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Frequenzspektren von ungeordneten Kristallgittern

von Werner Alfred Schlup
Institut fir Theoretische Physik der Universitdt Ziirich

(15. V. 62)

Zusammenfassung. Eine allgemeine Methode zur Darstellung der Frequenzmomente der
Gitterschwingungen durch a) die Momente der reziproken Massen, b) die beliebig zentrierten
Momente oder Varianzen und c) die Semiinvarianten der reziproken Massen wird angegeben
und fiir kubische Gitter zur Berechnung der drei ersten Momente beniitzt. Damit lisst sich die
spezifische Wiarme des ungeordneten Kristalls fiir hohe Temperaturen berechnen. Ferner wird
die Konfigurationsmittelung der Eigenwertgleichung kritisch untersucht und mit der exakten
Theorie verglichen. Die Ergebnisse der Konfigurationsmittelung werden fiir die Gitterschwin-
gungen einer linearen A-B Kette bei Wechselwirkung nichster Nachbarn in den Spezialfdllen
a) gleicher Konzentration, b) verschwindender Masse einer Komponente und c) unendlicher
Masse einer Komponente genauer diskutiert.

Einleitung

Die Untersuchung von Kristallen, deren periodische Struktur durch Gitterbau-
fehler oder Anordnungsfehler gestort ist, ist fiir die Physik von grossem Interesse. Will
man die thermodynamischen Eigenschaften eines solchen Kristalls beschreiben, so ist
es notig, die Anzahl Zustdnde pro Energie- bzw. Frequenzintervall oder die ent-
sprechende Verteilungsdichte f(x) = dF(x)/dx (v = Energie bzw. Frequenzquadrat,
F(x) = Verteilungsfunktion) zu kennen. Fiir periodische Kristalle ist dieses Problem
durch BLocH und BorN prinzipiell gelést worden; dabei stellt sich heraus, dass das
Spektrum in erlaubte Bereiche (Biander) und verbotene Bereiche (Liicken) zerféllt. Die
Bestimmung der elektronischen Struktur fithrt auf Differentialgleichungen mit gitter-
periodischen Koeffizienten und bietet daher mehr Schwierigkeiten als die auf ein
algebraisches Problem reduzierbaren Gitterschwingungen. FFalls man in einem bindren
A-B Kristall Anordnungsfehler hat, ermoglicht die algebraische Natur die explizite
Angabe der Eigenwertgleichung fiir jede A-B Anordnung und im Prinzip auch deren
Losung. Die Losung der Schrodingergleichung bietet aber fiir beliebige A-B Anordnun-
gen erhebliche Schwierigkeiten, weshalb NorDHEIM?) die virtuelle Kristallapproxima-
tion vorschlug. Danach soll das Potential der Schrédingergleichung in 0. Ndherung
durch seinen Mittelwert ersetzt werden und die Abweichungen hiervon stérungs-
theoretisch berticksichtigt werden. Die Methode ist unbefriedigend, da die mit Stér-
stellen verkniipften lokalisierten Wellenfunktionen und deren Spektralanteil im Stér-
bereich (A-Band M B-Liicke, bzw. B-Band N A-Liicke) iiberhaupt nicht in Er-
scheinung treten. Um eine wahrscheinlichkeitstheoretische Formulierung des Bloch-
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problems geben zu kénnen, muss man sich auf eine Dimension beschrinken und eine
Uberlappung des stochastischen Atompotentials ausschliessen (ScHMIDT?)). Diese

Eigenschaft besitzen die Deltapotentiale V(x) = 3 V, 8(x — [ a), wobei an Stelle einer
]

stochastischen Funktion ein stochastischer Parameter V, analog der Masse m, bei den
Gitterschwingungen tritt. Die Mehrzahl der exakten Untersuchungen des Storbereichs
beschriankt sich daher auf die Deltapotentiale, bzw. das Phononspektrum. SAXON,
HutNER?®) haben 1949 eine binidre Deltapotentialkette untersucht und eine Vermutung
aufgestellt, die von LUTTINGER?) bewiesen wurde. Danach ist der Durchschnitt der
Liicken der reinen A- bzw. B-Gitter (4-Liicke N B-Liicke) in jeder beliebigen A-B
Kette ebenfalls verboten. In welchem Sinne andrerseits die Durchschnitte der Bander
in jeder A-B Kette erlaubt sind, ist noch nicht abgeklirt. Dyson3), DEs CLOIZEAUX ¢)
und ScHMIDT ?) entwickelten elegante mathematische Theorien fiir Gitterschwingungen
in einer Dimension mit harmonischer Wechselwirkung der ndchsten Nachbarn. Sie
erfordern die Losung einer inhomogenen Funktionalgleichung fiir eine Phasenver-
teilungsfunktion W(z, x) (z = Quotient benachbarter Gitterauslenkungen), deren
Inhomogenitidt C(x) die Frequenzverteilungsfunktion F(x) darstellt. MoNTROLL,
PotTs?) und LirscHITZ, STEPANOVAS®) entwickelten eine Clustertheorie der additiven
Funktionen (z.B. fiir die freie Energie) in Analogie zur Virialentwicklung der Gastheo-
rie (VAN KaMPEN?)); die additiven Funktionen werden dabeiin Form einer Potenzreihe
nach Konzentrationen ¢ der Stératome dargestellt, wobei die Koeffizienten zu c* den
mittleren Beitrag des Clusters &-ter Ordnung bedeuten. Fiir kleine Konzentrationen
ergibt die Clusterentwicklung brauchbare Resultate. Sie enth&lt im Stérbereich die
Eigenwerte der lokalisierten Wellenfunktionen in Form von Deltafunktionen, den so-
genannten Storlinien. Die Lage der Hauptstorlinie (nur ein Defektatom im reinen
Kristall) ldsst sich auch in einfacheren mehrdimensionalen Problemen bei geeigneter
Spezialisierung des Atompotentials angeben (ENGELMANN1?)). PIRENNEM) hat eine
dem schwachen Defektgrenzwert (¢ = 1 — (mp/my), |e| € 1) von MONTROLL, POTTS
entsprechende Entwicklung der thermodynamischen Eigenschaften nach e angegeben ;

dazu berechnete er die Terme (Au)?, (Au)?, (Au)t, (Au)?* der Momente " fiir allge-
meine 7 und hieraus die Verteilungsfunktion. Ahnliche Rechnungen wurden von
PRIGOGINE, BINGEN, JEENER!?) storungstheoretisch ausgefithrt, wobei im Sinne der
Kontinuumstheorie langer Wellen in 0-ter Ordnung ein periodischer Kristall mit der
mittleren Masse m = (1 — ¢) m, + ¢ mp verwendet wurde. MAHANTY?®) hat vorge-
schlagen, an Stelle der Ensemblemittelung der virtuellen Kristallapproximation nur
eine Konfigurationsmittelung der Eigenwertgleichung vorzunehmen. Fiir die Eigen-
frequenzen eines bindren Kristalls mit Kopplung nichster Nachbarn gab er fiir das
konfigurationsgemittelte Eigenwertpolynom P*(x) eine Integraldarstellung an.
KorriNGA, FAULKNER!) beniitzten dieselbe Methode zur Diskussion des Elektronen-
energiespektrums fiir Atompotentiale V,(x) und Vp(x). TAKENO1®) und LANGER?®)
machten sich die Methoden aus der Theorie der Mehrfachstreuung dienstbar, um das
Spektrumin 1. Ordnung in ¢ auszurechnen. LANGER fand ein relativ schmales Stérband,

withrend sich die Singularitit 1/)/1 — x am oberen Rand des Grundbandes auf 1 /i/ﬂ
abschwichte. Von DomB, MarRADUDIN, MoNTROLL, WEISS!?) wurde darauf hinge-
wiesen, dass fiir unendliche Masse der B-Atome ein bindrer eindimensionaler Kristall
in Teilketten zerfdllt und daher das Spektrum exakt angegeben werden kann. In der
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gleichen Arbeit wird die Momentenmethode (MONTROLL8)) beniitzt, um das Spektrum
durch einen Polynomialansatz aus den ersten zehn Momenten x* niherungsweise zu
bestimmen. Abgesehen von negativen Beitridgen, die auf die Anpassung von nur endlich
vielen Momenten zuriickzufiihren sind, gewinnt man dadurch den globalen Verlauf des
Spektrums. Um die detaillierte Struktur im Stérbereich zu erforschen, ermittelt man
durch eine Monte Carlo Rechnung eine gute Stichprobe des Ensembles, deren Anzahl
Eigenwerte in passend gewihlten Intervallen man numerisch auszdhlt. Die von DEAN
und MARTIN') so gefundenen Spektren zeigen fiir kleine Stérkonzentrationen ¢ eine
glatte Form im Grundband, dessen Randsingularitit verschwindet, wihrend im Sto6r-
bereich sehr viele schmale Maxima auftreten, die im Sinne der Clusterentwicklung als
verbreiterte Storlinien eines bestimmten Defekttypus interpretiert werden konnen.
Fiir grossere ¢ wird das Spektrum im Stoérbereich immer ausgeglichener und geht fiir
¢ < 1d.h. kleine Konzentration der anderen Komponente in eine im ganzen Bereich
glatte Funktion ohne obere Randsingularitdt tiber. Daneben gibt es Arbeiten tiber
Fliissigkeitsmodelle, bei denen die Lage der durch Deltapotentiale charakterisierten,
gleichartigen Atome durch einen stochastischen Prozess definiert ist. (LAX, PHILLIPS
und BoRLAND ) .)

In Kapitel I, § 1 der folgenden Arbeit geben wir eine allgemeine Methode zur Be-
rechnung der Frequenzmomente der Gitterschwingungen in drei Normaldarstellungen
an, a) durch die Momente der reziproken Massen, b) durch die beliebig zentrierten
Momente oder Varianzen und c) durch die Semiinvarianten der reziproken Massen.

Aus der Varianzenform verifizieren wir in § 2 die Clusterentwicklung in 0(c?) und
geben ein Ausleseverfahren der Momente an, das in zweiter Ordnung in ¢ mit der
Konfigurationsmittelung zusammenfillt. In § 3 werden als Anwendung die niedersten
Momente der kubischen Gitter fiir allgemeine mit der Gittersymmetrie vertragliche
Kopplungsmatrizen der ndchsten und tiberndchsten Nachbarn ausgewertet und zur
Bestimmung der spezifischen Wirme Cp(7) fiir hohe Temperaturen beniitzt. In
Kapitel IT, §1 wird das Charakteristische der Clusterentwicklung auf beliebige
Ensemble, mit Defektentwicklung ausgedehnt und fiir bindre Gemische und Wechsel-
wirkung nichster Nachbarn explizit diskutiert. Ferner wird die Konfigurations-
mittelung kritisch untersucht und ihre formalen Eigenschaften an Hand einer Cluster-
entwicklung mit der exakten Theorie verglichen. In § 2 werden die Ansédtze der Konfi-
gurationsmittelung verallgemeinert und die Resultate fiir bindre Gemische und Wech-
selwirkung ndchster Nachbarn in den Spezialfillena) ¢ = 1/2,b) mp= Ound c) mp = co
genauer diskutiert. § 3 Schlussbemerkungen.

