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Zur Definition der retardierten und zeitgeordneten Produkte

von O. Steinmann*)
Seminar für theoretische Physik der ETH, Zürich

(15. VI. 62)

Summary. The product of a Wightman function < A (x0) A (xn) >0 with step-functions in
the difference-variables (xi — xA can be defined in such a way that the well-known retarded and
time-ordered functions become Lorentz invariant distributions. Except for the two-point-case
(n 1) the proof is given only for two-dimensional space-time. The definition is unique up to
terms with support in the points xi x-, i ^ j.

1. Einleitung

In der sog. axiomatischen Feldtheorie spielen die bekannten retardierten und
zeitgeordneten Produkte1) von Feldoperatoren sowie allgemeinere Bildungen ähnlicher
Art2) eine grosse Rolle. Speziell interessiert man sich für die Vakuumerwartungswerte
(im folgenden VEW genannt) solcher Produkte. Diese sind immer definiert als Summen

von mit Sprungfunktionen multiplizierten Wightman-Funktionen3). Nun sind
bekanntlich die Wightman-« Funktionen »in Wirklichkeit Distributionen, das Produkt
mit einer Sprungfunktion ist also gar nicht definiert. In der vorliegenden Arbeit soll
gezeigt werden, dass zumindest im zweidimensionalen Fall eine mathematisch exakte
Definition der betrachteten Ausdrücke als Distributionen derart möglich ist, dass sie

alle gewünschten (im folgenden näher spezifizierten) Eigenschaften aufweisen. Die
Definition ist nicht eindeutig möglich ; Unbestimmtheiten treten in den Punkten auf,
in denen zwei oder mehrere der Argumente zusammenfallen.

Wir betrachten wie üblich den Fall eines einzigen Skalarfeldes A(x), das den

Wightmanschen Axiomen3) genügt. Von spezieller Bedeutung werden für uns dabei
die Voraussetzungen der Lorentz-Invarianz (genauer : Invarianz gegen die inhomogene
eigentliche Lorentz-Gruppe) und der Lokalität sein, während die Positivität der
Energie keine Rolle spielen wird.

Nach D. Ruelle4) führen wir formal folgende, als Zyklen bezeichnete Operatoren
ein:

Z(x0,...,xk)= X (-!)"?nO[óiP(xP.-xP._i)]A(xPo)...A(xPk). (1)
pe@7-i '-1

Dabei ist
I 0 für x° < 0

1 TT tÖ(*H 1 für *o > o, ^=±1' ^-/T«5»

*) Gegenwärtige Adresse: Institute for Advanced Study, Princeton, New Jersey, USA.
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Für zwei Permutationen P, P', die sich nur durch die Vertauschung zweier benachbarter

Variablen Xp. ,,Xp. unterscheiden, soll al al, für alle i A= j gelten. Unter
dieser Bedingung ist Z formal lorentzkovariant.

Wir interessieren uns für die VEW von Produkten von Zyklen zur totalen
Variablenzahl n + 1 :

z(x0, ...,*„) <Z1(x0,..., xk) Z2 (xk+1,..., xk) Zh (xh +v..., x„) >0. (2)
k — 1

Die Menge aller z dieser Form bezeichnen wir mit 3„- 3n enthält speziell die retardierte
Funktion r(x0,..., x„) und die zeitgeordnete Funktion t(x0,..., xn). Unser Ziel ist es,
der vorerst rein formalen Definition (1), (2) eine exakte Bedeutung zu geben.

Die «Funktionen» z(xt) haben formal folgende Eigenschaften, die bei der exakten
Definition erhalten bleiben sollen :

a) Lorentz-Invarianz

z ist invariant gegen Translationen, also nur abhängig von den Variablen |;
xi_1 — xjt i l,...,n. Ferner ist z invariant gegen die eigentliche homogene Lorentz-
Gruppe L{. Sei AßV der Differentialoperator

X- EAU X, - fr jpr ± ei-f-, ß < v, (3)
I-1 ,J S,- Cl s,-

wobei das obere Vorzeichen gilt, falls fi 0 ist, das untere, falls // > 0. Invarianz

gegen L\ ist äquivalent zu der Bedingung

AßV z 0 für alle 0 < /u < v < 3. (4)

Im zweidimensionalen Fall tritt nur A01 auf, das wir einfach mit A bezeichnen werden.
Distributionentheoretisch bedeutet (4), dass die (temperierte) Distribution

z(x0, ¦¦., xn) auf dem Raum U < S der Testfunktionen u(Çlt ..-An) der Form

u(^) XAltvxpßA^,...,^n), %ve& (5)

ß<r

verschwinden muss. Verwenden wir für die Distributionen die Skalarprodukt-
Schreibweise, so heisst unsere Bedingung symbolisch :

(z\ VC) 0. (6)

b) Trägerbedingungen

Jedes z weist formal einen Träger Tz auf, der natürlich lorentzinvariant ist. Zum

Beispiel ist TT der ganze Raum, Tr die Menge (x0 — x,) e V+ für alle i. (V+ ist der

offene, V,u der abgeschlossene Vorkegel.) Wir definieren:

r; CX- (7)
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das heisst T'z ist die abgeschlossene Hülle der Komplementärmenge von Tz. Den
Unterraum von S der Testfunktionen mit Träger in T'z nennen wir Xz. Bedingung b)
lautet dann

(z 1 Xz) 0. (8)

c) Symmetrien, Identitäten

Einzelne z sind invariant gegen gewisse Permutationen der Argumente xt, z. B. t
gegen die volle Permutationsgruppe, r gegen beliebige Permutationen der Argumente
xv..., x„. Ferner bestehen innerhalb 3„ lineare Abhängigkeiten. Zum Beispiel müssen
im Fall n 1 die Identitäten

a(x0, xx) — r(xv x0) W(x0, %) — W(xv x0) — r(x0, xA,,

r{x0, Xj) r(x0, Xj) + W(xv x0), (9)

r(x0, xA, r(x0, xt) + W(x0, xt)

etc., gelten. Dabei bedeutet a die avancierte, r die antizeitgeordnete und W die
gewöhnliche Wightmansche Funktion.

Die erwähnten Symmetrien schreiben wir ebenfalls in der Form linearer Identitäten,

zum Beispiel
t(xg, xx) T(xlt x0),

und verlangen, dass die zu leistende Definition der z alle diese Identitäten erfüllt.
Das einzuschlagende Verfahren soll an einem eindimensionalen Beispiel kurz

erläutert werden: Sei T(x) eine temperierte Distribution. (Die Voraussetzung der
Temperiertheit ist in diesem Beispiel unwesentlich, da eine beliebige Distribution
immer als Summe einer temperierten und einer in einer Umgebung des kritischen
Punktes x 0 verschwindenden Distribution dargestellt werden kann.) Wir suchen
eine temperierte Distribution 8(x) T(x), das heisst eine Distribution mit der Eigenschaft

(6(x) T(x) | cp(x) 0, falls cp(x) r 0 in x > 0,

(0(x) T(x) | cp(x)) (T(x) | cp(x)), falls cp(x) 0 in x < 0.

