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A Generalization of Borchers Theorem

by Huzihiro Araki *)

Eidgendssische Technische Hochschule Ziirich

(28. V1. 62)

Abstract. BORCHERS’ theorem on causal dependence of rings of operators in quantum field
theory is generalized by a new method of proof, based on the uniqueness theorem for hyperbolic
partial differential equations.

1. Introduction

Recently, the rings of operators associated with fields in a restricted region of
space-time have attracted some attention in axiomatic quantum field theory. One
way of defining such an object, in the framework of the Wightman axioms, is to
consider the set R'(B) of all bounded operators C, satisfying

(C¥, A(f) ) = (A(f)* Wy, C* ) (1.1)

where B 1s some open set in space-time, 4 (f) is the smeared-out field, the support of
the test function f(x) is restricted to B, ¥,, and ¥, are arbitrary vectors in the common
dense domain D of all the smeared-out fields and their adjoints and the equation (1.1)
is to be satisfied by C for all such f, ¥; and ¥,. The von Neumann algebra R(%B)
associated with the region B is then defined as the commutant of R'(%B).1)2)

BorcHERS?) has given a theorem of the type R(B) = R(B), where B is a timelike
cylinder, {x; | x°| < T, | x| < &}, and B is «causally dependent » region of B, defined
by 5?3={(t,x);|t| < T,|x|<e+ T —|t]}. The main tool of his proof is the
technique of analytic completion,

In this paper, we give an alternative proof of Borchers’ theorem, based on the
uniqueness theorem for hyperbolic partial differential equation. This technique
enables us to generalize Borchers’ theorem. For example, if

B={x;|20]| < |a'|+e |22+ |23] <8} (1.2)

then R(B) = R(M) where M is the whole Minkowski space.
We discuss the generalized definition and some properties of B for an open set B

in section 2 and then prove the main theorem, R(B) = R(B) in section 3. Some
examples will be discussed in section 4. The main part of the proof in section 3 is
similar to that used in Garding’s proof of the Jost-Lehmann-Dyson representation. )

*) On leave of absence from Department of Nuclear Engineering, Kyoto University, Kyoto,
Japan.
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2. Definition and properties of B

Consider the space of points (x, s) with the metric
(%, x) — s2 = (x0)2 — &% — 52,

For any time like segment 7 in (x, s) space, open at both ends, K(7) is defined as the
open double light cone in (¥, s) space spanned by 7. For any sphere S on a space-like
hyperplane in (x, s) space, open at its surface, K(S) is defined as the open double light
cone with the base S. For example, if

T={(x,49); |2 | <t 0=05=0}

then
K(T)={(»,5); | 2° | + (%% + s?)V2 < ¢}.
1f
S ={(x,5); &% + 52 < 7% 29 =0},
then

K(S) = {(x 3); | 0| + (s + s22 < 7}

For any set B, K(B) is the smallest set containing B such that 7 C K(B) implies
K(T) C K(B) and S C K(B) implies K(S) C K(B), i.e. K(B) is the intersection of all
sets satisfying this condition. For any set 8 in the Minkowski space of x, we define
@ B ={(x,0); x e B} and for any set Bin (x, s) space, wedefine¢p—! B = {x; (¥, 0) € B}.
Finally, for any set B in x space

~

B=¢1KpDB). (2:1)
Lemma 7. 1f B is an open set in x space, then K(p B) is an open set in (x, s) space.

Proof: Let K, (p B) be a set in (x, s) space, defined inductively for any ordinal
number « by

Kyp B) = ¢ B
K,(p®) = u{ [Py KO 0[5 Loy K] (2.2)

where T and S are as described before. For o > 1, K (¢ B) is open, because it is a
union of open sets. Take any point (¥, s) € K (p B). Since K (¢ B) is open for a > 1,
and K;(p B) is a relatively open set on the s = 0 plane, there always exists 7" C
K, (@ B) such that (x,s) € 7. Since 7T C K(7T), we have K, (p B) C K, (p B) if
o' << «. Furthermore if K ,(p B) = K, (p B) for some a > o', then the same is true
for any o > o'. Hence*) it has the limit K (p B) = u K, (p B). Since Ky(p B) is the

same as any K (¢ B) for sufficiently large ordinal number «, Ky(p B) D K,(p B) =
p(B), T C Kylp B) implies K(T) C Ky(p B) and S C Ky(p B) implies K(S) C
Ky(p B). It is also obvious that any set having this property contains any K (¢ B)
and hence Ky(p B) = K(p B). Thus K(p B) is open.

