

Zeitschrift: Helvetica Physica Acta
Band: 36 (1963)
Heft: II

Artikel: A generalization of Borchers theorem
Autor: Araki, Huzihiro
DOI: <https://doi.org/10.5169/seals-113361>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 30.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

A Generalization of Borchers Theorem

by **Huzihiro Araki** *)

Eidgenössische Technische Hochschule Zürich

(28. VI. 62)

Abstract. BORCHERS' theorem on causal dependence of rings of operators in quantum field theory is generalized by a new method of proof, based on the uniqueness theorem for hyperbolic partial differential equations.

1. Introduction

Recently, the rings of operators associated with fields in a restricted region of space-time have attracted some attention in axiomatic quantum field theory. One way of defining such an object, in the framework of the Wightman axioms, is to consider the set $R'(\mathfrak{B})$ of all bounded operators C , satisfying

$$(C \Psi_1, A(f) \Psi_2) = (A(f)^* \Psi_1, C^* \Psi_2) \quad (1.1)$$

where \mathfrak{B} is some open set in space-time, $A(f)$ is the smeared-out field, the support of the test function $f(x)$ is restricted to \mathfrak{B} , Ψ_1 and Ψ_2 are arbitrary vectors in the common dense domain D of all the smeared-out fields and their adjoints and the equation (1.1) is to be satisfied by C for all such f , Ψ_1 and Ψ_2 . The von Neumann algebra $R(\mathfrak{B})$ associated with the region \mathfrak{B} is then defined as the commutant of $R'(\mathfrak{B})$.¹⁾²⁾

BORCHERS³⁾ has given a theorem of the type $R(\mathfrak{B}) = R(\hat{\mathfrak{B}})$, where \mathfrak{B} is a timelike cylinder, $\{x; |x^0| < T, |x| < \varepsilon\}$, and $\hat{\mathfrak{B}}$ is «causally dependent» region of \mathfrak{B} , defined by $\hat{\mathfrak{B}} = \{(t, x); |t| < T, |x| < \varepsilon + T - |t|\}$. The main tool of his proof is the technique of analytic completion.

In this paper, we give an alternative proof of Borchers' theorem, based on the uniqueness theorem for hyperbolic partial differential equation. This technique enables us to generalize Borchers' theorem. For example, if

$$\mathfrak{B} = \{x; |x^0| < |x^1| + \varepsilon, |x^2| + |x^3| < \delta\} \quad (1.2)$$

then $R(\mathfrak{B}) = R(M)$ where M is the whole Minkowski space.

We discuss the generalized definition and some properties of $\hat{\mathfrak{B}}$ for an open set \mathfrak{B} in section 2 and then prove the main theorem, $R(\mathfrak{B}) = R(\hat{\mathfrak{B}})$ in section 3. Some examples will be discussed in section 4. The main part of the proof in section 3 is similar to that used in Garding's proof of the Jost-Lehmann-Dyson representation.⁴⁾

*) On leave of absence from Department of Nuclear Engineering, Kyoto University, Kyoto, Japan.

2. Definition and properties of $\hat{\mathcal{B}}$

Consider the space of points (x, s) with the metric

$$(x, x) - s^2 = (x^0)^2 - x^2 - s^2.$$

For any time like segment T in (x, s) space, open at both ends, $K(T)$ is defined as the open double light cone in (x, s) space spanned by T . For any sphere S on a space-like hyperplane in (x, s) space, open at its surface, $K(S)$ is defined as the open double light cone with the base S . For example, if

$$T = \{(x, s); |x^0| < t, x = 0, s = 0\},$$

then

$$K(T) = \{(x, s); |x^0| + (x^2 + s^2)^{1/2} < t\}.$$

If

$$S = \{(x, s); x^2 + s^2 < r^2, x^0 = 0\},$$

then

$$K(S) = \{(x, s); |x^0| + (x^2 + s^2)^{1/2} < r\}.$$

For any set B , $K(B)$ is the smallest set containing B such that $T \subset K(B)$ implies $K(T) \subset K(B)$ and $S \subset K(B)$ implies $K(S) \subset K(B)$, i.e. $K(B)$ is the intersection of all sets satisfying this condition. For any set \mathcal{B} in the Minkowski space of x , we define $\varphi \mathcal{B} \equiv \{(x, 0); x \in \mathcal{B}\}$ and for any set B in (x, s) space, we define $\varphi^{-1} B \equiv \{x; (x, 0) \in B\}$. Finally, for any set \mathcal{B} in x space

