditions A and B as soon as

--J^AT<h' W
(For h > 0, this is a consequence of the inequality ß 0(x) < eß0(x) — 1). When (12)
is satisfied cp0W(ß; A, n) and cp0W(ß, v) are both well defined concave functions of h.

Let 0 < v, < v2 and 0 < h, < h2 mj(eßM - 1). We have

m-.x ») <y - ix '»(-»^-«w^, (i3)
h% h,

cp0W(ß;A, n) is a continuous decreasing function of v Vjn for fixed ß, h and n.

It converges towards cp^^ß, v) when n tends to infinity. This last function being
also continuous and decreasing in v, it follows that the convergence is uniform for
V, < V < v2.

For v, < v < ij2 and fixed /3, â the functions cp0^(ß;A, n) are thus bounded

uniformly in n. It follows then from (13) that the functions cp'0(ß;A, n) (eß0 — 1)

are also bounded uniformly in n :

cp^(ß; A, n) (eß* - 1)< L < + 00 for v, < ~ < i>2 (14)

For Wj < Vj(n A- 2) < i>2 we have thus, according to (9)

ffl.ö»;A- + l)? <1+ * L. (15)
Therefore »+2 Q(ß;A,n)Q(ß;A,n + 2) ^ ' » + 1

(« + 2) 9? (ß; A,n A-2) -2 (n A-l)cp(ß; A, n A-l) A-n cp(ß; A, n)

„If, /, 2 T\ » + 21 21 + 1

< j [log (1 + ^r L) + los vttJ < Tom)"
/1 being fixed, the function <p(ß, g-1; yl) defined by

^,(4-)-1;/l)=^;X«),
when q V is an integer satisfies thus, for q njV, the inequality

[-tMXX rx-2X-«(MXXX

(16)

M+1

(17)
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Let now k, I be positive integers such that vr1 < njV < (n + k + l)\V < vr1 one

may then deduce from (17) that

[- X' «(a (XX~X - X<X (XX")
- ^MMX^rx+«fw.«4] (^r(X'<x (18)

Thus, if o, Qlt q2 are positive numbers such that v2
x < g < g 4- ei + q2 < ^ 1, we have

[fe + ei + e2) <p{ßi te + ei + eX1) - ie + ei) <pißi ie + ei)_1)

or i 1

(q + ea) <piß, (e + e2)_1) + e <piß> q'1)] eï1 Qï1 <
(19)

ßv, ¦

The function cp(ß, v) being convex in v, it follows that the function qcp(ß, e-1) is

convex in e v~x-

The derivative ò/Òq (gcp(ß, e-1)) y(e) exists a priori almost everywhere. If it
exists at e and e + ei> vî1 A q A q + q,A vr1 we have according to (19)

V (g +gi) — V(e) < 2L + 1
.2Q.

gi ^ /X '

which shows that ip(g) may be extended to a continuous function for vr1 < q < y"1
(20) furthermore insures that y(e) is the indefinite integral of a bounded integrable
function2).

Theorem 3 follows then immediately.

5. Grand canonical ensemble

In what follows we will limit ourselves*) to the study of potentials for which a 0.

Let again yl be a cube of volume V and let ß, z be positive numbers. We write
Q(ß; A, 0) 1 and define a function p by the following formula

eßVp{ß,z;A) pjE(ß,z;A)=ZznQiß;A,n). (1)
J*-0

According to (2.4) the series (1) has an infinite radius of convergence, in fact

z"Q(ß;A,n)<~[zVeWßBY< [,-l«W»>/»» + i]", (2)

ß and z being fixed, let v0 (1/2) z'1 g-W2)/^-1 > 0. We obtain then

Z z»Qiß;A,n)< Z (!)"• (3)
V V

n > — « > —

Let also v, > z'1 e-{1^ßB, then

27 z"Q(ß;A,n)< £ [,-1 e^ßB^T< ^[zvt «PW + y*. (4)
17 17 L J 1

w < » < —

*) For the case a > 0, see 6).

13 H. P. A. 36, 2 (1963)
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The last inequality follows from the fact that for a. > 0, (a/w)" is an increasing function
of n when 0<«<a«_1.