Wir benützen die Tatsache, dass T global von einer endlichen Ordnung ist5), das
heisst T ist ein stetiges lineares Funktional auf dem Funktionenraum <3a-a'> bestehend
aus den N mal stetig differentiierbaren Funktionen cp(x), für die

pjx) \x\k 4"^- n < N, k < K

auf der ganzen x-Achse beschränkt ist. Die Topologie in SNK wird durch die Semi-
normen

Pnk ^ SUp Pnk(x)
x

festgelegt. Es handelt sich um endlich viele Seminormen, &NK ist also ein Banachraum
bezüglich der Norm6)

P sup pnk.
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Wir betrachten den Unterraum &%K C <Snk der Testfunktionen, die in x 0 mit
allen Ableitungen bis zur Ordnung 7Y verschwinden. Mit tp(x) gehört auch 6(x) cp(x) zu
3°-if, auf G°VK- ist somit OT durch

(er | cp) (T | Bip)

eindeutig definiert. Da die Abbildung cp ^ Bcp von &NK in sich stetig ist, ist das so

definierte lineare Funktional 6T auf $°WK stetig und kann deshalb zu einem auf ganz
(BNk definierten stetigen linearen Funktional erweitert werden7). Diese Erweiterung
ist nicht eindeutig, sondern enthält einen unbestimmten Summanden der Form

ECnà(Ax)-
n 0

In unserem Beispiel kann die gesuchte Erweiterung durch folgendes Verfahren
explizit konstruiert werden :

Sei cp e (5NK. Wir setzen cpn cpM(x) \x_0 und führen beliebige Funktionen yn(x) e <ZNK

mit der Eigenschaft
dm v" Yn. _ s

~

dxm *_o "'"
ein. Dann liegt

Cp'(x) =Cp(x) - E fnïn
N

in &NK. Geben wir den unbestimmten Ausdrücken (6T \y„) willkürlich die Werte cn,

so können wir definieren

(BT\cp) (QT\cp')+XCn<Pn-

Das ist eine Distribution mit den gewünschten Eigenschaften.
Das so definierte OT sollte nicht als Produkt zweier Distributionen aufgefasst

werden, da nicht alle bei einem Produkt normalerweise bestehenden Eigenschaften
vorhanden sind. Zum Beispiel kann BT nicht nach der Produktregel differenziert
werden. Ferner gilt für eine Distribution T mit Träger in x > 0 die Beziehung
OT Tim allgemeinen nicht, wie man am Beispiel T ô(x) sehen kann. Ist schliesslich

T im Intervall x > 0 eine positive Distribution (das heisst ist (t/ç>) > 0 für alle

nicht-negativen cp mit Träger in x > 0), so braucht BT durchaus nicht positiv zu sein

(Beispiel: T P ljx).
Nach diesem Vorbild werden wir im folgenden die Distributionen z e 3„

konstruieren, wobei wir immer die Nebenbedingungen a)-c) im Auge zu behalten haben
werden. Wir benützen wieder die Tatsache, dass die Wightman-Funktion W(ÇV ¦••,!„)
als temperierte Distribution als lineares stetige3 Funktional auf einem Funktionenraum

&XK folgender Form aufgefasst werden kann :

<ZNK besteht aus den Funktionen cp(^lt.. :, £„), die N mal stetig differenziert werden
können und für die die Ausdrücke

Pm(ti)=n\t<\hi\D<Pl k {k!},£ki<K (10)
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im ganzen Raum beschränkt sind und im oo verschwinden. Dabei ist D ein beliebiger
Differentialoperator der Form

i, V £v. > i, V

Die Topologie in S.ya- wird durch die Seminormen

Puh SUP Puh (£i) (H)

definiert. Es handelt sich wieder um ein endliches System von Seminormen, S^^-ist
also wieder ein Banachraum. Wir werden im folgenden die einfachere Bezeichnung

S Sjv.r: verwenden. W ist ein Element des Dualraums S*.
Wir erwarten zunächst, dass Schwierigkeiten in den Punkten auftreten, in denen

zwei O-Komponenten x° zusammenfallen. Im § 2) werden wir jedoch zeigen, dass auf

Grund der Lokalitätsvoraussetzung die Distribution z auf einem Unterraum S°A<3
eindeutig festgelegt ist, der wie folgt charakterisiert werden kann : Nach Gleichung (2)

ist z der VEW eines Produkts von Zyklen Z'.. Wir nennen einen Punkt (x0,..., xn)

^-kritisch, wenn zwei der im selben Faktor Z; auftretenden Argumente x{ zusammenfallen

(das heisst mit allen vier Komponenten). £ °z besteht dann aus den Testfunktionen

e S, die in allen 2-kritischen Punkten mit allen Ableitungen (das soll hier und im
folgenden immer bedeuten : mit allen Ableitungen bis zur Ordnung N) verschwinden.

Betrachten wir jetzt einen Raum <Z%>K', N' ~yN,K'y K, den wir analog zu (11)
mit einer Topologie versehen, sowie den entsprechenden Unterraum SVrtv Sjv'Xst m

S dicht, ebenso &N>K>Z in S°. Die Überlegungendes §2können sofort auf diesen Fall
übertragen werden, das heisst z ist auf &N-K-Z als lineares stetiges Funktional definiert.

Sei Ujv'x' der Raum der Funktionen der Form (5), wobei die Bedingung xpßV e S
durch xpßv e <ZN'K', u e Sjvx' ersetzt ist. Auf Grund der Bedingung a) muss z auf UN'K'
verschwinden. Dadurch ist z auf dem durch SVir* und Ujv'ìt aufgespannten Raum
&%'k'z + Hjv'x' als lineares Funktional eindeutig definiert. In § 3 werden wir zeigen,
dass dieses Funktional für genügend grosses N', K' in der Topologie des S^'x' stetig
ist. Wir werden den betreffenden Raum in Zukunft einfach mit S bezeichnen. (Der
Schwartzsche Raum S wird in unseren Betrachtungen nie auftreten, so dass keine
Verwechslungen zu befürchten sind.) Wir werden diesen Stetigkeitsbeweis nur im
zweidimensionalen Fall geben, ein Beweis für den physikalisch interessanten vier-
dimensionalen Fall ist noch ausstehend.

In § 4 werden wir zeigen, dass die durch Bedingung b) gegebene Erweiterung von z

auf £° + H + %z immer noch stetig ist. z lässt sich somit zu einem stetigen linearen
Funktional auf ganz S, also zu einer temperierten Distribution, erweitern7). Diese

Erweiterung ist nur bestimmt bis auf eine Distribution mit Träger in den ^-kritischen
Punkten. In § 5 wird bewiesen, dass diese unbestimmten Terme so gewählt werden
können, dass die in c) geforderten Identitäten erfüllt sind. Gewisse Unbestimmtheiten
bleiben dabei immer noch bestehen.