$$\hat{\mathcal{B}} = \varphi^{-1} K(\varphi \mathcal{B}). \quad (2.1)$$

Lemma 1. If \mathcal{B} is an open set in x space, then $K(\varphi \mathcal{B})$ is an open set in (x, s) space.

Proof: Let $K_\alpha(\varphi \mathcal{B})$ be a set in (x, s) space, defined inductively for any ordinal number α by

$$K_1(\varphi \mathcal{B}) = \varphi \mathcal{B}$$

$$K_\alpha(\varphi \mathcal{B}) = \bigcup_{\alpha' > \alpha} \left\{ \left[\bigcup_{T \subset K_{\alpha'}(\varphi \mathcal{B})} K(T) \right] \cup \left[\bigcup_{S \subset K_{\alpha'}(\varphi \mathcal{B})} K(S) \right] \right\} \quad (2.2)$$

where T and S are as described before. For $\alpha > 1$, $K_\alpha(\varphi \mathcal{B})$ is open, because it is a union of open sets. Take any point $(x, s) \in K_\alpha(\varphi \mathcal{B})$. Since $K_\alpha(\varphi \mathcal{B})$ is open for $\alpha > 1$, and $K_1(\varphi \mathcal{B})$ is a relatively open set on the $s = 0$ plane, there always exists $T \subset K_\alpha(\varphi \mathcal{B})$ such that $(x, s) \in T$. Since $T \subset K(T)$, we have $K_{\alpha'}(\varphi \mathcal{B}) \subset K_\alpha(\varphi \mathcal{B})$ if $\alpha' \leq \alpha$. Furthermore if $K_{\alpha'}(\varphi \mathcal{B}) = K_\alpha(\varphi \mathcal{B})$ for some $\alpha > \alpha'$, then the same is true for any $\alpha > \alpha'$. Hence *) it has the limit $K_\alpha(\varphi \mathcal{B}) \equiv \bigcup_{\alpha' < \alpha} K_{\alpha'}(\varphi \mathcal{B})$. Since $K_0(\varphi \mathcal{B})$ is the same as any $K_\alpha(\varphi \mathcal{B})$ for sufficiently large ordinal number α , $K_0(\varphi \mathcal{B}) \supset K_1(\varphi \mathcal{B}) = \varphi(\mathcal{B})$, $T \subset K_0(\varphi \mathcal{B})$ implies $K(T) \subset K_0(\varphi \mathcal{B})$ and $S \subset K_0(\varphi \mathcal{B})$ implies $K(S) \subset K_0(\varphi \mathcal{B})$. It is also obvious that any set having this property contains any $K_\alpha(\varphi \mathcal{B})$ and hence $K_0(\varphi \mathcal{B}) = K(\varphi \mathcal{B})$. Thus $K(\varphi \mathcal{B})$ is open.

Lemma 2. If \mathcal{B}_n are open sets in x -space, $\mathcal{B}_n \supset \mathcal{B}_{n'}$ for $n > n'$, and $\mathcal{B} = \bigcup_n \mathcal{B}_n$ then $\bigcup_n K(\varphi \mathcal{B}_n) = K(\varphi \mathcal{B})$.