KARLTEL I

Berechnung der Frequenzmomente in isotopisch ungeordneten Kristallen

Wir legen den Betrachtungen ein eindimensionales Gittermodell mit translations-
invarianten Kopplungsparametern V,, (/,’ = 1,2... N indiziert die Gitterpunkte)
und Massen , zu Grunde. Die Bewegungsgleichungen der klassischen Mechanik
lauten dann

my iy = 'Z Vie s (L.1)
=
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wobel #, die Auslenkung des /-ten Atoms vom geometrischen Gitterplatz bedeutet. Das
zugehorige Eigenwertproblem fiir zyklische Randbedingungen wird:

Tt
u~e, x=0, wy=uy, U =uy, ,,

mlxul:Z Vil e 4 (I.2)
1'

Daraus bestimmen sich bis auf die Reihenfolge die Eigenwerte x”(m,, m, ... my) und
Eigenfunktionen uj(m,, m, ... my), welcher in komplizierte Weise von den Massen m,,
deren Anordnung und den ¥, abhingen. Wegen der Translationsinvarianz der
Kopplungsparameter V,, =V, ; . und der zyklischen Randbedingung bleiben
die Eigenwerte x” bei zyklischer Vertauschung der Massen invariant, wihrend in den
Eigenfunktionen der Index / entsprechend zu verschieben ist.

Die Potenzsummen der Wurzeln (Frequenzmomente) lassen sich hingegen explizit
angeben (s. Ref. 1) und 1%)): u, = 1/m, .

N

N
! 1 Y\ % 1 :
x":-ﬁr—Z(x) =W 2 M'zlﬂla"'ﬂtnl/lﬂzmala”'Vvlnll' (13)

v=1 Lylginilyg=1

Um diese Ausdriicke zu vereinfachen, fithrt man ein Ensemble von Ketten ein, das
folgendermassen definiert ist:

a) V,, seien feste Kopplungsparameter

b) u, (bzw.m;) seien stochastische Grossen mit einer vorgegebenen Verteilung
W(fu’ll Mas - -- /u’N)

¢) die u, zu verschiedenen Gitterpunkten seien statistisch unabhingig und besdssen
dieselbe Verteilung W (u,). '

Diese Annahmen sind fiir einen realen Kristall verniinftig.
a) heisst: Die harmonischen Bindungskrifte P, = — Z V,,;» %, sind unabhingig
v :

von der Besetzung eines Gitterpunktes /, was fiir Isotopengemische sicher wahr ist und
auch fiir Atome mit dhnlichen Elektronenhiillen, die fiir diese Krafte verantwortlich
sind, ndherungsweise gilt. Eine genauere Theorie miisste die prinzipiell vorhandene
Korrelation zwischen der Besetzung eines Gitterpunktes und den benachbarten Gitter-
kriften bertiicksichtigen. _

b) heisst, falls man W (u,) mit der Verteilung > ¢/ § (u, — ) identifiziert, bei der

i=0

die stochastische Variable p, die Werte u® u?, ... u" mit der Wahrscheinlichkeit
Y, ¢1... c"annimmt, dass die Konzentrationen ¢?, ¢! ... ¢” der zugelassenen Atomsorten
A°, AL, ... A" vorgegeben sind.

c) besagt, dass die verschiedenen Atomarten A° ... A" gleichférmig, d.h. mit kon-
stanter Konzentration ¢ ... ¢ im iibrigen ungeordnet verteilt sind. Dieses Fehlen
einer Korrelation ldsst sich physikalisch rechtfertigen, wenn eine Atomart 49, das
Grundatom, sehr hidufig ist und alle {ibrigen Atomarten 4! ... A7, die Stératome, ins-
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gesamt eine sehr kleine Konzentration besitzen. Dann kann wegen des grossen mittleren
Abstandes der Storzentren deren Wechselwirkung und die durch sie hervorgerufene
Korrelation vernachlissigt werden. Ausserdem begiinstigen hohe Temperaturen die
statistische Unabhingigkeit, was in der Momentenentwicklung der spezifischen
Wirme beniitzt wird.

§ 1. Darstellungen der Frequenzmomente

Die Spurformel (I. 3) gestattet, die Momente durch die (reziproken) Massenmomen-
te u™ auszudriicken, wobei grundsitzlich alle Partitionen (%,, #,, ... #,) von n auftreten
koénnen:

Nax=N 2 Wy - - uy) x Z !‘I By, -+ T/liz Vlnll; (L.1.1)
< BN

Liy..

dabei wird iiber alle ganzzahligen Gitterpunkte des N*-Kubus summiert; wegen der
statistischen Unabhingigkeit ist es zweckmaissig, eine Zerlegung des n-dimensionalen
Kubus nach Hyperdiagonalen durchzufiithren. DerFaktor von p™ p® ... u" wird durch
alle Hyperdiagonalen vom Typus #, ... n, gegeben, d.h. durch alle nT/II n;! Kombina-
tionen der Indices 1, 2 ... # zur #, ... n, Klasse (Indexgruppierung = IG)

Caly o la)=0, (... la) =02, ... (g...0t) =1, (I.1.2)
"y * Ny ! ng

wobei tiber die #-dimensionale Hyperdiagonale so zu summieren ist, dass keine Hyper-

diagonalen kleinerer Dimension beriihrt werden, d.h. /2, /2 ... I* diirfen nur paarweise

verschiedene Werte annehmen.

Z (...) =f% 2 Z () + .. (—Hﬁ— Summen)} (1.1.3)

wobei mit (#!/I] n;! Summen) angedeutet ist, dass fiir jede Partition die # /1] n;!
Summen aller Indexgruppierungen vorkommen. Der Strich deutet an, dass /2, [2... /¢
paarweise verschieden sein sollen. Damit wird

— 1 o
= X wnpn A, (1.1.4)
t=0 My ...ng>1
Zn;=mn
1 /
A:’;lng...ﬂt = E_ nZ llZ'lt I/Tlllz .Vlzla «on -Vlﬂll- (1.1.5)
IIn;!

A3 . st seiner Definition nach total symmetrisch. Falls man definiert

n

A
n — HyHg ... Rf 1
Aﬂl ceemg IT (Multiplizitat der n; ny ... n,)! "’ (I.1.6)
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bekommt man die asymmetrische Form:

oo
Al — 2' 2’ Tt 11 T 471
= ok R A Ny Py ... Mg
t=01<n 4 ,

E=0 =0 2<h<... <kg
Shi=Fk

wobel

n _ n
... 1k .. ks — Akl...ks

[
n—k mal

fiir £ > #» verschwindet. Oder in symmetrischer Form wird

Ay, =IT (Multiplizitat der &, ... )! A7, .

-8

Da nur die Multiplizitdt der n; = 1 wegfillt, wird

n
Alll...lkl...ks
n - n —k mal .
Ak = m—k)1 k=2
und
o 001 e s -
A — gn—k k1 g,k k n
= lunk Y= 3 Rk pks AL
k=0 5=0 " k.. kg>2

Zhi=tk

(1.1.7)

(1.1.8)

(1.1.9)

(1.1.10)

DomB, MARADUDIN, MONTROLL, WEISs!?) berechneten in der A-Form die ersten
10 Momente fiir das eindimensionale Gitter im Fall nichster Nachbar-Wechselwirkung
und konnten sogar eine auf das endliche Gitter zurtickfithrbare erzeugende Funktion
fur A} ., finden. TAKENO) gab eine dhnliche Darstellung der Momente ; desgleichen
LitzmANN, RoszA?l), die eine hoheren Dimensionen angepasste Hypermatrixschreib-

weise beniitzten.

Es erweist sich als zweckmassig fiir eine Entwicklung nach kleinen Stérkonzentra-
tionen, die Momente x” durch die beliebig zentrierten Momente der reziproken Massen

anzugeben. Daher fithren wir eine neue stochastische Variable #, ein:

Py = Mo + ;-
Aus der Spurformel 1.3 folgt:

Nin':k;;yg—’jf D) o Ty T

peeily G <iy... <ifg=

ik

Die Matrixsummation kann zu einem festen ¢, ... 7, fiir alle Indizes /,, /,,
vonl;, =1, ... l;, = [, verschieden sind, ausgefiihrt werden.

I <ly< ... <A

oo}
on n—k e e - n—if + 4
Nat= Dug™ Y m oy 2 V=" (V Vig -
7= N

I/lllz ot T/Lnlx'

(1.1.11)

(1.1.12)

... 1, welche

(I.1.13)
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Wegen der statistischen Unabhingigkeit der , hat man eine Hyperdiagonalzerlegung
eines N*-Kubus vorzunehmen

o 0]
1
DRED P P
... Ek:iil

) (Hli'Summen)} (L.1.14)

in Analogie zu (I.1.3)

. o) . o 4
No=2uw ' la 2

0 kl...ks,}l

"S{Z + . (Hk,Summen)} ]

Zki=k (L.1.15)
X 2 (Viz_il)t;z; (Vn_it+il)tji1; . J
<y < ... <ig
Damit wird
L o) . ® 4 o —
=P Y X e Bk (I.1.16)
k=0 S=0 7 k. he>1
Zhi=k
. 1 ; R
Bkt---ks=—ﬁ{zs+ (Hkl Summen)} l
Pt (1.1.17)

"
X 2 (Vo) e (VP70 ]
<o <tgp=1
In{ } treten die Summen aller Indexgruppierungen auf. Die Summation ist wieder iiber
alle paarweise verschiedenen Indizes /* /2 ... I* zu erstrecken. '
Unter Verwendung der Translationsinvarianz und der Summenregel

n n—-k+1n-k+2 n
So= XY 3
Hh<. ... <ip=1 iy=1 d9=1;+1 tp=1tg_1+1
n—k+1n—-k+2-n, n—1—my— ... —ng_,
= (m—my— oo —n,_q) (..2) (I1.1.18)
=1 fg =1 g _1=1
n
=3 2 %-k(...) = ‘k_ (-.-) »
Ny .0 >1 Hy...n>1 J
Ing=mn Eng=n
%]:i]+1_z]’ f=1,2...k—1

(letzteres gilt, weil die Summationsvorschrift symmetrisch ist und daher bei einer
zyklischen Vertauschung erhalten bleibt) wird By j, . 5,
2 ZIS V™), V™), -

Ny...np>1
Eni=n

V™), . (11.19)

By, ..., 1st total symmetrisch in &, ... £, und kann leichter als A}  , berechnet
werden, da ein grosser Teil der Matrixsummationen ausgefithrt werden konnte. Ferner
kann man fiir B}, im Gegensatz zu A}, sehr leicht eine erzeugende Funktion
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angeben. Bei einer Mittelwertzentrierung u, = u wird = 0, das heisst es geniigt, wenn
die B}, . ., fiir k; > 2 bekannt sind. Im iibrigen zeigt man leicht, dass die By
deren Indizes einige 2, = 1 enthalten, durch Linearformen der B}  , mit k; > 2
dargestellt werden kénnen. Von dieser Varianzenform ausgehend, werden nun an

Stelle der 1? die Semiinvarianten G, eingefiihrt.

Def:
ngt) =y = 3 G, (I.1.20)
n=>0
(lf) _— (eit,u) - e%tﬁ (81'“7 , T 0,
7 B _) o (1.1.21)

allgemein wird:

— 1 ' 1

0= Gt 5r Y (k) Gy Gt 5 > (b kake) Gy Gy Gy + ..o (11.22)

kLR >2 Tk ko Ry =2

Lhi=k Zhi=Fk
SO T S UL L S (1.1.23)

bk, ) B R = R= -
s II k!
t=1

ist der Polynomialkoeffizient.