We have furthermore

lim [«.«(W^+f^l. (5)
v,—*oo

Let z eßv. It follows from (3, 8) that for any y one may choose v so big that
y - cp(ß, v) > 0. Let thus v be such that ß (y - cp(ß, v)) > ò A- s, ò > 0, e > 0. For
big enough A, there always exists a positive integer n such that n > (VA) and
ß (y -<p(ß;A, n)) > ò, then

SOS, z; A) > z" Q(ß; A, n) > esvl". (6)

According to (5) one can fix v, such that

[zv,e{mßn + 1]llVl<eölv (7)

and therefore, if A is big enough

S(ß,z;A)> 27 z»Q(ß;A,n)>~3(ß,z;A). (8)
V V
— < n <* —
»1 »3

We know that cp (ß; nv, n), which is a continuous decreasing function of v for v > 0

converges uniformly on the compacts towards cp(ß, v) when n goes to infinity.
From this follows that for Vjv, < n < F/w0 one may write

Q(ß;A n) e-nß(<riß,vin) +x(ß;A,n))

z«Q(ß;A,n) exVßV{V-M'jln) - ^f]
(9)

I y(ô; /1, «) I < e(p\ yl) lim e(p\ yl) 0 (10)

We will now study the behaviour of [y — (p(ß, v)]jv as a function of v. One has

irPXX — i' (7-KM + •!). (»)

-^(r-^,») + ^I)-»S- ^
From (12) it follows that the function y — 99(18, ») + » (dcp/dv) is increasing, because
of (3,7), it is negative when v is small enough. It must become positive when v is big
enough. The inequality

y-<p(ß,v)<-v^ for v>0, (13)

would indeed imply, when y — cp > 0

-fo (log (y -9>))>—, log (y-9?) >logCu, y-9?>Cv, (14)

with C > 0 in contradiction with (3, 7).
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The function [y — cp(ß, v)]jv has thus a maximum which occurs between vQ and v,.
It follows then from (1), (8), (9), (10) that this maximum is the limit of p(ß, z;A)
when V tends to infinity.

Theorem 4. When V tends to infinity, p(ß ,z; A) has a limit

Hm p(ß, z; A) p(ß, z) max
y~y(i?,t,)

(15)

and if cp — v (dcp/dv) y,z X, we have p(ß, z) [y — cp(ß, v)]/v — dcpjdv.

We may thus identify^» (ß, z) with the pressure andwritey g — (3/2/3) log (2Tcßjm)
where g is the chemical potential.

We will conclude this section by a remark about the entire analytic function
S(ß, z; A) defined by (1) when z is made complex.

For r > 0, we have

max S(ß, z; A) S(ß, r; A) (16)
|z|«,J-

According to (3) and (2,5) we have the inequalities

E(ß,r;A) < 1 A- Y r"Q(ß;A,n) < 1 + —max \r — ^ + W«)/»<*-*wr»]"
y v0 n L n J

n < —

< 1 + Xmax [rvelA-W2}ß(B-(AW)]Vjv

(17)
1 + — max exp \ß V m {iogv + 1] + (1//?) logy + (B/2) ~ (1/2) ^ 1

<l + ^exp[^max(l + (i-logr + 4)|-|^)]
^l + Fexp^F^ + AlM^XW).^^

1 4-Fexp [F + |X(llogr + 4)2+log2r + |/3 S + l].
Therefore

^loglog^.yl) m
r^oo log»-

(16) and (18) show that the entire analytic function S(ß,z;A) is of order zero*).
From this follows that its zeros t,i are in infinite number, that for every e > 0 the

oo

series Z I fi I ~e converges and that
» 1 00

S(ß,z;A)=]j(l--zA, (19)

where the infinite product in the right-hand side converges absolutely and uniformly
on the compacts.

This allows us to generalize to the case of a potential satisfying conditions yl and B
and for which a 0 the results obtained by Yang and Lee6) when «> 0. These
results follow indeed directly from the theorem of Stieltjes-Vitali *).

*) See for instance l).
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Conclusion

The aim of this note was to study in a rigorous manner the application of statistical
mechanics to a classical system of particles in the limit where the system becomes
infinite.

