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Frequenzspektren von ungeordneten Kristallgittern

von Werner Alfred Schlup
Institut für Theoretische Physik der Universität Zürich

(15. V. 62)

Zusammenfassung. Eine allgemeine Methode zur Darstellung der Frequenzmomente der
Gitterschwingungen durch a) die Momente der reziproken Massen, b) die beliebig zentrierten
Momente oder Varianzen und c) die Semiinvarianten der reziproken Massen wird angegeben
und für kubische Gitter zur Berechnung der drei ersten Momente benützt. Damit lässt sich die
spezifische Wärme des ungeordneten Kristalls für hohe Temperaturen berechnen. Ferner wird
die Konfigurationsmittelung der Eigenwertgleichung kritisch untersucht und mit der exakten
Theorie verglichen. Die Ergebnisse der Konfigurationsmittelung werden für die Gitterschwingungen

einer linearen A-B Kette bei Wechselwirkung nächster Nachbarn in den Spezialfällen
a) gleicher Konzentration, b) verschwindender Masse einer Komponente und c) unendlicher
Masse einer Komponente genauer diskutiert.

Einleitung
Die Untersuchung von Kristallen, deren periodische Struktur durch Gitterbaufehler

oder Anordnungsfehler gestört ist, ist für die Physik von grossem Interesse. Will
man die thermodynamischen Eigenschaften eines solchen Kristalls beschreiben, so ist
es nötig, die Anzahl Zustände pro Energie- bzw. Frequenzintervall oder die
entsprechende Verteilungsdichte f(x) dF(x)/dx (x Energie bzw. Frequenzquadrat,
F(x) Verteilungsfunktion) zu kennen. Für periodische Kristalle ist dieses Problem
durch Bloch und Born prinzipiell gelöst worden; dabei stellt sich heraus, dass das

Spektrum in erlaubte Bereiche (Bänder) und verbotene Bereiche (Lücken) zerfällt. Die
Bestimmung der elektronischen Struktur führt auf Differentialgleichungen mit
gitterperiodischen Koeffizienten und bietet daher mehr Schwierigkeiten als die auf ein

algebraisches Problem reduzierbaren Gitterschwingungen. Falls man in einem binären
A-B Kristall Anordnungsfehler hat, ermöglicht die algebraische Natur die explizite
Angabe der Eigenwertgleichung für jede A-B Anordnung und im Prinzip auch deren

Lösung. Die Lösung der Schrödingergleichung bietet aber für beliebige A-B Anordnungen

erhebliche Schwierigkeiten, weshalb Nordheim1) die virtuelle Kristallapproximation
vorschlug. Danach soll das Potential der Schrödingergleichung in 0. Näherung

durch seinen Mittelwert ersetzt werden und die Abweichungen hiervon
störungstheoretisch berücksichtigt werden. Die Methode ist unbefriedigend, da die mit
Störstellen verknüpften lokalisierten Wellenfunktionen und deren Spektralanteil im
Störbereich (A -Band D S-Lücke, bzw. ß-Band D A -Lücke) überhaupt nicht in
Erscheinung treten. Um eine wahrscheinlichkeitstheoretische Formulierung des Bloch-
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problems geben zu können, muss man sich auf eine Dimension beschränken und eine

Überlappung des stochastischen Atompotentials ausschliessen (Schmidt2)). Diese

Eigenschaft besitzen die Deltapotentiale V(x) JA J/ $(% ~ l a), wobei an Stelle einer

stochastischen Funktion ein stochastischer Parameter F, analog der Masse ml bei den

Gitterschwingungen tritt. Die Mehrzahl der exakten Untersuchungen des Störbereichs
beschränkt sich daher auf die Deltapotentiale, bzw. das Phononspektrum. Saxon,
Hutner 3) haben 1949 eine binäre Deltapotentialkette untersucht und eine Vermutung
aufgestellt, die von Luttinger4) bewiesen wurde. Danach ist der Durchschnitt der
Lücken der reinen A- bzw. B-Gitter (^4-Lücke D jB-Lücke) in jeder beliebigen A-B
Kette ebenfalls verboten. In welchem Sinne andrerseits die Durchschnitte der Bänder
in jeder A-B Kette erlaubt sind, ist noch nicht abgeklärt. Dyson5), Des Cloizeaux6)
und Schmidt2) entwickelten elegante mathematische Theorien für Gitterschwingungen
in einer Dimension mit harmonischer Wechselwirkung der nächsten Nachbarn. Sie

erfordern die Lösung einer inhomogenen Funktionalgleichung für eine
Phasenverteilungsfunktion W(z, x) (z Quotient benachbarter Gitterauslenkungen), deren

Inhomogenität C(x) die Frequenzverteilungsfunktion F(x) darstellt. Montroll,
Potts7) und Lifschitz, Stepanova8) entwickelten eine Clustertheorie der additiven
Funktionen (z.B. für die freie Energie) in Analogie zur Virialentwicklung der Gastheorie

(van Kampen 9)) ; die additiven Funktionen werden dabei in Form einer Potenzreihe
nach Konzentrationen c der Störatome dargestellt, wobei die Koeffizienten zu ck den
mittleren Beitrag des Clusters /%-ter Ordnung bedeuten. Für kleine Konzentrationen
ergibt die Clusterentwicklung brauchbare Resultate. Sie enthält im Störbereich die

Eigenwerte der lokalisierten Wellenfunktionen in Form von Deltafunktionen, den

sogenannten Störlinien. Die Lage der Hauptstörlinie (nur ein Defektatom im reinen
Kristall) lässt sich auch in einfacheren mehrdimensionalen Problemen bei geeigneter
Spezialisierung des Atompotentials angeben (Engelmann10)). Pirenne11) hat eine
dem schwachen Defektgrenzwert (e 1 — (mBjmA), \e\ <4 1) von Montroll, Potts
entsprechende Entwicklung der thermodynamischen Eigenschaften nach e angegeben ;

dazu berechnete er die Terme (A/u)2, (A/u)3, (Aju)i, (Afï)2 der Momente x" für
allgemeine n und hieraus die Verteilungsfunktion. Ähnliche Rechnungen wurden von
Prigogine, Bingen, Jeener12) störungstheoretisch ausgeführt, wobei im Sinne der
Kontinuumstheorie langer Wellen in 0-ter Ordnung ein periodischer Kristall mit der
mittleren Masse m (1 — c) mA + c mB verwendet wurde. Mahanty13) hat
vorgeschlagen, an Stelle der Ensemblemittelung der virtuellen Kristallapproximation nur
eine Konfigurationsmittelung der Eigenwertgleichung vorzunehmen. Für die
Eigenfrequenzen eines binären Kristalls mit Kopplung nächster Nachbarn gab er für das

konfigurationsgemittelte Eigenwertpolynom P*(x) eine Integraldarstellung an.

