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Multiple Coulomb Excitations of Deformed Nuclei

by Derek W. Robinson*)
Seminar für Theoretische Physik, ETH, Zürich

(5. VII. 62)

A bstract. A formalism is developed for the purpose of investigating the multiple Coulomb
excitation of deformed nuclei. The formalism yields an expression for the time development
matrix describing the nuclear states which has a form similar to the solution given by the 'sudden
approximation'. It is shown that this formalism may be applied to the problem of the excitation
of rotational nuclei and an expression is obtained for corrections to the sudden approximation.
This expression contains corrections of all orders in <f and has the advantage that it is free of
divergences. The corrections may be most readily calculated in the equal spacing approximation ;

an approximation in which the energy levels of the bombarded nucleus are assumed to be

equally spaced. The formalism is also applied to the excitation of vibrational nuclei, taking both
one-phonon and two-phonon processes into account. It is shown that the time development
matrix may be expressed in closed form and earlier results concerning the effects of the two-
phonon processes are extended.

1. Introduction

In recent years the Coulomb excitation process has been used extensively to
gather information about low lying nuclear states. It has been possible to develop the
theory of such excitation processes by using perturbation expansions. These methods
are valid so long as the probability for nuclear excitation in a single encounter is
small. When protons or a-particles are used as projectiles, and if the bombarding
energy is kept so low that no nuclear reactions take place, this criterion is valid.
However these conditions place a severe limit on the number of states which may be

investigated by these methods. If heavier ions are used as projectiles the electric field
exerted on the target nucleus is extremely strong, even at bombarding energies such
that no nuclear reactions take place ; this leads to multiple Coulomb excitations and
to a method for investigating the higher lying nuclear states. One might still calculate
excitation probabilities by the use of perturbation theory, but if many states are
involved in the excitation process this is both complicated and unwieldly. Alternatively
one might solve directly the set of coupled equations which describe the population
of nuclear states during the collision. This latter method has previously been investigated

by the present author1) but it has the inherent disadvantage that all calculations

are necessarily numerical. In an attempt to give a theoretical description of
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these multiple excitation processes K. Alder and A. Winther2) have considered an
approximation method, 'the sudden approximation', which we will investigate in the
present work more fully.

In order to understand the significance of the sudden approximation it is necessary

to briefly discuss the parameters entering into the calculations. The methods are
applicable to collisions in which the semi-classical orbit theory may be used2)3) ; this
presupposes that the projectile and target nucleus never approach very close to one
another. In this framework there are two types of parameter involved in the theory.
The first type of parameter is the strength parameter q{ which is a measure of the
strength of the i-th multipole interaction. We will consider quadrupole excitations
only, so that just one strength parameter enters. The second type of parameter is

usually designated by |;. A ^-parameter occurs for each energy spacing of the target
nuclei and the parameter can be roughly understood as the ratio of the interaction
time to the characteristic time of the nuclear energy spacing. Of course the only
^-parameters entering into a calculation are those associated with the energy spacings
of levels between which transitions take place. If the relevant f,- are large the process
is essentially adiabatic and if they are small the process is sudden. In the Coulomb
excitation of deformed nuclei the ^-parameters are small because the energy levels of
the nuclei are closely spaced and the quadrupole operator causing the excitations
places heavy restrictions on the allowed transitions. The sudden approximation
assumes that all relevant ^-parameters are zero, or equivalently that all nuclear

energy levels are degenerate. This approximation yields a compact form for the
matrix describing the time development of the nuclear states which may be
evaluated without making a series expansion of the type encountered in perturbation
theory. Alder and Winther have also given a method for correcting the
approximation for non-zero f. Their method of correction has, however, the. disadvantage
that divergences enter. In this paper we wish to show how a solution of the
Schrödinger equation may be derived which has the same form as the sudden approximation

solution and how this solution can be used for calculating corrections without
encountering divergences. The methods used suggest an alternative approximation
for the case of excitation of nuclei with a rotational spectrum. This approximation
consists of assuming that all the energy levels of the nucleus are equally spaced
and hence introduces just one f parameter into the problem.

