Zeitschrift: Helvetica Physica Acta

Band: 36 (1963)

Heft: I

Artikel: Zur Definition der retardierten und zeitgeordneten Produkte
Autor: Steinmann, O.

DOl: https://doi.org/10.5169/seals-113359

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-113359
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

90

Zur Definition der retardierten und zeitgeordneten Produkte

von O. Steinmann¥)
Seminar fiir theoretische Physik der ETH, Ziirich

(15. VI. 62)

Summary. The product of a Wightman function { A(x).... A(x,) >y with step-functions in
the difference-variables (v;—x;) can be defined in such a way that the well-known retarded and
time-ordered functions become Lorentz invariant distributions. Except for the two-point-case
(n = 1) the proof is given only for two-dimensional space-time. The definition is unique up to
terms with support in the points x; = x;, © # J.

1. Einleitung

In der sog. axiomatischen Feldtheorie spielen die bekannten retardierten und zeit-
geordneten Produktel) von Feldoperatoren sowie allgemeinere Bildungen dhnlicher
Art?) eine grosse Rolle. Speziell interessiert man sich fiir die Vakuumerwartungswerte
(im folgenden VEW genannt) solcher Produkte. Diese sind immer definiert als Sum-
men von mit Sprungfunktionen multiplizierten Wightman-Funktionen?®). Nun sind
bekanntlich die Wightman-«Funktionen» in Wirklichkeit Distributionen, das Produkt
mit einer Sprungfunktion ist also gar nicht definiert. In der vorliegenden Arbeit soll
gezeigt werden, dass zumindest im zweidimensionalen Fall eine mathematisch exakte
Definition der betrachteten Ausdriicke als Distributionen derart moglich ist, dass sie
alle gewiinschten (im folgenden niher spezifizierten) Eigenschaften aufweisen. Die
Definition ist nicht eindeutig méglich ; Unbestimmtheiten treten in den Punkten auf,
in denen zwei oder mehrere der Argumente zusammenfallen.

Wir betrachten wie iiblich den Fall eines einzigen Skalarfeldes A(x), das den
Wightmanschen Axiomen?) geniigt. Von spezieller Bedeutung werden fiir uns dabe1
die Voraussetzungen der Lorentz-Invarianz (genauer: Invarianz gegen die inhomogene
eigentliche Lorentz-Gruppe) und der Lokalitdt sein, wihrend die Positivitit der
Energie keine Rolle spielen wird.

Nach D. RuteLLE?) fithren wir formal folgende, als Zyklen bezeichnete Operatoren
ein:

k
Z(tgonm) = X (=1 [[O006% vp, — %p,_ )] Alwp). . Alwp). (1)
PeS, i=1
Dabei ist
0 fiir 20 < 0 ; ;
B(x)zl{ 1fiir 0 >0, °P° +1, szﬂap'

*) Gegenwirtige Adresse: Institute for Advanced Study, Princeton, New Jersey, USA.
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Fiir zwei Permutationen P, P’, die sich nur durch die Vertauschung zweier benach-
barter Variablen xp__, xp, unterscheiden, soll ¢/, = ol fiir alle ¢ * § gelten. Unter

dieser Bedingung ist Z formal lorentzkovariant.
Wir interessieren uns fiir die VEW von Produkten von Zyklen zur totalen Varia-
blenzahl »# + 1:

2o ee s ) = <Zy(Hgyeees Bp) Zo (Kpy10-0es %) oon 2y (xkh_l_H,..., %) (2)
Die Menge aller z dieser Form bezeichnen wir mit 3,. 3, enthélt speziell die retardierte
Funktion 7(x,,..., x,) und die zeitgeordnete Funktion z(x,,..., %,). Unser Ziel ist es,
der vorerst rein formalen Definition (1), (2) eine exakte Bedeutung zu geben.
Die «Funktionen» z(x;) haben formal folgende Eigenschaften, die bei der exakten
Definition erhalten bleiben sollen:

a) Lorentz-Invarianz

%z ist invariant gegen Translationen, also nur abhingig von den Variablen &; =
%;.1— %;,t=1,..., n. Ferner ist z invariant gegen die eigentliche homogene Lorentz-
Gruppe Ll. Sei A, der Differentialoperator

/I g ) 1 () " ()
uv ZAW’ Aw' = &u 0 & b Ei 0 P m<m, (3)
i=1 ; 2

wobei das obere Vorzeichen gilt, falls 4 = 0 ist, das untere, falls 4> 0. Invarianz
gegen Ll ist dquivalent zu der Bedingung

A, z=0firalle0<p<v<3. (4)

Im zweidimensionalen IFall tritt nur A, auf, das wir einfach mit /1 bezeichnen werden.
Distributionentheoretisch bedeutet (4), dass die (temperierte) Distribution
z(%g, ..., x,) auf dem Raum U < & der Testfunktionen #(&,, ..., &,) der Form

wE) =D Ay, - E) v,ES (5)

n<<v

verschwinden muss. Verwenden wir fiir die Distributionen die Skalarprodukt-
Schreibweise, so heisst unsere Bedingung symbolisch:

(z | W) = 0. (6)

b) Tragerbedingungen

Jedes z weist formal einen Triger T, auf, der natiirlich lorentzinvariant ist. Zum
Beispiel ist 7', der ganze Raum, T, die Menge (x, — %;) € V. fiir alle ¢. (V ist der
offene, V', der abgeschlossene Vorkegel.) Wir definieren:

T, - 0T, )
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das heisst 7', ist die abgeschlossene Hiille der Komplementirmenge von 7,. Den
Unterraum von & der Testfunktionen mit Triger in T, nennen wir ¥,. Bedingung b)

lautet dann
(] T.) = 0. (®)

c) Symmetrien, Identitiaten

Einzelne z sind invariant gegen gewisse Permutationen der Argumente x;, z.B. 7
gegen die volle Permutationsgruppe, » gegen beliebige Permutationen der Argumente
Xy,..., %, Ferner bestehen innerhalb 3, lineare Abhingigkeiten. Zum Beispiel miissen
im Fall » = 1 die Identititen

a(xg, x1) = — 7{xy, x9) = Wixg, 1) — Wi(xy, xp) — 7(%0, 1),

(%o, xl_) = 7(%0, %) + W(xy, %), (9)
T(%, ¥,) = (%, %1) + W(x, %)
etc., gelten. Dabei bedeutet a die avancierte, T die antizeitgeordnete und W die ge-
wohnliche Wightmansche Funktion.
Die erwdhnten Symmetrien schreiben wir ebenfalls in der Form linearer Identi-

taten, zum Beispiel
7(%g, %1) = T(%5, %),

und verlangen, dass die zu leistende Definition der z alle diese Identitdten erfiillt.