Korringa, Faulkner14) benützten dieselbe Methode zur Diskussion des Elektronen-
energiespektrums für Atompotentiale VA(x) und VB(x). Takeno15) und Langer16)
machten sich die Methoden aus der Theorie der Mehrfachstreuung dienstbar, um das

Spektrum in 1. Ordnung in c auszurechnen. Langer fand ein relativ schmales Störband,
während sich die Singularität l/|/l — x am oberen Rand des Grundbandes auf l/]/l — x
abschwächte. Von Domb, Maradudin, Montroll, Weiss17) wurde darauf
hingewiesen, dass für unendliche Masse der 5-Atome ein binärer eindimensionaler Kristall
in Teilketten zerfällt und daher das Spektrum exakt angegeben werden kann. In der
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gleichen Arbeit wird die Momentenmethode (Montroll18)) benützt, um das Spektrum
durch einen Polynomialansatz aus den ersten zehn Momenten x" näherungsweise zu
bestimmen. Abgesehen von negativen Beiträgen, die auf die Anpassung von nur endlich
vielen Momenten zurückzuführen sind, gewinnt man dadurch den globalen Verlauf des

Spektrums. Um die detaillierte Struktur im Störbereich zu erforschen, ermittelt man
durch eine Monte Carlo Rechnung eine gute Stichprobe des Ensembles, deren Anzahl
Eigenwerte in passend gewählten Intervallen man numerisch auszählt. Die von Dean
und Martin19) so gefundenen Spektren zeigen für kleine Störkonzentrationen c eine

glatte Form im Grundband, dessen Randsingularität verschwindet, während im
Störbereich sehr viele schmale Maxima auftreten, die im Sinne der Clusterentwicklung als
verbreiterte Störlinien eines bestimmten Defekttypus interpretiert werden können.
Für grössere c wird das Spektrum im Störbereich immer ausgeglichener und geht für
c < 1 d.h. kleine Konzentration der anderen Komponente in eine im ganzen Bereich
glatte Funktion ohne obere Randsingularität über. Daneben gibt es Arbeiten über
Flüssigkeitsmodelle, bei denen die Lage der durch Deltapotentiale charakterisierten,
gleichartigen Atome durch einen stochastischen Prozess definiert ist. (Lax, Phillips
und Borland20).)

In Kapitel I, § 1 der folgenden Arbeit geben wir eine allgemeine Methode zur
Berechnung der Frequenzmomente der Gitterschwingungen in drei Normaldarstellungen
an, a) durch die Momente der reziproken Massen, b) durch die beliebig zentrierten
Momente oder Varianzen und c) durch die Semiinvarianten der reziproken Massen.

Aus der Varianzenform verifizieren wir in § 2 die Clusterentwicklung in 0(c3) und
geben ein Ausleseverfahren der Momente an, das in zweiter Ordnung in c mit der

Konfigurationsmittelung zusammenfällt. In § 3 werden als Anwendung die niedersten
Momente der kubischen Gitter für allgemeine mit der Gittersymmetrie verträgliche
Kopplungsmatrizen der nächsten und übernächsten Nachbarn ausgewertet und zur
Bestimmung der spezifischen Wärme CV(T) für hohe Temperaturen benützt. In
Kapitel II, § 1 wird das Charakteristische der Clusterentwicklung auf beliebige
Ensemble, mit Defektentwicklung ausgedehnt und für binäre Gemische und Wechselwirkung

nächster Nachbarn explizit diskutiert. Ferner wird die Konfigurationsmittelung

kritisch untersucht und ihre formalen Eigenschaften an Hand einer
Clusterentwicklung mit der exakten Theorie verglichen. In § 2 werden die Ansätze der
Konfigurationsmittelung verallgemeinert und die Resultate für binäre Gemische und
Wechselwirkung nächster Nachbarn in den Spezialfällen a) c 1/2, b) mB 0 und c) mB oo

genauer diskutiert. § 3 Schlussbemerkungen.

KAPITEL I

Berechnung der Frequenzmomente in isotopisch ungeordneten Kristallen

Wir legen den Betrachtungen ein eindimensionales Gittermodell mit translationsinvarianten

Kopplungsparametern VU' (1,1' 1,2 N indiziert die Gitterpunkte)
und Massen ml zu Grunde. Die Bewegungsgleichungen der klassischen Mechanik
lauten dann

¦ZVll,ul„ (LI)
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wobei ut die Auslenkung des ^-ten Atoms vom geometrischen Gitterplatz bedeutet. Das

zugehörige Eigenwertproblem für zyklische Randbedingungen wird :

u ~ e'at, x co2 u0 uN, ui un+i>

mlxu,=2JVirur. (1.2)
v

Daraus bestimmen sich bis auf die Reihenfolge die Eigenwerte xv(m±, m2 mN) und
Eigenfunktionen u\(mx, m2... mN), welcher in komplizierte Weise von den Massen mt,
deren Anordnung und den Vu> abhängen. Wegen der Translationsinvarianz der
Kopplungsparameter Vt ^ Vl + L:V + L und der zyklischen Randbedingung bleiben
die Eigenwerte xv bei zyklischer Vertauschung der Massen invariant, während in den

Eigenfunktionen der Index l entsprechend zu verschieben ist.
Die Potenzsummen der Wurzeln (Frequenzmomente) lassen sich hingegen explizit

angeben (s. Ref. u) und 17)) : fit l/ml

v-1 l„l%...ln-l

Um diese Ausdrücke zu vereinfachen, führt man ein Ensemble von Ketten ein, das

folgendermassen definiert ist :

a) V, v seien feste Kopplungsparameter

b) nt (bzw. mj) seien stochastische Grössen mit einer vorgegebenen Verteilung
W(ßv fj,2, fiN)

c) die [xl zu verschiedenen Gitterpunkten seien statistisch unabhängig und besässen
dieselbe Verteilung W(//,[).

Diese Annahmen sind für einen realen Kristall vernünftig.

a) heisst : Die harmonischen Bindungskräfte Pl — £ Vl ;< u,' sind unabhängig
v

von der Besetzung eines Gitterpunktes l, was für Isotopengemische sicher wahr ist und
auch für Atome mit ähnlichen Elektronenhüllen, die für diese Kräfte verantwortlich
sind, näherungsweise gilt. Eine genauere Theorie musste die prinzipiell vorhandene
Korrelation zwischen der Besetzung eines Gitterpunktes und den benachbarten
Gitterkräften berücksichtigen.

b) heisst, falls man W(jit) mit der Verteilung jA c> ô (/j,l — iA) identifiziert, bei der
1-0

die stochastische Variable jut die Werte /A, /A, /ur mit der Wahrscheinlichkeit
c°, c1... cr annimmt, dass die Konzentrationen c°, c1 cr der zugelassenen Atomsorten
A°, A1, Ar vorgegeben sind.

c) besagt, dass die verschiedenen Atomarten A° Ar gleichförmig, d.h. mit
konstanter Konzentration c° cr im übrigen ungeordnet verteilt sind. Dieses Fehlen
einer Korrelation lässt sich physikalisch rechtfertigen, wenn eine Atomart A°, das

Grundatom, sehr häufig ist und alle übrigen Atomarten A1... Ar, die Störatome, ins-
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gesamt eine sehr kleine Konzentration besitzen. Dann kann wegen des grossen mittleren
Abstandes der Störzentren deren Wechselwirkung und die durch sie hervorgerufene
Korrelation vernachlässigt werden. Ausserdem begünstigen hohe Temperaturen die
statistische Unabhängigkeit, was in der Momentenentwicklung der spezifischen
Wärme benützt wird.

§ 1. Darstellungen der Frequenzmomente

Die Spurformel (I. 3) gestattet, die Momente durch die (reziproken) Massenmomente

nni auszudrücken, wobei grundsätzlich alle Partitionen (nv n2, nt) von n auftreten
können :

nx" n £ w(plftt...ftN)&= 2J rXTvXxX^-'X^ (LL1)

dabei wird über alle ganzzahligen Gitterpunkte des Nn-Kubus summiert ; wegen der
statistischen Unabhängigkeit ist es zweckmässig, eine Zerlegung des w-dimensionalen
Kubus nach Hyperdiagonalen durchzuführen. DerFaktor von JA1 JA2 ju"t wird durch
alle Hyperdiagonalen vom Typus nx nt gegeben, d. h. durch alle n\\JJ nt Kombinationen

der Indices 1, 2 n zur nx n, Klasse (Indexgruppierung IG)

(^X-X) X (X-X) X ••• (X-X) ^> (1.1.2)

wobei über die i-dimensionale Hyperdiagonale so zu summieren ist, dass keine
Hyperdiagonalen kleinerer Dimension berührt werden, d.h. I1, l2 V dürfen nur paarweise
verschiedene Werte annehmen.