Ein Produkt % n¥r ... yks kann man durch eine Verallgemeinerung des Poly-
k

nomialkoeffizienten (?1 o f“) in einfacher Weise schreiben. (];1 ZJ) gibt dabei die
1 CRCAE ) 1 “- s n r

Anzahl Méglichkeiten an, aus s Klammern mit je &, ... &, Objekten # Gruppen von je
li, 15 ... I, Objekten derart herauszugreifen, dass die /,-te Gruppe Objekte nur einer
Klammer umfasst, aber aus einer Klammer mehrere Gruppen entnommen werden

] & ) die Anzahl Moglich-
i e

r

diirfen. Unter Beachtung, dass der Polynomialkoeffizient (

keiten darstellt aus einer Klammer von %2 Objekten » Gruppen von je /; ... /, Objekten
herauszugreifen, wird die Verallgemeinerung von (1.1.23)

By ooi ke B, L ,
(l;--.l)=2(z.1...z.l)+z 2 XX
r . t; s J1 Js, sl)isg-:} 1 st G i1, 1o

, E,
% n 1.1.24
X(Q;---lj;)(ljf---ljé)Jr (129
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wobei die erste Summe die Anzahl Moglichkeiten darstellt, aus der 7;-ten Klammer alle
s Gruppen zu nehmen, die zweite die Anzahl aus der 7;-ten Klammer s, der Indizes aus
der i,-ten Klammer s, der Indizes zu nehmen; fiir jedes Ifeste $1, Sy ist iliber alle
sl/s;!sy! Kombinationen der Indexauswahl (Indexgruppierung) und iiber alle
Klammerauswahlen ;, 2, = 1, 2... », deren ¢, paarweise verschieden sind, zu sum-
mieren. Zum Beispiel wird d e asymmetrische Form fiir » = 4

Ry .. kg\ ki
(ll l4) _%‘(ll baids l4>
' : 3 k. \ [ &
+1,Z¢: {[(lllz;‘la) (}Zz) +...(4 Terme)J es [(llzllz) (l;ll) +...(3 Terme)”
’ : . ) o (R \ (R \ (B \ (R
+ 2 {(lflllz) (’;’:) (]Ze) +...(6 Terme)} + 2 . (l;) ( l;) ( l;) (l;) .

Dieser verallgemeinerte Polynomialkoeffizient ist symmetrisch beziiglich der Ver-
ky...R .
tauschung der %; unter sich und der /; unter sich. Im Spezialfall (ki kﬁ),wobel

Z R; = 2 ki = k, ist der Koeffizient nurdann #+ 0, wenn £! ... 2" eine Unterpartition
von &, ... k, ist, das heisst durch additive Zerlegung einiger der %; zustande kommt.
Dies ist aus seiner kombinatorischen Deutung evident. Fiir geniigend allgemeine Z;
und %/ zerfillt er dann in ein Produkt von Polynomialkoeffizienten. Z.B.:

<k1+k2+k3 ky ks + kg Ry kg

= k3) (Rs, kg) - I.1.25
kl k2 k3 ) k4 k5 kﬁ k7 ks) (kl) k2l 3) ( 59 6) ( )

Wegen dieser Eigenschaft wird
g w > 1 Ry 5ssdtaX
=Y — )] (k; k,) Gia «se Gyr . (1.1.25)
=0 B, LR >3
Zhi=ZH =k

Damit lisst sich die B-Form umrechnen:

— = = e ki Kk
x=2ﬁn—k2% 2 2:_! 2 (kimkj)le...kalen_ks, (1.1.27)

k=0 s=0 " Ry o hgm2r=0 B, K >2
Zhi=k ZH =k
o0 [e.0] 1
T E"‘An-k E'}_Tw E G&l...Gkr ;:1_'_;37, (1128)
k=0 rmo kR
ZH =k
o @]
1 By.ooo R
Cow=2 7 2 (ki o Bh oy (I.1.29)
$=0"" k.. .kg>2
ZH = Zhy

<H.P. A. 36, 1 (1963)
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Wegen der kombinatorischen Bedeutung der Koeffizienten tragen nun die Uberparti-
tionenk,, ... k, von &%, ... k" bei und ergeben wegen (I.1.25) bei asymmetrischer Schreib-
weise

Cz‘...k' == B:‘ vy BT + (kls k2) BZ} SRR, .. K + — ((;) TermE)}

[ 4
+ (kI; k2 ) BZl+k2+k3 K. K £ e ((3) Terme)}

r . y L (1.1.30)
+ (kl, k2’ k3, k4) Bk1—|—k”—|—k3—l—k‘, K —l— %% ((4) Terme)}

L

+ | (R, B2) (B3, k%) By o gsyppe . ar T - (3 (:) Terme)‘

+ --._E— (kl, kz, ees kr) le+k2++k?-

Wir wollen zeigen, dass C mit B formal iibereinstimmt, mit der Ausnahme, dass keine
Summationsbeschrinkungen bestehen

1 =
Gow=wr & 2 2 My Wy, (130
TR z

Der Beweis wird erbracht, indem man fiir 2 eine Diagonalebenenzerlegung vor-
nimmt, da z.B. in B

!

n=pp, .0

(#4, #5) Indexgruppierungen zu jeder festen Indexgruppierung

(Fjze - lj}:l-}-k?) (a - lj;a) sos (gt vse ljgr)
von By e e existieren, namlich alle Aufteilungen der Klammern von A + &2
Objekten in zwei Klammern der Lingen £ und 2. Entsprechendes gilt fiir die Diagonal-
ebenen kleinerer Dimension. Wihrend die Summationsrestriktion fiir alle » Indizes
l; ... 1, eine Vereinfachung der A-Koeffizienten verhinderte, konnte in der B-Form die
unbeschrinkte Summation tiber # — & Indizes ausgefithrt werden. Die restlichen
Indizes I* ... I’ unterliegen noch der Beschriankungsbedingung, die erst in der C-Form
vollkommen entfillt. Fiir die Rechnungen ist es meist erwiinscht, von den Summa-
tionsbeschrankungen loszukommen. Die Darstellung der Frequenzmomente durch
die beliebig zentrierten Momente der reziproken Massen ist geeignet fiir die Entwick-
lungen von diskreten Massenverteilungen nach kleinen Stérkonzentrationen. Wegen

7= 2 ¢/ (u/ — p°* geniigt es fiir Ndherungen s-ter Ordnung in ¢/ nur B”,

Bklk2 . B}, . ., zu kennen. Alle thermodynamischen Eigenschaften, die sich durch die
Frequenzmomente ausdriicken lassen, kénnen damit in s-ter Ordnung in ¢/ angegeben
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werden. Die Semiinvariantenform (C) ist vom Standpunkt der Massenverteilung fiir
kontinuierliche Verteilungen geeignet; zum Beispiel ist fiir eine Gaussverteilung
Ing(t)=iput— (6/2) 2 =>G,=u, Go=0,G3 =G, = ... = 0, und der grosste Teil der
Terme verschwindet; dies suggeriert, dass das Frequenzspektrum fiir eine Gaussver-
teilung sehr einfach ist (s. Dyson?®) exakte Losung). PIRENNE!!) berechnete C3, (3,

(%, C3; und ermittelte damit die thermodynamischen Eigenschaften in der Ordnung
(1 — (mt/m®))%.

§ 2. Berechnung der Verteilungsfunktion F(x), erzeugende Funktion der B, kg
und Reduktion der Momente

Wir wollen B ,_fiir s = 0, 1, 2 berechnen und hieraus die Verteilungsfunktion
in zweiter Ordnung in den Stérkonzentrationen ermitteln.
0. Ordnung:

1 1 _
Br = WIZ:,% ]71112 e ]7511,51 = N - (V")” = (Vn)o = xﬁ; (121)

da (1 = ;3 wegen der Translationsinvarianz unabhingig von /ist und das Frequenz-
moment eines periodischen Kristalls mit der Masse 1 darstellt.
1. Ordnung:

Bi=" 3 (V). (VMy=7% 3 apay..ap. (122

My ...ip>1 Myt =1
Zn;j=n Zng=n

Zur Berechnung der Summe sei die Hilfsfunktion

o0

E, () =— Z (V;”' (I.2.3)

n=>0

beniitzt; sie ist fiir { > x§** (= Maximalfrequenz des Gitters mit der Masse 1) konver-
gent, da

(V) = (V) = %f f‘e“”“-l’)(x(f))” — -zl;; f dv &1 (x(2))" (1.2.4)

v=1
und daher
_ ¢ N AT (I=0) ¢ T U=1)
E,_,0)=E;; ()= jv“v;: T — S T et (I.2.5)
Somit wird
" 1 -
By = (=)f o 5 P (Eo) + 1)kLm—2ag, (1.2.6)

da E(¢) in der Umgebung von { = oo regulir analytisch ist.
Sei §;(v) eine erzeugende Funktion fiir BY:

oo

Blt) = 3 Byt = — 5o Pln(1+ v (Eo+ 1) {2 dL. (1.2.7)

=1
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Durch partielle Integration erhilt man

1 v
Zms Pl (14 5 B0)
2. Ordnung:

gr 17 /

Ry ks N k
k! Gll.l2 Ny oo ot =1
Rylky! A=~

Fig. 1

(1.2.8)

(1.2.9)

Jede Indexgruppierung lisst sich durch ein Ubergangsschema darstellen, z.B. durch
Figur 1. Die Anzahl Wechsel von /! nach /2 und umgekehrt ist s;, = 4. Da das Schema

zyklisch ist, ist die Anzahl Wechsel eine gerade Zahl s;, =25 (s=1,2..

.). Wegen

(V™),,= (V")yund (V"),,, = (VV"),-, geben alle Indexgruppierungen vom gleichen Typus
812 denselben Beitrag zu B} ; ; die Anzahl der Indexkombinationen zu gegebenem

Typus s, = 2 s ist
- + .
Sia s —1/\s s —1/1\s

; 33 E S e sy (7 0 (P

1 =
kiks — N B
th N k& &) 2 e S

Zn;=mn

Somit wird

2 2 (S B} 1) (iz : 1) 23”¢ (E0+ 1)k—2s(Em)23 C"“"dC-

m= —00 s=1
Wir definieren eine erzeugende Funktion
2(V1 V) = Z Bkk'”l 7’2 )
k=1
und man findet, wenn man die Summationen iiber s %, £, ausfiihrt:

1

'1 E E
[ + 1—|—v1 O Aty ™
v
- ‘ {3 —J:"—Eo

m= —

4

Palvy vg) = Z;}Ziiicndl (1 1+U‘t:2 )(1+1 vb: E)
0 0

E
1+'U1 1+U2

(1.2.10)

(1.2.11)

(1.2.12)
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Fiir kleine Storatomkonzentrationen wird daher

7~ 7= [ dF() — [ B = [0 d AF ()

00 "oo

=X S~ i) Bt g YA Y
7 k=1 Y] kyke =1 (I.2.13)

X gy () — ) (W — ) By, + 0()

“RZOA( ) T B 1 1) o

)

I : )
“—Mo'z‘“rzﬁgf" Z“lﬂ + ¢/ Ey) 2_4?0“"’
1+ ¢/ E, sJEm

e"E, 1+ ¢l E, 3
e 2 e e ey

m= —00

(1.2.14)

y

8-7_——_——A———'vj_~= —E.,—_ _;rizi.
1407’ )7y m0
E(C), E,.({) sind reguldr analytische Funktionen mit einem Verzweigungsschnitt auf
der reellen Achse, daher wird die Storung AF(x) der integrierten Verteilungsfunktion

AF(x) = — = J1 ¥ eiln (1 + ¢/ Ey)

ML o (1.2.15)

ej’Em * !
ECJ ci’ Z In TETEoN (1+sf'£0) + 0(c?)