Section 2 gives the development of the general formalism used in the ensuing
investigations. Section 3 discusses the exitation of rotational nuclei and introduces
the equal spacing approximation and Section 4 discusses vibrational nuclei.

2. General Formalism
The starting point for the development of our formalism is the Schrödinger

equation for the nuclear state %p(t). This equation has the form

idl [H + HE(t)]W (1)

where H is the Hamiltonian of the free nucleus, HE(t) is the time-dependent
interaction Hamiltonian and we have taken %—l. We now transform to the interaction



y(t) e~iHt U(t, g eiHt> ip(t0)

This transformation yield;î the equation

.dU(t,to) =H(t)U(t,¦to)

where we have defined

H(t) eim HE(t) e~im.
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representation and simultaneously introduce the time development operator of the
nuclear states U(t, t0) i. e. we make the transformation

(2)

(3)

(4)

As was explained in the introduction, the sudden approximation is equivalent to the
assumption that all nuclear energy levels are degenerate. Therefore in this
approximation

[H, HE(t)] 0

and thus

i^r^-HE(t)U(t,t0). (5)

The interaction Hamiltonian HE(t) has the property that

[HE(h), HE(t2)] 0

so that (5) may be directly integrated to give the solution

Us Us (oo, — oo) exp {— i B}
where

00

B f'HJt) dt. (6)

- oo

The suffix S has been written to indicate that this solution is given by the sudden

approximation. In order to examine the implications of this approximation we look
for a solution of (3) having the same form as (6) i. e. we try to find a solution7)

U(t,t0) exp{A(t,t0)}. (7)

To find a solution of this form it is convenient to define operators

U(X,t,t0) exp {X A(t, t0)}
and

L(X,t,t0)= mX,dl'h) U-^XJ.Q

where X is a real parameter.
Now

and
rrrrrU=^rrUA-LA U
dX dt dX

d d TT dA TT t TT
~rr rr U -A,-U + A L U.dt dk dt
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Equating these two derivatives we obtain the differential equation

XX^£ <*>

where 0A is an operator defined by the equation

QAL [A,L].
As (8) is a linear differential equation we may solve it to obtain

L(X,t,t0)=tp(XQA)°£- (9)

where
ex— 1

<P(X) —;— •

The solution of (3) has now been transformed to the problem of solving the equation

H(t)=iL(l,t,t0) (10)

where 1.(1, t, t0) is given by (9). Substituting (9) into (10) we obtain

~ - icp-1 (QA) H(t) - - i H(t) + A[A> H(t)l --L[A [A, H(t)]] + (11)

Equation (11) may now be solved by iteration and we find that we may write the
time development operator in the form U exp {i A} where is given by

A — A (oo, —oo) A, A- A2A- A3A-
and

oo oo

Ay. - f H(t,) dt, A2 A J j lH(k)t H(t2)} dt, dt2,

OO t-, tu

A3 | / J J m,) [H(t2), H(t3)]] dt, dt2 dt3

-OO -OO -oo
oo iL tx

-J2 J J J [H(t3)[H(t2)H(t,)]]dt1dt2dt3
-oo -oo -oo

(12)

In order to make comparisons of this solution with the sudden approximation solution
it is useful to decompose U into the product

u=ucus.
Us is the sudden approximation solution (6) and Uc is the correction matrix

Uc=UUsr1 exp {i A) exp {i B}

where A and B are given by (12) and (6) respectively. The correction matrix may be

re-expressed with the help of the Baker-Hausdorff4) theorem and we find

Uc exp {i C} exp iiAAriB-^[A,B]-^- [A [A,B]} + ...} (13)
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where the exponent on the right hand side is an infinite sum of multiple commutators.
Further details concerning this formula and methods of calculating the higher
coefficients may be found in the cited references.