Z(-)=Zy E ZV--) + ••-(-^Summen), (1.1.3)
h — h t-0 n1n1...nt>l\lHK..lt x " « A

wobei mit (n IjIInt\ Summen) angedeutet ist, dass für jede Partition die n 1/77«,
Summen aller Indexgruppierungen vorkommen. Der Strich deutet an, dass P-, l2 I'
paarweise verschieden sein sollen. Damit wird

°° i
%n=Ey E A*"'A*"'-^<«,...»,> (L1-4)

t — 0 n,... nt > 1
27 m2- n

K.,ni...nt ~N 2j 2u Vhh X', ¦•¦ X'i" (1.1.5)

A^ nf ist seiner Definition nach total symmetrisch. Falls man definiert

An
Ä» n,n,...nt (116)-a-n,...nt 7T ^iWi.r+ii>iï»;+s+ j»r ™ ™ ™ \ l ' \ • • /
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bekommt man die asymmetrische Form :

oo

^=E E jA>uA...M«-tÂ:in2...nt (lu)
t 0 1< nx < <nf,

oder bei Auszeichnung des 1. Moments {i:
CO oo

^=E^kE E i*ki^ - e>ks Kh...K (L1-8)
k-o

wobei

s-0 2 < J\ < < ks

Än Än
11 1 ß, n. n, Ilß

n — k mal

für k > n verschwindet. Oder in symmetrischer Form wird

Al ...*, n (Multiplizität der kt... ks)! ÄnK_kg.

Da nur die Multiplizität der nt 1 wegfällt, wird

An71111... 1 h, ks

und
OO °° 1 ¦ ——

*=Zf-kZJr E X'X'-.-X^X.*,- (LL1°)
£ 0 s 0

"
kx äs > 2

Dome-, Maradudin, Montroll, Weiss17) berechneten in der ^4-Forrn die ersten
10 Momente für das eindimensionale Gitter im Fall nächster Nachbar-Wechselwirkung
und konnten sogar eine auf das endliche Gitter zurückführbare erzeugende Funktion
für A"x nf finden.Takeno15) gab eine ähnliche Darstellung der Momente; desgleichen
Litzmann, Rosza21), die eine höheren Dimensionen angepasste Hypermatrixschreib-
weise benützten.

Es erweist sich als zweckmässig für eine Entwicklung nach kleinen Störkonzentrationen,

die Momente x" durch die beliebig zentrierten Momente der reziproken Massen

anzugeben. Daher führen wir eine neue stochastische Variable rj, ein:

ft A*o + »?z ¦ (1.1.11)

Aus der Spurformel 1.3 folgt:
oo n

Nx"=z^~kE E nhnhi...r,tikvhh-vlnll. (1.1.12)
k 0 ly... ln it < ts... < tfc «• 1

Die Matrixsummation kann zu einem festen ix ik für alle Indizes llt l2, ln, welche

von lix — l[, ltk l'k verschieden sind, ausgeführt werden.

00

N^= E^E.W7^^ E {Vit-%t;-AVn-ik+îl)iy[. (1.1.13)
k - 0 K ¦¦ -lk H < H < • •• < >k
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Wegen der statistischen Unabhängigkeit der r\l hat man eine Hyperdiagonalzerlegung
eines iV*-Kubus vorzunehmen

27, (•••) 27^- E \E's(-) + -(whSumHj (LL14)
li l'k s - 0 k, Ks > 1 \l> Is

K " * ' J

in Analogie zu (1.1.3)

oo oo

Nx"=Eiï-kEir E X-.-W £"+••• t^t Summen]

il < «2 < • - - < «Jfc

(1.1.15)

Damit wird
oo oo

1

^=E^~hEy E rr-vPK*
k-0 s-0 kl...ks>l

Bl...ks ^ (27' + • • • (^ Summen)

(1.1.16)

(1.1.17)

x 27 (^-fc)/j«..-(^-* + %,i.
•t < < ik -1

In{ } treten die Summen aller Indexgruppierungen auf. Die Summation ist wieder über
alle paarweise verschiedenen Indizes l112 Is zu erstrecken.

Unter Verwendung der Translationsinvarianz und der Summenregel

n W-& + 1 n-ft+2 n

E (¦¦•)= E E - E (¦••)
h < • •. < h - 1 *i-l h »i +1 h »A -1 +1

m — A + 1 n — ft + 2 — nx m — 1 — »j — — «fc _ a

27 27 "• 27 (n-nx-...-nk_x)(.A \ (1.1.18)
«1 1 »j-l »j£ _ - 1

27 «.(•¦¦> t 27 (•••)
«i ...»%> 1

En; — n
nt... nk > 1

27 rc,- rc

/= 1.2...Ä-1
(letzteres gilt, weil die Summationsvorschrift symmetrisch ist und daher bei einer
zyklischen Vertauschung erhalten bleibt) wird Bl k2...k '¦

T>n JrA E E E n^jn^vH^v (i-i-u)
l1 lS M, M/t > 1

27 rc^ m

J5",...*s ist total symmetrisch in ^ ks und kann leichter als AS\ h berechnet
werden, da ein grosser Teil der Matrixsummationen ausgeführt werden konnte. Ferner
kann man für B"t___A im Gegensatz zu A^ _k sehr leicht eine erzeugende Funktion
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angeben. Bei einer Mittelwertzentrierung fi0 Ji wird »7 0, das heisst es genügt, wenn
die Bli_ks für kt > 2 bekannt sind. Im übrigen zeigt man leicht, dass die B^...^,
deren Indizes einige k{ 1 enthalten, durch Linearformen der B^ ks mit ki !> 2

dargestellt werden können. Von dieser Varianzenform ausgehend, werden nun an

Stelle der rf die Semiinvarianten Gk eingeführt.
Def:

incp(t)=W(t) X (it)n
(1.1.20)

,p(t) (e1"*) eli" (ettr>), rj 0

X fi, G2 rj
,2 r; — „3 X rf — 3 rf etc.

(1.1.21)

allgemein wird :

rik=Gk + ±
^

27
2

(*i. *«) GK G^+AYk E>
2
(X *» *») X, X2 X + (1.1.22)

«1 • «,
(*i. •••*„:

AI

77 Ä,!
i-l

-, *=27*i (1.1.23)

ist der Polynomialkoeffizient.
Ein Produkt ^*» »7**... ^*s kann man durch eine Verallgemeinerung des Poly-

fk k\ (k k \nomialkoeffizienten I }'" A I in einfacher Weise schreiben. / X gibt dabei die

Anzahl Möglichkeiten an, aus s Klammern mit je kx ks Objekten r Gruppen von je
l1: l2...lr Objekten derart herauszugreifen, dass die lj-te Gruppe Objekte nur einer
Klammer umfasst, aber aus einer Klammer mehrere Gruppen entnommen werden

dürfen. Unter Beachtung, dass der Polynomialkoeffizient I ,1 die Anzahl Möglichkeiten

darstellt aus einer Klammer von k Objekten r Gruppen von je lx lr Objekten
herauszugreifen, wird die Verallgemeinerung von (1.1.23)