Das einzuschlagende Verfahren soll an einem eindimensionalen Beispiel kurz er-
liutert werden: Sei T(x) eine temperierte Distribution. (Die Voraussetzung der
Temperiertheit ist in diesem Beispiel unwesentlich, da eine beliebige Distribution
immer als Summe einer temperierten und einer in einer Umgebung des kritischen
Punktes ¥ = 0 verschwindenden Distribution dargestellt werden kann.) Wir suchen
eine temperierte Distribution 6(x) T'(x), das heisst eine Distribution mit der Eigen-
schaft '

(0(x) T(x) | @(x)) = 0, falls p(x) = 0inx =0,

(0(x) T(x) | (%)) = (T®) | p(x)), falls p(x) = 0 in x < 0.

Wir beniitzen die Tatsache, dass T'global von einer endlichen Ordnung ist?), das
heisst 7 ist ein stetiges lineares Funktional auf dem Funktionenraum &y, bestehend
aus den N mal stetig differentiierbaren Funktionen g(x), fir die

pul) = [ [ %‘f—!. n<N, k<K

auf der ganzen x-Achse beschriankt ist. Die Topologie in Syx wird durch die Semi-
normen

P = SUP P (%)

festgelegt. Es handelt sich um endlich viele Seminormen, Sy ist also ein Banachraum
beziiglich der Norm 9)

P = sup pnk' |
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Wir betrachten den Unterraum & C Sy der Testfunktionen, die in x = 0 mit
allen Ableitungen bis zur Ordnung N verschwinden. Mit ¢(x) gehort auch 6(x) () zu
&%k, auf S%x ist somit 67 durch

(0T [ @) = (T | Op)

eindeutig definiert. Da die Abbildung ¢ - fp von Gy in sich stetig ist, ist das so
definierte lineare Funktional 67 auf &} stetig und kann deshalb zu einem auf ganz
Snk definierten stetigen linearen Funktional erweitert werden?). Diese Erweiterung
ist nicht eindeutig, sondern enthilt einen unbestimmten Summanden der Form

N
D) ¢, 00(x).
Hn=0

In unserem Beispiel kann die gesuchte Erweiterung durch folgendes Verfahren
explizit konstruiert werden:

Seipe Gyg. Wirsetzen @, = ¢™(x) |, _ound fithren beliebige Funktionen y,(x) € Sy
mit der Eigenschaft

m a
4"y -y
dxm x=0 — Ynm

ein. Dann liegt

N
¢'(x) = plx) — 2}0 Py ValX)

in Syg. Geben wir den unbestimmten Ausdriicken (07 | y,) willkiirlich die Werte c,,
so kénnen wir definieren

(0T | @) = (6T | ¢') + 3 ¢, @,

Das ist eine Distribution mit den gewiinschten Eigenschaften.

Das so definierte 67T sollte nicht als Produkt zweier Distributionen aufgefasst
werden, da nicht alle bei einem Produkt normalerweise bestehenden Eigenschaften
vorhanden sind. Zum Beispiel kann 67 nicht nach der Produktregel differenziert
werden. Ferner gilt fir eine Distribution 7" mit Trdger in x > 0 die Beziehung
0T = T im allgemeinen nicht, wie man am Beispiel 7" = d(x) sehen kann. Ist schliess-
lich 7 im Intervall x > O eine positive Distribution (das heisst ist (z/p) = O fiir alle
nicht-negativen ¢ mit Triger in x > 0), so braucht 67 durchaus nicht positiv zu sein
(Beispiel: T = P 1/x).

Nach diesem Vorbild werden wir im folgenden die Distributionen z € 3, kon-
struieren, wobei wir immer die Nebenbedingungen a)—c) im Auge zu behalten haben
werden. Wir beniitzen wieder die Tatsache, dass die Wightman-Funktion W(§,,..., &,)
als temperierte Distribution als lineares stetiges Funktional auf einem Funktionen-
raum Syg folgender Form aufgefasst werden kann:

Sy besteht aus den Funktionen ¢(&,,..., &,), die N malstetig differenziert werden
kénnen und fiir die die Ausdriicke

Por (Ei)=H[§i|ki‘D9"

1

ch={k}, )R <K (10)
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im ganzen Raum beschrinkt sind und im oo verschwinden. Dabei ist D ein beliebiger
Differentialoperator der Form

D= [[o%r, o= 9 Dla, <N
1, v 05:” LAY

Die Topologie in €yx wird durch die Seminormen

Ppr = SUP Py (&) (11)

definiert. Es handelt sich wieder um ein endliches System von Seminormen, Sy ist
also wieder ein Banachraum. Wir werden im folgenden die einfachere Bezeichnung

& = Syg verwenden. W ist ein Element des Dualraums S*.
Wir erwarten zunichst, dass Schwierigkeiten in den Punkten auftreten, in denen
zwei 0-Komponenten x] zusammenfallen. Im § 2) werden wir jedoch zeigen, dass auf

Grund der Lokalitdtsvoraussetzung die Distribution z auf einem Unterraum &) < &
eindeutig festgelegt ist, der wie folgt charakterisiert werden kann: Nach Gleichung (2)
ist 2 der VEW eines Produkts von Zyklen Z,. Wir nennen einen Punkt (x,,..., x,)
z-Kritisch, wenn zwei der im selben Faktor ZT auftretenden Argumente x, zusammen-

fallen (das heisst mit allen vier Komponenten). G "besteht dann aus den Testfunktionen

€ &, die in allen z-kritischen Punkten mit allen Ableitungen (das soll hier und im
folgenden immer bedeuten: mit allen Ableitungen bis zur Ordnung N) verschwinden.

Betrachten wir jetzt einen Raum &%.5,, N' > N, K’ > K, den wir analog zu (11)
mit einer Topologie versehen, sowie den entsprechenden Unterraum &Y x,. Syrx-ist in

& dicht, ebenso &%k, in &% Die Uberlegungen des § 2 kénnen sofort auf diesen Fall
itbertragen werden, das heisst z ist auf %5, als lineares stetiges Funktional definiert.

Sei Uyg- der Raum der Funktionen der Form (5), wobei die Bedingung y,, € ©
durch g, € Gygr, # € Sy ersetzt ist. Auf Grund der Bedingung a) muss z auf Wy
verschwinden. Dadurch ist z auf dem durch &%/, und Wy, aufgespannten Raum
SRk + Uy als lineares Funktional eindeutig definiert. In § 3 werden wir zeigen,
dass dieses Funktional fiir geniigend grosses N’, K’ in der Topologie des Sy k- stetig
ist. Wir werden den betreffenden Raum in Zukunft einfach mit & bezeichnen. (Der
Schwartzsche Raum & wird in unseren Betrachtungen nie auftreten, so dass keine
Verwechslungen zu befiirchten sind.) Wir werden diesen Stetigkeitsbeweis nur im
zweidimensionalen Fall geben, ein Beweis fiir den physikalisch interessanten vier-
dimensionalen Fall ist noch ausstehend.