In § 6 schliesslich werden wir den Spezialfall der Zwei-Punkt-Funktion
untersuchen, in dem eine explizitere Behandlungsweise als im allgemeinen Fall möglich ist.
Auch lässt sich dieser Fall leicht im Vierdimensionalen behandeln.
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2. Definition von z auf Sz

Sei S° der in § 1 definierte Unterraum von S. Wir wollen zeigen, dass z auf £>°

eindeutig definiert ist und dort lorentzinvariant ist. Einfachheitshalber betrachten wir
nur den Fall des VEW eines Zyklus (das heisst h 1 in Gleichung 2). Die
Verallgemeinerung auf beliebige h ist trivial. <3° ist dann der Raum <3° der Testfunktionen e S,
die mit allen Ableitungen verschwinden, falls zwei x{ zusammenfallen.

Wir werden den Beweis in zwei Schritten führen, indem wir z zuerst auf kleineren

Unterräumen & < S° definieren und dann diese Definition zu einer Definition auf S°
erweitern.

Sei a eine positive Zahl zwischen 0 und 1: 0 < a < 1, Seien M1, M2, M3 die durch

£e

M1

M2 falls

1° > a | £ |

Ì° < - a | |
I f° I < « I §

(12)

definierten Mengen. Sei A {<xö} eine Zuordnung einer Zahl ocy 1, 2, 3 zu jeder
Differenz #y %; — #. zweier Argumente. Wir definieren

MA={(x0,..., XijCM«,, (13)

&A sei der Raum der Testfunktionen mit Träger in MA.
Wir betrachten eine der Mengen MA. Sei P eine beliebige Permutation (xl0,..., #,-J

der Argumente (#„,..., xn). Wir bezeichnen mit yP die Menge aller Permutationen von
(x0,..., xn), die aus P durch Vertauschungen benachbarter Elemente mit Differenz in
M3 hervorgehen. Es gilt:

Lemma 1

Die Funktion

s= E XiX/T^Xx-xJ^ E (14)
Qiy, <?e7.

istinMA konstant. (Die auftretendenGrössen haben dieselbe Bedeutung wie in Gleichung 1.)
Sei nämlich diese Behauptung nicht erfüllt, das heisst es existieren zwei Punkte

X1, X2 in MA, in denen S verschiedene Werte annimmt. Wir nehmen an, dass in X'
alle xf voneinander verschieden sind. Nur in solchen Punkten ist ja vorläufig S

überhaupt definiert. (Auf Grund des zu beweisenden Lemmas können wir
nachträglich S durch stetige Fortsetzung auch in den Ausnahmepunkten definieren.)

Da MA zusammenhängend ist, können wir X1 und X2 innerhalb MA durch
eine stetige Bahn X(t), 0 < t < 1, X(0) X1, X(l) X2, verbinden. Speziell können
wir diese Bahn so wählen, dass für kein t mehr als zwei x°(t) (das heisst zwei Null-
Komponenten) zusammenfallen. Sei S(t) S(X(t)). Nach unserer Annahme ist
S(0) 4= S(l). Es gibt also einen 2-Wert t0, in dem S(£) einen Sprung aufweist. In t0 muss
offensichtlich ein *° 0 sein. Betrachten wir ein Mntervall I, das t0 enthält. Nach
unserer Annahme über die Bahn können wir / so klein wählen, dass in /

> x°xij (l, r) 4= (i, j)
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gilt. Der Sprung muss somit in einem Bq erfolgen, in dem xt und Xj benachbart sind.
Aus X(t0) e MA folgt x(j e M3, das heisst mit der kritischen Permutation Q gehört auch
die daraus durch Vertauschung von x{ und Xj hervorgehende Permutation Q' zu yh.
6q, 0q> sind von der Form

BQ c B (o-j (x, - xt)) B (o-2 (x, - Xj)) B (a3 (x} - xr)),

0Q,= ±cB (o-j (x, - Xj)) 8 (± o2(x} - x,)) B (a3 (x, - xr)),

wobei c eine von xt und Xj unabhängige, in I konstante Grösse ist. In / haben x% und
xfj dasselbe Vorzeichen, ebenso x°jr und x%, also ist Bq + BQ> in / konstant, in Widerspruch

zu unserer Annahme. Damit ist das Lemma bewiesen.
Sei cp s <ZA. Wir definieren

iEdQ W(Qx)\cp(x))= (W (Px)\£6Q<p (x)). (15)

rp yp

Dieser Ausdruck ist wohlbestimmt, da nach Lemma 1 [y Bq] cp eine Testfunktion ist.
yp

Die Definition ist sinnvoll wegen der Voraussetzung der Lokalität, gemäss der

(W(Qx) \cp) {W(Px) \cp)

für alle Q eyP und alle cp e QA gilt.
Durch die Definition

Q ~ P, falls Q e yP

werden die Permutationen von (x0,..., xn) in Äquivalenzklassen Av..., As eingeteilt,
was schliesslich ergibt :

(z | cp) 2* (W(PV x) | 2 Oq cp), Pr eAv,cpe <5'A. (16)

,-i
Diese Definition kann durch lineare Fortsetzung sofort auf Summen von

Funktionen aus verschiedenen S^ (zum selben a) ausgedehnt werden, das heisst auf den
Raum S" der Testfunktionen, die mit allen Ableitungen verschwinden, falls für ein xfj
die Beziehung [ x\ \ a\xij\ besteht.

Die Definition von z auf S° ist möglich mit Hilfe des folgenden Lemmas :

Lemma 2

Es existiert eine endliche Anzahl von Unterräumen <SV QA C S° so, dass jede

Testfunktion cp ë S0 in der Form

9? E <Pv ^eS« (17)

geschrieben werden kann, wobei die cpv von cp stetig abhängen, das heisst cpv^-0 in S, falls

cp -> 0 in S.
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Wir beweisen die Darstellung (17) durch explizite Konstruktion der cpv:

Zu jedem Paar a, b von reellen Zahlen mit 0 < a < b < 1 existiert eine Funktion
xlb{§) mit folgenden Eigenschaften :

a) Xab ist überall ausser im Ursprung beliebig oft stetig differenzierbar.

b) lib hängt nur von §°/| § | ab.

c) xlb 1 in g°/ | § | > b, xlb 0 in §°/ 11 | < «. Im Zwischengebiet fällt ^
monoton von 1 auf 0.

Wir definieren
XÎbté) %ìbi-C)i

xlb (S) i- zi» (£) - j& (£)¦

Betrachten wir wieder die Variablen #; und ihre Differenzen #y x{ — Xj. Es gilt

È IJ XlHXij) 1- (18)

'ii 1 » < ;

Wählen wir alt bv 0 < ax < 6X < 1, fest. Nach Gleichung 18 können wir alle

çj e S° in folgender Weise schreiben :

<P(xi) E <Pb(xì)'
(19)

9>B X) i7 Xß4i (xA ¦ <P (*,), B (/?„)¦
»< /

Ç9B liegt in S°, da die Singularitäten von %%ibi im Ursprung durch das Verschwinden
von cp in den kritischen Punkten kompensiert werden. Weiter hängt cpB stetig von cp ab.