*) It has been pointed out by Dr. RUELLE that $K_\omega(\varphi \mathcal{B})$ is already the limit, namely

$$K(\varphi \mathcal{B}) = \bigcup_{n=1}^{\infty} K_n(\varphi \mathcal{B}).$$

Proof: Let $K_\alpha(\varphi \mathfrak{B})$ be as in the proof of Lemma 1. It is enough to prove $\bigcup_n K_\alpha(\varphi \mathfrak{B}_n) = K_\alpha(\varphi \mathfrak{B})$ assuming $\bigcup_n K_{\alpha'}(\varphi \mathfrak{B}_n) = K_{\alpha'}(\varphi \mathfrak{B})$ for any $\alpha' < \alpha$. $K_{\alpha'}(\varphi \mathfrak{B}) \supset K_{\alpha'}(\varphi \mathfrak{B}_n)$ obviously implies $K_\alpha(\varphi \mathfrak{B}) \supset K_\alpha(\varphi \mathfrak{B}_n)$. Now take any $T \subset K_{\alpha'}(\varphi \mathfrak{B})$. Then there exists a sequence T_μ , $\mu = 1, 2, \dots$ such that $T_\mu \subset T$ for $\mu < \mu'$, $T_\mu \subset T$ and $\bigcup_n K(T_\mu) = K(T)$. Since \bar{T}_μ is compact and is covered by the union of open sets $K_{\alpha'}(\varphi \mathfrak{B}_n)$ and since $K_{\alpha'}(\varphi \mathfrak{B}_n) \supset K_{\alpha'}(\varphi \mathfrak{B}_m)$ for $n > m$, there exists an $n(\mu)$ such that $\bar{T}_\mu \subset K_{\alpha'}(\varphi \mathfrak{B}_{n(\mu)})$. Hence $K(T_\mu) \subset K_\alpha(\varphi \mathfrak{B}_{n(\mu)})$. This implies $K(T) = \bigcup_\mu K(T_\mu) \subset \bigcup_n K_\alpha(\varphi \mathfrak{B}_n)$. In a similar manner, $S \subset K_{\alpha'}(\varphi \mathfrak{B})$ implies $K(S) \subset \bigcup_n K_\alpha(\varphi \mathfrak{B}_n)$. Therefore $K_\alpha(\varphi \mathfrak{B}) \subset \bigcup_n K_\alpha(\varphi \mathfrak{B}_n)$.

It should be noted here that $K(\varphi \mathfrak{B})$ is independent of whether partially infinite T and S are allowed in its definition or not, because of the above Lemma.

We now introduce a further notation \mathfrak{B}_λ for any open set \mathfrak{B} in x -space by

$$\mathfrak{B}_\lambda = \{(x^0, \lambda^{-1} \mathbf{x}); x \in \mathfrak{B}\}, \quad \lambda > 0. \quad (2.3)$$

Lemma 3. For any open set \mathfrak{B} in x -space,

$$\bigcup_{0 < \lambda < 1} (\hat{\mathfrak{B}}_\lambda)_{\lambda^{-1}} \supset \hat{\mathfrak{B}}. \quad (2.4)$$

Proof: We define, for any set K in (x, s) space,

$$\hat{p}(\lambda) K = \{(x^0, \lambda^{-1} \mathbf{x}, \lambda^{-1} s); (x, s) \in K\}$$

and we prove, by induction

$$\bigcup_{0 < \lambda < 1} \hat{p}(\lambda^{-1}) K_\alpha(\varphi \mathfrak{B}) \supset K_\alpha(\varphi \mathfrak{B}).$$

Any finite T can be written as

$$T = \{(x, s); x^\mu = a^\mu + \varrho b^\mu, s = a^4 + \varrho b^4, |\varrho| < 1\}$$

where $b^0 > \sqrt{b^2 + (b^4)^2}$. Using this explicit form, we can easily verify that $\hat{p}(\lambda) T$ is time-like for sufficiently small $1 - \lambda$, and $\bigcup_{0 < \lambda < 1} \hat{p}(\lambda^{-1}) K(\hat{p}(\lambda) T) = K(T)$. (For space-like T , $K(T) = T$). Similarly we have $\bigcup_{0 < \lambda < 1} \hat{p}(\lambda^{-1}) K(\hat{p}(\lambda) S) \supset K(S)$ for

$$S = \{(x, s); x^0 = a^0 + \mathbf{b} \cdot \mathbf{x} + b^4 s; (\mathbf{x} - \mathbf{a})^2 + (s - a^4)^2 < r\}, \quad \mathbf{b}^2 + (b^4)^2 < 1.$$