In § 4 werden wir zeigen, dass die durch Bedingung b) gegebene Erweiterung von z
auf @2 + U + T, immer noch stetig ist. z lisst sich somit zu einem stetigen linearen
Funktional auf ganz &, also zu einer temperierten Distribution, erweitern?). Diese
Erweiterung ist nur bestimmt bis auf eine Distribution mit Triger in den z-kritischen
Punkten. In § 5 wird bewiesen, dass diese unbestimmten Terme so gewdhlt werden
kénnen, dass die in c) geforderten Identititen erfiillt sind. Gewisse Unbestimmtheiten
bleiben dabei immer noch bestehen.

In § 6 schliesslich werden wir den Spezialfall der Zwei-Punkt-Funktion unter-
suchen, in dem eine explizitere Behandlungsweise als im allgemeinen Fall méglich ist.
Auch ldsst sich dieser Fall leicht im Vierdimensionalen behandeln.
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2. Definition von z auf &;

Sei 62 der in § 1 definierte Unterraum von &. Wir wollen zeigen, dass z auf @2 ein-
deutig definiert ist und dort lorentzinvariant ist. Einfachheitshalber betrachten wir
nur den Fall des VEW eines Zyklus (das heisst # = 1 in Gleichung 2). Die Verallge-

meinerung auf beliebige 4 ist trivial. Eg ist dann der Raum &° der Testfunktionen e &,
die mit allen Ableitungen verschwinden, falls zwei x; zusammenfallen.
Wir werden den Beweis in zwei Schritten fithren, indem wir 2z zuerst auf kleineren

Unterrdumen G2 < 'é"b definieren und dann diese Definition zu einer Definition auf é&
erweitern.
Sei a eine positive Zahl zwischen O und 1: 0 << g < 1. Seien M,, M,, M, die durch

Mll 2>a|§|
Ee={M, falls &< —a|§| (12)
Mal &0 <al§|

definierten Mengen. Sei A = {u,;} eine Zuordnung einer Zahl a; = 1,2,3 zu jeder
Differenz x;; = x; — x; zweier Argumente. Wir definieren

M, ={(xg---, %) | x;;€ M,}. | (13)

S% sei der Raum der Testfunktionen mit Trager in M ,.

Wir betrachten eine der Mengen M ,. Sei P eine beliebige Permutation (x;, ..., ¥;,)
der Argumente (x,,..., %,). Wir bezeichnen mit y, die Menge aller Permutationen von
(%, .- -, %,), die aus P durch Vertauschungen benachbarter Elemente mit Differenz in
M hervorgehen. Es gilt:

Lemmal

Die Funktion
S = Z (=d)°e H 0 [O'E) (%9, — %g, )1 = Z 0o (14)
i=1

QE}IP QE?P

st in M 4 konstant. (Die auftretendenGrissen haben dieselbe Bedeutung wiein Gleichung 7.)

Sei ndmlich diese Behauptung nicht erfiillt, das heisst es existieren zwei Punkte
X1, X?in M 4, in denen S verschiedene Werte annimmt. Wir nehmen an, dass in X*
alle ) voneinander verschieden sind. Nur in solchen Punkten ist ja vorldufig S
iberhaupt definiert. (Auf Grund des zu beweisenden Lemmas kénnen wir nach-
traglich S durch stetige Fortsetzung auch in den Ausnahmepunkten x% = x? definie-
ren.) Da M, zusammenhingend ist, kénnen wir X! und X? innerhalb M, durch
eine stetige Bahn X (¢), 0 <¢ <1, X(0) = X!, X(1) = X?, verbinden. Speziell kénnen
wir diese Bahn so wihlen, dass fiir kein ¢ mehr als zwei x9(f) (das heisst zwei Null-
Komponenten) zusammenfallen. Sei S(¢) = S(X(#)). Nach unserer Annahme ist
S(0) + S(1). Es gibt also einen -Wert £, in dem S(#) einen Sprung aufweist. In £, muss
offensichtlich ein x{; = 0 sein. Betrachten wir ein #-Intervall I, das ¢, enthalt. Nach
unserer Annahme iiber die Bahn konnen wir I so klein wéhlen, dass in [

[ [ > 15, @)+ (@9)

ij |
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gilt. Der Sprung muss somit in einem 6, erfolgen, in dem x; und x; benachbart sind.
Aus X () € M , folgt x,;€ M, das heisst mit der kritischen Permutation () gehort auch
die daraus durch Vertauschung von x; und x; hervorgehende Permutation Q' zu y,.
0o, Oy sind von der Form

Op=c0 (01 (¥, — x;)) 0 (05 (x; — x;)) 6 (o5 (v; — x,)),
Oy=2rcb (0‘1 (x, — %J)) 0 (£ oa(x; — xz)) 7 (03 (%; — ,)),

wobei ¢ eine von x; und x; unabhingige, in I konstante Grosse ist. In [ haben «j; und
x;; dasselbe Vorzeichen, ebenso xf, und x9, also ist 0, + 0, in I konstant, in Wider-

>
spruch zu unserer Annahme. Damit ist das Lemma bewiesen.
Sei p € &%. Wir definieren

(Z@QW(Qx)|<p(x)):(W(Px)|299<p(x)) (15)

Dieser Ausdruck ist wohlbestimmt, da nach Lemma 1 [E 0] @ eine Testfunktion ist.
VP
Die Definition ist sinnvoll wegen der Voraussetzung der Lokalitdt, gemiss der

(W(Qx) @)= (W (Px)|g)

fiir alle Q € yp und alle p € & gilt.
Durch die Definition

Q~ P falls Qe vy,

werden die Permutationen von (x,,..., x,) in Aquivalenzklassen 4,,..., 4, eingeteilt,
was schliesslich ergibt:

8

(| @)= D] (W(P,x) I.E o), P,ed, geCi. (16)

r=1

Diese Definition kann durch lineare Fortsetzung sofort auf Summen von Funk-

tionen aus verschiedenen & (zum selben @) ausgedehnt werden, das heisst auf den
Raum &* der Testfunktionen, die mit allen Ableitungen verschwinden, falls fiir ein x;
die Beziehung | x7; | = a | #;; | besteht.

Die Definition von z auf &° ist moglich mit Hilfe des folgenden Lemmas:

Lemma 2

Es existiert eine endliche Anzahl von Unterrdumen S, = GZ: C & so, dass jede Test-
funktion @ € S, in der Form

=)o, 96, (17)

geschrieben werden kann, wobei die ¢, von @ stetig abhdngen, das heisst @, > 01n S, falls
¢ >0in S
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Wir beweisen die Darstellung (17) durch explizite Konstruktion der ¢,:
Zu jedem Paar a, b von reellen Zahlen mit 0 << a << b < 1 existiert eine Funktion
%ap(E) mit folgenden Eigenschaften:

a) ya ist iiberall ausser im Ursprung beliebig oft stetig differenzierbar.
b) %4, hingt nur von £°/| & | ab.

¢) xp=11in §°|§|> b, 42, =0in £ | &| < a. Im Zwischengebiet fallt y},
monoton von 1 auf 0.