Zum Beweis haben wir zu zeigen, dass alle DcpB (D eine beliebige Ableitung der

Ordnung < N) gleichmässig gegen Null streben, falls cp in S gegen Null geht. Die
Multiplikation mit Potenzen von £,- ist offenbar überflüssig, da das Verhalten im
Unendlichen keine Schwierigkeiten bereitet. Sei Dm ein Differentialoperator m-ter
Ordnung. Dann folgt aus Eigenschaft b) der ^-Funktionen eine Abschätzung der Form

i T) v" IP) I <" AlAA-
I m Aalbl \^l ^= i E | m '

Andererseits gelten in jedem beschränkten Bereich B des S° Abschätzungen der Form

\Dmcp\yc(Dm,mij) n\xü\m"
i < i

für alle m{j mit £ mfj <; AT — m. Dabei bedeutet | £ | die euklidische Länge (2J I"*)1'2

des Vektors |. Die c (Dm, mA gehen mit B gegen Null. Aus diesen beiden Abschätzungen

folgt die behauptete Stetigkeit unmittelbar.
Der zu B (3, 3,..., 3) gehörige Summand in (19) liegt in Sx s S'1, die zu ß{j 4= 3,

alle i, j, gehörigen Summanden in Sjs6''. Die übrigen Summanden enthalten
höchstens (" t1) — 1, aber mindestens einen, #3-Faktor. In jedem dieser Summanden

7 H. P. A. 36, 1 (1963)
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nehmen wir bezüglich der in %3-Faktoren auftretenden Variablen x{j eine zu (19)

analoge Zerlegung vor, aber mit Funktionen xlj,, mit b2 < av Wieder liegen die zu
ßy 3 (alle auftretenden i, j) gehörigen Summanden in S3 S'2, die zu ß{j =t= 3 (alle
auftretenden i, j) gehörigen in S4 S"s. Die übrigen Summanden enthalten höchstens

[(" g *) — 2] xlj,.-Faktoren und werden bezüglich der zugehörigen Differenzen weiter
aufgespalten. Man sieht leicht, wie das Verfahren weiter geht und dass es nach

spätestens (" ~ x) Schritten abbricht. Damit ist Lemma 2 bewiesen.

Lemma 2 erlaubt die Definition von z auf S° durch

(* | cp) - Z (z I Vr). ^S». (20)
V

Man sieht leicht ein, dass diese Definition von der speziell gewählten Zerlegung (19)
etc. (das heisst von der Form der Funktionen %va.b^ nicht abhängt.

Es bleibt noch die Invarianz des so definierten z auf S° zu zeigen, das heisst das

Verschwinden auf S° fi U.
Rotationsinvarianz besteht trivialerweise, da das angegebene Konstruktionsverfahren

nur rotationsinvariante Schritte umfasst. Wir haben also nur die Beziehung
A01 z 0 zu verifizieren. Sie gilt sicher in den Punkten, in denen alle xl voneinander
verschieden sind. Die kritischen Punkte sind also von folgender Form : Die Menge der
Variablen *„,..., xn zerfällt in Teilmengen Ta, so dass alle xt im selben Ta dieselbe

O-Komponente aufweisen, während die A- in verschiedenen Tx verschieden sind. Zu
jedem solchen Punkt existiert eine Umgebung U und eine positive Zahl a < 1 so,
dass in U gilt :

in verschiedenen
^ a falls Xf, Xj, j I X liegen,

im selben

Es gibt also ein MA, das U umfasst. Nach (16) und Lemma 1 ist somit z in U eine
Summe von permutierten IF-Distributionen multipliziert mit in U konstanten
Funktionen, also lorentzinvariant.

Ebenso lässt sich das Verschwinden von z auf S° fi 3^ leicht beweisen.

3. Lorentzinvarianz

Die Distribution zeS* ist einerseits gemäss § 2 auf dem Raum S° bekannt,
andererseits nach der Voraussetzung der Lorentz-Invarianz auf U s U\i'K'- Dadurch ist z

auf S? + U Sì definiert :

(z\s + u) (z\s), seS°z, ueU. (21)

Da z auf Sjfilt verschwindet, ist diese Definition von der gewählten Aufspaltung
der Testfunktion epe <B] in s und u unabhängig. Wir werden in diesem Paragraphen
zeigen, dass z für genügend grosses N', K' auf <S] stetig ist. Wir werden nicht
versuchen, optimale Werte für N' und K' zu finden. Der Stetigkeitsbeweis wird nur für
den zweidimensionalen Fall gegeben.
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Die behauptete Stetigkeit folgt unmittelbar aus den Ergebnissen von § 2 und dem
folgendem Theorem :

Theorem

Seien u{ eil, s,e S? (AT/ N + 2, K' K A- 2) zwei Folgen von Testfunktionen mit

lim (ui — st) 0 in S.
i — oo

Dann existiert eine Folge uf g S° fi H mit

lim (u0t — s,) 0 in S.
i —y oo

Dieses Theorem soll jetzt bewiesen werden.
Sei T eine Aufteilung der Variablen x{ in w (1 < m < ») nicht leere Teilmengen

Ma (a l,...,m). Die Ebene x; #,-, wenn xit xjt zum selben Ma gehören, bezeichnen
wir mit E™. Durch eine Permutation P lässt es sich erreichen, dass die Elemente
jedes Ma benachbart sind. Die Differenzvariablen £f #/> — xP. zerfallen dann in
zwei Klassen, nämlich erstens in Differenzen rf (pt 1,..., n — m + 1) von x\ s aus

demselben Ma und zweitens Differenzen £j (v 1,..., m — 1) von x{ aus verschiedenen
Ma, so dass E™ durch die Bedingung rjß=0 für alle pt charakterisiert ist. cp e S°
bedeutet, dass cp auf allen £™ mit allen Ableitungen nach den AI bis zur Ordnung N'
verschwindet. (Wir betrachten der Einfachheit halber wie schon in § 2 den Fall, dass

z der VEW eines Zyklus ist.)
Sei D der Differentialoperator

(22)D
n -j»+i

17
i -1 fj.0 /xl ' <U

d
^1

ó

driTl
P

Sei u e U :

u ¦¦

n

ZA*-
i — X

y (ff).