We now use the definition

$$\bigcup_\lambda \hat{p}(\lambda^{-1}) K_\alpha(\varphi \mathfrak{B}) = \bigcup_\lambda \hat{p}(\lambda^{-1}) \bigcup_{\alpha' < \alpha} \left[\bigcup_{T, S \subset K_{\alpha'}(\varphi \mathfrak{B})} (K(T) \cup K(S)) \right].$$

Since $K_{\alpha'}(\varphi \mathfrak{B}) \supset \hat{p}(\lambda) K_{\alpha'}(\varphi \mathfrak{B})$, $K(\hat{p}(\lambda) T)$ and $K(\hat{p}(\lambda) S)$, for any $T, S \subset K_{\alpha'}(\varphi \mathfrak{B})$, are contained in the last union. Hence

$$\begin{aligned} \bigcup_\lambda \hat{p}(\lambda^{-1}) K_\alpha(\varphi \mathfrak{B}) \\ \supset \bigcup_{\alpha' < \alpha} \bigcup_{T, S \subset K_{\alpha'}(\varphi \mathfrak{B})} \left\{ \bigcup_\lambda [\hat{p}(\lambda^{-1}) K(\hat{p}(\lambda) T) \cup \hat{p}(\lambda^{-1}) K(\hat{p}(\lambda) S)] \right\} = K_\alpha(\varphi \mathfrak{B}). \end{aligned}$$

It is also easy to prove the equality in the formula (2.4) but this is not needed in the following.

3. Proof of the Main Theorem

(a) Uniqueness theorem for solutions of the wave equations.

We quote some classical theorems, which will be used in the proof.

Lemma 4. Let $u(t, \mathbf{y})$ be twice continuously differentiable solution of

$$\frac{\partial^2 u}{\partial t^2} = \sum_{i=1}^n \left(\frac{\partial}{\partial y^i} \right)^2 u.$$

Let G be a closed set on a smooth space-like surface H and $C(G)$ be the set of points causally dependent *) on G . If u and all its first derivatives vanish on G , then $u = 0$ in $C(G)$.

The proof will be found, for example, in reference 5 p.p. 379–380.

Lemma 5. (Asgeirsson) Let $u(\mathbf{y}, \mathbf{z})$ be twice continuously differentiable solution of

$$\sum_{i=1}^n \left(\frac{\partial}{\partial x^i} \right)^2 u = \sum_{i=1}^n \left(\frac{\partial}{\partial y^i} \right)^2 u.$$

Then

$$\int_{(e, e) = 1} \dots \int u(y + r e; z) d\Omega(e) = \int_{(e, e) = 1} \dots \int u(y; z + r e) d\Omega(e)$$

where $d\Omega(e)$ is an invariant measure on the sphere $(e, e) = 1$.

The proof is to be found in reference 5. p.p. 417–419. It is important in our application that the proofs of Lemma 4 and 5 can be carried out with u in a restricted region and the behaviour of u at infinity does not matter.

Lemma 6. Let $u(t, \mathbf{y})$ be an infinitely continuously differentiable solution of

$$\frac{\partial^2 u}{\partial t^2} = \sum_{i=1}^n \left(\frac{\partial}{\partial y^i} \right)^2 u.$$

Let G be a segment of a time like straight line and $C(G)$ be the double light cone spanned by G . If u and all its derivatives vanish on G then $u = 0$ on $C(G)$.

The proof will be found in reference 4, pp. 294–296. (Substitute Lemma 5 into the corresponding statement for tempered distribution there.)

(b) We now present the main part of the proof as two Lemmas.

Lemma 7. Let $\hat{f}(\mathbf{p})$ be a tempered distribution, such that **)

$$\text{Supp. } \hat{f}(\mathbf{p}) \subset \bar{V}_+ \cup \bar{V}_- \cup E$$

where E is a compact set. Furthermore, the Fourier transform

$$f(x) = \int \hat{f}(\mathbf{p}) e^{i(\mathbf{p}, \mathbf{x})} d^4 p$$

vanishes on an open set \mathfrak{B} . Then $f(x)$ vanishes in $\hat{\mathfrak{B}}$.