"1 •• • "s\ _ y / X
h-ir) t Vn-hi

l„Js,

~2~\ Aj Zj 2-1
s„ s8>l s! »'„ »",

>^ e ¦ — ç —,—r" J- ^*

XXX W

+ 27 27 27'
U----Q>iy_ IG
Usi s n sj\

„h,--ie\hi---lj\ A... AJi Js,
IsQ liQ
Ji Js,

(1.1.24)
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wobei die erste Summe die Anzahl Möglichkeiten darstellt, aus der ix-ten Klammer alle
s Gruppen zu nehmen, die zweite die Anzahl aus der ^-ten Klammer sx der Indizes aus
der i2-ten Klammer s2 der Indizes zu nehmen; für jedes jfeste sv s2 ist über alle
s !/s1 s2 Kombinationen der Indexauswahl (Indexgruppierung) und über alle
Klammerauswahlen ilr i2= 1,2 n, deren i, paarweise verschieden sind, zu
summieren. Zum Beispiel wird d'.e asymmetrische Form für r 4

X
K
X

=27
n I2 '3 h

+27' K
tj t2

h
+ (4 Terme) +

y, j/ kh \ tk
H, H, H

1 VI ^ ^) + (6Terme)!

K
i3 /4

27' 7'
'1, »s,'s. »« \ 1

+ (3 Terme)

M /*#
l"> l \ l

Dieser verallgemeinerte Polynomialkoeffizient ist symmetrisch bezüglich der Ver-

k\ ¦ • • ks
tauschung der k% unter sich und der lj unter sich. Im Spezialfall IX bri'wo^e^

E kl E kJ' k, ist der Koeffizient nur dann =t= 0, wenn k1... kr eine Unterpartition
von kt... ks ist, das heisst durch additive Zerlegung einiger der k( zustande kommt.
Dies ist aus seiner kombinatorischen Deutung evident. Für genügend allgemeine k{
und kJ zerfällt er dann in ein Produkt von Polynomialkoeffizienten. Z. B. :

fi-t ~\~ /?2 1 ^3 fo± «*5 ~T~ fo(i fon foi

1 2 3 4 5 6 7 1

\fo\> fo<£* ^3) (^5» Kq (1.1.25)

Wegen dieser Eigenschaft wird

ry)K\ 'yt
r< Zj

r-0 k\ ...kr > 2

27
kx k,

ky..k> Ge- (1.1.25)

Damit lässt sich die ß-Form umrechnen :

00 °° 1 °° 1

yn Xw-kEy E 27 w- 27
* - 0 s-0 k„ ...k3>2 r-0 k\ kr >

Zki-k SW-k

kx...k
W- ...kr

G, X' Bnki ks, (1.1.27)

00 00 1

lA=Zh"^Ey E X
A-0 r-0 k> ...kr>2

Ski-h

...GhrCl (1.1.28)

Cnkl

1

27^- 27
s-0 k1...ka>2

Eki - Ekj

prc (1.1.29)

<H. P. A. 36, 1 (1963)
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Wegen der kombinatorischen Bedeutung der Koeffizienten tragen nun die Überparti-
tionen^,... Ä^vonÄ1, kr bei und ergeben wegen (1.1.25) bei asymmetrischer Schreibweise

:

Cnk' .*' Bl .w ¦ (k\ k2) Bl A k\ k\

+

+

(k1, k k3) B1, + kl + ks^kr-\- ¦¦

(k k k k Bkl + ki + k? + ki kr

Terme

Terme 1

(k\ k2) (k*, k*) Blk1 + k2, ks + k<,... kr

Terme
4/ ;

3(1 Terme I

(1.1.30)

+ + (k\k2,...kr)Bl + kl+...+kr.

Wir wollen zeigen, dass C mit B formal übereinstimmt, mit der Ausnahme, dass keine
Summationsbeschränkungen bestehen

Cn
1 n 27 27 27 n^v-n»,,,. (lui)

I1... V «,... nk > 1

ntì\

Der Beweis wird erbracht, indem man für J^7 eine Diagonalebenenzerlegung
vornimmt, da z.B. in V...V

Z rP -P,P... f
(k1: k2) Indexgruppierungen zu jeder festen Indexgruppierung

(/,,.. In. (Ij. l. (fe-VJh<"

von B\\ + k\k>...w existieren, nämlich alle Aufteilungen der Klammern von k1 + k2

Objekten in zwei Klammern der Längen k1 und k2. Entsprechendes gilt für die Diagonalebenen

kleinerer Dimension. Während die Summationsrestriktion für alle n Indizes

X-X eine Vereinfachung der ^-Koeffizienten verhinderte, konnte in der 5-Form die
unbeschränkte Summation über n — k Indizes ausgeführt werden. Die restlichen
Indizes l1 lr unterliegen noch der Beschränkungsbedingung, die erst in der C-Form
vollkommen entfällt. Für die Rechnungen ist es meist erwünscht, von den
Summationsbeschränkungen loszukommen. Die Darstellung der Frequenzmomente durch
die beliebig zentrierten Momente der reziproken Massen ist geeignet für die Entwicklungen

von diskreten MassenVerteilungen nach kleinen Störkonzentrationen. Wegen
r

r]h=^cJ (ft — fi°)k genügt es für Näherungen s-ter Ordnung in cJ nur Bn, Bk,
/-1

Bkikz ...Bt ...k zu kennen. Alle thermodynamischen Eigenschaften, die sich durch die

Frequenzmomente ausdrücken lassen, können damit in s-ter Ordnung in c1' angegeben
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werden. Die Semiinvariantenform (C) ist vom Standpunkt der Massenverteilung für
kontinuierliche Verteilungen geeignet; zum Beispiel ist für eine Gaussverteilung
incp(t) i JI t — (a/2) t2 =>Gx Ji, G2 a,Ga Gt 0, und der grösste Teil der
Terme verschwindet ; dies suggeriert, dass das Frequenzspektrum für eine Gaussverteilung

sehr einfach ist (s. Dyson5) exakte Lösung). Pirenne11) berechnete C\, C%,

C% C22 un(i ermittelte damit die thermodynamischen Eigenschaften in der Ordnung
(1 - (m1/?»0))4.

§ 2. Berechnung der Verteilungsfunktion F(x), erzeugende Funktion der B£ k

und Reduktion der Momente

Wir wollen Bkikg für s 0, 1, 2 berechnen und hieraus die Verteilungsfunktion
in zweiter Ordnung in den Störkonzentrationen ermitteln.

0. Ordnung:

B" W E *X, - Kl! A7-27X"X (VX xj, (1.2.1)
t,.. ln t

da (V")u Xq wegen der Translationsinvarianz unabhängig von list und das Frequenzmoment

eines periodischen Kristalls mit der Masse 1 darstellt.
1. Ordnung:

B" -} E XKl)o---XXo=T 27 «•••<*• (1-2.2)
% «£ > 1 nx n/t > 1

Zur Berechnung der Summe sei die Hilfsfunktion

XjXX-27^5^ (1-2-3)
rc- 0

benützt ; sie ist für £ > x™x Maximalfrequenz des Gitters mit der Masse 1) konvergent,

da

{V%-v [V")lv i Ze"V[l~n^V)T -* TA fdr «*'('~'')T(*W)" (1-2-4)
j>- 1 -J

und daher
N iT*(l-l') t r Jr(l-l",

£,_r(C) EU,(C) -ir T- *- A~ / àx^~—^. (1.2.5)

Somit wird

B* (-)* T AAT j (Eo® + m"-1^ > (1-2.6)

da £0(0 in der Umgebung von £ oo regulär analytisch ist.
Seißx(v) eine erzeugende Funktion für Bk:

oo -
ßiW) 27 Blv* - TAT 9 ln + « (£o + 1)) C""1 # • (1.2.7)

k 1 v
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Durch partielle Integration erhält man

ß^) eif?din(l + ^rE0(C)

1 n

2. Ordnung:

Drc
*j*3 ~ N k E E E (v%t,-Avn%kll.