Dann gilt auf E%:

„? (a Z) u\"l- o 27 (*,
DP 4- ß,WDA)+ATxp

Dabei bedeuten

£>" 77
p' A= p

dy ¦ cff'
fi 0 («'I p0

¦ oßp+1,
/<1

X - nß' # p

av • av
^j'O jj'l fiO

• òfp-1,
pi

n — m + 1

V? Dxp\, r /| 27
AJ-l

A TV

(23)

(24)
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Unter den Voraussetzungen unseres Theorems gilt

lim ufT 0 für alle D und T. (25)
i — 00

Der Limes ist zu verstehen im Sinne der gleichmässigen Konvergenz aller existierenden

Ableitungen (multipliziert mit Polynomen des Grades < K').
Wir beweisen folgende Lemmata :

Lemma 3

Unter der Voraussetzung (25) gehen die Funktionen xpfT (|jf), D von der Ordnung
< N' — 1, bezüglich der durch die Topologie des Sjy-i, jy'-i induzierten Topologie mit
wachsendem i gegen 0.

Das Lemma gilt nicht im Fall n 1 (das heisst für die Zweipunktfunktion), den
wir in § 6 speziell behandeln werden.

Zum Beweis genügt es, den Fall m n zu betrachten, da alle E™ in den E"T
enthalten sind. Wir haben dann einen Vektor rj1 und n — 1 Vektoren ij. Den Index T
werden wir in Zukunft einfachheitshalber weglassen, wenn keine Verwechslungen zu
befürchten sind.

Der Zusammenhang zwischen den xpD und den uD ist durch die Gleichungen (24)
gegeben. Diese Gleichungen wollen wir jetzt nach xpD lösen, wobei wir uD als bekannt
voraussetzen.

Die einzelnen Gleichungen des Systems (24) verknüpfen immer nur xpDs mit D' s

gleicher Ordnung, M a A- ß (a a.ß, ß ßß, da pt nur einen Wert annimmt)
miteinander. Das System zerfällt also in ungekoppelte Teilsysteme zu festen M, und es

genügt, diese Teilsysteme zu diskutieren. Wir betrachten somit im folgenden fest
gewählte M (MAN').

Durch eine Variablentransformation führen wir (24) in charakteristische Form
über:

Durch die Kegel f\ 0 für ein v wird der (|r)-Raum in Teilgebiete zerlegt. Wir
betrachten ein solches Teilgebiet G. Nach Definition sind in G alle H von Null
verschieden, und G enthält mit jedem Punkt die ganze zugehörige Lorentz-Bahn (das
heisst alle Punkte, die aus dem gegebenen Punkt durch eine Transformation aus L\
hervorgehen). Wir definieren in G neue Variablen durch

£ e, ch x, g Qv sh x,.
falls H > 0, falls H < 0. (26)

!„ qv Sh xv il Qv Ch Xy

Gleichung 24 wird damit zu

Z -J? +*xp»»+ßxp'A=uA (27)
-1 X

[Hier ist natürlich : D Ol oß0, D« d^1 óf+1, Dß ò%+1 oß'\ d{ ~\
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Die weitere Substitution

X^yyExr
(28)

ff; Xi - Xi+v i !,-¦-, ii-2
ergibt daraus

d^A + KxpvK + ßxpüp uD. (29)

Das ist nun ein System gewöhnlicher linearer Differentialgleichungen erster Ordnung
bezüglich der Variablen %, wobei man die übrigen Variablen ait Qß als Parameter
aufzufassen hat.

Wir fassen die xpP zu einem (M + l)-dimensionalen Vektor W zusammen, ebenso
die uD zum Vektor U. Gleichung (29) lautet dann

AW=U. (30)

Dabei bedeutet A die Matrix

A

OMO 0

1 0 M-l 0

0 2 0 M-2

0 1

M 0

Sei

0 M 0

0 0 M- 1

'
0 1

00

A+= ¦
"

• A- A -AA.

Dann wird A durch die Ähnlichkeitstransformation

A=e-A-l2 eA^ ¦ A ¦ e~A+e4''2

in die Diagonalform

À

\ ° '

M

übergeführt*).

*) Ich verdanke diese Bemerkung Herrn Prof. H. Araki.

M
M-2

M -4
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Es existiert also ein Fundamentalsystem Wt von Lösungen der homogenen
Gleichung

d cp
AA+AW=0

der Form

¥XZ) X<*¥V (31)

Dabei durchläuft Àt die Eigenwerte M, M — 2,..., — M der Matrix A, während die

Wi0 von x unabhängige Vektoren sind. Wir werden die Wm speziell auch von ait gß

unabhängig wählen. Aus der Form dieser Fundamentallösungen sieht man sofort,
dass die homogene Gleichung keine Lösungen in &n'-i,k'-i hat (wir setzen natürlich

immer N', K' > 2 voraus), das heisst W ist durch (30) eindeutig festgelegt.
Die Wronski-Determinante

W Det 11 W{ 11

ist von x unabhängig und kann auf 1 normiert werden. Sei W{ (%) die Determinante,
die aus W durch Ersetzung der i-ten Kolonne Wi durch U entsteht. Mit der Methode
der Variation der Konstanten erhält man als Lösung von (30) :

^ 2X(Z)ÏXZ) (32)
i

mit

*i (X) j W- (r) dx - J W- (t) dr. (33)

- oo %

Dabei ist die Randbedingung des Verschwindens von ¥ im Unendlichen verwendet
worden. Die Gleichheit der beiden in (33) auftretenden Integrale ist offenbar eine

Bedingung für die Existenz einer Lösung und ist natürlich in unserem Fall erfüllt.
Der Ausdruck (32) ist die Lösung der Gleichungen (24) im betrachteten Gebiet G.

Da die Lösung eindeutig ist und somit mit der vorgegebenen Lösung {xp0} (aus der ja
U nach (24) gewonnen wurde) übereinstimmen muss, ergibt sich die Lösung auf dem
Rande von G durch stetige Fortsetzung von (32).

Zum Beweis der Stetigkeit der durch (32) vermittelten Abbildung U -> W
betrachten wir einen beliebigen der in (32) auftretenden Summanden

xp? f W,(r)dT=-xpf [ W.(r)dr.

Dabei ist xpf e >ix xpf0, wobei die Konstante xpf0 für unsere Zwecke unwesentlich ist.
Wt (t) ist von der Form

IIA (T) <X W', (t),
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wobei W'i die aus den Wj0 - mit Ausnahme von Wia - und U gebildete Determinante
ist, deren r-Abhängigkeit allein von den Elementen uD herrührt :

Wt (t) Z aD u° (T)> an const.
D

Wir haben also Ausdrücke der Form

-MX ^WÏlT.Ot.Qjdr (34)

zu diskutieren, wobei die Integration entweder über das Intervall (— oo, x) oder über
(X, co) zu erstrecken ist. Wir schreiben uD und W als Funktion der charakteristischen
Koordinaten

x |° + ix, y £° - ix :

fl ^p ' */j» J fl ^p b p

uD uD (xß, yß). Durch die Substitution v eT~x geht dann (34) über in

1= j dv vk-i W\ (v xß, v-1 yA). (35)

Die Integration läuft über die Intervalle (Ol) resp. (1, oo).