Proof: Let $h(t) \in \mathcal{S}_{(t)}$ such that $h(t) = 1$ if $t \geq 0$ and $h(t) = 0$ if $t \leq -1$. Let $(e, e) = 1$ and let $\chi(t) \in \mathcal{D}_{(t)}$.

*) Let $\bar{V}_\pm = \{(t, \mathbf{y}); |\mathbf{y}| \leq \pm t\}$. Then $C(G) = C_+ \cup C_-, C_\pm = \{(t, \mathbf{y}); ((t, \mathbf{y}) + \bar{V}_\mp) \cap H \subset G\}$.

**) Supp. is the abbreviation for 'the support of'.

Define

$$F_{\chi e}(x, s) = \int \psi_{\chi e}(x, s; \hat{p}) \hat{f}(\hat{p}) d^4 p$$

$$\psi_{\chi e}(x, s; \hat{p}) = \tilde{\chi}((\hat{p}, e)) h((\hat{p}, \hat{p}) + M) e^{i(\hat{p}, x)} \cos \sqrt{(\hat{p}, \hat{p})} s$$

$$\tilde{\chi}(\alpha) = \int_{-\infty}^{\infty} \chi(t) e^{i\alpha t} dt$$

where M is taken such that $\hat{p} \in E$ implies $(\hat{p}, \hat{p}) \geq -M$. Since $(\hat{p}, \hat{p}) \geq -M$ and $|\hat{p}| \leq k_0$ define a compact set in \hat{p} -space, and since $e^{i(\hat{p}, x)} \cos \sqrt{(\hat{p}, \hat{p})} s$ is holomorphic for (x, s) in a compact set and for $(\hat{p}, \hat{p}) \geq -M$, $\psi_{\chi e}(x, s; \hat{p})$ as well as all its derivatives with respect to x and s belong to $\mathcal{S}_{(\hat{p})}$ and all its derivatives with respect to x and s exist in the topology of $\mathcal{S}_{(\hat{p})}$. Hence $F_{\chi e}$ is an infinitely continuously differentiable function of (x, s) .

It is easy to verify the following equations,

$$\left(\square_x - \left(\frac{\partial}{\partial s} \right)^2 \right) F_{\chi e}(x, s) = 0$$

$$\left(\frac{\partial}{\partial s} \right)^n F_{\chi e}(x, 0) = \begin{cases} 0 & n: \text{odd} \\ \square_x^{n/2} F_{\chi e}(x, 0) & n: \text{even} \end{cases}$$

Furthermore, for any $g \in \mathcal{D}_x$

$$\int g(x) F_{\chi e}(x, 0) dx = \int g_{\chi e}(x) f(x) dx$$

where

$$g_{\chi e}(x) = \int_{-\infty}^{\infty} g(x - e t) \chi(t) dt.$$

Hence, if $\overline{\mathfrak{B}_1 - (\text{supp. } \chi)} \cap \mathfrak{B} \subset \mathfrak{B}$, then

$$\left(\frac{\partial}{\partial s} \right)^n F_{\chi e}(x, 0) = 0 \quad \text{if } x \in \mathfrak{B}_1, \quad n = 0, 1, \dots.$$

By Lemma 4 and Lemma 6

$$F_{\chi e}(x, s) = 0 \quad \text{if } (x, s) \in K(\varphi \mathfrak{B}_1).$$

Hence, if $\mathfrak{B}_2 + (\text{Supp. } \chi) \cap \varphi^{-1} K(\varphi \mathfrak{B}_1)$,

$$f(x) = 0 \quad \text{if } x \in \mathfrak{B}_2.$$

Since the support of χ can be as small as one likes,

$$f(x) = 0 \quad \text{if } x \in \varphi^{-1} K(\varphi \mathfrak{B}).$$

(Here we use Lemma 2.)