H. P.A.

(1.2.8)

(1.2.9)
PP nlt... rc^> 1

Ä,!<V

(i1ititiBit)=P (iAAAA i2

j. x i

12 3 4 5 6 7 9 7

Fig. 1

Jede Indexgruppierung lässt sich durch ein Übergangsschema darstellen, z.B. durch
Figur 1. Die Anzahl Wechsel von l1 nach l2 und umgekehrt ist s12 4. Da das Schema

zyklisch ist, ist die Anzahl Wechsel eine gerade Zahl s12= 2 s (s 1,2 Wegen
(V")i, (V")0 und (V")ir (Vn)i> i geben alle Indexgruppierungen vom gleichen Typus
s12 denselben Beitrag zu B"ik ; die Anzahl der Indexkombinationen zu gegebenem
Typus s12 2 s ist

Somit wird

1 M

kx- 1

S - 1

K - A IK
(1.2.10)

BlK=jjnnEE\ko\] E (no-p-ir-^i)«,,,..^),,,,
/»/» s=l * S J n1...»A>l

-(-»*T.i"..|4(î:i)(ï:i)TO-#(«.+«'-(ve-«.
Wir definieren eine erzeugende Funktion

(1.2.11)

AK».) =hE Bl*Alv'A'2 '

und man findet, wenn man die Summationen über s kx k2 ausführt :

°° l rW»i»i)= 27' l^ft^ln
?M. — OD v

1 +
1 + v,

1 + «, "

1 + Vl

v.
1 + Î4--X£»

(^TiV^X^TTX^)
(1.2.12)
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Für kleine Störatomkonzentrationen wird daher

x" - x% fx" dF(x) - fx" dF0(x) fx" dAF(x)

OO .00=27ci E^Ak (r*' - /O* bi+2aE c' c'" 27

53

¦j A-l -j,-) k,k2-l

x f4'k dJ - fi°)k> (/ - j"?! Blh A- 0(c*)

=K27c' ßi (£ -1) + /4 ^27c'' c?" a $ - L X f) + 0(c3)

(1.2.13)

^T^-^^i27cJln(i + ^X) + ^27 CJ CJ

E ln-(iT^

1 + e> E0 ei Em
e>'Em !+«>'£„

m — co

sJ
1 + vi'

(l+e'-E,,) (1+ «>'£„)

1 - ^ =1

0(c3

(1.2.14)

A
m1

m"

E0(Ç), Em(ì~) sind regulär analytische Funktionen mit einem Verzweigungsschnitt auf
der reellen Achse, daher wird die Störung AF(x) der integrierten Verteilungsfunktion

AF(x) =-± jlgcJ in (1 +A E0)

i-x + iO

(1.2.15)

Dieses Resultat ist identisch mit der Clusterentwicklung von Montroll, Potts7) und
Lifschitz, Stepanova8). Umgekehrt kann diese Entwicklung als erzeugende Funktion
für die ßs(vx vs) und somit für die Bki_k betrachtet werden. Diese erzeugende
Funktion steht wie diejenige für A" k in einem engen Zusammenhang mit der
periodischen Kette, indem für ß^ ...vs) nur s Defekte in die Kette gebracht werden
müssen. Damit ist genügend dargetan, dass eine Störungstheorie der Momente und der
daraus ableitbaren physikalischen Grössen nicht über den Rahmen der Clusterentwicklung

hinausgehen kann.
Das allgemeine Resultat der Clustertheorie lautet :

àF(x) - i / \Zcu0o + i- Ech cU <#î?; - # - #;>N
ii,ni Ec"ch c" 0$i - éX -M - ¥i±+ti\+4>l+#:> w -

in h, it

wobei

4: ¦1s <A%AX= \daßA-J*Ell{Q\c_x + i0

(1.2.16)

(1.2.17)
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eine s-reihige Determinante und < > bedeutet, dass über alle Konfigurationen der
Defekte in /x... ls zu mittein ist ; dabei existieren im limes N -> oo die Grenzwerte

N<4fâ-4k-4& etc.

Die erzeugende Funktion für ßs(v1 v2... vs) wird daher

ßs(Vl-Vs)= E Bl-
k,...ks-l

ÄiV,_1<«£:::«- «

.*,«£«£... i£

¦Jjt-1
¦ fr.t - 1

j Terme I

+ (fcfe::+-(,) Tenne) - + (Xs"1 Wt\ + ••• + 4$\

(1.2.18)

wobei

•'-W ö'-i.2....)
Bei der direkten Berechnung der B£ Ä aus den Momenten hat man zu jeder
Indexkombination der Klassen kv k2, ks ein Übergangsschema für s-Stufen, wobei die
Anzahl Übergänge von i nach k und umgekehrt durch sik gegeben ist. Die Anzahl
Indexgruppierungen vom gleichen Typus sei

«j k2 ks

S12 S23 ••• Ss-l,s

S13 • • • Ss-2,s

¦• Sl,s

Da die Beiträge desselben Übergangstyps gleich sind, kann man Bki. k vereinfachen
und eine (1.2.11) analoge Darstellung finden.

Nun wollen wir die Bki _k unter dem Gesichtspunkt der Reduzierbarkeit auf die

ungestörten Momente x\ betrachten. Es ist zu erwarten, dass die reduzierbaren Anteile
xnred fej. y[omenie %n auf ejn einfacheres Problem führen. Offenbar besteht die Aufgabe
darin, alle Übergangsschemata zu finden, die sich durch Matrixmultiplikation auf die
Diagonalelemente (V")u (V")0 reduzieren; sie mögen reduzibel genannt werden;
daneben gibt es teilweise reduzible und irreduzible Schemata. Bk ist, da nur eine Stufe
vorhanden, a fortiori reduzibel :B\=B\ "d.

In 2. Ordnung sind offenbar alle Schemata mit mehr als zwei Wechseln irreduzibel,
da mindestens 4 Faktoren (Vn')lip vorkommen und die Summation daher nicht auf
ein Matrixprodukt führt. Hingegen ist s12 2 vollständig reduzibel, und da

K-y k2

2

ist, wird
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BIX wE' E X"')0 (Vn')o... X"<W ••• (VApp-- (V*)o (1-2.19)
l\ l2 nlt... nfc > 1

Xni n

» 27 (Vn%...(Vn>-*)0[(Vnk-1 + nk)o-(Vnk-1)o(Vnì>)o\- (1-2.20)
«i,... n/( > 1

Bk*k? lässt sich sogar auf Bl zurückführen. Dazu benützen wir die Hilfsfunktion

Sl(x1...xk)= 27 «'•¦•*?, (1-2.21)
«i, • •. »fc > 1

27«^ n

B\ A JdFo{Xi) dFo(Xk) s« (% *ft) f (1.2.22)

BiX + kBl nJdF0(Xl) dF0(xk^) Snk(xx x2... xk_„ xk_x, xk_J (1-2-23)

wobei k kx A- k2.

S£(% x2... xk) ist eine homogene Funktion, daher gilt die Euler-Relation :

Wegen

Sk{x1... xk_1 xk)

Exi tr. ^*i *>• ••**) * 5*(% •••**)¦ (L2-24)
j -1 *

^j.._i -^j.
"Xl(% ¦•• ^*-2 ^t-l) + ~ _„ ^A-lt^l ••• ^A-2 %

(1.2.25)

Ä—1 -*fc -v*_-vjc-l

wird im limes xk -> xk _ i

SJfo *ft_a^ *ft_x) (%_a XL- - l) S».^... xk_x) (1.2.26)

oder allgemein

Sïixj^xi x2^x2... x^^xA /J (*, -~ - if'1 S:(Xl x2...xr). (1.2.27)

kl mal k2 mal £r mal

Damit wird (1.2.22) in (1.2.19) eingesetzt unter Verwendung der Symmetrie und der
Euler-Relation :

Bit + kBl n A-±±LJdFo(Xi) dF0(xk_J S^fo ...x^). (1.2.28)

Also

BnKkf =(n-k+l) Bnh_x -kBl, (1.2.29)

wobei
fo :z= fo-y ~\~ fo% •
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Wir wollen jetzt zeigen, dass es in jeder Ordnung vollreduzible Schemata gibt, d. h.