Wir definieren

Zib (&) = Xib (— &),
Zib () =1-— Xalzb (&) — ij [£):

Betrachten wir wieder die Variablen x; und ihre Differenzen x;; = x;, — ;. Es gilt

2 I_I woii(x,) = (18)

vij=1 4 <j

Wihlen wir a, b,, 0 < a; < b; < 1, fest. Nach Gleichung 18 konnen wir alle
@ € &Y in folgender Weise schreiben:

(x!) = %‘ (pB (xz)
= J1 #4, &) @ (x),  B= (B

1< g

(19)

@p liegt in &9, da die Singularititen von %¢, im Ursprung durch das Verschwinden
von g in den kritischen Punkten kompensiert werden. Weiter hingt ¢ stetig von ¢ ab.
Zum Beweis haben wir zu zeigen, dass alle Dgy (D eine beliebige Ableitung der

Ordnung < N) gleichmissig gegen Null streben, falls ¢ in & gegen Null geht. Die
Multiplikation mit Potenzen von &, ist offenbar iiberfliissig, da das Verhalten im Un-
endlichen keine Schwierigkeiten bereitet. Sei D,, ein Differentialoperator m-ter
Ordnung. Dann folgt aus Eigenschaft b) der y-Funktionen eine Abschétzung der Form

v - D'm
le Aab, (5) | S ;6(5 12:

Andererseits gelten in jedem beschrinkten Bereich B des G° Abschitzungen der Form

| D, ¢ | <c (D, ;) Hl Xy ™
T <19
fiir alle #,; mit 2 m;; < N — m.Dabei bedeutet | & | die euklidische Léinge ( 2 g1z
des Vektors &. Die ¢ (D,,, m;;) gehen mit B gegen Null. Aus diesen beiden Abschétzun-
gen folgt die behauptete Stetigkeit unmittelbar.
Der zu B = (3, 3,..., 3) gehorige Summand in (19) liegt in G, = &, die zu f; +
alle 7, 7, gehorigen Summanden in G, = &". Die iibrigen Summanden enthalten
hochstens (* 1) — 1, aber mindestens einen, y*-Faktor. In jedem dieser Summanden

7 H. P. A. 36, 1 (1963)
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nehmen wir beziiglich der in y3-Faktoren auftretenden Variablen x,; eine zu (19)
analoge Zerlegung vor, aber mit Funktionen yx, , mit &, < a,. Wieder liegen die zu
Bi; = 3 (alle auftretenden i, j) gehorigen Summanden in ;= &", die zu §;; + 3 (alle
auftretenden 7, /) gehdrigen in &, = &*. Die iibrigen Summanden enthalten héchstens
(" $ 1) — 2] 45, -Faktoren und werden beziiglich der zugehérigen Differenzen weiter
aufgespalten. Man sieht leicht, wie das Verfahren weiter geht und dass es nach
spitestens (" [ ') Schritten abbricht. Damit ist Lemma 2 bewiesen.

Lemma 2 erlaubt die Definition von z auf G° durch

@lo)= 2 (z|p) ¢e& (20)

Man sieht leicht ein, dass diese Definition von der speziell gewidhlten Zerlegung (19)
etc. (das heisst von der Form der Funktionen x;zbz) nicht abhingt.

Es bleibt noch die Invarianz des so definierten z auf &° zu zeigen, das heisst das
Verschwinden auf G° 0 .

Rotationsinvarianz besteht trivialerweise, da das angegebene Konstruktionsver-
fahren nur rotationsinvariante Schritte umfasst. Wir haben also nur die Beziehung
Aqy z = 0 zu verifizieren. Sie gilt sicher in den Punkten, in denen alle x) voneinander
verschieden sind. Die kritischen Punkte sind also von folgender Form: Die Menge der
Variablen x,,..., x, zerfillt in Teilmengen 7°,, so dass alle x; im selben T, dieselbe
0-Komponente aufweisen, wihrend die x) in verschiedenen 7, verschieden sind. Zu

jedem solchen Punkt existiert eine Umgebung U und eine positive Zahl a <1 so,
dass in U gilt:

in verschiedenen

{0 0

i Xr—x7 | i

L ,1,,_,’,, < a falls x;, X ' T, liegen.
| %;— %; l im selben

Es gibt also ein M 4, das U umfasst. Nach (16) und Lemma 1 ist somit z in U eine
Summe von permutierten W-Distributionen multipliziert mit in U konstanten
Funktionen, also lorentzinvariant.

Ebenso lisst sich das Verschwinden von z auf &% IH leicht beweisen.

3. Lorentzinvarianz

Die Distribution z € &* ist einerseits gemiss § 2 auf dem Raum &Y bekannt, an-
dererseits nach der Voraussetzung der Lorentz-Invarianz auf i = Uy-,.. Dadurch ist z
auf &% + U = S! definiert:

(z|s+u)=(z]s), seS?, uell. (21)

Da z auf &) N U verschwindet, ist diese Definition von der gewahlten Aufspaltung
der Testfunktion ¢ € G} in s und » unabhiingig. Wir werden in diesem Paragraphen
zeigen, dass z fiir gentigend grosses N’, K’ auf &} stetig ist. Wir werden nicht ver-
suchen, optimale Werte fiir N’ und K’ zu finden. Der Stetigkeitsbeweis wird nur fiir
den zweidimensionalen Fall gegeben.
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Die behauptete Stetigkeit folgt unmittelbar aus den Ergebnissen von § 2 und dem
folgendem Theorem: _

Theorem

Seien u, €U, s;e S (N' =N + 2, K' = K + 2) zwei Folgen von Testfunktionen mail

lim (#; —s;) =0in &.

7 — 00

Dann existiert eine Folge u? € @‘; A W mit

lim (] —s;) = 0in &,

7 — 00

Dieses Theorem soll jetzt bewiesen werden.

Sei T eine Aufteilung der Variablen x; in m (1 < m < n) nicht leere Teilmengen
M, («=1,...,m). Die Ebene x; = x;, wenn x;, ;, zum selben M, gehéren, bezeichnen
wir mit E7. Durch eine Permutation P ldsst es sich erreichen, dass die Elemente
jedes M, benachbart sind. Die Differenzvariablen & = xp; , — %p,; zerfallen dann in
zwel Klassen, ndmlich erstens in Differenzen 17; (wu=1,...,n —m+ 1) von x; s aus
demselben M, und zweitens Differenzen & (v = 1,..., m — 1) von x,aus verschiedenen
M,, so dass E% durch die Bedingung % = 0 fiir alle 4 charakterisiert ist. ¢ € &° be-
deutet, dass ¢ auf allen E” mit allen Ableitungen nach den &; bis zur Ordnung N’
verschwindet. (Wir betrachten der Einfachheit halber wie schon in § 2 den Fall, dass
z der VEW eines Zyklus ist.)