W= —0C0

[=x+10

Dieses Resultat ist identisch mit der Clusterentwicklung von MoNTROLL, PoTTS?) und
LirscHITZ, STEPANOVAS®). Umgekehrt kann diese Entwicklung als erzeugende Funktion
fur die B,(vy ... v,) und somit fiir die B}, betrachtet werden. Diese erzeugende
Funktion steht wie diejenige fiir A}, in einem engen Zusammenhang mit der
periodischen Kette, indem fiir 8(v, ... v,) nur s Defekte in die Kette gebracht werden
miissen. Damit ist geniigend dargetan, dass eine Stérungstheorie der Momente und der
daraus ableitbaren physikalischen Gréssen nicht iiber den Rahmen der Clusterentwick-
lung hinausgehen kann.
Das allgemeine Resultat der Clustertheorie lautet:

AF(x) = — = {Zch o+ 5 Ec’*c’*<¢%”zz— P—dH N

715 2

57 2 ¢ oo (Bl — Bl — Bl — B+ b+ S+ ] >N2+.--},

’ jl: 7>2s E]

(1.2.16)

N— r—

wobel

A 73_8¢’* o 6,5+ &' E,_ 1 (4] " (1.2.17)
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eine s-reihige Determinante und < > bedeutet, dass iiber alle Konfigurationen der
Defekte in /, .../, zu mitteln ist; dabei existieren im limes N - oo die Grenzwerte

N {gph: — @ — > etc.
Die erzeugende Funktion fiir 8 (v, v, ... v,) wird daher

o0

Bs(vy ... v) = Z By g VN Vg U

Byooikg=1

= lim N° 1/¢7"2:':{S _( G i o (i) Terme) (I.2.18)

1\«—)00 T8 s gy

b ( e T (Z) Terme) — e (TR + ¢§g)>,

wobel
-

J = .
€ 1+ v/

(=1,2:...9).

Bei der direkten Berechnung der B . ; aus den Momenten hat man zu jeder Index-
kombination der Klassen %, ks, ... k, ein Ubergangsschema fiir s-Stufen, wobei die
Anzahl Uberginge von 4 nach % und umgekehrt durch s;, gegeben ist. Die Anzahl
Indexgruppierungen vom gleichen Typus sei

k] k2 ks
S12 Ses Ss—1,s
S13 s.s‘—-2,s

Sl,s

Da die Beitrige desselben Ubergangstyps gleich sind, kann man B}, vereinfachen
und eine (I.2.11) analoge Darstellung finden.

Nun wollen wir die B}, ;, unter dem Gesichtspunkt der Reduzierbarkeit auf die
ungestorten Momente xj betrachten. Es ist zu erwarten, dass die reduzierbaren Anteile
x"*? der Momente x” auf ein einfacheres Problem fithren. Offenbar besteht die Aufgabe
darin, alle Ubergangsschemata zu finden, die sich durch Matrixmultiplikation auf die
Diagonalelemente (V7),, = (V"), reduzieren; sie mogen reduzibel genannt werden; da-
neben gibt es teilweise reduzible und irreduzible Schemata. B} ist, da nur eine Stufe
vorhanden, a fortiori reduzibel: B} = B},

In 2. Ordnung sind offenbar alle Schemata mit mehr als zwei Wechseln irreduzibel,
da mindestens 4 Faktoren (V*),,. vorkommen und die Summation daher nicht auf
ein Matrixprodukt fithrt. Hingegen ist s;, = 2 vollstindig reduzibel, und da

By ks
oy
Y

ist, wird
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Bl = 2 X N0 (Ve (7)o (V8 (129
R -
Zng=mn

=n 3 (V... (V=2 [(V™-1F), — (V-1), (V)] (1.2.20)
Ay oo np 21

Bj%* lisst sich sogar auf B} zuriickfithren. Dazu beniitzen wir die Hilfsfunktion

STy s 1)

Sex, ... %) = 2 Bl .. 000, (I.2.21)
Hyy oot 21
Zng=mn
f AFy(x,) ... dFy(x) ST (1 ... %) , (1.2.22)

leri:._,d +k By =mn /dE)(xl) co Ay ) SE(%y Xy o X g, X, Xp—1) ‘(I-2-23)

wobel & =k, + &,.
S%(%y %4 ... %) ist eine homogene Funktion, daher gilt die Euler-Relation:

Maﬂ

) X Ox SHE&; Ky wne ) = 8 SY(Hg oo ) - (I.2.24)
Wegen
Skl o+ Xy %)
pe - (1.2.25)
= ,7,0_—1]“_7;524(961 e Xp_g Xp_q) + ﬁtsg_l(% cor Kp_p %)

wird im limes %, > %, _,

0

Xr—1

Sty e Ky Hp g Fy) = (xk I 1) St (% ... %))  (12.26)

oder allgemein

" v 0 kz—l % E
Sk(xl CRCIE xl xz LR x2 e x?" LR x?’) — Z 1 (xz‘ 67 - 1) S,r (x]_ xz L) xT) . (1-2-27)
—— — —— — Nt 1=1 7

ky mal %k, mal kp mal

Damit wird (I.2.22) in (I.2.19) eingesetzt unter Verwendung der Symmetrie und der
Euler-Relation:

n re 7 E4+1 "
By +kBy=n""0" f AFy () vr dFo(y 1) SP_y(Fy e %p_y) - (1.2.28)

Also
By, =mn—k+1) Bi_,—k B}, (1.2.29)

wobel
k — kl + kz .
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Wir wollen jetzt zeigen, dass es in jeder Ordnung vollreduzible Schemata gibt, d. h.
Bped . # 0ist und auf welche Art sie sich charakterisieren lassen. Offenbar ist ein
Schema s-ter Ordnung vollreduzibel, wenn es s — 1 mal reduziert werden kann. Da
bereits diagonale Anteile (V'7), unwesentlich fiir das folgende sind, seien sie durch ...
angedeutet. Betrachtet man als Beispiel die Indexgruppierung

2 e V™o P e (Ve (V)i oo (V)0 (V™)

1.1 (ng)

e (™o e V) e (V™ e (V) g e (V™) s oo (V) g (V) o o

so kann man offenbar von /2, I3, I4, I8, I8, I9 beginnend reduzieren, da diese Indizes nur
paarweise auftreten. Wihrend fiir die Kombinatorik das Ubergangsschema zweck-
missig war, erweist sich eine graphische Darstellung, durch Punkte in der Ebene, die
der Indexfolge entsprechend verbunden werden (Fig. 2), zur Charakterisierung der
Reduzierbarkeit als besser. Offenbar bedeutet eine freie Ecke ein Indexpaar, iiber das
summiert werden kann; der Reduktion entspricht graphisch das Verschwinden der
betreffenden Ecke. Daraus folgt, dass ein Graph dann vollstindig reduzibel ist, wenn
er einfach zusammenhingt. Irreduzibel sind die Graphen 2 4 und 2 ¢. Nach der Summa-
tion ergibt unser Beispiel bis auf ebenfalls vollreduzible subtraktive Terme, die von
der Summationsbeschrinkung herriihren:

2 . (V”1+”2)0 (V"a'l‘”;)c' (Vn5+nﬁ +nlz+”13)0 (V"7+”1n+"n)0 (V”s‘f‘”s)o ..

(ng)

Die weitere Auswertung hitte von Formel (I.2.27) Gebrauch zu machen.

Fig. 2

Es wird nun an Hand der explizit berechneten Momente x ... 8 fiir ein lineares
Modell mit Wechselwirkung néchster Nachbarn gezeigt, dass die vollreduzierbaren
Anteile der Momente x*"* in der 2. Ordnung mit den Momenten x"* des konfigurations-
gemittelten Eigenwertpolynoms iibereinstimmen. Wir werden spiter sehr einfache
Griinde angeben, warum die ersten drei Momente exakt sind und ausserdem in erster
Ordnung in den Stérkonzentrationen Ubereinstimmung besteht. Es gilt:

. __ Rnuk _ pnred " nyg _ Prred " N n red
By=By*=B,™, By + B, = Bil» B, * B, + Birr,-  (1.2.30)
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Die exakten Momente lauten (s. Ref. %)) in der Varianzenform, falls-'man die Feder-
konstante = 1 setzt:

X =2[ =z,
K2 =60+ 42 = x2*,
X3 =20+ 36 o + 8P = 23,

2t =T0Ft + 232 32 i + 96 i o + 16 1* + 18 122,
(I.2.31)

x5 = 252 @ + 1300 3 0% + 760 B2 1® + 240 @ n* + 32 ® +320 @ 2°
+ 100 12 23,

X8 = 024 1S + 6744 % 12 + 4992 i3 13 + 2256 2yt + 576 fi 1P + 64 40

+ 3444 12 72° + 2088 7 2 17 + 146 17 + 264 02 1 + 24 2°.

Die aus dem konfigurationsgemittelten Eigenwertpolynom mit Hilfe der Newton-
formeln gefundenen Momente sind:

X =70t 4+ 232 @2 2 + 96 I P + 16 7 + 16 42,
% = 2525 + 1300 3 2 + 760 i2 7 + 240 i 1 + 32 9 + 280 @ "
+ 80 12 13, (1.2.32)

28% = 024 % + 6744 Jt 42 + 4992 8 1 + 2256 2t + 576 @i 1> + 64

+ 2976 2 12 + 1632 12 0® + 96 1% + 192 12 n + 48 2,
das heisst '

Bg =32,

By =80, Bi—560,

B =192, B =192, B} —=1632, B =5952, B —288.

Mit Hilfe von (I.2.29) l4sst sich die Vermutung leicht verifizieren.
Dagegen wird B§3$* = B, wie man aus den zu BS,, gehérigen Graphenbeitrigen

N M- O

leicht ermitteln kann.