B\lft,.. ks 4= 0 ist und auf welche Art sie sich charakterisieren lassen. Offenbar ist ein
Schema s-ter Ordnung vollreduzibel, wenn es s — 1 mal reduziert werden kann. Da
bereits diagonale Anteile (V")0 unwesentlich für das folgende sind, seien sie durch
angedeutet. Betrachtet man als Beispiel die Indexgruppierung

27 E- (V^pp (*"*),.„... (F-)P/,... (P-W (F"W-- [Vn%P

•¦¦ (P"W--- (*"")«.,.- x-w... (f"»),.,.... xx,.,.... xx^-x^x. -••-

so kann man offenbar von Z2, /3, l*, /6, Z8, Z9 beginnend reduzieren, da diese Indizes nur
paarweise auftreten. Während für die Kombinatorik das Übergangsschema zweckmässig

war, erweist sich eine graphische Darstellung, durch Punkte in der Ebene, die
der Indexfolge entsprechend verbunden werden (Fig. 2), zur Charakterisierung der
Reduzierbarkeit als besser. Offenbar bedeutet eine freie Ecke ein Indexpaar, über das
summiert werden kann; der Reduktion entspricht graphisch das Verschwinden der
betreffenden Ecke. Daraus folgt, dass ein Graph dann vollständig reduzibel ist, wenn
er einfach zusammenhängt. Irreduzibel sind die Graphen 2 b und 2 c. Nach der Summation

ergibt unser Beispiel bis auf ebenfalls vollreduzible subtraktive Terme, die von
der Summationsbeschränkung herrühren :

y (y"1+nA (vn'+n') (vn'°+"•+Mi2+"is) (v"1+n"+"A (vn"+n')
(ni)

Die weitere Auswertung hätte von Formel (1.2.27) Gebrauch zu machen.

Fig. 2

Es wird nun an Hand der explizit berechneten Momente x x6 für ein lineares
Modell mit Wechselwirkung nächster Nachbarn gezeigt, dass die vollreduzierbaren
Anteile der Momente x"red in der 2. Ordnung mit den Momenten x" * des konfigurations-
gemittelten Eigenwertpolynoms übereinstimmen. Wir werden später sehr einfache
Gründe angeben, warum die ersten drei Momente exakt sind und ausserdem in erster
Ordnung in den Störkonzentrationen Übereinstimmung besteht. Es gilt :

Bl Bl* BY" B"kiki 4= BIX Blt ¦ Bik,.K * X7m, * BlZ, ¦ (1-2-30)
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(1.2.31)

Die exakten Momente lauten (s. Ref.17)) in der Varianzenform, falls man die
Federkonstante 1 setzt :

x 2 fi x*,

x2 0ß2 + 4rf =x2*,

x- 20 fi3 + 36 fi rf A- 8 rf x3*

x* 70 fiA + 232 ß2 rf + 96 fi rf + 16 rf + 18 rf2

Xs 252 JA + 1300 fi3 rf + 760 fi2 Vf + 240 fi rf + 32 rf A- 320 fi rj22

A- 100 rf rf

x- 924 JA + 6744 fi1 rf + 4992 fi3 rf + 2256 fi2 rf + 576 fi Af + 64 rf
+ 3444 ft2 »f2 + 2088 firfrfA- 146 if2

+ 264 jy2 rf + 24 ^3.

Die aus dem konfigurationsgemittelten Eigenwertpolynom mit Hilfe der Newtonformeln

gefundenen Momente sind :

%** 70 fi* + 232 fi2 rf A- 96 fi rf + 16 rf + 16 »f
2

*5* 252 fi5 A- 1300 /i3 rf A- 760 /Z2 »f + 240 fi rf A-32 rf A- 280,0 rf
A- 80 ?f jf,

%6* 924 ^« + 6744 fi* rf A- 4992 fiArfA- 2256 Z«2 îf + 576 fi rf + 64 rf
+ 2976 /Z2 rf2 A- 1632 /j îf rf + 96 ?f2 + 192 rf rf + 48 rf*

das heisst

B\t 32,

SU 80,

Bl* 192
:

(1.2.32)

Bîî 560,

B$ 192 BU 1632 Bit 5952, S& 288.

Mit Hilfe von (1.2.29) lässt sich die Vermutung leicht verifizieren.
Dagegen wird B\$ B\22, wie man aus den zu B\22 gehörigen Graphenbeiträgen

-0 -0

leicht ermitteln kann.
Welche der beiden Näherungen des Problems als besser anzusprechen ist, lässt sich

erst durch Vergleichen der entsprechenden Verteilungsfunktionen entscheiden. Wir
wollen uns im II. Kapitel auf die Diskussion der Konfigurationsmittelung beschränken.
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§ 3. Verallgemeinerung der Methode auf mehr Dimensionen und Berechnung
einiger Momente für kubische Gitter

Die bisherige Berechnung der Momente aus der Spurformel (1.3) benützt nur die
Eigenschaft der statistischen Unabhängigkeit verschiedener /. Für ein Bravaisgitter
wird die Eigenwertgleichung :

«i*«?-27*7?'«?'.
- Va' — -

wobei l die Gitterpunkte, a die Komponenten des Bravaisgitters indiziert. Vff-' sind die

Kopplungsmatrizen. Somit ergibt die Spurformel

3A^= 27 27 kk ¦ ¦ ¦ /k vty: vtt' ¦ ¦ ¦ F£t • ^3-1)
at... an li... In

Wegen des skalaren Charakters der Massen hat die statistische Unabhängigkeit nur
einen Einfluss auf die Auslese der l, während sich die ax aa a„ Summationen als Spur
formal zusammenfassen lassen.

Für einfach kubische Gitter wird (V)ff ôa*'(V-ft1 ; damit entfällt die« Summation

für Bl, da diese nur (Vn)ff enthalten:

bi t E x^oXtxx.-xXo1- a-3.2)

Da

nk > 1
i7rci ¦• rc

x»0 j x" dF0(x) (V*)?

kann man die Beiträge in 1. Ordnung in der Störatomkonzentration durch die
Verteilungsfunktion des periodischen Problems allein ausdrücken, während in höherer
Ordnung Nichtdiagonalterme (Vn)ff' vorkommen, das heisst Polarisationseffekte eine

Rolle spielen (siehe Pirenne u)). Die dadurch entstehenden Komplikationen für die
Auswertung kann man vermeiden, wenn man sich auf richtungsentartete
Wechselwirkungen mit Vff' ôaa' VIV (Newell, Rosenstock 22)) beschränkt. Für ß-dimen-

sionale, einfach kubische Gitter mit zentraler und nichtzentraler Wechselwirkung
nächster Nachbarn wurden von Mahanty, Maradudin, Weiss23) die thermodynamischen

Eigenschaften in der Ordnung c2 untersucht. Die Einführung einer nichtdiagonalen

Wechselwirkung genügt, um die Richtungsentartung aufzuheben. Für kubisch
räum- und flächenzentrierte Gitter führt man eine Basis q 1,2 s ein. Sind die

Gitterpunkte (q, l) statistisch unabhängig, so hat man l mit (q, l) zu identifizieren und
die Zerlegung nach den (g, l) Paaren auszuführen ; da in Bl nur Diagonalterme in l
eingehen und ferner xl (Vn)\i ist, genügt die Kenntnis der ungestörten Verteilungsfunktion,

um die Störung in 1. Ordnung zu erhalten. In höherer Ordnung treten
Nichtdiagonalterme in /, V und somit auch in q, q' und a, a' auf, was auf den Einfluss der
Basis-Polarisationsfaktoren zurückgeht.