Sei D der Differentialoperator

n--m-+1
. 0 0
D = H 6“‘!(; 6'{1‘!{ ? 6»’“0 = 0')’]TO 2 alﬂ- - 0nT1 ’ (22)
#=1 2 u
Sei uec U:
u= D' Ay (&) (23)
i=1
Dann gilt auf E¥:
W2 ED) =Du| 1 o= 3 (0, v + BT + Aryr. (24)
H i
Dabei bedeuten.
DM ] 6“’,’1' . 66{/ ” 60(‘“—1 . 6;B‘u+1 ,
atal uw'o un'l Huo al
D,= [ &% 8% - &utt. &
Wyt wo u'l u0 ul
n—-—m+1
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Unter den Voraussetzungen unseres Theorems gilt

lim #2. = 0 fiir alle D und 7. (25)

T — 0

Der Limes ist zu verstehen im Sinne der gleichmissigen Konvergenz aller existieren-
den Ableitungen (multipliziert mit Polynomen des Grades < K').
Wir beweisen folgende Lemmata :

Lemma 3

Unter der Voraussetzung (25) gehen die Funktionen wiy (EI), D von der Ordnung
< N' — 1, beziiglich der durch die Topologie des Syx+ | g, tnduzierten Topologie mit
wachsendem 1 gegen 0.

Das Lemma gilt nicht im Fall » = 1 (das heisst fiir die Zweipunktfunktion), den
wir in § 6 speziell behandeln werden.

Zum Beweis geniigt es, den Fall m = »n zu betrachten, da alle £ in den E’. ent-
halten sind. Wir haben dann einen Vektor #* und # — 1 Vektoren &I. Den Index T
werden wir in Zukunft einfachheitshalber weglassen, wenn keine Verwechslungen zu
befiirchten sind.

Der Zusammenhang zwischen den y” und den #” ist durch die Gleichungen (24)
gegeben. Diese Gleichungen wollen wir jetzt nach y? 16sen, wobei wir #” als bekannt
voraussetzen.

Die einzelnen Gleichungen des Systems (24) verkniipfen immer nur " s mit D’ s
gleicher Ordnung, M = a + f (x = «,, # = fB,, da y nur einen Wert annimmt) mit-
einander. Das System zerfillt also in ungekoppelte Teilsysteme zu festen M, und es
geniigt, diese Teilsysteme zu diskutieren. Wir betrachten somit im folgenden fest
gewidhlte M (M < N').

Durch eine Variablentransformation fithren wir (24) in charakteristische Form
iber:

Durch die Kegel &2 = 0 fiir ein » wird der (&,)-Raum in Teilgebiete zerlegt. Wir
betrachten ein solches Teilgebiet G. Nach Definition sind in G alle &2 von Null ver-
schieden, und G enthilt mit jedem Punkt die ganze zugehérige Lorentz-Bahn (das
heisst alle Punkte, die aus dem gegebenen Punkt durch eine Transformation aus Li
hervorgehen). Wir definieren in G neue Variablen durch

& =0,Chy, &=¢,Shy,
falls &2 > 0, falls £ < 0. (26)
&, =0,Sh g, £ =0,Chy,

Gleichung 24 wird damit zu

n -1

3yt fyPu= @)

p =1

(Hier ist nattirlich: D = 656§, D* = 85718, D, =831 6071, 6, =- O‘Zi )
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Die weitere Substitution

(28)

ergibt daraus
D
o eyt fyle = u” 2

Das ist nun ein System gewohnlicher linearer Differentialgleichungen erster Ordnung
beziiglich der Variablen y, wobei man die iibrigen Variablen o;, g, als Parameter auf-
zufassen hat.

Wir fassen die ¢” zu einem (M + 1)-dimensionalen Vektor ¥ zusammen, ebenso
die #” zum Vektor U. Gleichung (29) lautet dann

o

+ A¥Y=U. (30)
0y :
Dabei bedeutet A die Matrix
oM O 0
1 0M—-1 O
02 0 M-2.
4= - ,
01
M 0
Bel
0 M 0
00 M-—-1
A+ = . , A-=A — A+,
01
00

Dann wird 4 durch die Ahnlichkeitstransformation

~ 3 N 4 s
A=67A/26A 'A'BA 8A/2

in die Diagonalform

tibergefiihrt *).

*) Ich verdanke diese Bemerkung Herrn Prof. H. ARAKI.
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Es existiert also ein Fundamentalsystem ¥; von Lésungen der homogenen
Gleichung ' '

oY

.+ A¥ =0
Z
der Form
V() =" Wy (31)
Dabei durchlduft A; die Eigenwerte M, M — 2,..., — M der Matrix 4, wihrend die

Y., von y unabhingige Vektoren sind. Wir werden die ¥;, speziell auch von ¢, g,
unabhingig wihlen. Aus der Form dieser Fundamentallsungen sieht man sofort,
dass die homogene Gleichung keine Lsungen in Sys_; g3 hat (wir setzen natiir-
lich immer N’, K’ > 2 voraus), das heisst ¥ ist durch (30) eindeutig festgelegt.

Die Wronski-Determinante

W = Det || ¥, ||

ist von y unabhingig und kann auf 1 normiert werden. Sei W, () die Determinante,
die aus W durch Ersetzung der i-ten Kolonne ¥; durch U entsteht. Mit der Methode
der Variation der Konstanten erhdlt man als Lésung von (30):

Y= 3z (1) ¥ () (32)
mit 1
f( = [ Wi@dr=— [ W, (@) dr (33)

Dabei ist die Randbedingung des Verschwindens von ¥ im Unendlichen verwendet
worden. Die Gleichheit der beiden in (33) auftretenden Integrale ist offenbar eine
Bedingung fiir die Existenz einer Losung und ist natiirlich in unserem Fall erfiillt.

Der Ausdruck (32) ist die Losung der Gleichungen (24) im betrachteten Gebiet G.
Da die Losung eindeutig ist und somit mit der vorgegebenen Losung {y°} (aus der ja
U nach (24) gewonnen wurde) iibereinstimmen muss, ergibt sich die Lésung auf dem
Rande von G durch stetige Fortsetzung von (32).

Znm Beweis der Stetigkeit der durch (32) vermittelten Abbildung U — ¥ be-
trachten wir einen beliebigen der in (32) auftretenden Summanden

4 e ¢}

W W@ b= —y? [ W@

v
— 00 z

Dabei ist p? = e~ % gk, wobei die Konstante y% fiir unsere Zwecke unwesentlich ist.
W, (r) ist von der Form

W, (@) = " W; (),
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wobei W, die aus den ¥.o — mit Ausnahme von ¥,y — und U gebildete Determinante
ist, deren T-Abhingigkeit allein von den Elementen %P herriihrt:

W (7) = 2 ap u” (1), a; = const.
D
Wir haben also Ausdriicke der Form
I=ct [ AW, (v,0,, 0,) dv (34)

zu diskutieren, wobei die Integration entweder iiber das Intervall (— oo, x) oder iiber
(x, o0) zu erstrecken ist. Wir schreiben #” und W’ als Funktion der charakteristischen
Koordinaten

xﬂ:§z+§:~ yﬂzfﬂ—i‘l :
u? = u” (x,,v,). Durch die Substitution v = ¢*~* geht dann (34) iiber in