Welche der beiden Ndherungen des Problems als besser anzusprechen ist, lisst sich
erst durch Vergleichen der entsprechenden Verteilungsfunktionen entscheiden. Wir
wollen unsim II. Kapitel auf die Diskussion der Konfigurationsmittelung beschrinken.
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§ 3. Verallgemeinerung der Methode auf mehr Dimensionen und Berechnung
einiger Momente fiir kubische Gitter

Die bisherige Berechnung der Momente aus der Spurformel (I.3) beniitzt nur die
Eigenschaft der statistischen Unabhingigkeit verschiedener /. Fiir ein Bravaisgitter
wird die Eigenwertgleichung:

o aa’
mzx“z—z Ly “z ;

— l,a, —_—

wobei / die Gitterpunkte, « die Komponenten des Bravaisgitters indiziert. V¥# sind die
Kopplungsmatrizen. Somit ergibt die Spurformel o

I N = 2 2 My - Vzliz V?f‘: . V?‘ﬁ* . (I.3.1)
al...anﬂ.‘.lﬁ - =
Wegen des skalaren Charakters der Massen hat die statistische Unabhéangigkeit nur
einen Einfluss auf die Auslese der /, wihrend sich die a; , . .. o, Summationen als Spur
formal zusammenfassen lassen.
Fiir einfach kubische Gitter wird (V*)#¢ = §** (V7)i; damit entfillt die « Summa-

tion fiir B%, da diese nur (V”), 1 " enthalten:

By =" (V™)AL (V™)L ... (V)3 (1.3.2)
"y annﬁ f 1

5 = [ 2 dEyf) = (V3

kann man die Beitrdge in 1. Ordnung in der Stératomkonzentration durch die Ver-
teilungsfunktion des periodischen Problems allein ausdriicken, wéahrend in héherer
Ordnung Nichtdiagonalterme (V”) *%" yvorkommen, das heisst Polarisationseffekte eine

Rolle spielen (sieche PIRENNE 11)). Die dadurch entstehenden Komplikationen fiir die
Auswertung kann man vermelden, wenn man sich auf richtungsentartete Wechsel-
wirkungen mit it = = §** 1}, (NEWELL, ROSENSTOCK 22)) beschrinkt. Fiir k-dimen-

sionale, einfach kubische Gitter mit zentraler und nichtzentraler Wechselwirkung
nidchster Nachbarn wurden von MAHANTY, MARADUDIN, WEISs %) die thermodynami-
schen Eigenschaften in der Ordnung ¢? untersucht. Die Einfithrung einer nichtdiago-
nalen Wechselwirkung geniigt, um die Richtungsentartung aufzuheben. Fiir kubisch
raum- und flichenzentrierte Gitter fithrt man eine Basis o = 1,2 ... s ein. Sind die
Gitterpunkte (g, /) statistisch unabhingig, so hat man / mit (g, /) zu identifizieren und
die Zerlegung nach den (g, /) Paaren auszufithren; da in B} nur Diagonalterme in / ein-
gehen und ferner x% = (V")iﬁ ist, geniigt die Kenntnis der ungestorten Verteilungsfunk-
tion, um die Stérung in 1. Ordnung zu erhalten. In hoherer Ordnung treten Nicht-
diagonalterme in /, I’ und somit auch in g, o’ und «, " auf, was auf den Einfluss der
Basis-Polarisationsfaktoren zuriickgeht.

By=— 3 (Mt (VM. (V)i (1.3.3)
nlz.:. .np =1
ni="n
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wobel V:g ;’ die Kopplungsmatrix ist, fiir die

(Vn) s 5QQ,(Vn)[11)} ‘

—~0 Q
|~ q

gilt. Fiir das Folgende seien die allgemeinsten Kopplungsmatrizen, die mit der Gitter-
symmetrie vertriglich sind, fiir die Wechselwirkung mit den nichsten und {iberndchsten
Nachbarn den Momentenberechnungen zugrunde gelegt.

Die ersten drei Momente werden in der Varianzenform:

Xo»

|
o =

X

<

PR ARTE, P PRAEAR LA AP, (134)
- B Xg I e o H

oder in der Momentenform

T—ky, X=pxg+mRAx%, 28 =udxp+ 3uudigAnd + pAxd. (L3.5)

Berechnung der ungestérten Momente und ihrer Varianzen:

a) einfach kubische Gitter

A 0 0
1. Nachbarn (6) Vigy=—( 0 B 0] etc.
0 0 B
C DO
2. Nackbarn (8) Vo= — (D C 0] etc
0 0 E
%g =2A+4B+8C+4E,
Ax =242+ 4 B2+ 8C*+8D%+ 4 E2, (1.3.6)

Axj=—48A BC—24 B2E —48C?E + 16 D?,

b) kubisch raumzentrierte Gitter

0 A A B B
1. Nachbarn (8) T/I/ql/:—( ), A=|B A B etc.
27 /2 /2 61[0
B B A
c 0 0
B0
2. Nachbarn (6) Vigs = — 08/’ B=(0 D 0
0 0 D
% =8A4A+2C+4D,
A2 =8 A2+ 16 B2+ 2C2 4 4 D2, (1.3.7)

A3 = — 24 A2C + 48 B2C — 48 42D,
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c) kubisch flichenzentrierte Gitter

SR NYE

1. Nackbarn (12) Vl/ 1/(,:'— , A=|B A 0} etc.
il 0 A0 0 00 C

A0 00

2500\ oo
2. Nachbarn (6) Vigo = — , B=|0 E 0| etc

0 08B0 0 0 E

00 0%®B :
%9 =8A4+4C+2D+4E, l
Ax3—8 A2+ 8 B2+ 4C%+2D%+ 4 E2, (1.3.8)

A3 — — 24 A2D — 24 A°E + 24 B2D + 24 B2 E — 24 C* E.

In Spezialfillen von Federkriften wurden die ungestérten Momente von MoN-
TROLL!8) und MONTROLL, PEASLEE #) berechnet. Die Momente " sind geeignet, um im
Sinne der Momentenmethode die Verteilungsfunktion zu approximieren. Diese Funk-
tion kann Effekte, in der im wesentlichen nur die niedersten Momente eingehen, gut
wiedergeben.

Die spezifische Wiarme C,(T) fiir hohe Temperaturen ist solch ein Effekt, der sich
als Potenzreihenentwicklung nach 1/72 darstellen lasst, wobei der Koeffizient zu 727

im wesentlichen das 2 n-te Frequenzmoment w?” = " ist (THIRRING 25)). Inwieweit
man Effekte von 0 (1/72) fiir hohe Temperaturen noch feststellen kann, hingt von der
Grosse der anharmonischen Terme der Wechselwirkung ab. Falls diese geniigend klein
sind und erst fiir Temperaturen 7" > 0, wirksam werden, kann sich der Unordnungs-
etfekt bemerkbar machen. Die spezifische Wirme pro Atom wird dann

CTJ = n— B fi 2”7
7&;=:3k(1—n2=1(*) t@n -1 50 () ") (L350
wo B, die Bernoullizahlen
1 1 1
Blzgl Bz:"?ﬁ-, B3:-‘ZZ—...

sind. In 0 (1/72) geht nur der periodische Kristall mit der Masse 1/u ein.

Eine genauere Diskussion der anharmonischen Effekte in ungeordneten Kristallen
miisste die Vorteile der Maxwell-Boltzmann-Statistik beniitzen und eine Ensemble-
theorie fiir den Logarithmus der Zustandssumme aufstellen. Diese zerfillt fiir Gitter-
schwingungen in einen kinetischen und potentiellen Anteil; dasselbe gilt fiir die aus
In Z zu bestimmende spezifische Warme. Da fiir den kinetischen Anteil das Aquiparti-
tionsgesetz gilt, wiirde eine Ensembletheorie mit beliebigen stochastischen Massen und
festem Wechselwirkungspotential das Resultat des geordneten Kristalls liefern. Fiir die
Abweichungen davon sind also die fiir hohe Temperaturen sehr kleinen quantenme-
chanischen Effekte verantwortlich.
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KAPITELII

Ensembletheorie der ungeordneten Kristallgitter

In der Clustertheorie der Defekte in einem periodischen Kristall betrachtet man
eine additive Funktion, zum Beispiel die freie Energie g; man kann ihren Wert g7,
fiir £ Storatome in den Gitterpldatzen/,, I, ... J, explizite angeben, da man im Gegensatz
zur Clustertheorie der realen Gase die zugehérige Eigenfrequenzgleichung Py, ., (%)
kennt. Wegen der Invarianz der Eigenwerte x” gegeniiber einer Translation hat
g ;, ebenfalls diese Eigenschaft. Die Clustertheorie zerlegt g nach den Beitriigen
der einzelnen Cluster, zum Beispiel Ag} = g} — g°ist der Selbst-g-Beitrag eines Defekt-
atoms im Kristall, Ag?, = g7, — g} — g} + g° ist der Paarwechselwirkungsbeitrag zu
g eines Clusters mit Defekten in /, und /, etc. Das totale g setzt sich aus den mit der ent-

sprechenden Anzahl Cluster £-ter Ordnung (Z) multiplizierten, iiber alle Konfigura-

tionen gemittelten Clusterbeitrdgen zusammen (N = Gesamtzahl der Gitterpunkte,
#n = Gesamtzahl der Storatome):

g=2g"+ (714") Agr> + (Z) Agh,> + - (IL.1)

Im limes N - oo, #n - o0, so dass n/N = ¢ = konstant ist, wird bei exponentiellem
Abfall der Wechselwirkung

oo

1 ’
{&hty. 1) ~ T & Aghy s (IL.2)

11=0.12,ls,...lk= -

wobei {iber alle paarweise verschiedenen /;, /, ... [, zu summieren ist.
Die Stoérung der freien Energie pro Atom wird fiir N - oo

— o0
- Sl gy Z Ags, + 57 2 2 Agd,, +...  (IL3)

lz_Aoo ly= =00 [3= —00

Wahrscheinlichkeitstheoretisch kann die Aussage prizisiert werden. Ein Ensemble sei
gegeben durch die stochastischen Variabeln m;, m,, ... my (zum Beispiel Massen, aber
auch beliebige andere Kristallparameter zu einem Gitterpunkt), die insgesamt stati-
stisch unabhingig seien und die Wahrscheinlichkeit 1 — ¢ fiir m; = m 4 und ¢ fiir m, =
mp hitten (bindrer Kristall). Dann ist der Ensemblemittelwert g von g(my, m,, ... my):

g=(1—¢" g+(N) (1 -0 c<g>+(§) (L= ¥ el + .. (L4

oder nach ¢ entwickelt:

N N
§=g°+(1)c<g}1 = g e (2) g, — & —g,+e>+..., (L5
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n
k

Anstatt die gemittelte Funktion g nach ¢ zu entwickeln, kann man mit der Verteilungs-
dichte so verfahren. Man erhilt dabei eine der Entwicklung (I1.5) entsprechende
Summe von Produkten von §-Funktionen, die fast immer in m, = m 4 liegen und daher
auf die Berechnung von Gittern mit nur wenigen Defekten fithren. Besitzt die das
Ensemble definierende Wahrscheinlichkeit einen oder mehrere kleine Parameter
cl, ¢ ... ¢" derart, dass die Potenzreihenkoeffizienten von (c¢!)* ... (¢")*r §-Funktionen
oder deren Ableitungen von héchstens %, Defekten der Sorte 1, %, Defekten der Sorte 2
etc. involvieren, so kann man das Problem im Sinne der Clustertheorie auf das perio-
dische Gitter mit einigen Defekten zuriickfithren. Man kann solche Ensembles mit
Defektentwicklung finden. Die Verteilung von Kapitel I zeigt fiir kleine Stérkonzen-
trationen ¢! ... ¢” diese Eigenschaft. Aber auch ein Modell, das die Wirkung der Aus-
lenkungen d, gleichartiger Gitteratome vom geometrischen Gitterplatz auf die elektro-
nische Struktur nach einer Verteilung

was wegen ) ~ ck k) im limes N = oo in der Ordnung N mit (II.1) tibereinstimmt.

L I ;
f(01 ... 0y) = gf(él) , f(0) = [/ZT g~ %20
beschreibt, gibt fiir kleine ¢ eine Defektentwicklung. Damit kénnte der Einfluss der
thermischen Gitterschwingungen auf das Spektrum der Elektronen fiir ¢-formiges
Atompotential untersucht werden. HAuG, SCHONHOFER ) fanden fiir gitterkommen-
surable Phononenwellenldngen (Supergitter) eine Aufspaltung und Verbreiterung der
Energiebdnder. Da man aber ein Gemisch von allen Wellenldngen hat, geht die Super-
gitterstruktur im realen Kristall verloren; eine statistisch unabhingige Verteilungs-
funktion der Auslenkungen diirfte dem Problem eher gerecht werden.