Liege nun u und damit WJ in einer beschränkten Menge 23 des Raumes S, das

heisst es gelten die Abschätzungen

n\^\""\DW'i\<^' n {%}> \^\ K + yl)112 (36)
p

für alle Ableitungen D bis zur Ordnung N' — M und alle Z np < K'¦ Wir suchen dann
ähnliche Abschätzungen für / (und damit für W).

Wir diskutieren zuerst den Fall D Identität und untersuchen dazu Ausdrücke
der Form

i n\i i"f\11» a iç/« i ii
«5. n\^\n"- e" / dv v*-1 U (v2 xl + v-2 ylA-ty (37)

Sei (in einem beliebigen Punkt (i A die Menge der iß mit x'ß> yß, B die Menge
der iß mit x* < y'ß. Aus (37) folgt die Abschätzung

In <em n\^\ß " I dvv A B • e»' 2 X sß. (38)

Jetzt treffen wir eine Fallunterscheidung:

I.Fall:
E^k-Z% + Z%<0-
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Dann konvergiert
co

Jl= f dvvE^
1

und (38) wird für m nß zu

In<*.]\. (39)

was eine Abschätzung der gewünschten Form ist.

2. Fall: E < 0.

Dann existiert
i

Jl= JdvvE-1
0

und es gilt
InAZnJl- (40)

3. Fall: E 0.

a) Sei mindestens ein | ia | > C, wobei C eine beliebige, aber fest gewählte Zahl
zwischen 0 und 1/« ist. Dann erhalten wir aus (38) mit der Wahl ma na + 1, alle
andern mß nß, die Abschätzung

L<emC-^Jl2. (41)

Dabei tritt J1, resp. J'lm auf, falls |a in ^4 resp. B liegt. Die angegebene Wahl der mß
ist möglich wegen der Bedingung Z np A K'.

b) Seien alle | ia | < C, aber wa 4= 0 für mindestens ein a. Dann wählen wir in (38)

ma na — 1, alle andern mß n„, und erhalten

/„ < £m C • /^ (42)

wobei die Indizes 1,2 den Fällen iae B resp. A entsprechen.

c) Seien alle | |a ] < C und alle w/( 0, also A,- 0. (Dieser Fall kann nur bei
geradem M auftreten.) Der zu A, 0 gehörige Summand in (32) ist

ï'oo /~ K (xß vv yß v-1) Ww /0.

Da alle andern Summanden sowie W selbst in den Punkt | 0 (alle //) stetig
fortsetzbar sind, muss das auch für I0 gelten. Das ist aber nur möglich, falls W'0 (0, 0,...)
0. Diese Bedingung ist also für die Lösbarkeit von (30) notwendig und somit in
unserem Fall erfüllt. Wegen MAN' gilt in 23 die Abschätzung

K(xlt,y,)<e'(Z\xll\A-Z\yfi\)-
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sei s-1 Z X > Z y, 1 T- Dann

S oo

ï 's

i dv f dv
<2e' - ¦+ eX

(43)
s

n s

2 s' A- Bv
1 7 1

Im Fall S~1 < T spaltet man in analoger Weise das Integral f in zwei Teile j und /
o o * r

und erhält damit eine ähnliche Abschätzung.
Der Fall allgemeiner D in (36) lässt sich genau gleich diskutieren. Aus (35) erhält

man nämlich

U„ - I dvv'W (vx^v-iyj,
dl r

(44)

Wp X/ dw^WlJvx^v-A^,)

also Ausdrücke derselben Form wie (35).
Damit ist Lemma 3 bewiesen. Wir bemerken noch, dass für ungerades N' in der

Behauptung von Lemma 3 <Sn'-i %>.A durch <3.v, k' i ersetzt werden kann.

Lemma 4

Sei 3R eine abgeschlossene Menge des R" (n beliebig), deren Rand aus N mal stetig

differenzierbaren Mannigfaltigkeiten zusammengesetzt ist, so dass zwei Konstanten d und a
mit folgender Eigenschaft existieren: Zu zwei Punkten aus 931, deren Abstand d kleiner
als d ist, existiert immer ein sie verbindender Weg in 9JÎ. von der Länge <; a d.

Dann existiert eine Konstante C so, dass jede auf 3JÎ vorgegebene Funktioncpe S.v/f auf
ganz Rn so fortgesetzt werden kann, dass

sup sup pm (x) < C • sup sup pm (x) (45)
»6S» D,k *6 9» D,k

gilt. (Zur Definition von pm siehe § 7.)

Wir betrachten die Umgebung 9JL; von 501, bestehend aus den Punkten, deren
Abstand von 9JÌ kleiner als D ist. Wir setzen cp durch folgendes Verfahren von SR auf
50Î5 fort: Wir geben eine beliebige Richtung im R" vor und betrachten alle dazu
parallelen Geraden. Längs jeder dieser Geraden können wir cp so fortsetzen, dass eine

Beziehung der Form (45) besteht. Falls die Gerade d 50Î in zwei Punkten schneidet,
deren Abstand < 2 d ist, ist die vorausgesetzte Existenz der Konstanten a wesentlich.

Sei nämlich d der Abstand der beiden Durchstosspunkte. Dann ist die Differenz
der Werte einer Ableitung Af-ter Ordnung in diesen Punkten kleiner als a • d • pM + lt
wenn pM+i das Maximum der Ableitungen (M + l)-ter Ordnung auf $ft ist. Diese
Differenz geht also mit d linear gegen Null, was für unsere Konstruktion wesentlich ist.
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Es ist klar, dass man die Fortsetzung längs den einzelnen Geraden so wählen kann,
dass auch die Ableitungen senkrecht zu der vorgegebenen Richtung sich in der
gewünschten Weise verhalten. Die so erhaltene Fortsetzung nennen wir <pd. Wir wählen
eine Funktion y(x), die auf 9JÌ identisch 1 ist (wozu im Falle niedrigerdimensionaler
3dl noch das Verschwinden aller Ableitungen kommt) und die ausserhalb Wl identisch
verschwindet. Die Funktion cp y cpq erfüllt dann die Behauptung des Lemmas.

Jetzt können wir das am Anfang dieses Abschnitts gegebene Theorem beweisen :

Sei

«,. A xp;

eine Folge der im Theorem vorausgesetzten Art. Nach Lemma 3 konvergiert dann xpt

mit allen Ableitungen bis zur Ordnung Ar' — 1 (resp. A", falls N' ungerade ist)
bezüglich der Topologie des SA-'_1|K'_! auf allen E™ gegen Null. Nach Lemma 4 existiert
dann eine Folge xpi — xp°, die auf allen E™ mit xp{ übereinstimmt und die gegen null
konvergiert. Die so konstruierten xp° verschwinden auf allen £™ und konvergieren
gegen xp{ (in S.y-i, k'-i)- Die Folge A\ A xp° ist dann eine Folge mit den in unserem
Theorem postulierten Eigenschaften.