T e / dvvi-1 W, (vx,vty,). (35)

o/

Die Integration lduft iiber die Intervalle (01) resp. (1, o0).
Liege nun # und damit W, in einer beschrinkten Menge B des Raumes &, das
heisst es gelten die Abschidtzungen

IT 16,1 | DWW | <el, n={n} |&|=@2+)" (36)
M

tiir alle Ableitungen D bis zur Ordnung N’ — M undalle 2 n, < K'. Wir suchen dann
dhnliche Abschédtzungen fiir I (und damit fiir ).
Wir diskutieren zuerst den Fall D = Identitit und untersuchen dazu Ausdriicke

der Form
L=JI1& "] I]
13

< H FNE " / dv v* 1 H (v? 2% + o2 y2)-mul? (37)
"

(% "

Sei (in einem beliebigen Punkt (£,)) A die Menge der &, mit x> y:, B die Menge
der &, mit 2 <C y>. Aus (37) folgt die Abschédtzung

Rl ' Zm,
L<en [T1& e [ dvd 3™ 5™, o, = 20" gt (38)
Iz ¢
Jetzt treffen wir eine Fallunterscheidung:

1. Fall :
E =2 _Z'nﬂJanﬂ < 0.
A B
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Dann konvergiert

Fh== / dv vE 1
und (38) wird fiir m, = n, zu
I” < 811 ?]’-3 2 (39)

was eine Abschitzung der gewiinschten Form ist.

2. Fall: E <O0.

Dann existiert

1
= ] dy vE !
0

und es gilt
i ot B T (40)
3. Fall: E =0.
a) Sei mindestens ein | &, | > C, wobei C eine beliebige, aber fest gewdhlte Zahl

zwischen 0 und 1/» ist. Dann erhalten wir aus (38) mit der Wahl m, = n, + 1, alle
andern m, = n,, die Abschdtzung

I <eg,C* ke, (41)

Dabei tritt [,, resp. J3, auf, falls £, in A resp. B liegt. Die angegebene Wahl der m,
ist moglich wegen der Bedingung 2 n, < K'.

b) Seien alle | &, | < C, aber n, + 0 fiir mindestens ein «. Dann wihlen wir in (38)
m, = n, — 1, alle andern m, = n,, und erhalten

g Em C ) ;;2 ) (42)

wobei die Indizes 1,2 den Fillen &, € B resp. A entsprechen.

c) Seien alle | &, | < C und alle #, =0, also 4; = 0. (Dieser Fall kann nur bei
geradem M auftreten.) Der zu A; = 0 gehdrige Summand in (32) ist

T odu ’
oo / o W, (x,u V1Y, v1) = Wy L,
Da alle andern Summanden sowie ¥ selbst in den Punkt &, = 0 (alle u) stetig fort-
setzbar sind, muss das auch fiir 7, gelten. Das ist aber nur méglich, falls W, (0, 0,...) =
0. Diese Bedingung ist also fiir die Losbarkeit von (30) notwendig und somit in
unserem Fall erfallt. Wegen M < N’ gilt in B die Abschitzung

W(I) /uyﬁ 2|x,ui+2lyﬂ
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Sei S-1= D" |x,|> ) |y.|=T. Dann

S o0
T dv / T dv o
Ly = / v W+ / v W,
1 5
2 - (43)
d y
<23’/ iv_+81/ vz,.g
0 g
= 2 8’ + 81-

1 '3 1
Im Fall S-1 < T spaltet man in analoger Weise das Integral [ in zwei Teile [ und |
0 0o 7

und erhilt damit eine dhnliche Abschitzung.
Der Fall allgemeiner D in (36) lidsst sich genau gleich diskutieren. Aus (35) erhdlt
man niamlich

01 - o
v u:/ dv v* Wx# (v X o -1 y#),

01 ' (44)
TR A2 T e

03”# " ‘// dv ¢ W“’u ('U x/” v yﬂ)

also Ausdriicke derselben Form wie (35).
Damit ist Lemma 3 bewiesen. Wir bemerken noch, dass fiir ungerades N’ in der
Behauptung von Lemma 3 Gy _; g, durch Sy g ; ersetzt werden kann.

Lemma 4

Ser M eine abgeschlossene Menge des R" (n beliebig), deren Rand aus N mal stetig

differenzierbaren Mannigfaltigkeiten zusammengesetzt ist, so dass zwei Konstanten dund a
mat folgender Eigenschaft existieren: Zu zwei Punkten aus MM, deven Abstand d kleiner

als dwist, existiert immer ein sie verbindender Weg in IN von der Linge < a d.
Dann exustiert eine Konstante C so, dass 1ede auf M vorgegebene Funktion g € Syg auf
ganz R" so fortgesetzt werden kann, dass

SuUp sup pp (x) << C - sup sup pp, (%) (45)
x€R" Dk x€M Dk
gult. (Zur Definition von pp,, siehe § 1.)

Wir betrachten die Umgebung 97 von I, bestehend aus den Punkten, deren
Abstand von Mt kleiner als D ist. Wir setzen ¢ durch folgendes Verfahren von 9 auf
P; fort: Wir geben eine beliebige Richtung im R” vor und betrachten alle dazu
parallelen Geraden. Lings jeder dieser Geraden kénnen wir ¢ so fortsetzen, dass eine
Beziehung der Form (45) besteht. Falls die Gerade 0 9t in zwei Punkten schneidet,

deren Abstand < 2 4 ist, ist die vorausgesetzte Existenz der Konstanten a wesent-
lich. Sei ndmlich 4 der Abstand der beiden Durchstosspunkte. Dann ist die Differenz
der Werte einer Ableitung M-ter Ordnung in diesen Punkten kleiner als a - d - Py 4.1,
wenn p, ., das Maximum der Ableitungen (M + 1)-ter Ordnung auf I ist. Diese
Differenz geht also mit 4 linear gegen Null, was fiir unsere Konstruktion wesentlich ist.
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Es ist klar, dass man die Fortsetzung lings den einzelnen Geraden so wihlen kann,

dass auch die Ableitungen senkrecht zu der vorgegebenen Richtung sich in der ge-

wiinschten Weise verhalten. Die so erhaltene Fortsetzung nennen wir g;. Wir wihlen

eine Funktion y(x), die auf 9t identisch = 1 ist (wozu im Falle niedrigerdimensionaler

I noch das Verschwinden aller Ableitungen kommt) und die ausserhalb 9; identisch

verschwindet. Die Funktion ¢ = y ¢; erfiillt dann die Behauptung des Lemmas.
Jetzt konnen wir das am Anfang dieses Abschnitts gegebene Theorem beweisen:
Sei

u; = Ay,

eine Folge der im Theorem vorausgesetzten Art. Nach Lemma 3 konvergiert dann ),
mit allen Ableitungen bis zur Ordnung N’ — 1 (resp. N’, falls N’ ungerade ist) be-
ziiglich der Topologie des Sy _; x-_; aufallen £ gegen Null. Nach Lemma 4 existiert
dann eine Folge y; — ¢, die auf allen E? mit y, iibereinstimmt und die gegen null
konvergiert. Die so konstruierten ¢ verschwinden auf allen E%7 und konvergieren
gegen v, (in Sy, g-_q). Die Folge u) = Ay ist dann eine Folge mit den in unserem
Theorem postulierten Eigenschaften.