3. Rotational Nuclei

In this section we wish to apply the formalism developed in the previous section to
the problem of Coulomb excitation of nuclei with a rotational spectrum. We will
restrict our considerations to nuclei whose spectra form a pure rotational band. The
free Hamiltonian for the rotation of the nuclear deformation is then given by

l f ô2 „ à 1 ô2 1 .-H 27 W + C°tß W + Sm-^T !>*] (14)

where a and ß are the Eulerian angles describing the orientation of the nuclear

symmetry axis and / is the moment of inertia of the nucleus.
The Hamiltonian describing the electric quadrupole excitation of the nucleus due

to its interaction with a charged projectile is given by

HE(t) ^Z, e^JA^AA m*(E 2, pt) (15)
3

p f
The time dependence and also the dependence of the Hamiltonian on the scattering
angle S enter through the coordinates of the projectile (rp, dp, cpA. The quadrupole
operator can be expressed in terms of the intrinsic quadrupole moment Q0 of the
nucleus in the following manner

M(E2,/*) \Q0Y2fl(ß,«). (16)

In order to evaluate the time dependence of HE(t) we use the well known classical
orbits method2)3). We choose the coordinate system used by Alder and Winther2)
in which the projectile is scattered in the plane cpp 0 and where the z-axis is along
the symmetry axis and we also make the following definitions

AeQo
q A a2 v '

F/t(6,t)=2a2v}/4A3^
and

M^l/^Y^jfU)

(18)

The parameter q was introduced in ref. 2, a is half the distance of closest approach of
the projectile and the target nucleus, and v is the initial relative velocity of the
projectile and target. The functions FAQ, t) have been defined in such a way that
certain time integrals are related to the classical orbit integrals normally encountered
in Coulomb excitation calculations. If

oo

/.„(0.*)- [ Ffl(0,t)eia"dt (19)
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where

t a ca

then

/„(fl, fl 4 7M(0, fl + | /22(6, fl + l J,_,(0,1),

/i±i(Ö. fl J 1/4 ['¦-•(*. A - /22(0' A] - r (2°)

/¦±.(Ô.«= 2 I/2 [-¦r»(».0 + 2-42(0X) + 4/2-2(e,fl]

where the I2J6, fl are the classical orbit integrals tabulated on page 478 ref. 3.

The advantage of the coordinate system chosen to evaluate the time dependence
of the interaction Hamiltonian HE(t) is that for 6 n

Y2J6p,tpp) 0, tor pi 4=0.

This is also a very good approximation for all backward scattering angles if £ is small.
As the approximation (21) simplifies the formalism considerably we assume that it is

generally valid. Thus the following considerations are only strictly true in the case of
backward scattering. Corrections to this approximation have been discussed by
Alder and Winther2) and their discussion applies also to the following work. From
the definitions (18), and with the approximation (21), the interaction Hamiltonian
(15) now takes the simple form

HE(t)=qF0(6,t)M0. (22)

After this brief discussion of rotational nuclei we now return to the solution of the
excitation problem given in Section 2. The time development operator describing the
nuclear states is given by

U exp {i A}

There are two essentially different ways of evaluating the matrix elements of an

operator of this form. The first method is to expand the exponential and corresponds
in some way to perturbation theory, the second method is to find a unitary matrix
which diagonalizes i. e. to find a matrix 5 such that

S S^ S1 5 1

and

O \Sî A S\ my anònm.

Then the matrix elements of U are simply given by

<« I U j my 27<> I S I py {p I Sf I my e'iaP (23)
P

However to apply either of these methods it is necessary to know the matrix elements
of A and also to make certain approximations which are governed by the order of

10 H. P. A. 36, 2 (1963)
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magnitude of these matrix elements, we therefore now examine the structure of A.
The matrix elements of A are determined in terms of the matrix elements of H(t)
these matrix elements are in turn determined by the matrix elements of the nuclear
quadrupole operator which may be measured by nuclear spectroscopy. The matrix
elements measured in this way often differ from those predicted by the simple
rotational model but we will not consider these discrepancies. In the following we
assume the values given by the rotational model although our methods could also be

used in conjunction with the experimentally measured values. Now the matrix
elements5) of the first term in (12) may be easily calculated and we find from (12),
(18) and (19) that