Lemma 8. Let $\tilde{f}(\hat{p})$ be in $\mathcal{S}'_{(\hat{p})}$ such that

$$\text{Supp. } \tilde{f}(\hat{p}) \subset (-\hat{p}_a + \bar{V}_+) \cup (\hat{p}_b + \bar{V}_-)$$

where $\hat{p}_a, \hat{p}_b \in V_+$. If

$$f(x) = \int \tilde{f}(\hat{p}) e^{i(\hat{p}, x)} d^4 p$$

vanishes in an open set \mathfrak{B} , then $f(x) = 0$ in $\hat{\mathfrak{B}}$.

Proof: We define

$$\tilde{f}_\lambda(g) = \tilde{f}(g^0, \lambda^{-1}g), \quad f_\lambda(x) = \lambda^3 f(x^0, \lambda x)$$

where $0 < \lambda < 1$. Now $(g, g) \geq 0$ corresponds to $|g^0| \geq \lambda |\lambda^{-1}g|$ and hence $\text{Supp. } \tilde{f}_\lambda(g) \subset \bar{V}_+ \cup \bar{V}_- \cup E$ for some compact E . By Lemma 7 $\tilde{f}_\lambda(x) = 0$ if $x \in (\hat{\mathcal{B}}_\lambda)$. Hence $f(x) = 0$ if $x \in (\hat{\mathcal{B}}_\lambda)_{\lambda^{-1}}$.

By Lemma 3, we have the Lemma 8.

(c) Assumptions on the theory.

We now list those parts of the Wightman axioms which are necessary for our theorem. We assume the existence of the unitary representation $T(a)$ of the translation group. The corresponding spectral measure E is defined by

$$T(a) = \int e^{i(p, a)} dE(p).$$

The support of E is assumed to be in the forward light cone \bar{V}_+ and there exists a unique translationally invariant state Ω . The fields $A_i(x)$ are assumed to be tempered operator valued distributions, defined on a common dense domain D . (The adjoint of each $A_i(x)$, restricted to the domain D , is also to be considered as a field.) D consists of a finite linear combination of vectors of the type $A_1(f_1) \dots A_n(f_n) \Omega$. Fields have the translation property $T(a) A_i(x) T(-a) = A_i(x + a)$ and commute with each other at space-like separation.

It is known⁶⁾ that the vector

$$[A, \dots, A_n](\varphi) \Phi = \int \dots \int A_1(x_1) \dots A_n(x_n) \varphi(x_1 \dots x_n) dx_1 \dots dx_n \Phi$$

can be defined by linearity and continuity from the vector with the product function $\varphi(x_1 \dots x_n) = \varphi_1(x_1) \dots \varphi_n(x_n)$ and that this vector is strongly continuous with the topology of \mathcal{S} for φ .

Now consider the partition of unity $\check{\varphi}_n(p)$, such that each $\check{\varphi}_n(p)$ is in \mathcal{D} and $\sum_{n=1}^{\infty} \check{\varphi}_n(p) = 1$. The convergence shall be such that for each $\check{\varphi} \in \mathcal{S}$, $\sum_{n=1}^{\infty} \check{\varphi}(p) \check{\varphi}_n(p) = \check{\varphi}(p)$ converges in \mathcal{S} .

We define the operator

$$\check{\varphi}_n(P) = \int \check{\varphi}_n(p) dE(p).$$

Then,

$$\check{\varphi}_n(P) [A_1 \dots A_n](\varphi) \Omega = [A_1 \dots A_n](\varphi') \Omega,$$

$$\tilde{\varphi}'(p_1 \dots p_n) = \tilde{\varphi}(p_1 \dots p_n) \check{\varphi}_n(p_1 + \dots + p_n)$$

where $\tilde{\varphi}'$ and $\tilde{\varphi}$ denotes the Fourier transform of φ' and φ .

Hence for any vector Φ in D , and $f \in \mathcal{S}$, we have

$$\sum_{n=1}^{\infty} \varphi_n(P) \Phi = \Phi, \quad (3.1)$$

$$\sum_{n=1}^{\infty} A(f) \varphi_n(P) \Phi = A(f) \Phi \quad (3.2)$$

where the sum converges in the strong topology of Hilbert space vectors.