4. Trägereigenschaften

Die im vorangehenden auf SJ S° + U definierte Distribution z kann auf Grund
der im § 1 diskutierten Trägerbedingungen zu einem linearen Funktional auf S^
S' + X. erweitert werden. Wir wollen zeigen, dass diese Erweiterung stetig ist.

Das Verschwinden von z ausserhalb Tz folgt aus der Lokalitätsvoraussetzung. Der
Rand von T. besteht deshalb aus Stücken der Form

(xf — xk)2 0 für gewisse Indexpaare i, k.

Tz erfüllt also die Voraussetzungen des Lemmas 4, ebenso die Vereinigung, resp. der
Durchschnitt von Tz mit den ^-kritischen £™.

Sei t{ G Q] eine Folge von Testfunktionen, die in T, bezüglich der Topologie von S
gegen Null strebt. Dann muss gelten:

lim (z | tf) 0. (46)
i —* oo

Sei tj Uf + sit u{ e 11, s, 6 S". Sei Ez die Menge aller 2-kritischen Em. Nach
unseren Voraussetzungen strebt ut auf Tz fi X in S gegen Null. Auf analoge Weise

wie im vorangehenden Abschnitt können wir eine Folge u°e<B konstruieren, die gegen
0 konvergiert und die auf Tz fi Ez mit u{ übereinstimmt.

s° tf — u0 strebt auf T. bezüglich S gegen null und kann wieder nach Lemma 4

aus T, zu einer auf dem ganzen Raum definierten Folge s\ e S° erweitert werden, die

gegen Null konvergiert. Die Funktion tff tf — u\ — s\ liegt in S* fi T.. Also

lim (z | tf) lim (z | s°)
Xoo i — OO

womit (46) bewiesen ist.
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5. Identitäten, Symmetrien
Wir betrachten die in § 1 definierte Menge 3„ der VEW von Produkten von Zyklen

zur totalen Variablenzahl n. Wir haben gezeigt, dass alle Elemente z dieser Menge als
Distributionen auf gewissen Räumen &z definiert sind und somit zu Distributionen
auf ganz S erweitert werden können7). Diese Erweiterung von z ist eindeutig bis auf
einen auf Sf verschwindenden Summanden Hz, das heisst bis auf eine lorentz-
invariante Distribution Hz mit Träger in Tz fi Ë_.

Wir werden zeigen, dass die Hz so gewählt werden können, dass die in § 1 unter c
geforderten Identitäten (Symmetrien eingeschlossen) erfüllt sind.

D'e betrachteten Identitäten sind von der Form

Zck zk 0, ck const., (47)
k

wobei die Summe über eine Teilmenge von 3„ läuft.
Sei

27««** ° (48)
k

eine Basis der Identitäten, das heisst eine linear unabhängige Menge von Identitäten,
aus denen alle Beziehungen (47) durch Linearkombination folgen. Sei z'k gemäss
§§ 2—4 definiert, das heisst ein speziell ausgewähltes mögliches zk. Dann erfüllt
zk — z'k - Hk alle Bedingungen (47), falls

Z aik Hk Z *ikh A (49)

gilt. Wir haben also zu zeigen, dass diese Gleichungen unter den erwähnten
Nebenbedingungen lösbar sind.

Lemma 5

Die Identität (47) gilt auf dem Raum 9Î /^) Sf, wobei der Durchschnitt über alle in
k

(47) auftretenden zk zu erstrecken ist.
Den Beweis zerlegen wir in verschiedene Schritte :

a) 9t wird aufgespannt durch U und 23 //") 58*, 23* S° + Tk. 23^ ist der Raum
k

der auf Dk Mk n Tk verschwindenden Testfunktionen.
Sei nämlich epe 91. Dann ist auf jedem Dk cp in U, das heisst es ex'sueren Funktionen

uk e VL, die auf Dk mit allen Ableitungen mit cp übereinstimmen. Es ist leicht
einzusehen, dass die verschiedenen uk auf den Schnitten der Dk glatt zusammenpassen,
das heisst man kann eine Funktion ueU wählen, die auf allen Dk mit cp übereinstimmt.
cp — u liegt dann offensichtlich in 23.

Da Gleichung 47 natürlich auf U erfüllt ist, haben wir noch zu zeigen, dass sie
auch auf 23 gilt.

b) 23 wird aufgespannt durch die Räume

8^na»n/1s;, (so)
k £ A k f Â

wobei A eine Teilmenge der in (47) auftretenden Indizes k bedeutet.
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Sei nämlich cp e 23. Sei Tk der Träger von zk. Dann liegt in d Tk cp in 23<j. Wir
k

setzen also in /^) Tk :

cp0 cp, alle andern cpA 0.

Betrachten wir jetzt /^) Tk n C T{, das heisst die Menge der Punkte, die zu allen
k A I

Tk ausser T, gehören. Dort liegt cp in /^) S°. cp0 kann stetig (das heisst nach den Vor-
* 4= )'

Schriften von Lemma 4) innerhalb 23 ^ aus f\ Tk auf die betrachtete Menge fortgesetzt
werden, cpj cp — cp0 liegt dann in dieser Menge in 23,. Die übrigen cpA werden wieder
zu Null definiert.

Weiter betrachten wir f\ Tk n C Tt n C Th. Wir definieren cp0, cp-, cph wieder als
k 4= J, i

stetige Fortsetzungen aus den Gebieten, wo diese Funktionen bereits bekannt sind.

fjh — 9 — <Fj — 1h — "Po liegt dann in 23/7,, da im betrachteten Gebiet cp e /j S". Es ist
klar, wie das Verfahren weitergeht.

c) (47) gilt auf 93,4.

Sei A' die Komplementärmenge zu A bezüglich der in (47) auftretenden Indizes.
Die linke Seite von (47) wird auf 23A zu

L Z°kZk E' Ck Zk-
k A'

Nun ist 23 4 C (~\ S", also ist L nach § 2 auf 23^ eindeutig bestimmt und verschwindet
A'

natürlich, da auf S" die formale Definition von z exakt ist und L auf 23 4 formal
verschwindet.

Damit ist Lemma 5 bewiesen.
Wir beweisen jetzt die Lösbarkeit von (49) durch explizite Konstruktion einer

Lösung Hk.
Nach Lemma 5 verschwinden alle 7",- auf dem Raum 91 fi Sf. Wir können also

kiZn
auf 91, der Nebenbedingung entsprechend, alle Hk zu Null definieren.

Sei 9?-' /j Sf. Auf diesem Raum verschwindet It, falls au 0.
k 4= 1

Wir definieren wieder

(Hk | 9t'") 0 für k 4= /.