Lemma 2. 1f B, are open sets in x-space, B, D B, for n > »’, and B = . B,
then Y K(p B,) = K(p B).

¥) It has been pointed out by Dr. RueLLE that K,(p B) is already the limit, namely

Kle®B) = U K,@3).
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Proof: Let K, (p B) be as in the proof of Lemma 1. It is enough to prove
U K, (@ B,) = K,(¢ B) assuming U K(p B,) = K (p B) for any o’ < . Koo(¢ B) D
Iﬂ{a'(qo B,) obviously implies Ka(ngv B) D K,(p B,). Now take any T C K (¢ B).
Then there exists a sequence T, u = 1, 2, ... such that T, C T, for u </, Tﬂ cT
and U K(T,) = K(T). Since T, is compact and is covered by the union of open sets
K, (¢ B,) and since K .(¢p B,) D K, (¢ B,,) for n > m, there exists an »n(u) such that
f# CK,(pB,,). Hence K(T,) CK,(p B,,). This implies K(7T) = i) E(L,) C Y

K,(¢B,). In a similar manner, S C K_.(p B) 1mp11es K(S) Cu K, (¢ B,). Therefore

KolpB) C U Kyp B,). !

It should be noted here that K(p B) is independent of whether partially infinite
T and S are allowed in its definition or not, because of the above Lemma.
We now introduce a further notation 8B, for any open set B in x-space by

B, ={(x%1"1x);xeB}, 1>0. (2.3)
Lemma 3. For any open set B in x-space,
) (53;\);(—13%- (24)
0<il<1

Proof: We define, for any set K in (x, s) space,
P(A) K ={(x° A-1&,A"15s); (x, 5) € K}
and we prove, by induction

U pA) K, (p(4) ¢ B) O K, (9 B) -

0<i<1
Any finite T can be written as
T={xs)a=a"+ebs=a'+eb%|o| <1}
where 6% > |/52_;{_;(T4)2. Using this explicit form, we can easily verify that p(4) 7 is
time-like for sufficiently small 1 — 4, and u 15(&—1) K(p(A) T) = K(T). (For space
like T', K(T) = T). Similarly we have 3 ;b( 1 K(p(4) S) D K(S) for

0< i<l
S={x,8);2"=a’+ba+bs; (¥ —a)?2+ (s—a)?2<<r}, b+ (V21
We now use the definition

QB0 Ka(p0) ¢ B) = U p(A) U

o <a [’r, e K;)r(z'?(l)w%)
Since K, (p(4) ¢ B) D p(A) K (p B), K(p(A) T) and K(p(4) S), for any 1,5 C
K, (¢ B), are contained in the last union. Hence

U P K, (p(A) 9 B)

3 U U {
a'<a T,SC Kylp®)

(K(T) u K(S))].

U [p(A~") K(p(A) T)u p(A1) K(p(A) 5)]} = K, (¢ B).

It is also easy to prove the equality in the formula (2.4) but this is not needed in
the following.
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3. Proof of the Main Theorem
(a) Uniqueness theorem for solutions of the wave equations.
We quote some classical theorems, which will be used in the proof.
Lemma 4. Let u(t, y) be twice continuously differentiable solution of
n

0%u
o _Sﬁ&W)

Let G be a closed set on a smooth space-like surface H and C(T) be the set of points
causally dependent*) on G. If # and all its first derivatives vanish on G, then » = 0

in C(G).
The proof will be found, for example, in reference 5 p.p. 379-380.
Lemma 5. (Asgeirsson) Let u(y, 2) be twice continuously differentiable solution of

n

2 (s u =2 (o)
Then [ fuptrenae = [...[uiz+rad

(e,e) =1 le,e)=1

where df2(e) is an invariant measure on the sphere (¢, ¢) = 1.

The proof is to be found in reference 5. p.p. 417-419. It is important in our
application that the proofs of Lemma 4 and 5 can be carried out with # in a restricted
region and the behaviour of # at infinity does not matter.

Lemma 6. Let u(t, y) be an infinitely continuously differentiable solution of
0%u i 0 \2
0% Ez_;: ("dyi) w-

Let G be a segment of a time like straight line and C(G) be the double light cone
spanned by G. If » and all its derivatives vanish on G then # = 0 on C(G).

The proof will be found in reference 4, pp. 294-296. (Substitute Lemma 5 into the
corresponding statement for tempered distribution there.)