4. Tragereigenschaften

Die im vorangehenden auf &} = &? + U definierte Distribution z kann auf Grund
der im § 1 diskutierten Trigerbedingungen zu einem linearen Funktional auf &2 =
S + . erweitert werden. Wir wollen zeigen, dass diese Erweiterung stetig ist.

Das Verschwinden von z ausserhalb 7', folgt aus der Lokalitdtsvoraussetzung. Der
Rand von T, besteht deshalb aus Stiicken der Form

(x; — x,)* = 0 fur gewisse Indexpaare 1, k.

T, erfiillt also die Voraussetzungen des Lemmas 4, ebenso die Vereinigung, resp. der
Durchschnitt von T', mit den z-kritischen E7.

Sei ¢; € @} eine Folge von Testfunktionen, die in T, beziiglich der Topologie von &
gegen Null strebt. Dann muss gelten:

lim (2 | £) = 0. 5)
Sei t;=wu; +s;, u; €, s;€ S. Sei E, die Menge aller z-kritischen E,,. Nach
unseren Voraussetzungen strebt «; auf 7. N E, in S gegen Null. Auf analoge Weise

wie im vorangehenden Abschnitt kénnen wir eine Folge ) € S konstruieren, die gegen
0 konvergiert und die auf 7', N E, mit #, iibereinstimmt.

sf = t, — u) strebt auf T, beziiglich é_gegen null und kann wieder nach Lemma 4
aus T, zu einer auf dem ganzen Raum definierten Folge s? € S? erweitert werden, die -
gegen Null konvergiert. Die Funktion # = ¢, — u? — s? liegt in &! N 7.. Also

ti=s?+u?—§—t§',

lim (z | ¢;) = lim (z | s}) = 0,

i — 00 1 - 00

womit (46) bewiesen ist.
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5. Identititen, Symmetrien

Wir betrachten die in §1 definierte Menge 3, der VEW von Produkten von Zyklen
zur totalen Variablenzahl #. Wir haben gezeigt, dass alle Elemente z dieser Menge als
Distributionen auf gewissen Riumen &? definiert sind und somit zu Distributionen
auf ganz & erweitert werden kénnen?). Diese Erweiterung von z ist eindeutig bis auf
einen auf G} verschwindenden Summanden H_, das heisst bis auf eine lorentz-
invariante Distribution H, mit Trigerin 7, N E_.

Wir werden zeigen, dass die H ., so gewidhlt werden konnen, dass die in § 1 unter ¢
geforderten Identitdten (Symmetrien eingeschlossen) erfiillt sind.

D’e betrachteten Identititen sind von der Form

ch z, = 0, ¢, = const., (47)
%

wobei die Summe iiber eine Teilmenge von 3, lauft.
-Sel
Dy, =0 | (48)
3

eine Basis der Identititen, das heisst eine linear unabhingige Menge von Identititen,
aus denen alle Beziehungen (47) durch Linearkombination folgen. Sei z, gemiss
8§ 24 definiert, das heisst ein speziell ausgewihltes mogliches z,. Dann erfiillt
2z, = 2z, — H, alle Bedingungen (47), falls

Z“ika‘%’“z’kZJ;*]f (49)
k

gilt. Wir haben also zu zeigen, dass diese Gleichungen unter den erwihnten Neben-
bedingungen lésbar sind.

Lemma 5

Die Identitit (47) gilt auf dem Raum R = o S;, wobet der Durchschnitt iiber alle in

(47) auftretenden z, zu erstrecken ist.
Den Beweis zerlegen wir in verschiedene Schritte:

a) R wird aufgespannt durch Wl und B = o B, B, = &} + T;. B, ist der Raum

der auf D, = M, n T, verschwindenden Testfunktionen.

Sei ndmlich ¢ € R. Dannist auf jedem D, g in U, das heisst es exist'eren Funktionen
u, € U, die auf D, mit allen Ableitungen mit @ iibereinstimmen. Es ist leicht einzu-
sehen, dass die verschiedenen #, auf den Schnitten der D, glatt zusammenpassen,
das heisst man kann eine Funktion # € 1 wihlen, die auf allen D, mit ¢ iibereinstimmt.
@ — u liegt dann offensichtlich in 0.

Da Gleichung 47 natiirlich auf U erfiillt ist, haben wir noch zu zeigen, dass sie
auch auf B gilt.

b) B wird aufgespannt durch die Riume
B,=)T.n[)E (50)
k€A kA

wobel 4 eine Teilmenge der in (47) auftretenden Indizes % bedeutet.
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Sei ndmlich ¢ € B. Sei T, der Trager von z,. Dann liegt in O T, ¢ in B, Wir
setzen also in O FE

@ = @, alle andern ¢, = 0.

Betrachten wir jetzt kf) 7, n 0T, das heisst die Menge der Punkte, die zu allen
*7 .
T’ ausser T; gehoren. Dort liegt ¢ in kf) S). @, kann stetig (das heisst nach den Vor-
*7

schriften von Lemma 4) innerhalb 8B, aus /) T, auf die betrachtete Menge fortgesetzt
werden. ¢; = ¢ — @, liegt dann in dieser Menge in B,. Die {ibrigen ¢, werden wieder
zu Null definiert.

Weiter betrachten wir kf)_ T,n 0T, a 0T, Wir definieren g, ¢;, @, wieder als
+1,j

stetige Fortsetzungen aus den Gebieten, wo diese Funktionen bereits bekannt sind.
@i = @ — ¢; — @, — @ liegt dann in B,,, da im betrachteten Gebiet p € /-/-); ). Esist
klar, wie das Verfahren weitergeht. cH

c) (47) gilt auf B,.

Se1 A’ die Komplementidrmenge zu 4 beziiglich der in (47) auftretenden Indizes.
Die linke Seite von (47) wird auf 8, zu

L= E By Ry == E Cr s
k A’

Nun ist B, C o Sy, alsoist L nach § 2 auf B, eindeutig bestimmt und verschwindet

natiirlich, da auf &? die formale Definition von z exakt ist und L auf 8B, formal ver-
schwindet.

Damit ist Lemma 5 bewiesen.

Wir beweisen jetzt die Losbarkeit von (49) durch explizite Konstruktion einer
Loésung H,.

Nach Lemma 5 verschwinden alle /; auf dem Raum R = kQ S;. Wir kénnen also

auf R, der Nebenbedingung entsprechend, alle H, zu Null definieren.
Sei R/ = Q Si. Auf diesem Raum verschwindet I;, falls a;; = 0.
: ;

Wir definieren wieder
(Hy | R) =0 fiir k& =+ 7.