(d) Main Theorem

Theorem: If \mathfrak{B} is any open set in x -space,

$$R(\mathfrak{B}) = R(\hat{\mathfrak{B}})$$

where $R(\mathfrak{B})$ is defined in the introduction and $\hat{\mathfrak{B}}$ is defined at the beginning of section 2.

Proof: For a bounded operator C , the field A , and vectors $\Psi_1, \Psi_2 \in D$ we define the tempered distribution

$$f(x) = (C \Phi_1, A(x) \Phi_2) - (A(x)^* \Phi_1, C^* \Phi_2).$$

It is enough to prove that if $f(x) = 0$ in $x \in \mathfrak{B}$ for any choice of Ψ_1, Ψ_2 from D , then $f(x) = 0$ for $x \in \hat{\mathfrak{B}}$. By using (3.1) and (3.2), we have

$$f(x) = \sum_{n, m} f_{n, m}(x)$$

$$f_{n, m}(x) = (C \varphi_n(P) \Phi_1, A(x) \varphi_m(P) \Phi_2) - (A(x)^* \varphi_n(P) \Phi_1, C^* \varphi_m(P) \Phi_2).$$

Hence, it is enough to prove that $f_{n, m}(x) = 0$ for $x \in \mathfrak{B}$ implies $f_{n, m}(x) = 0$ for $x \in \hat{\mathfrak{B}}$.

The Fourier transform of $f_{n, m}$ has its support in $(\bar{V}_+ - \text{Supp. } \varphi_m) \cup (\bar{V}_- + \text{Supp. } \varphi_n)$, where $\text{Supp. } \varphi_n$ and $\text{Supp. } \varphi_m$ are compact. Hence there exists sufficiently large p_a and p_b such that the support of the Fourier transform of $f_{n, m}$ is in $(\bar{V}_+ - p_a) \cup (\bar{V}_- + p_b)$. Hence, by Lemma 8, $f_{n, m}(x) = 0$ for $x \in \mathfrak{B}$ implies $f_{n, m}(x) = 0$ for $x \in \hat{\mathfrak{B}}$.

4. Example and Discussion

If \mathfrak{B} is the timelike cylinder $\{x; |x^0| < T, |\mathbf{x}| < \varepsilon\}$, then $\hat{\mathfrak{B}}$ is the double cone spanned by \mathfrak{B} and hence Borchers' theorem is a special case of our main theorem. The following example illustrates the case, where our theorem is stronger than Borchers' theorem.

Example: Consider $\mathfrak{B} = \mathfrak{B}_1 \cup \mathfrak{B}_2$ where

$$\mathfrak{B}_i = \{x; |\mathbf{x} - \mathbf{a}_i| + |x^0| < r_i\}, \quad |\mathbf{a}_1 - \mathbf{a}_2| < r_1 + r_2.$$

$K_2(\varphi \mathfrak{B})$ is obviously given by $K_2(\varphi \mathfrak{B}) = K_2(\varphi \mathfrak{B}_1) \cup K_2(\varphi \mathfrak{B}_2)$ where $K_2(\varphi \mathfrak{B}_i)$ are the double light cone in (x, s) space spanned by two vertices $(r_i, \mathbf{a}_i, 0)$ and $(-r_i, \mathbf{a}_i, 0)$. Then it is easy to see that $K_3(\varphi \mathfrak{B})$ is given by the causally dependent region of the union of two spheres

$$S_i = \{(t, s); x^0 = 0, |\mathbf{x} - \mathbf{a}|^2 + s^2 \leq r_i^2\}$$

on $x^0 = 0$ plane, namely

$$K_3(\varphi \mathfrak{B}) = C_+ (S_1 \cup S_2) \cup C_- (S_1 \cup S_2)$$

$$C_{\pm}(S_1 \cup S_2) = \{(x, s); ((x, s) + \bar{V}_{\mp}) \cap \{x^0 = 0\} \subset S_1 \cup S_2\}.$$

If one writes the nearest distance between a point P in $S_1 \cup S_2$ and the boundary of $S_1 \cup S_2$ on $x^0 = 0$ plane, by $d_s(p)$, then $C_{\pm}(S_1 \cup S_2)$ is bounded by two surfaces $x^0 = d_s(P)$ and $x^0 = -d_s(P)$. No further extension is possible and $K(\varphi \mathfrak{B}) = K_3(\varphi \mathfrak{B})$.