(b) We now present the main part of the proof as two Lemmas.

Lemma 7. Let f(p) be a tempered distribution, such that **)

Supp. ;(ﬁ) C T7+ UV_UE

where E is a compact set. Furthermore, the Fourier transform

0 = [ fip) ¥ at p

vanishes on an open set 8. Then f(x) vanishes in B.
Proof: Let h(t) € S, such that A(¢) =1 if £ >0 and A(f) =0 if ¢ << — 1. Let
(e, €) = 1 and let x(f) € D,

*) Let Vo = {(t,3); |¥| = £ ¢}. Then C(G) = C,UC_, Cx = {(t, ); (&L ¥) + V5) N
LB '
**) Supp. is the abbreviation for ‘the support of’.
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Define B e,9) = [ wode s p) fip)
ool 55 8) = 7((p, ) B (B, ) + M) &4 cos ) (p, p) s
=/¢@awﬁ

where M is taken such that p € E implies (p, ) > — M. Since (p, p) > — M and
| (b, €) | <k, define a compact set in p-space, and since ¢!®* cos/(p, ) s is holo-
morphic for (¥, s) in a compact set and for (p, p) > — M, y,, (, s; p) as well as all
its derivatives with respect to x and s belong to 4}, and all its derivatives with
respect to x and s exist in the topology of .%},,. Hence F,, is an infinitely continuously
differentiable function of (, s).

It is easy to verify the following equations,

(Dx s (;S)z) F, (x,5) =0

. 0 - 0dd
(52) el 0) = o

O3 F, (x,0) n:even,

Furthermore, for any g € <@(x)

[ 6 E,,(x, 0) dx = [ g,,(x) fx) dx

a o
where o2

axﬂzjéw—enﬂnﬁ.

- 00

Hence, if B; — (supp. x) ¢ C B, then

LOYF( 0)=0 if xeB, n=0,1, ...

os | Lue
By Lemma 4 and Lemma 6
E, (x,5) =0 if (x,5)e K(pB,).
Hence, if By + (Supp. y) ¢ C o1 K(p B,),
fix) =0 if xeB,.
Since the support of ¥ can be as small as one likes,
flx) =0 if xep~ 1 K(pB).

(Here we use Lemma 2.)
Lemma 8. Let f(p) be in ./}, such that

Supp. f( ) C (= o+ V) U (B, + V1)
where p,, p,e V, . If ff ¢ Ja p

vanishes in an open set B, then f(x) = 0 in
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Proof: We define

falg) = 1(g% A~1 g), falx) = 231 (2%, A %)
where 0 << 4 < 1. Now (g, g) > 0 corresponds to |g°| > 4| A 1g| and hence Supp.
fale) C VLU V_ U E for some compact E. By Lemma 7 f,(x) = 0 if x € (B,). Hence
flx) = 0if x € (By)a-1-
By Lemma 3, we have the Lemma 8.
(c) Assumptions on the theory.
We now list those parts of the Wightman axioms which are necessary for our

theorem. We assume the existence of the unitary representation 7'(a) of the translation
group. The corresponding spectral measure E is defined by

T(a) = f ¢, GE () .

The support of E is assumed to be in the forward light cone V, and there exists a
unique translationally invariant state £2. The fields 4,(x) are assumed to be tempered
operator valued distributions, defined on a common dense domain D. (The adjoint of
each 4,(x), restricted to the domain D, is also to be considered as a field.) D consists
of a finite linear combination of vectors of the type 4,(f;)...4,(f,) £2. Fields have the
translation property 7'(a) 4,(x) T(— a) = A, (¥ + a) and commute with each other at
space-like separation.
It is known®) that the vector

[A,...A,,](<p)@=f...fA1(x1) A () @ (% .. k) dy ... A, D

can be defined by linearity and continuity from the vector with the product function
P(xy...%,) = @i(xq)...¢,(x,) and that this vector is strongly continuous with the
topology of ¢ for ¢.

Now consider the partition of unity @, (p), such that each ¢, (p) is in & and

~

Y @,(p) = 1. The convergence shall be such that for each ¢ € & 3 ¢(p) ¢.(p) = ¢(p)
n=1 n=1

converges in &
We define the operator

#(P) = [ 7ult) AE(p).
GulP) [y ... 4,] () =[4,... 4,1 (@) Q,
Qb1 D) = @b1 - 1) Pu (1 + oo+ D))

where ¢’ and ¢ denotes the Fourier transform of ¢’ and g.
Hence for any vector @ in D, and f e & we have

Then,

é:j%(P) b =, (3.1)

e

Af) g (P) P = A(f) @ (3.2)

-

"=

where the sum converges in the strong topology of Hilbert space vectors.
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(d) Main Theorem

Theorem: 1f B is any open set in x-space,

R(B) = R(B)
where R(B) is defined in the introduction and B is defined at the beginning of section 2.