(I,M,\A,\I2M2y j

- V« Vo q /M(0. A*) |/(2 A + i)(2/, + i) (£ q2 20j |
m

where the nuclear states 1J, M>> are specified by means of the spin It and the
magnetic quantum number M.. The parameter |12 is defined by

xxx-xxa a
co{,—'J v

where Et and £¦ are the energy eigenvalues of the states | It Mty and | Ij M}y
respectively. The matrix elements of the higher terms occurring in the expression
which defines A are not so easy to evaluate but we have

<I1M,\A2\I2M2y ôMi0ÔM20^f2JK(6,!;,3,è23)

(2/1 + l)/(2/1 + l)(2J, + l)(JJJ),(JJJ
(25)

where
OO tx

K(d, As. £23) f f {X"<-im^ - ,5-*-'. + "^} F0(6, h) F0(6, t2) dt, dt2.

-00 —00

This integral may be put into a more convenient form by introducing the step function

ì r «""('i-'*) I1 h *> t2

e(t,-t2)= It / dz~\

We find
OO

— CO

X [ho (0. Aa - fl /20 (0. A3 - fl - /20 (0, A3 + fl /20 (0. A3 + fl]

where AA indicates the Cauchy principal part.

(26)
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The function K(d, f13, £23) has certain oddness and evenness properties which
follow from the evenness of /2O(0, fl in the variable f. We find

K(6, |13, |23) -K(6,- i,3, - A3) K(6, |a3, Sv (27)

These properties coupled with the selection rules of the quadrupole operator lead to
cancellations in the sum occurring on the right hand side of (26). As K(d, |13, |23) is
small for small values of f and as cancellations also occur in the sum the matrix
elements of ^42 should be small in comparison with the matrix elements of A, for a

large range of q. These properties are common to the matrix elements of all the
higher terms occurring in the expression (12) and this suggests that it is a reasonable

approximation to cut off the series at a low stage. A second approximation which
aids greatly in evaluating the matrix elements of ^42 and higher terms is the equal
spacing approximation. This approximation consists of assuming that the nuclear

energy levels are equally spaced i.e. we assume

Ei + ,-E{ E.

With this approximation only one ^-parameter enters the calculations of the
matrix elements and we find from (25)

</x 0 | A2 | I, 0> i q2 XiXX K(6i £ I)

and

^-XXoXXaXXXo
<[I,0\A2\ I,A-20y 3iq2

]/(2 I, a 1) (2 I, a 5)

(2 I, -1) (2 I, + 3) (2 I, + 7)

(28)

x xe,»,I)[hq 2

Q
f) =<i1A-20\A2\i1oy.

(29)

It may be seen from these expressions that the matrix elements of ^42 decrease rapidly
with respect to I, therefore f should be fitted to the value of the ^-parameter
corresponding to the lowest energy spacing to give the best results. The equal spacing
approximation with f fitted in this manner tends to over estimate slightly the matrix
elements corresponding to low spin and under estimate those corresponding to high
spin. As the latter are very small this should have no noticeable effects.

The matrix elements of the higher terms in the expansion (12) of A may be
treated in the same way as the second order term. We will however consider these no
further in detail. The characteristic feature of each term is that a multiple integral
over the classical orbital integrals occurs which is always of 0(S), an added factor q
and an added numerical factor which is always rather small.

Having calculated the matrix elements of A in the above way it is now possible
to calculate the matrix elements of U, either by expansion or by calculation of a
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unitary matrix with the properties (23). Alder and Winther have used both methods
of calculation in examining the sudden approximation and have made comparisons of
the results. The latter method is more exact and is instituted by approximating yl by a
finite matrix. The number of rows and columns which have to be included depends
upon the number of states which are actively excited i.e. if for a certain q value
only the lowest n states are appreciably excited then it suffices to approximate A by
an» X» matrix.