§ 1. Frequenzspektrum fiir kleine Konzentrationen und kritische Untersuchung
der Konfigurationsmittelung

a) Spektrum der exakten Eigenwertgleichung.
Sei g eine additive Funktion in den Frequenzen x”, so wird nach einem Satz der
Funktionentheorie (siche Ref. 7))

B=x 2 o) = 5o 95 ¢(x) dIn P(x), (I.1.1)

v=1

wobel P(x) das Eigenwertpolynom mit den reellen Eigenwerten x* ist. Das Kontour-
integral hat dabei den Bereich der »”, bzw. die ganze reelle Axe zu umschliessen.
Der Ensemblemittelwert der physikalischen Grosse g lisst sich daher schreiben

E=T—w 2600 =z $ et din Pl . (I1.1.2)

v
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wird g im limes N — oo von O (1) und daher mit der Bezeichnung

R= lim —InP(), (IL.1.3)
E= 517 95 a(x) dR(x) = f g(x) dF (%) . (IL.1.4)

F(x) ist dabei die Verteilungsfunktion der Wurzeln x”. R(x) ist eine analytische Funk-
tion mit einem Verzweigungsschnitt und abzidhlbar unendlich vielen Polen auf der
reellen Axe, daher wird
1 .
=——1i . 1.

F(x) nagrilo]R(x+ia) (IT.1.5)
Die Schwierigkeit fiir die Auswertung besteht darin, dass ein arithmetischer Ensemble-
mittelwert des Logarithmus des Eigenwertpolynoms, das heisst ein geometrischer
Ensemblemittelwert fiir P(x) selbst zu ermitteln ist. Wir fiihren die Auswertung fiir
den bindren Kristall mit kleinen Stérkonzentrationen durch. Dabei ergibt sich im
limes N = co (siehe I.2.15) bei passender Wahl der Frequenzeinheit

11+.‘3E0 e E,, 1 ]

1 - E,2 1+¢E

AF(x)z—;]lcln(l-{—sEo)+0221n 6(1”;83;;‘ “+...[ . (I1.1.6)
m=1 x+1

Es empfiehlt sich, an Stelle von x die Variable 7im Grundband und e durcht =n 4 70
im Storbereich einzufithren, dann wird x + ¢ 0 der komplexen x-Ebene auf den Weg C
(siehe Figur 3) der 7-Ebene abgebildet, nach dem Gesetz:

x = sin? -
o

@

.

0 7
Fig. 3
Bei Integration von
E ¥ eim‘t' dT’
n(%) = 2n x(t)—x
T'=—-n

fiir x > 1 (Stérbereich II) und analytischer Fortsetzung in 0 < x < 1 (Grundband I)
findet man fiir (I)

% = sinZ%, E fy) = itg% el (I1.1.9)
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und fir (Il)t=x+ 140, ¢ > 0,

x=Ch*7, E,f0) = (=)m+1 Cth ¢~ I"l°,

m
Damit wird die Verteilungsfunktion

AF = F —Fy=cFK + 2F,+ ...

mit
’O <0
Y(x) =1 (Heavysidefunktion) (I1.1.10)
l 1 x>0
und
| 0 eé¢(abd)
65, (ab) — .
1 ee(ab)
1 1
F=-— arctg (s tg —;—) — 5 Y(0) + 9, (Y (0 — 09), (I1.1.11)
wobei '
Aog) =1 = 7 =0,
w1 [ detg(zf2) ™ 2 1
Iy = Z{ narg[l ( T+ietg (7/2) )]r+i0+ 5 Y(o)

m=1

I (I1.1.12)
-+ 65, (01) [‘-’5m, (OM,)Y (‘7 — 0 (m)) + ¥ (fI — Og (m)) —Z2XY o~ Uo)]}: ]

wobei

e s _1_ & _ ,—om
Ml—[ ] A”‘(gfl Th ¢/2 (1(+)e )

A?nl(o'l(m)) =0, Azmz(o'z(m)) =0, 0<oy(m) <oy<<oy(m) <oo.

Das Resultat in 1. Ordnung (MAHANTY, MARADUDIN, WEISs?)) gibt fiir den Fall
¢ > 0, das heisst die leichte Masse mj ist die seltene Atomart, eine Verkleinerung der
Wahrscheinlichkeit im Innern, wobei die htheren Frequenzen um so stdrker betroffen
werden, je kleiner mp ist. Ferner treten am oberen Rand des Grundbandes 7 = 7 bzw.
o = 0 und in ¢, Linien, die Rand- und Hauptstorlinie auf; letztere verschwindet fiir
¢ < 0. Die Wahrscheinlichkeit am oberen Rand wird negativ; darin deutet sich in
singulidrer Weise der zu erwartende Abfall der Wahrscheinlichkeit am oberen Rande an
(siehe Fall unendlicher Masse my und DEaN, MARTIN !9)). Die Normierung verlangt fiir
eine Potenzreihenentwicklung f f1(x) dx = O und ist erfiillt, da das Grundband den
Beitrag 1/2 — 4, oy ergibt. In 2. Ordnung werden die Grundwahrscheinlichkeiten fiir
lange Wellen weiter verkleinert, und derWert xll?l . F,(x) wird M, — M |2, wenn man die

Summation iiber # bei M abbricht. Die Randlinie besitzt eine Intensitat M /2, wihrend
jede der2 M — M,-Storlinien die Intensitit 1 besitzen und fiir m — oo gegen die Haupt-
storlinie streben. Deren Intensitdt — 2 M ergibt die Normierung f fa(x) dx = 0. Die
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Storlinien der Klasse oy () werden fiir 0 < ¢ < 1/2, dasheisst 1/2 m, < mp < m4und
m <M, = [1/2 ¢] im Grundband absorbiert. Fiir die hoheren Ordnungen wird die
Mannigfaltigkeit der Storlinien noch grésser. Die Beitrdge lassen sich immer in Grund-
band, Randlinie und Storlinienkomplex aufteilen. Die Clustertheorie der ungeordneten
Kristalle setzt also kein Stérband in Evidenz, wie das Theorien mit Supergittern hoffen
lassen, sondern einen tiber den Stérbereich sich erstreckenden Stérlinienkomplex. Man
kann versuchen, wie das in der Schmidt-Paartheorie gemacht wurde, die Linien in der
Umgebung der Hauptstorlinie durch eine stetige Verteilungsfunktion zu ersetzen, in-
dem man die Stératomabstinde m als kontinuierliche Variable betrachtet.

b) Konfigurationsmittelung.

Von MAHANTY!®) wurde vorgeschlagen, an Stelle einer geometrischen Ensemble-
mittelung der Eigenwertgleichung P(x) = 0, zunichst eine Konfigurationsmittelung
von P(x) iiber alle N !-Permutationen der Massen #,, #,, ... my auszufithren und das

konfigurationsgemittelte Polynom P*(x) zur Bestimmung der Verteilung f(x) zu be-
niitzen.

PH(x) = (P(x)> = w7 3 Pla, my my ... miy) (I1.1.13)

alle Permutationen von (4y, 7,, ... 4y). Dies erscheint zunédchst sehr willkiirlich, da nur
die Mittelwerte von physikalischen Grossen einen Sinn haben. Solche vorzeitige Mittel-
werte werden 6fter in der Physik verwendet (zum Beispiel in der Boltzmann-Gleichung,
LuTTINGER, KOHN?7)) und bei geniigend kleiner Varianz der vorkommenden stochasti-
schen Variablen als berechtigt angesehen. Eine Konfigurationsmittelung ist eigentlich
nur ein Symmetrisierungsprozess und daher schwicher als eine Ensemblemittelung.
Letztere fithrt auf die virtuelle Kristallapproximation eines periodischen Kristalls.
Das Eigenwertpolynom fiir Wechselwirkung nichster Nachbarn lautet in Normalform
(x"-Koeffizient = 1) '

Pa) =2 — Cya¥ 14 a2 — ..+ (—)V Cy. (IT.1.14)

Die C, sind durch die Summe der k-reihigen Hauptminoren der Matrix

2 —p O 0 . . 0 — M1
'—Mg 2!,‘2 _#2 O . O 0
9 — g 2pg —puz 0 § 0 0

0 0 0 - - —My_y Z2py_y —HUN
—py O 0 S * — Py 2py

gegeben.

Cl=2611, Cz=3a2+2‘2a11, C3=4a3+3'2a21+2'2'2a111, (II.I.IS)

mit
Bp by = 2 M M, -+ Hig > (I1.1.16)

5 H.P.A. 36, 1 (1963)
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wobei die Summation iiber alle Indizes 7;, §5 ... f, derart zu erstrecken ist, dass nur
jeweils %, &y, ... &k, Indizes benachbart liegen.
Zum Beispiel

Gy =pyt e+ oo T Uy, A=l g T Yoyt o+ Uy 1 Uy T Py M
(I1.1.17)

Gy = foy flg + fy Pl + flo gt oo o Uy Uo

etc.
Wenn man P(x) mit C(u,, gy, ... uy) multipliziert, bleibt die Verteilung der Wurzeln

ungedndert. Eine Ensemblemittelung von C P(x) hingegen gibt andere Resultate als

P(x), wie aus den ersten Momenten schon ersichtlich ist. Die Ergebnisse stimmen
iberein, wenn C unabhingig von p;, u, ... uy ist.

Falls man die Normalform mittelt, erhdlt man einen virtuellen Kristall mit der
Masse 1/u, falls man mit C = 1/uy ys ... puy mittelt, einen virtuellen Kristall mit der
Masse m (letzterer Fall stimmt mit der Kontinuumstheorie fiir lange Wellen tiberein
und wird daher bevorzugt, siehe Ref. 12)). Die Konfigurationsmittelung ldsst eine
grossere Klasse von Multiplikatoren zu, ndmlich fiir alle symmetrischen Funktionen
C(uy, to ... py) haben <{C P(x)> = 0 und { P(x)» = 0 dieselbe Verteilung, da die Konfi-
gurationsmittelung an symmetrischen Funktionen nicht angreift, das heisst C = 1 und
C = 1/uy g ... uy geben dasselbe Resultat, im Gegensatz zur Ensemblemittelung. Aus
demselben Grund stimmen bei der Konfigurationsmittelung die ersten drei Momente
x"™* von P*(x) (in Normalform) mit den exakten Momenten x” iiberein. Die Potenz-
summen S, der #” kann man mit den Newtonformeln durch die algebraischen Grund-
funktionen C, ausdriicken:

S;=Cy, S;=C3—2C,, S3=Ci—3C,Cy+3C,s,

S, =Ct—4C3C,+2C3+4C,Cy—4C,,

L (I1.1.18)
N 2% =(S5) =<{C} —3{C;Cy) +3(Cy,
N =GP — 30 0> +- 34645 .
Da C, symmetrisch ist, vertauscht es mit der Konfigurationsmittelung
(Cy Cod = £C4Cq) =+ a3 = % (I1.1.19)

und entsprechend

F=X*, x2=22%,

woraus die Behauptung durch Mittelung folgt.
Da C, nichtsymmetrisch ist, wird

(CB + (CH? = xt & 1%, (T1.1.20)
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Allgemein stimmen wegen der Struktur der Newtonformeln die Momente bis zur
Ordnung # = 2%+ 1 iiberein, wenn C,, C,, ... C;, symmetrische Funktionen in

Y1, Mg -« iy sind. Untersucht man die Momente x*"*, die man aus der Konfigura-
tionsmittelung der r-ten Potenz (r=1,2,3...) des Eigenwertpolynoms P~ *(x)
= ( Pr(x)) erhilt, so findet man aus denselben Griinden eine Ubereinstimmung der
ersten drei Momente

=%, Py S Gy (I1.1.21)

wahrend die hdheren Momente um so mehr vom exakten Resultat abweichen, je grésser
v 1st.