Ferner:

1

aj

(H; | R) = — (I, | R), a; + 0. (51)

Falls z; in keiner Identitdt vorkommt, das heisst a;; = O fiir alle 7, kann man natiirlich
H; iiberhaupt zu Null definieren. Die Definition (51) ist von der speziell gewéhlten
Identitdt + unabhingig: Ist a;; = O und a,; + 0, so gilt

1_ (I, | R)) = 1o, | Ri). (52)

Ay Gpg
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Aus den Identitdten ¢ und % folgt ndmlich durch Subtraktion die neue Identitat

I Iy ( g “mc)
B S R 14 e 0
" BN =10,

ij Gpj raR D pj

welche z; nicht enthilt und somit nach Lemma 5 auf R/ erfiillt ist.
Weiter betrachten wir R/* =knh6}f, Wieder kénnen wit H,, & =+ 7, h, darauf zu Null
* 1,

definieren. Es bleibt dann ein lineares Gleichungssystem fir H;, H, iibrig, von dem
man analog zum Beweis von Gleichung 52 zeigen kann, dass die linken und die rechten
Seiten die gleichen linearen Abhingigkeiten aufweisen, das heisst, dass das System
16sbar ist. Falls die Losung eindeutig ist, ist sie nach den Cramerschen Regeln eine
lineare Superposition der 7, also eine Distribution. Falls die Lésung unterbestimmt
ist, definieren wir H, als stetige Fortsetzung”) aus R, C R,; und erhalten dann H;
wieder als Distribution. Auf R*, R/ stimmen die Resultate natiirlich mit den schon
bekannten tiberein.

Es ist klar, wie das Verfahren auf Rt Ri*s etc. fortgesetzt wird.

Durch (49) werden die H, nicht eindeutig festgelegt, wie wir im nidchsten Abschnitt
am Beispiel der Zweipunktfunktion sehen werden, das heisst die z’s sind durch die
gestellten Bedingungen nicht eindeutig definiert.

6. Die Zweipunktfunktion

Fiir die Zweipunktfunktion versagt das angegebene Verfahren, da Lemma 3 in
diesem Fall in der angegebenen Form nicht gilt. Wir werden diesen wichtigen Spezial-
fall deshalb hier noch kurz gesondert betrachten, und zwar gleich im Vierdimensio-
nalen.

Sei

W() = <A (x) A¥)>e, E=x—y (53)

die 2-Punkt-Wightman-Funktion, also eine lorentzinvariante Distribution, die in
diesem Fall nicht temperiert zu sein braucht.
Wir wollen die Distributionen

a(§) = 0(— &) [W(£) — W(- &),
(&) = 0(§) W(§) + 6(— &) W(-§),
(&) = 0(— & W(&) + 6(5) W(— &)

(54)

definieren.

Nach L. Scuwartz8) ist W in einer Umgebung U des Ursprungs von einer end-
lichen Ordnung N, das heisst noch definiert auf Testfunktionen, die in U nur N mal
stetig differenzierbar sind. Wir werden den entsprechenden Funktionenraum mit
Dy bezeichnen.
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Die Resultate von § 2 sind unmittelbar anwendbar, das heisst die Distributionen
(54) sind auf dem Raum D% der in & = 0 mit allen Ableitungen bis zur Ordnung N
verschwindenden Testfunktionen definiert und sind dort lorentzinvariant.

Aus Griinden der Lorentzinvarianz miissen die betrachteten Zyklen auf dem
Unterraum N C Dy der Testfunktionen der Form

=2 A Vi ), Y € Dy (55)

H<<v

verschwinden, so dass #, T etc. auf D% + U,y definiert ist. Dass diese Definition kon-
sistent ist, folgt auf Zhnliche Weise wie in § 3:

Seien u; € Uy, s; € DY zwei Folgen von Testfunktionen mit

lim (#; — s;) = 0. (56)
Sei
d 3
6,}:0*5 ,D—!]Oaav,201<N
Dann:
WW=Duliy= 3 (9% a, y7 7
H<1
» 4 a,+1
D, =4\ 0, ) Vi D Vo !
Gleichung 56 wird zu
lim #? = 0 fiir alle D. (58)

Wir untersuchen das lineare algebraische Gleichungssystem

Z(mCMj:OLCv)zuD (59)
n<v mv v
fiir die Unbekannten c . Es hat sicher eine Lésung, zum Beispiel c qpff,. Wir
wihlen speziell eine Losung aus, die von den Inhomogenititen «” lmear abhingt:
DD 41"
By Z A (60)

und die somit mit «” stetig gegen Null geht. (Die Lsung tpﬁ,, erfiillt im allgemeinen
diese Bedingung nicht!). Seien 9P(£)*®~+1 Funktionen mit D' 9P |._, = dpp.
Wir definieren:

w,uv( w,m Z c,uvy , u()(g) = ‘\__: A,uv Q)U,(L)w (E) (61)

<<

u) liegt in DY N Uy, und lim () — u;) = 0.

Damit ldsst sich die Stetigkeit auf ®% + U,y sofort beweisen.
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Die Triagerbedingungen machen keine Schwierigkeiten, da die Triger aller be-
trachteten Zyklen den kritischen Punkt & = 0 enthalten und somit die entsprechenden
Funktionenrdume ¥, in D% enthalten sind.

Wir konnen 7, a, 7, T auf D, durch Fortsetzung aus D% + U, definieren, wobei
noch immer ein Summand der Form

(N2

D) . of8r(E)

k=0

frei ist. Die ¢, kdnnen zum Beispiel fiir #(€) beliebig gewédhlt werden, sind dann aber
in den tibrigen Zyklen durch die Identititen

7(§) = 7(§) + W(-§), (62)

7(8) = (&) + W(&)
festgelegt.

Die Fortsetzung der betrachteten Distribution (zum Beispiel #(£)) von D% + UV
auf Dy kann iibrigens explizit wie folgt durchgefithrt werden:
Sei ¢ € Dy eine Testfunktion. Wir definieren

Pn=0"@(&) le-

und fithren Funktionen #,(£) € Dy mit der Eigenschaft
an nn |E:0 = 6mn

ein. Solche Funktionen existieren sicher. Dann spalten wir ¢ auf gemadss

[N/2]

P& = 3 @, 1,8 + ¢'(§).

n=0

Es ist leicht zu zeigen, dass ¢’ € DY + Uy, so dass (r | ¢’) eindeutig definiert ist.
Ferner ist @, = 0 fiir alle #, falls ¢ € D% + U. Wir erhalten also

@)= g, (r | m) + (v | @), (63)

wobei die Konstanten ¢, = (7 | ,) willkiirlich sind und speziell zu 0 definiert werden
konnen. Auch durch diese spezielle Wahl wird » nicht eindeutig festgelegt, da ¢" und
damit (# | ') von der Wahl der Funktionen #, abhingt. Andert man 7, um die Funk-

tion d #,, so dndert sich (63) um g, (7| d 7,), so dass die Unbestimmtheit Z g, on §%(F)
immer noch bestehen bleibt.

Herrn Prof. R. JosT méchte ich fiir einige klarende Diskussionen danken.
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