Bnk=nk E (Vn>)\l(V">)ll...(Vn*)\i, (1.3.3)
nt nf- > 1
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wobei Vq e' die Kopplungsmatrix ist, für die

(V»)*^ ô««'ôee,(V»)\l

gilt. Für das Folgende seien die allgemeinsten Kopplungsmatrizen, die mit der
Gittersymmetrie verträglich sind, für die Wechselwirkung mit den nächsten und übernächsten
Nachbarn den Momentenberechnungen zugrunde gelegt.

Die ersten drei Momente werden in der Varianzenform :

¦¦ /ix0, /A xl + AfA x02, 3 ry3>

oder in der Momentenform

¦¦ßx0, ¦ /j,2 x02 + fi2 Ax\, x3 ¦¦

j"

ft3 x03

3fiAfAx-0xl + A/j,3x03, (1.3.4)

3 fi /A x~0 Ax2 + Zt3 Ax\. (1.3.5)

Berechnung der ungestörten Momente und ihrer Varianzen :

a) einfach kubische Gitter

1. Nachbarn (6) V100

2. Nachbarn (8) Vlw

AOO
0 B 0

0 0 B

C D 0

D C 0

0 0 E

etc.

etc.

X =24+4j5 + 8C + 4£,
Axj 2 A2 A- 4 B2 + 8 C2 + 8 D2 + 4 E2,

A4 - 48 A B C - 24 B2 E - 48 C2 E + 16 D3,

b) kubisch raumzentrierte Gitter

0 3I\
1. Nachbarn (8) K/2i/sVs -

2. Nachbarn (6) ^00

91 0

® 0

0 93

ÎL

93

ABB
B A B
B B A

COO
ODO
0 0 D

Xo=8A +2C + 4-D,

~Ax\ 8 A2 + 16 B2 + 2 C2 A- 4 D2,

lÂx%= - 2\ A2 C A- \8 B2 C - \8 A2 D,

etc,

(1.3.6)

(1.3.7)
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c) kubisch flächenzentrierte Gitter

1. Nachbarn (12) 7,/il/i0

2. Nachbarn (6) Vu

'o o o r0 0 91 0

0 91 0 0

,10 0 0,

'8 0 0 0'
0 93 0 0

0 0 93 0

0 0 0 93,

91

93

ABO
B A 0

0 0 C

D 0 0

0 E 0
0 0 E

etc.

etc.

¦x0 8A+4C + 2D + 4E,
Ax\= 8 A2 A- 8 B2 A- 4 C2 A- 2D2 A- 4 E2,

Axl 24 A2 D - 24 A2 E + 24 B2 D A- 24 B2 E - 24 C2 E

(1.3.8)

In Spezialfällen von Federkräften wurden die ungestörten Momente von
Montroll18) und Montroll, Peaslee24) berechnet. Die Momente «"sind geeignet, um im
Sinne der Momentenmethode die Verteilungsfunktion zu approximieren. Diese Funktion

kann Effekte, in der im wesentlichen nur die niedersten Momente eingehen, gut
wiedergeben.

Die spezifische Wärme CV(T) für hohe Temperaturen ist solch ein Effekt, der sich
als Potenzreihenentwicklung nach 1/J2 darstellen lässt, wobei der Koeffizient zu T~2n

im wesentlichen das 2 n-te Frequenzmoment co2n x" ist (Thirring 25)). Inwieweit
man Effekte von 0 (1\T2) für hohe Temperaturen noch feststellen kann, hängt von der
Grösse der anharmonischen Terme der Wechselwirkung ab. Falls diese genügend klein
sind und erst für Temperaturen T p 0D wirksam werden, kann sich der Unordnungseffekt

bemerkbar machen. Die spezifische Wärme pro Atom wird dann

Nŝ-3M1-27XXM2-D^r(^)2^
\ n — 1

wo B„ die Bernoullizahlen

(1.3.9)

ßl=T, B2=1rJ, B3
1

42" " " '

sind. In 0 (1/T2) geht nur der periodische Kristall mit der Masse Iffi ein.
Eine genauere Diskussion der anharmonischen Effekte in ungeordneten Kristallen

musste die Vorteile der Maxwell-Boltzmann-Statistik benützen und eine Ensembletheorie

für den Logarithmus der Zustandssumme aufstellen. Diese zerfällt für
Gitterschwingungen in einen kinetischen und potentiellen Anteil; dasselbe gilt für die aus
ln Z zu bestimmende spezifische Wärme. Da für den kinetischen Anteil das Äquiparti-
tionsgesetz gilt, würde eine Ensembletheorie mit beliebigen stochastischen Massen und
festem Wechselwirkungspotential das Resultat des geordneten Kristalls liefern. Für die
Abweichungen davon sind also die für hohe Temperaturen sehr kleinen quantenmechanischen

Effekte verantwortlich.
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KAPITELII
Ensembletheorie der ungeordneten Kristallgitter

In der Clustertheorie der Defekte in einem periodischen Kristall betrachtet man
eine additive Funktion, zum Beispiel die freie Energie g ; man kann ihren Wert gfi/f... lk
für k Störatome in den Gitterplätzen lv l2... lk expüzite angeben, da man im Gegensatz
zur Clustertheorie der realen Gase die zugehörige Eigenfrequenzgleichung Pij2,..ik(x)
kennt. Wegen der Invarianz der Eigenwerte x" gegenüber einer Translation hat
gîj,...tk ebenfalls diese Eigenschaft. Die Clustertheorie zerlegt g nach den Beiträgen
der einzelnen Cluster, zum BeispielZig1 gl — g° ist der Selbst-g-Beitrag eines Defektatoms

im Kristall, Agfi!t gf i — gl, — gl + g° ist der Paarwechselwirkungsbeitrag zu
g eines Clusters mit Defekten in lx und l2 etc. Das totale g setzt sich aus den mit der ent-

ln\
sprechenden Anzahl Cluster ß-ter Ordnung I I multiplizierten, über alle Konfigurationen

gemittelten Clusterbeiträgen zusammen (N Gesamtzahl der Gitterpunkte,
n Gesamtzahl der Störatome) :

g g« + LI {Agi> + [J <Agthy + (ILI)

Im limes N -> oo, n -> oo, so dass njN c konstant ist, wird bei exponentiellem
Abfall der Wechselwirkung

1 °°
<«£«....<*> ~1^ 27' Kw...h> (IL2)

Z,-0, l„ l„ ...lk= -oo

wobei über alle paarweise verschiedenen lv l2 lkzu summieren ist.
Die Störung der freien Energie pro Atom wird für N -> oo

oo

-^- f Agi + f 2" *Ak + ir 27 27' M« + ¦¦¦ (i")
/2= -oo l2 -oo /3= -oo

Wahrscheinlichkeitstheoretisch kann die Aussage präzisiert werden. Ein Ensemble sei

gegeben durch die stochastischen Variabein mlt m2, mN (zum Beispiel Massen, aber
auch beliebige andere Kristallparameter zu einem Gitterpunkt), die insgesamt
statistisch unabhängig seien und die Wahrscheinlichkeit 1 — c für mt mA und c für mt
mB hätten (binärer Kristall). Dann ist der Ensemblemittelwert g von g(mlt m2, mN) :

g=(l- cf g" + (fj (1 - cf-1 C<g*> + Q (1 - ^)^2 '2<ëik> +- (n-4)

oder nach c entwickelt :

<g\ - g°> + L )A <g{k - g\ - g\ + g°> + (II.5)
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n\ /N
was wegen I I <~ c* I ] im limesN -> oo in der OrdnungNmit (II.1) übereinstimmt.