Die Polynome (P fiir r =1, 2, 3 ... zeigen, wegen der Homogenitéit der Koeffi-
zienten von P, die Eigenschaft, dass sie nach der Mittelung ¢ > bis auf einen vom
Homogenitédtsgrad £ und N abhingigen Zahlfaktor (V) die entsprechende symmetri-
sche Grundfunktion a, in y,, u,, ... uy erzeugen. Man kann kein Polynom von diesem
Grundfunktionstypus

P(x) = ZV‘ (=) b, (N) a; 2~ F (I1.1.22)

konstruieren, das das 4. Moment richtig wiedergeben kann. Hingegen sieht man, dass

die Momente ¥*"* mit den exakten " iibereinstimmen, wenn man formal 7 - 0 gehen
lasst; Py(x) sei ein durch folgenden limes definiertes Polynom:

Pyx) = lim H W(Pryr ; (I1.1.23)

dabei soll man nur den Hauptteil der Funktion fiir x = oo, der fiir die Momentenbe-
rechnung massgebend ist, aufschreiben. Der Beweis folgt aus der Ensembletheorie. Ein
symmetrisches Polynom, das die richtigen Momente ergibt, muss der Beziehung

In Fy(x) = {In P(x)) geniigen, da In Fy(x) = {In P(x)) = In P(x) wegen der statisti-
schen Unabhéngigkeit von u,, u,, ... ty-

Im Sinne einer Momenteniibereinstimmung, das heisst fiir asymptotische x, gilt fiir
ein beschrinktes Spektrum von { P(x))>

| P—(P
ey | <1
fiir alle geniigend grossen x.
Somit
P_(P
In B, = CIn Py = In<PY + {In (1 + <1§>>)) l

1 .{AP% | 1 ¢AP?)

(11.1.24)
2 (P2 3 (P J

=1Ir{P> —
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andrerseits, unter denselben Voraussetzungen

o 1 o . i _P—-(P} v
lnPo—rll_rR)71n<P>—1n<P>+,h_rf}] ¥ 1n<(1+ P> )>

; r\ AP P e (IL.1.25)
_14p, 3 ary
Pyx) = HW{(Pye % (P 38 (PF (I1.1.26)

P,(x) ist offenbar nicht vom Grundfunktionstypus (II.1.22), da {4 P?%» symmetrische
Funktionen héheren Grades involviert. Der Exponent ist von der Ordnung 1/x* und
korrigiert alle Momente vom 4. an aufwirts.

Zum Schluss wollen wir noch einige Aussagen {iber eine Clustertheorie zu P* = ( P)
machen.

Analog zu (II1.1.2) wird

= 1 — 1
g =8t e = iy $ ex) d1n P*(), (IL.1.27)

*(x) = Hm — In< P> #(x) — — L * '
R¥(x) = lim < Ind(P), F*x)=—_ lim JR*(x+i0). (I1.1.28)

Eine Clusterentwicklung fiir In { P> und somit fiir F*(x) ergibt:

‘N (P> N (P25 (P
In{ Py = In{ P% + ( 1) c<ln <P—f)>> s (2) (;2<1n "Z’—p?_) = -~ (11.1.29)

Die Konfigurationsmittelung greift an P° und P} nicht an, desgleichen nicht an den
Logarithmen von symmetrischen Ausdriicken. Daher wird mit P}, /P°= AF, .,

A2
In{Py — In PO = (If) cln At + (g) ¢2In fd;;f 4 s (IL.1.30)

Der Unterschied zu der exakten Entwicklung liegt darin, dass die Konfigurations-
mittelung im Argument des Logarithmus stattfindet. Die Ausfithrung der Mittelung
ergibt
1 . T ietg(T/2) \2 1 |
* T Sl 2 -
AF n]{cln(1+zetg2)+c ( ) 1 o, (113D

1+ietg(7/2) - 2T

mit x = sin2(7/2) und C dem Weg aus Figur 3. Dabei zeigt sich eine Ubereinstimmung
mit der Clustertheorie fiir AF in 1. Ordnung in ¢, wihrend die hoheren Terme den fiir
das Auftreten der Nebenstorlinien verantwortlichen Logarithmus nicht mehr ent-
halten; fiir die Hauptstérlinie 1 + ¢ ¢ tg (r/2) = 0 treten Pole héherer Ordnung auf. Da-
mit ist die Behauptung B} = B} * bewiesen. Aus dem Koeffizienten von ¢? kann man
die Vermutung (1.2.30) leicht allgemein bestitigen. Bis jetzt haben wir uns nur um allge-
meine Eigenschaften der Konfigurationsmittelung gekiimmert und das Verfahren
kritisch beleuchtet. Der grosse Vorteil liegt darin, dass man das Frequenzspektrum von
P* = (P}, abgesehen von algebraischen Schwierigkeiten, durch eine Sattelpunkts-
methode finden kann.
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§ 2. Auswertung des konfigurationsgemittelten Eigenwertpolynoms mit Hilfe
der Sattelpunktsmethode

Wihrend die Clustertheorie auf Entwicklungen der Verteilungsfunktion F(x) fiihrt,
die nur fiir kleine Stérkonzentrationen brauchbar sind, erlaubt das konfigurationsge-
mittelte Eigenwertpolynom im Prinzip eine exakte Auswertung.

In Verallgemeinerung des MAHANTY'3)-Ansatzes lassen wir fiir die Grundformel
eine beliebige Wechselwirkung fiir die # ndchsten Nachbarn und mehrere Atomsorten
der Masse m* und der Konzentration ¢* = N;/N, £ = 0,1,2 ... 7 zu. Dann wird die
Eigenwertgleichung fiir die eindimensionale Kette:

—myxuy =K (uy o +uy_yg—2u) + Ky ()40 + ;g — 2u)

(I1.2.1)
+oot Ky (U pp+ 0y — 20y)
was in Matrixform geschrieben wird
Uy nt1 0 Uy
Uy i 0 0 1 Ui pe1
: o 0 0 :
1
0 1
w, = i . 1 =Hm)w,_,, (11.22)
0 0 0
1 0
0 1
Uitn 1 -y =Bz . =B 20{":}%‘{‘ =B =B = Broa| | Miirn
wobei
I h-1
Bi=x-G=12..k—1), a= )} g +1.
h -1
Die Eigenwertgleichung folgt aus der zyklischen Randbedingung
Wy =wy, wy=H(my)Hmy_;)...H(m)wy=1-1w,, (I1.2.3)
0= |H(my)...H(m)) —1|=2— Sp H(my) ... Hm,) (I1.2.4)

wegen | H(m,) | = 1.

Da die Verteilungsfunktion im limes N - oo nicht durch die Konstante des Poly-

noms beeinflusst wird, darf man setzen

Px)=Sp Himy) ... Hm,) .

(I1.2.5)

Entsprechend dem Vorhandensein mehrerer Atomsorten wird die erzeugende Funktion

der Konfigurationsmittelung

(Hy+ 2z Hy+ ... + 2, H)Y,
wobel

H,=H@m) k£=0,1,2...r.

(11.2.6)
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Der Koeffizient von 20 z)* ... z)r gibt die tiber alle N!/N,! N;!... N,! Konfigu-
rationen gemittelte Eigenwertgleichung wieder; in komplexer Schreibweise wird

()
1 1 dz az
P* = (P = | 56 L l
Fy ( N ) 2mHT ziVl—Fl zi\fq--kl (II.2.7)
N, N, ... N,
X (Hy + 2y Hy+ oo+ 5, H)Y .

Wegen Ny =¢' N, ...N,=¢" N, und da wir nur an der fiir N - oo kontinuierlich
werdenden Frequenzverteilung interessiert sind, liegt es nahe, das mehrfache komplexe

Integral asymptotisch auszuwerten ; dabei ist zunichst eine Matrix H vom Typ H mit
einer mittleren Masse m = (m® + z; m! + ... + z, m")[(1 + 2, + ... + 2.) zu diagonali-
sieren, was auf die Losung des periodischen Problems zuriickgefithrt werden kann.

~

Hy, = (4002 g, (I1.2.8)

wo A;(2; ... 2,) iber die Masse # von z; ... 2, abhidngt. Damit wird die fiir die Asympto-
tik geeignete Form

(r)

1 d d 1 N iN
(P = const (Zﬂi)’fﬁ : Zir”( +;l+ ZC,JFZ“") (N4 Ny (11.2.9)
2 e B

Die Konsequenzen der Asymptotik seien fiir den Fall £ = %4 = 1, das heisst binire
Kristalle mit Wechselwirkung nichster Nachbarn néher untersucht:

z z

{ Py = const _é__}t_;_m § i (L’gf_)“ (ez’Nﬂ-l(z) £ ez‘NAg(z)) , (I1.2.10)

wo ¢'*, ¢'* Eigenwerte von

( O 1 )
my +mpz X
-1 2— T K
sind ; daher
Sinzgu:W:K, }.1:2., 12:—1-
Damit wird
(Py = const , - 95% (N1 1 N3y (IL.2.11)

Nach der Sattelpunktsmethode folgen die Sattelpunkte zf,...und 27, ... aus (df*+/dz) (21)
= 0 und (df~/dz) (z-) = 0. Da f+'(z) und f~'(2) konjugiert komplex sind, wird f*'(z)
f~'(2) = 0 eine reelle Gleichung fiir alle Sattelpunkte darstellen. Bekanntlich ergibt die
asymptotische Auswertung von

1
_fégmm
2m
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je nach der Lage des Sattelpunktes z, ein rein exponentielles Verhalten
~ (2 a N fﬂ(zo))—m eV (%)

(falls ]‘(zo). reell), bzw. fiir konjugiert komplex liegende Paare von Sattelpunkten
7, %y = 2¥ ein exponentiell oszillatorisches Verhalten

~ @aN | '(z) )71 M 2005 [N T fz) — 5 arg ()| (falls flz) = *(21).

Die Linearitit des Argumentes in NV ermdglicht fiir die Nullstellen N J f = =z v des

asymptotischen Ausdrucks einen sinnvollen Grenziibergang N - co. Wegen des be-

schrinkten Giiltigkeitsbereiches der asymptotischen Formel ist » nur {iber einen end-

lichen Bereich, z.B. 0 < » < N zu erstrecken ; die Wahl des Bereichs lidsst sich an Hand

der Normierung sehr leicht priifen. Die Variable /N wire danach im limes N - co

gleichverteilt, was eine bestimmte Verteilung fiir J f und somit fiir ¥ nach sich zieht.
In unserem Beispiel lautet die Sattelgleichung

’ ’ 1 2 ’
P = = ) + wER=0 (11.2.12)
oder fiir
_ 14upz __ mp e . .
= 15 ® #—‘,,,‘a, smz—éf—é'x, l—c=9, c¢c=q¢g,

bei passender Wahl der Frequenzeinheit

Byl |2 qp) =0+ 2x(+gp) —2x (1 + p)]
TE gt =20 +qp) +x @ +4p+ 1) (I1.2.13)
+lp+qu?—2px(1+p)]+xp2=0.