The programme outlined above may also be used to calculate the correction matrix
Uc defined by (13). This has the advantage that the exact results tabulated by
Alder and Winther for the sudden approximation solution Us may be used to
improve the accuracy of the calculation. The magnitude of the matrix elements
of Us determines the number of rows and columns necessary in the calculation
of Uc.

The calculations outlined above are being carried out. Provisional results show
the correct qualitative character for the corrections obtained by those methods. The
full results of these calculations will be published in a separate work. We now turn
our attention to the application of the formalism of section 2 to the problem of
excitation of nuclei with a vibrational spectrum.

4. Vibrational Nuclei

The excitation of nuclei with a vibrational spectrum has been considered in a

previous paper6) and the notation of this paper will be used in the following. The free
Hamiltonian for the vibrations of the nuclear surface is given by

H=Z[2lBP»Pl+\C*^- (30)

Introducing phonon annihilation and creation operators by the definitions

"" )/2a7
]/c xl + i -%' " \/b

i
|/2aT

fc. (31)

we have

H mZ[*K*l- \]

As in the previous section we approximate the excitation Hamiltonian by
considering just the term with magnetic quantum number zero i.e. we take

HE(t) -v 2, e Xot'XfX m*(E 2, 0)

The nuclear quadrupole operator is given by

M(E 2, 0) M1 A- Ml (32)
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where

and

M1
3

- Z2 e R2 ß [a0 + aj] (33)
4j?;|/5

M° - An i/lAc Z2 e R° ß2 R2j(l I o) [*> + (" 1)A aJ [a^ + (~ 1]" a-"]

Following the methods of the previous section we now define a characteristic y-para-
meter and a time dependent orbital function. The definitions differ from (18) ; we take

r)R}ß, F0(6,t)=a2v y"^ ^ (34)
5 y5

The parameter rj is the well known parameter associated with Coulomb excitation
calculations and is given by

ri= — 2"
1 v

The function Fo(0,t) has the property

oo

/2o(0,fl= J F0(dJ)eimtdt.
— CO

The connection of T20(0,1) with the function defined by (19) is readily found to be

/20(0,fl l]/45w /20(0.fl-

These definitions allow i/^) to be written in the form

HE(t) q F0(6, t) [a0 + aj] - |/^ Ä /3 Fo(0, t) JT

2 2 2Ì
A pi 0)x|, „l[aJ+(-l)*a_J [«;+(-l)"«J.

(35)

This form of HE(t) now leads to certain simple properties for the matrix A defined by
(12). HE(t) is a quadratic polynomial in the annihilation and creation operators and it
may be easily seen that the algebra defined by quadratic polynomials in a. and cAß is
identical to its commutator algebra. Thus evaluation of (12) leads to the form

A=£{Ix0A-P4 + X aI aI + J\„ *t % + Kio aA «J + Klf, 4 a„} (36)
Tilt

where the I, J, and K are determined as sums of integrals over the orbital functions
and we have omitted a c-number which contributes only a phase factor to the time
development matrix.
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The first terms of I, J and K are given by
oo /,

/=-<?/2o(0,A + -^?3^7 yn

x Fo(0, tx) Fo(0, jJ2) Sin co fo - g [Ê"1'"'1 + e"""'2] ^ «ft

/^ l/Ä^^ß!o)/^xfl +

and

*>, ]/£ 1>ß(*,'S)(-1)V^.0) +

> (37)

1 /i 0

The time development matrix t/ may be put into a convenient form by making a

splitting
u uc us

where we define

Uc exp U£ [/»„ al «I« + /L «a «„ + Xj, «;. «L + X/j «1 Xl • (38)

Us may be calculated with the help of the Baker Hausdorff theorem (13) and we
find the simple form

Us exp {i [L a0 + Ü aj]}

where L is given by a sum over products of the I, J and K. The first terms in this
sum are

L I-i(KwI-Jl0P) +
To first order in k

L -qjUO,C) + r*r-q2kßQ(d,C)
7 yn

- i -'-J-JUO, fl [/2o(0, 0) - /2O(0, 2 I)] +
7 [/ji

where we have defined

oo I,

0(0, f) f f F0(6, t,) F0(6, t2) Sin ca (t, - t2) [e~'«jt' + e -'"""] dh dt2.