Proof: For a bounded operator C, the field 4, and vectors ¥, ¥, € D we define the
tempered distribution

f(x) = (C Dy, A(x) D) — (A(%)* Py, C* Dy) .

It is enough to prove that if f(x) = 0 in x € B for any choice of ¥}, ¥, from D, then
f(x) = 0 for x € B. By using (3.1) and (3.2), we have

F) = 2ty ml)
Fam(®) = (C @,(P) Dy, A(%) ¢,,(P) y) — (A(x)* @, (P) Dy, C* @, (P) Dy).

Hence, it is enough to prove that f,,(x) = O for x € B implies f,,,(x) = 0 for x € B.

The Fourier transform of f,, has its support in (V. — Supp.¢,)U (V- +
Supp. ¢,), where Supp. ¢, and Supp. ¢,, are compact. Hence there exists sufficiently

large p, and p, such that the support of the Fourier transform of f,,, is in (f/l,_ — pa) U
(V_ + p,). Hence, by Lemma 8, f,,,(x) = 0 for ¥ € B implies f, ,,(x) = 0 for x € B.

4. Example and Discussion

If B is the timelike cylinder {x; | x* | < T, | & | < &}, then B is the double cone
spanned by B and hence Borchers’ theorem is a special case of our main theorem.
The following example illustrates the case, where our theorem is stronger than
Borchers’ theorem. ‘

Example: Consider B = B, U B, where
B, ={x |#—a [+ |20 <7},

K,y(p B) is obviously given by Ky(p B) = Ky(p B,) U K,(p B,) where K,(p B;) are
the double light cone in (x, s) space spanned by two vertices (7;, a;, 0) and (— 7;, a;, 0).
Then it is easy to see that K;(p B) is given by the causally dependent region of the
union of two spheres

a, —a, | <r +7,.

S;={({ts);2°=0,|%—al|?+s*<r?}
on x? = 0 plane, namely
Ky B) = C, (S5;U Sp) UC_(S,uU Sy)
Co(S1U Sa) = {(x,5); (%, 5) + Vo) 0 {x® =0} C S; U Sy} .

If one writes the nearest distance between a point P in S; U S, and the boundary
of S;U S, on 2% = 0 plane, by d,(p), then C_(S; U S,) is bounded by two surfaces
%% = d (P) and x® = — d (P). No further extension is possible and K(p B) = K;(p B).
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It is rather easy to see that B = ¢~ 1 K(p B) is given by C (2} U 2,) where X is the
sphere with center @; and radius »; on x° = 0 plane, C is the same as in Lemma 4.
B is bounded by a part of the original double light cones and the surface of the form

(7 — )2+ (%, — B)2= (x9)?
where

X = (¥—ay) (@ —ay)[d, d=|a,—a]| xl:((x_al)Z_xﬁ)lfz,
= (d®+ri—13)/2d, P=(—A(d%r}r}))"?|24,
AMabe)=a2+02+c2—2ab—-2bc—2ca.

The example of (1.2) is equivalent, due to the Borchers theorem, to the limiting
case of this example as the radii 7, and centers a, tends to infinity.

Fig. Example

Our main theorem is not of the most general form. For example if B is the union
of the set {x; | % | < | x! | } and some other open sets, thereis a possibility of extending
B farther than in our theorem.

More generally, as can be seen from the proof, if one has any theorem of the type
of Lemma 4 and 6 about the vanishing region of the solution of the wave equation,
one has the corresponding generalization of our main theorem.

For an example, if / is a snake-like line, connecting two mutually time like points
P, and P, but everywhere spacelike, and B is a tube around /, of a small diameter,
then it is rather likely that any solution of the wave equation vanishing in B might
always vanish in the double light cone spanned by P; and P,. If such a conjecture
turns out to be true, then we immediately have the corresponding theorem for R(B).

The author would like to thank Professors R. JosT and M. FIERz for their hospitality
in Ziirich and Dr. D. RUELLE for many helpful suggestions. The author acknowledges
the financial support received from the Schweizerischer Nationalfonds (K.A.W.).
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