Die charakteristische Gleichung Py({ | #, ¢, #) = 0 hat im allgemeinen drei Wurzeln,
von denen nur konjugiert komplexe Paare bei einer asymptotischen Auswertung einen
exponentiell oszillatorischen Beitrag liefern. Die eine der Wurzeln ist dabei ein Sattel-
punkt von f*, die andere einer von f-, da f+*(z) = f~(2*). Das Spektrum erstreckt sich
daher iiber einen x-Bereich, in den die Gleichung P4(C | %, ¢, u) = O zwei konjugiert
komplexe Losungen besitzt. Die Diskriminante

o0 | apP+fRo BRyE afiyd

— + s M s S (I1.2.14)

Dis = 27 108 6

Zu

P{)=alP+pL2+yl+46

entscheidet iiber die Anzahl reeller Losungen. Da«, 8, y, 6 lineare Funktionen in x sind,
wird Dis = Py(x | ¢, ) ein Polynom 4. Grades in #, das ¥ = 0 immer als Losung hat.
Da reelle Losungen immer paarweise vorkommen, existiert zu x; = 0 ein reelles x,, das
den oberen Rand des Grundbandes ergibt. Es kann aber ausserdem noch ein Stérband
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auftreten, wenn x, und x, ebenfalls reell sind. Dariiber entscheidet die zum Polynom
3. Grades P,(x|gq, u)/x gehorige Diskriminante Dis* = P(q, u), wobei P(g, u) ein
Polynom hoheren Grades in ¢ und u bedeutet.

a) Es wird nun der Spektralbereich im Spezialfall von Gittern mit gleicher Konzen-
tration p = ¢ = 1/2 diskutiert. Sei

1 4u

“EUrwar UT @

dann lasst sich das Polynom
Dis = Py(x | g, p) = F(u, v)
als symmetrische algebraische Funktion 4. Grades schreiben.
Flu,v) =—9u24+36uv—91v2+8u3—30u?v —30uv?+ 8034 274202, (I1.2.15)

Es geniigt, sich fiir die Diskussion auf 4 < 1 zu beschrdnken, da fiir u > u’' = 1/y,
x¥ > x" = x[u das heisst bei Vertauschung der beiden Massen und Einfithrung eines
neuen FrequenzmalBstabs » und v in sich tibergehen. Man findet dabei fiir einen Massen-
quotient, der grosser als ~1:6 (genau s =1, v =1/2=> x=1/2 + ]/274, u=3—18)
eine Trennung des Bereichs im Grundband und Stérband. Der genaue Verlauf der
Spektralgrenzen ist in Figur 4 dargestellt.

Ein Vergleich mit den iiblichen Methoden zeigt, dass das Stérband eine sehr grosse
Ausdehnung besitzt, aber die theoretische Maximalfrequenz x,,,, = 1/ nicht erreicht.
Die Hauptstorlinie der Clusterentwicklung liegt im Innern des Stérbandes, ebenso das
bei einer periodischen Anordnung entstehende optische Band.

/‘
70
L
95 -
075 i A TR, T
A e e
ao \ L s ! L Ls
0 7 2 7 4 5 X

Fig. 4

............ theoretische Maximalfrequenz

—————— Hauptstorlinie der Clustertheorie

//////////// optisches Band fiir periodische ABAB...-Anordnung
——— Grenzen des Spektralbereichs
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Ein Vergleich der zugehorigen Verteilungsfunktion konnte erst iiber die Giite der
virtuellen Kristallapproximation bzw. eines Supergittermodells entscheiden. Die Dis-
kussion der Verteilungsfunktion an sich ist nur mit einem erheblichen Rechenauf-
wand moglich, da die komplexen Wurzeln z,, z, = z§ zu suchen sind, die, in J f¥(z;)
eingesetzt, durch Differentiation nach x die Verteilungsdichte ergiben. Eine qualita-
tive Diskussion ist an Hand der fritheren Bemerkungen {iber die Clusterentwicklung
von P*(x) moglich; danach wird sich die Verteilung im Stérband fiir kleine Stérkon-
zentrationen um die Hauptstérlinie konzentrieren, wihrend die Nebenstorlinien,
wegen des Verschwindens des Logarithmus bei der Konfigurationsmittelung, weg-
fallen Die Wahrscheinlichkeit ist daher in den Fh’igeln des Storbandes klein. Fiir

Eine vollstindige Diskussion der Frequenzverteilung ist in den Spemalfallen u=0
und y = oo moglich, weil sich die Eigenwertgleichungen durch ultrasphirische Poly-
nome P{(x) (SzEGH %)) darstellen lassen.

Def.:

PP(x) = 5 <ﬁ ( & . (I1.2.16)

2ai ) 1-2xz+ 2411

b) Spezialfall 4 = 0, my = 0 (Leerstellen siehe STRIPP, KIRKWOOD *))

(Py=const P2 (fx), Yrx=9y (11.2.17)
1 dz . '
— const ;- § Ry T (I.2.18)
fe)=—2plnz—¢gln(l —2yz+2?) (I1.2.19)
hat die Sattelpunkte
— . 2)/p
2y g 2 l/p e '®, cosp = ;’—0, Vo = »—1»%. (I1.2.20)

Die asymptotische Auswertung ergibt:

(P> ~ constsin (N J f(z,) + 0(1)),

deren Nullstellen

N Jfz) +0(1) =av
sind.
Da P{}(x) n Nullstellen fiir negative und positive x besitzt, hat die gerade Funktion
P%i(y) N, Nullstellen fiir positive y; daher ist fiir den Anteil positiver Frequenzen »
iiber 1, 2, ... N, zu erstrecken. Folglich ist /N, im limes N —> oo gleichverteilt:

1
0= hngoE =5 ﬁ]ﬂzl),' (I1.2.21)
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Somit
do 2 1 1+p Vyi—»®
L o T —
V=g =nl 5= = ap 1o
oder
(1+9) ]/x0+x

(11.2.22)

) =g (]/;) zll/x B 2aplxr 1-2x)

Diese Verteilung ist auf 1 normiert und beriicksichtigt nur die im Endlichen liegenden
Frequenzen; die Gesamtverteilung hat aber N, Eigenwerte x = oo wegen mz = 0.

() = LTP _ Vr—# — 11.2.23
wobel
4p
Fo = 1+ p)2

Fiir kleine ¢ wird

qa=

A P (1 _ %) —Ls5(x—1)+gd(x—o00) +0(¢®). (I1.2.24)

Va (1—x)
c) Spezialfall

p=o0, mz=o0, <(P)=constx™ Py?(1—2%),

die Auswertung ist analog dem Fall b).
Man findet

2 Yl-g2—(1-2x)2

PO = o Tz (I1.2.25)
ohne Beriicksichtigung der N, Nullstellen x = 0. Somit wird
2 1—g2—(1—2 )2
fie®) = — / 13(1(_ Zx)f’ + ¢ 6(%) (I1.2.26)
oder im Grenzfall kleiner ¢:
_t L4 _ _ 2
fia) = — TR + 5 (0 — 8 (x— 1)) + 0(¢?) - (11.2.27)

Die berechneten Verteilungsdichten f#(x) fiir 4 = 0, oo sind fiiralle 0 < ¢ <C 1 positiv.
Die fiir die Clustertheorie typischen Randsingularitdten findet man bei einer formalen
Entwicklung nach ¢. In diesem Sinne sind sie nur die Folge der Verschiebung des
oberen Randes, bzw. erreichen sie in geschlossener Form geschrieben das Verschwinden
der fiir das periodische Problem charakteristischen Singularitit 1/)/1 — x am oberen
Rand. Inwieweit die senkrechte Tangente in x, auch fiir die exakten Verteilungen zu-
trifft, lasst sich noch nicht entscheiden. Jedoch kann man im Fall m; = oo zeigen, dass
die exakte Losung, falls man sie stetig approximiert, am oberen Rand f(x) & ¢~ conste/1 =)
wird; das heisst die sich bis x = (1 + }/1 — ¢?)/2 erstreckende Lésung der Konfigura-



Vol. 36, 1963 Frequenzspektren von ungeordneten Kristallgittern 75

tionsmittelung verliert einen exponentiell kleinen Randanteil. Auch die numerischen
Methoden zeigen eine Ausdehnung des Spektrums iiber den ganzen Grundbereich mit
einem rapiden Abfall gegen den oberen Rand.

Zusammenfassend kann man sagen, dass die Konfigurationsmittelung des Eigen-
wertpolynoms die globalen Eigenschaften des Spektrums gut wiedergibt, wihrend die
tiir kleine ¢ = c differenzierte Struktur der Nebenstérlinien in einem Stérband mit im
wesentlichen einem Maximum aufgeht. Inwiefern die Grenzen des Stérbandes auch mit
dem Bereich des Hauptbeitrags iibereinstimmen, lidsst sich nur durch eine eingehende
Untersuchung von f*(x) entscheiden.

§ 3. Schlussbemerkungen

Die bisherigen Uberlegungen befassten sich nur mit den Frequenzspektren von
Gitterschwingungen. Diese sind einer wahrscheinlichkeitstheoretischen Untersuchung
zugénglich, da das Problem auch in mehr Dimensionen auf eine algebraische Aufgabe
zuriickgefiithrt werden kann. Viel schwieriger liegen die Verhiltnisse bei Elektronen-
energiespektren, da die realen Wechselwirkungen weit iiber die Einheitszelle des Gitters
hinausreichen. Damit hat man eine Differentialgleichung mit stochastischen Koeffi-
zienten zu 16sen; diese Art von Gleichungen ist aus der Theorie der Brownschen Be-
wegung (stochastische Erregerkraft) bekannt. Die Schrédinger-Gleichung ist aber
unter diesen Umstinden bedeutend schwieriger, und man kann nur durch physikalisch
plausible Ndherungen (KORRINGA??)) eine brauchbare Losung erhoffen. Fiir delta-
féormige Atompotentiale binirer Kristalle kann man sowohl eine Clustertheorie als auch
eine Konfigurationsmittelung (siche Ref. 14)) durchfithren. Wegen der Transzendenz
der Eigenwertgleichung zerfillt das Spektrumin abzihlbar unendlich viele normierbare
Verteilungsfunktionen F,(x) (m = 1, 2 ... Bandindex). Die einzelnen Binder sind
wegen des SAXON, HUTNER, LUTTINGER (siehe Ref. 3)%)) Theorems streng getrennt;
jedes der Bdnder zerfillt unter Umstinden in Grund und Stérbereich, in denen dhnliche
Verhiltnisse herrschen wie im Fall der Frequenzspektren (siche FAULKNER, KOR-
RINGA1Y)).

Die Konfigurationsmittelung wurde aus technischen Griinden bisher nur auf ein-
dimensionale Probleme angewandt. Im Prinzip kann man sie auf den Raum erweitern,
wobei die Ubereinstimmung der ersten drei Momente und der Resultate in 1. Ordnung
in ¢ bestehen bleibt. Die eigentliche Schwierigkeit liegt darin, eine fiir die Asymptotik
N - oo geeignete Integraldarstellung des konfigurationsgemittelten Eigenwertpoly-
noms zu finden.

Eine andere Approximation f*(x) kénnte man durch Beschrinkung auf die redu-
zierbaren Anteile der Momente erreichen, welche in 2. Ordnung in ¢ mit der Konfigu-
rationsmittelung zusammenfillt. LANGER16) beniitzte zur Berechnung der Verteilung
in 1. Ordnung eine in der Theorie der Mehrfachstreuung iibliche Entwicklung des
Phononpropagators, die gewisse einfach zusammenhingende Graphen der Entwicklung
in allen Ordnungen in ¢ beriicksichtigt. Das entspricht im wesentlichen einer Reduktion

von 2 E ., E,,...E, ;. Inwiefern die beiden Verfahren iibereinstimmen, sei
% ol
einer spateren Untersuchung vorbehalten.
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