It is rather easy to see that $\hat{\mathfrak{B}} = \varphi^{-1} K(\varphi \mathfrak{B})$ is given by $C(\Sigma_1 \cup \Sigma_2)$ where Σ_i is the sphere with center \mathbf{a}_i and radius r_i on $x^0 = 0$ plane, C is the same as in Lemma 4. $\hat{\mathfrak{B}}$ is bounded by a part of the original double light cones and the surface of the form

$$(x_{\parallel} - \alpha)^2 + (x_{\perp} - \beta)^2 = (x^0)^2$$

where

$$\begin{aligned} x_{\parallel} &= (\mathbf{x} - \mathbf{a}_1) \cdot (\mathbf{a}_2 - \mathbf{a}_1) / d, \quad d = |\mathbf{a}_2 - \mathbf{a}_1|, \quad x_{\perp} = ((\mathbf{x} - \mathbf{a}_1)^2 - x_{\parallel}^2)^{1/2}, \\ \alpha &= (d^2 + r_1^2 - r_2^2) / 2d, \quad \beta = (-\lambda (d^2 r_1^2 r_2^2))^{1/2} / 2d, \\ \lambda(a b c) &= a^2 + b^2 + c^2 - 2a b - 2b c - 2c a. \end{aligned}$$

The example of (1.2) is equivalent, due to the Borchers theorem, to the limiting case of this example as the radii r_i and centers \mathbf{a}_i tends to infinity.

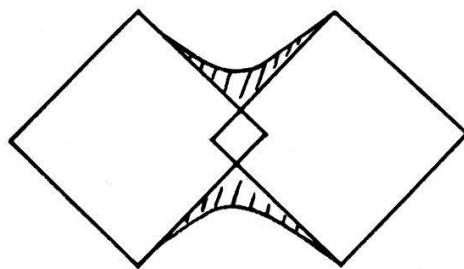


Fig. Example

Our main theorem is not of the most general form. For example if \mathfrak{B} is the union of the set $\{x; |x^0| < |x^1|\}$ and some other open sets, there is a possibility of extending $\hat{\mathfrak{B}}$ farther than in our theorem.

More generally, as can be seen from the proof, if one has any theorem of the type of Lemma 4 and 6 about the vanishing region of the solution of the wave equation, one has the corresponding generalization of our main theorem.

For an example, if l is a snake-like line, connecting two mutually time like points P_1 and P_2 but everywhere spacelike, and \mathfrak{B} is a tube around l , of a small diameter, then it is rather likely that any solution of the wave equation vanishing in \mathfrak{B} might always vanish in the double light cone spanned by P_1 and P_2 . If such a conjecture turns out to be true, then we immediately have the corresponding theorem for $R(\mathfrak{B})$.

The author would like to thank Professors R. JOST and M. FIERZ for their hospitality in Zürich and Dr. D. RUELLE for many helpful suggestions. The author acknowledges the financial support received from the Schweizerischer Nationalfonds (K. A. W.).

References

- ¹⁾ Cf. H. REEH and S. SCHLIEDER, *Über den Zerfall der Feldoperatoralgebra im Falle einer Vakuumentartung* (Preprint), Appendix.
- ²⁾ J. v. NEUMANN, Math. Ann. 102, 370 (1929).
- ³⁾ H. J. BORCHERS, Nuovo Cimento 19, 787 (1961).
- ⁴⁾ For example, see A. S. WIGHTMAN in *Dispersion Relations and Elementary Particles*, Hermann, Paris 1961, and original references therein.
- ⁵⁾ R. COURANT and D. HILBERT, *Methoden der Mathematischen Physik II*, Berlin (1937).
- ⁶⁾ R. JOST and K. HEPP, Helv. Phys. Acta 35, 34 (1962).