In several respects the results obtained here do not appear to be the best possible.
This gives rise to interesting mathematical problems, for instance that of characterizing

the continuous potentials such that

ZZ*(Xj-x,)>0
' i

for all systems of vectors xi
On the other hand, it appears that our methods can be used to attack also the

quantum mechanical problem, which has not been investigated up to now.

In conclusion I wish to thank Profs. R. Jost, M. Fierz and H. Araki for interesting

discussions and criticisms.

Note added in proof: Dr. M. E. Fisher has informed the author of the fact that he
reached results similar to those described here by similar methods (using monotoni-
city to prove the existence of a limit, convexity to prove continuity). Dr. Fisher
also pointed out the relevance of a paper by L. Witten [Phys. Rev. 93,1131 (1954)].
I am indebted to Dr. Fisher for correspondence on these questions.

It shoud be noted that no proof seems to exist for the fact that the closest-

packing density qc of spheres is \?2/a3. Our proofs are however independent of this
fact (except for the replacement of a3/|/2 by gr1).

Appendix. Potentials satisfying conditions A and B

The conditions yl and B are satisfied in the following cases :

a. 0(x) > 0,0(x) 0 for | * | > R > 0 ; 0(x) > yl > 0 in a neighbourhood of the origin.
b. a > 0; 0(x) 0 for [ * [ > R > a; 0(x) > yl > — oo.

c. 0(x) 4 e [(R/\ x |)12 - (Rj\ x |)6] (Lennard-Jones potential).
d. 0(x) s (e-2a(i*i-Ä') _ 2 g-a(ijri-fi')) (Morse potential) for e«R' > 16.

Let a (a?) be a continuous non-negative function with compact support which
depends only on | x | and does not vanish identically.

ß(x) =Jdy a(y) a (* - y) fdp e»* '(p)2 (1)

is of positive type and one may choose a.(x) such that ß(x) < 0(x) in the case a.
One may then take 0, 0 - ß, 02 ß.
As far as b is concerned, from the relation

(2n)-3l2 fdxe-^e-«1-*'-^ (2i)-««M'«-w", (2)

we see that the function
y(x) e-«l-*,-^-e-ß(**-»*) (3)

is of positive type as soon as

" ß ' ~

(2 a)372 ~(2 ß)312
' ' ' '
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a is fixed and g-<*(*J-s!) i for \x\ a. For a given, a > 0, we may thus choose
b and ß such that y(x) < 0(x). Finally we may increase a and take it so big that the

inequalities (4) are satisfied. We write then 0, 0 — y, 02 y. For the Lennard-
Jones potential (c) we put

0,

(6)

(7)

M ^ 4 [(-^^r - 2 (^-Z Wf]. 0 < «* < n - 1. .5)

We first prove that 0, is positive, a2 < ]/2 - 1 implies f/2 - oc2 > (<x2/(f/2 - 1)). We
have thus either *2<f/2 - a2, i. e. 2 (l/(#2 + a2))3> 1 or i2> (a2/^- 1)) i. e.

2 (lj(x2 + a2))3> (1/x2)3, 0, is thus always positive as follows from the identity

(XlXM-(X)XXM
l(*r) ~ [a^AAA) J [\x2j + [ x2 + oì2 ~1l + \~x*AA#) ¦

There remains to prove that

I"*2 + a2 [( j»2 + a2 j ~ 2J

i(*2 +a2) ~ ^2
x2 + a2 J K^-Ha2) + ^2

*2 + a2 j + ^4
*2 + a2 )\

is of positive type. To do this we prove that each factor of the right-hand side is of
positive type. We have namely

(2 7i)-3l2fdx X** (x2 + a2)-1 ]/f- ^-, (8)

(2 Tt)-3'2Jdx e'»' (x2 A- a2)"2 j/f- ^T ' (9)

(2n)-^fdxe-it"(x2 + a2)~3 j/| "-££- (| + ±). (10)

The first factor is thus of positive type when a is sufficiently small, the second is also
of positive type, being a sum of positive type functions.

For the Morse potential (d.) we may take 0, 0, it is indeed a function of
positive type if eaR' > 16 since

(2TÌ)-3vfdxe-iy*0(x) =e4X e*r
^

J J/2jt 4 a2)2 (p2 A a2)2
(H)
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