(41)

—OO —OO

This integral may be rearranged by introducing the step function and we find

L -qJ20(0,i)-l q2kßP(d,C)A-... (42)

where

P(6, |) XX <J> f df /20 (0, | + f [/âo (0, 2 f + f + /2O(0,1')] •
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The function P(9, £) has been encountered previously in an examination of the first
order effects of the two-phonon part of the quadrupole operator (see Rf. 6. formula
A.10). P(0, |) is an odd function of | and for positive values of £ it assumes negative
values.

In order to evaluate the matrix elements of U we consider the matrix elements of
Uc and Us. The operator Us may be rearranged using the Baker-Hausdorff theorem
and we find

We now have

i \L\2\
Us exp {i Ü ao} exp {i L a0} exp —- \.

<m\Us\ »> =2J(.m | XtoJ
| ry(r | e'La° | w> expj- ^J

»¦-o
where

A (ilA)m-<(iL)*-'Xim\ n f [XJ-Ì

^ (m—r)\(n—r)\r\ V \ 2 J

/3 Min {m, w}

These matrix elements assume a particularly simple form if | w> or | my is the ground
state of the nucleus. Then

(m\Us\0y ^-exp{I'm! I

(«Lt)" _J |L|2
2

and further
,'

Pi=\<m\us\oy\2,
I r |2#»X.I. exp {-|L|2}.

At this stage it is instructive to make a comparison with the calculation2)6) of
the excitation probabilities in the approximation that the quadrupole operator is

given by the one-phonon part M\. In this approximation the states of the excited
nucleurs are also populated in a Poisson distribution and the probability of exciting
the nucleus from its ground state to the state | my is given by (46) with k 0. The
effect of setting k 0 is equivalent of the replacement of L by — q J20(0, fl as may
be readily seen from (40). However, if instead of putting k 0 we expand Pjj, in terms
of k we find that P^ agrees, to first order in k with the result given previously (Ref. 6

formula (36)) for the excitation probability to all orders in the one-phonon processes
and to first order in the two-phonon processes. Therefore to calculate the matrix
elements of U to first order in the two-phonon processes it is perfectly consistent to
take

U= Us i.e. Uc= 1 (47)

and to calculate the matrix elements of C7S to first order in k.

Although it is not consistent to make the approximation (47) and to retain all
orders of k in the matrix elements of Us this does shed some light upon the results
obtained in Ref. 6. concerning the interference of the one-phonon processes and the
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two-phonon processes. With the approximation (47), but to all orders in k the
probability of exciting the nucleus from its ground state to the mth excited state is given
by (46). Now from (42)

L -q /2O(0, f) - | fk ß P(0, |) + 0(k2)

Because P(0, £) is negative for all positive values of f the absolute magnitude of L
is smaller than its value for k 0 (assuming that the terms of 0(k2) are insignificant).
Therefore in the approximation (47) the bombarding energy required to excite a state
to its maximum is higher than that predicted by the one-phonon approximation.

We now turn our attention to the effects of the two-phonon interaction introduced
through the correction matrix Uc. We consider only the matrix elements of Uc
between the nuclear ground state and an excited state for reasons of simplicity. Calculation

of these matrix elements is in general very complicated we therefore make two
simplifying approximations. The first approximation is to restrict the sum in (38) to
the terms with X 0 and pi 0. This approximation is inessential but considerably
simplifies the following formalism without destroying the essential features of the result.

We now have

<° I X I m> <° I exP {*' [/oo 4 4 + /oo «o ao + #oo ao «o + #oo ao <Vl} I my ¦ (48)

There are various methods which may be used to proceed with the calculation. It is

possible to expand the exponential in (48) or to diagonalize the exponent matrix as
discussed in Section 3. However if we make the approximation f 0 the matrix
elements can then be calculated in a particularly simple form. We therefore consider
this approximation and we find

<0 | Uc | my (0
I

exp j- ~ (a0 + a0)2} j m)

where

X -±= q k ß /2O(0, 0)
7 ]/n

(49)

This follows directly from (37) and the fact that the higher order terms omitted in (37)

are all of order £.