Ferner :

(Hj | 91') ±. (If | W), «,-, 4= 0. (51)

Falls Zj in keiner Identität vorkommt, das heisst atj 0 für alle i, kann man natürlich
Hf überhaupt zu Null definieren. Die Definition (51) ist von der speziell gewählten
Identität i unabhängig: Ist a(j + 0 und ahj 4= 0, so gilt

}-(A\W) =-/-(/* |»0- (52)
aii ahi
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Aus den Identitäten i und h folgt nämlich durch Subtraktion die neue Identität

xx "x o.

welche z} nicht enthält und somit nach Lemma 5 auf 9V erfüllt ist.

Weiter betrachten wir 9tjA f\ Sf. Wieder können wir Hk, k 4= /, h, darauf zu Null
* * '• *

definieren. Es bleibt dann ein lineares Gleichungssystem für Hj, Hh übrig, von dem
man analog zum Beweis von Gleichung 52 zeigen kann, dass die linken und die rechten
Seiten die gleichen linearen Abhängigkeiten aufweisen, das heisst, dass das System
lösbar ist. Falls die Lösung eindeutig ist, ist sie nach den Cramerschen Regeln eine
lineare Superposition der /,-, also eine Distribution. Falls die Lösung unterbestimmt
ist, definieren wir Hh als stetige Fortsetzung7) aus 9L, C 9tA7- und erhalten dann Hj
wieder als Distribution. Auf 9t*, RJ stimmen die Resultate natürlich mit den schon
bekannten überein.

Es ist klar, wie das Verfahren auf Wr, Whrs etc. fortgesetzt wird.
Durch (49) werden die Hk nicht eindeutig festgelegt, wie wir im nächsten Abschnitt

am Beispiel der Zweipunktfunktion sehen werden, das heisst die z's sind durch die

gestellten Bedingungen nicht eindeutig definiert.

6. Die Zweipunktfunktion
Für die Zweipunktfunktion versagt das angegebene Verfahren, da Lemma 3 in

diesem Fall in der angegebenen Form nicht gilt. Wir werden diesen wichtigen Spezialfall

deshalb hier noch kurz gesondert betrachten, und zwar gleich im Vierdimensio-
nalen.

Sei

W(i) <A (x) A(y)\, i x-y (53)

die 2-Punkt-Wightman-Funktion, also eine lorentzinvariante Distribution, die in
diesem Fall nicht temperiert zu sein braucht.

Wir wollen die Distributionen

r(i) 0(|) [W(i) - W(- i)},

a(i) 0(~ i) [W(i) - W(- i)],

r(i) 8(i)W(i) + B(-i)W(-i),
r(Ì) B(- i) W(i) + 6(i) W(- i)

definieren.
Nach L. Schwartz8) ist W in einer Umgebung U des Ursprungs von einer

endlichen Ordnung N, das heisst noch definiert auf Testfunktionen, die in U nur N mal
stetig differenzierbar sind. Wir werden den entsprechenden Funktionenraum mit
î)y bezeichnen.
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Die Resultate von § 2 sind unmittelbar anwendbar, das heisst die Distributionen
(54) sind auf dem Raum X>% der in f 0 mit allen Ableitungen bis zur Ordnung N
verschwindenden Testfunktionen definiert und sind dort lorentzinvariant.

Aus Gründen der Lorentzinvarianz müssen die betrachteten Zyklen auf dem
Unterraum Uv C £>.v der Testfunktionen der Form

Ai) EApvWpA^). V,,e©.Y (55)
p < v

verschwinden, sodass r, rete, auf £>°r + VLn definiert ist. Dass diese Definition
konsistent ist, folgt auf ähnliche Weise wie in § 3:

Seien ut e U v> s,- e î>iv zwei Folgen von Testfunktionen mit

lim («,. - Sf) 0. (56)
l -^ oo

Sei

Dann:
v - 0

uD Du\s_0= Z K V^ ± <*, yX)
ft < V r r

(57)

Gleichung 56 wird zu
lim «f 0 für alle D. (58)

j -* 00

Wir untersuchen das lineare algebraische Gleichungssystem

E (xucDÌ ±olvcdv)=ud (59)
p < v f /iv pv

für die Unbekannten cßV. Es hat sicher eine Lösung, zum Beispiel cDßV xpßV. Wir
wählen speziell eine Lösung aus, die von den Inhomogenitäten uD linear abhängt:

C ZA™'«D' (eo)
D'

und die somit mit uü stetig gegen Null geht. (Die Lösung xpßV erfüllt im allgemeinen
diese Bedingung nicht!). Seien yD(f)eSl-v + i Funktionen mit D' yD |f_ 0 ôDjy.
Wir definieren :

v£,(f WpM) - E C rD(£)' u°& E A,v v>% (ö- (6i)
D i* < v

uQi liegt in T>x O #n> und lim (w? - «f) 0.

Damit lässt sich die Stetigkeit auf T>% + Hy sofort beweisen.



Vol. 36, 1963 Zur Definition der retardierten und zeitgeordneten Produkte 111

Die Trägerbedingungen machen keine Schwierigkeiten, da die Träger aller
betrachteten Zyklen den kritischen Punkt | 0 enthalten und somit die entsprechenden
Funktionenräume Zz in D°N enthalten sind.

Wir können r, a, r, r auf T)N durch Fortsetzung aus X>% + Uy definieren, wobei
noch immer ein Summand der Form

E «*?**•<«
k- 0

frei ist. Die ck können zum Beispiel für r(i) beliebig gewählt werden, sind dann aber
in den übrigen Zyklen durch die Identitäten

a(i) W(i) - W(- i) - r(i) - r(- Ì),

r(i) r(i) A- W(- i), (62)

x(i) r(i) A- W(i)
festgelegt.

Die Fortsetzung der betrachteten Distribution (zum Beispiel r(i)) von î)°v + VLN

auf î)v kann übrigens explizit wie folgt durchgeführt werden :

Sei cp e X>s eine Testfunktion. Wir definieren

<Pn °n<P($) Xo

und führen Funktionen r\n(i) e £>.v mit der Eigenschaft

nm T, I h-J 'In \$-0 "mn

ein. Solche Funktionen existieren sicher. Dann spalten wir tp auf gemäss

<p(Ì)=E<P«Vn(C)+<P'(t)-
n-0

Es ist leicht zu zeigen, dass cp' e £>% a- Un, so dass (r \ cp') eindeutig definiert ist.
Ferner ist cpn 0 für alle n, falls cp e î)^ + UN. Wir erhalten also

{r\<p)=Z<Pn(r\il«) + (r\<P')- (63)
n

wobei die Konstanten cn= (r \ rjn) willkürlich sind und speziell zu 0 definiert werden
können. Auch durch diese spezielle Wahl wird r nicht eindeutig festgelegt, da cp' und
damit (r | cp') von der Wahl der Funktionen rjn abhängt. Ändert man rj„ um die Funktion

ô rj„, so ändert sich (63) um cpn (r \ ò r]n), so dass die Unbestimmtheit Z cn n" ^ (f
immer noch bestehen bleibt.

Herrn Prof. R. Jost möchte ich für einige klärende Diskussionen danken.
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