To proceed further we use the first identity of the Appendix to obtain

<0 | Uc | my (O exp j- -*- ln (1 + i X) a0 (oc0 + «J)j j m) (50)

We now use the second identity given in the Appendix to simplify (50). Finally

¦ (51)

<0]c7c| w> (0expj- 2-ln(l-r * X) «„Oojexpj^- _\ — agj | m

n\ \ iX 2Ì I \ l0'exp - —r- -- -a2 m)—.r 2 (1 + % X) UJ / |/i + i x
1 i —iX \«/s l/mT
—=.- -pr- —^r- / --r if w is even

\'\ +ÌX V 2 (1 + i X) J (mß)

0 if m is odd.
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With the aid of (44) and (51) it is possible to calculate the matrix elements of U.
After some rearrangement we find

(52)
m 0 r 2m-n

r>0

i -iX y" __
(iL+)AiL)"-2m + r2m\

X
\ 2 (1 + * X) (2 m~AAAA— 2 m + r) m r '

The excitation amplitudes may be expressed in the more convenient form

/ irrlm 1 1 it v-\ i LL+ iXL+z
<n u I °> - 1ÄX XTXX ë"{L'x) exp T -A- + 2ir+T-AT)

where the polynomials gn(L, X) are defined by means of the generating function

I —i X s2 il's 1 v-j ,T s™

exP {2TTX ^ + TTTx) 2> W(L> X TH ¦

The excitation probabilities may now be directly calculated. Some simplification
takes place if we assume that L is real. We then find

P„ | <0 | U | ny |2,

1 1
i ,r vM, f i2 1

ay JTAW 'gn(L'Z) 'exp X i~M
and explicitly

P° 7ÎW exp I" îxW} ' Pl ^ yr XX OT exP I" AAAA

P ¦- -
' '''"" "'""'" "

— exX — Ì
2 ,/, ,-•> 9 1 (1 J. y2|2 L'M' | 1j_V2J'

^3

1 1 (L2 — A-2)2 + AT2 f L2

YrAÂA AA - ~AiAx2f exp X TX^j

TIW TT liW l(^2- 3 A2)2 + qX2] exp{- r^}.
(53)

As we have assumed that L is real L2 in (53) should only be evaluated to first order in k
Thus the inclusion of the corrections due to the two-phonon processes destroys the

simplicity of the results obtained for the excitation probabilities and we do not obtain
the simple prediction that the nuclear states are populated in a Poisson distribution.
However for small X the probabilities given by (53) do not differ very greatly from
those given by the Poisson distribution

P" AY -(nï2X exp {" AAA2) ¦ W
We may again compare this distribution with the result obtained in the approximation
of considering one-phonon processes only and we find the same conclusion that was
discussed in connection with the approximation (47). i.e. bombarding energy required
to excite a state to its maximum is higher than that predicted by the one-phonon
approximation.
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Appendix

The first identity used to simplify formula (49) in the text is stated as follows ;

exp j- X- (a0 + aj)2| exp !- ^ In (1 + i X) aj (a0 + aj)|

x exp — - In (1 + i X) a„ (a0 + aj)l.

To prove this identity we make the ansatz

exp {t A0 (oc0 + cA0)} exp {t a0 (a0 + aj)} exp {f(t) (a0 + aj)2}

That this ansatz is reasonable follows from applying the Baker-Hausdorff theorem to
the left hand side. We now differentiate the ansatz with respect to t and after some
elementary rearrangement we obtain

f'(t) e-2t.

We may now integrate with the boundary condition /(0) 0 to obtain the desired
result.

Similarly we may prove the second identity;

exp {t <x0 (a0 + aoX exp {t a0 <*A) exp j - (X - 1) «gj.
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