Anstatt die gemittelte Funktion g nach c zu entwickeln, kann man mit der Verteilungsdichte

so verfahren. Man erhält dabei eine der Entwicklung (II.5) entsprechende
Summe von Produkten von ^-Funktionen, die fast immer in m, mA liegen und daher
auf die Berechnung von Gittern mit nur wenigen Defekten führen. Besitzt die das
Ensemble definierende Wahrscheinlichkeit einen oder mehrere kleine Parameter
c1, c2 cr derart, dass die Potenzreihenkoeffizienten von (c1)*1... (cr)kr ô-Funktionen
oder deren Ableitungen von höchstens kx Defekten der Sorte 1, k2 Defekten der Sorte 2

etc. involvieren, so kann man das Problem im Sinne der Clustertheorie auf das
periodische Gitter mit einigen Defekten zurückführen. Man kann solche Ensembles mit
Defektentwicklung finden. Die Verteilung von Kapitel I zeigt für kleine Störkonzentrationen

c1... cr diese Eigenschaft. Aber auch ein Modell, das die Wirkung der
Auslenkungen ön gleichartiger Gitteratome vom geometrischen Gitterplatz auf die elektronische

Struktur nach einer Verteilung

f(ò, ...ÒN)= fim f(ô) —L= e-"*'
ici y2 n o

beschreibt, gibt für kleine a eine Defektentwicklung. Damit könnte der Einfluss der
thermischen Gitterschwingungen auf das Spektrum der Elektronen für <5-förmiges

Atompotential untersucht werden. Haug, Schönhofer26) fanden für gitterkommensurable

PhononenWellenlängen (Supergitter) eine Aufspaltung und Verbreiterung der
Energiebänder. Da man aber ein Gemisch von allen Wellenlängen hat, geht die
Supergitterstruktur im realen Kristall verloren; eine statistisch unabhängige Verteilungsfunktion

der Auslenkungen dürfte dem Problem eher gerecht werden.

§ 1. Frequenzspektrum für kleine Konzentrationen und kritische Untersuchung
der Konfigurationsmittelung

a) Spektrum der exakten Eigenwertgleichung.
Sei g eine additive Funktion in den Frequenzen xv, so wird nach einem Satz der

Funktionentheorie (siehe Ref. 7))

w EsX) -jatn 4 Md ln pw • (ILL1)
v—1 J

wobei P(x) das Eigenwertpolynom mit den reellen Eigenwerten x" ist. Das Kontourintegral

hat dabei den Bereich der x", bzw. die ganze reelle Axe zu umschliessen.
Der Ensemblemittelwert der physikalischen Grösse g lässt sich daher schreiben

ë Ë ~ Eì^) Y^lwSg(x)dhAP(A). (II.1.2)
v-1 J

Wegen der Normierung
1 N

g rr 27^(X
v-1
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wird g im limes N ->¦ oo von 0 (1) und daher mit der Bezeichnung

R lim -rr In P(x)
jV_*oo N x '

g ^rzr f g(x) dR(x) g(x) dF(x)

(II.1.3)

(II.1.4)

F(x) ist dabei die Verteilungsfunktion der Wurzeln xv. R(x) ist eine analytische Funktion

mit einem Verzweigungsschnitt und abzählbar unendlich vielen Polen auf der
reellen Axe, daher wird

F(x) -— lim / R(x + iS). (II.1.5)
71 d—> -4- 0

Die Schwierigkeit für die Auswertung besteht darin, dass ein arithmetischer
Ensemblemittelwert des Logarithmus des Eigenwertpolynoms, das heisst ein geometrischer
Ensemblemittelwert für P(x) selbst zu ermitteln ist. Wir führen die Auswertung für
den binären Kristall mit kleinen Störkonzentrationen durch. Dabei ergibt sich im
limes N -> oo (siehe 1.2.15) bei passender Wahl der Frequenzeinheit

1 + e E0 e E„
1 I °"

AF(x) - -/icln(l + £ X) + c2 Eln~ eE„ lA-eE„
(1+eEJ-

(II.1.6)
m-l v- ¦ ~—UJ )x + iO

Es empfiehlt sich, an Stelle von x die Variable x im Grundband und a durch x n A- ia
im Störbereich einzuführen, dann wird x + i 0 der komplexen x-Ebene auf den Weg C

(siehe Figur 3) der r-Ebene abgebildet, nach dem Gesetz :

x sin2 --.

0

Bei Integration von

EAx)

Fig. 3

dx'
2 n J x(r') — x

r' — -n
für x > 1 (Störbereich II) und analytischer Fortsetzung in 0 < x < 1 (Grundband I)
findet man für (I)

x sin2 —, Em(x) »tg-T«' (II.1.9)
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und für (II) x nA- ia, o > 0,

mit

*=Ch2|-, £» (-)'»+1Cth-e-lMlff.

Damit wird die Verteilungsfunktion

AF F - F0 c F1 + c2 F2 +

(0 x< 0

Y(x) l (Heavysidefunktion)
[l x> 0

und

"e, (ab) —

0 e$(a, b)

j1 se (a,b)

wobei

^W-1-tjtV-0-

^iixxx^a^rxx^)
-"e, (01) Lum, (0Af:,)Y (o- - ax (m)) + Y (a - a% (m)) - 2 Y (a - a0)]

wobei

«XX v1 Tho-/2 v
(+)

(1 - e-am),

(IL 1.10)

Fl _ 1 arc tg (e tg |) - 1 Y(a) + <5e,
(01) Y (a - cr0), (II.l.ll)

(II.1.12)

^liKM) 0 /I2n2((T2H) 0 0 < ai(m) < ff0 < 0-2W < °° •

Das Resultat in 1. Ordnung (Mahanty, Maradudin, Weiss23)) gibt für den Fall
e > 0, das heisst die leichte Masse mB ist die seltene Atomart, eine Verkleinerung der
Wahrscheinlichkeit im Innern, wobei die höheren Frequenzen um so stärker betroffen
werden, je kleiner mB ist. Ferner treten am oberen Rand des Grundbandes x n bzw.
a 0 und in a0 Linien, die Rand- und Hauptstörlinie auf; letztere verschwindet für
e < 0. Die Wahrscheinlichkeit am oberen Rand wird negativ; darin deutet sich in
singulärer Weise der zu erwartende Abfall der Wahrscheinlichkeit am oberen Rande an
(siehe Fall unendlicher Masse mB und Dean, Martin19)). Die Normierung verlangt für
eine Potenzreihenentwicklung J fx(x) dx 0 und ist erfüllt, da das Grundband den

Beitrag 1/2 — (3f(0i) ergibt. In 2. Ordnung werden die Grundwahrscheinlichkeiten für
lange Wellen weiter verkleinert, und derWert lim F2(x) wird Mx — M/2, wenn man die

Summation über m bei M abbricht. Die Randlinie besitzt eine Intensität M/2, während
jede der 2 M — Mt- Störlinien die Intensität 1 besitzen und für m -> oo gegen die
Hauptstörlinie streben. Deren Intensität — 2 M ergibt die Normierung f f2(x) dx 0. Die
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Störlinien der Klasse a-Afn) werden für 0 < s < 1/2, das heisst 1/2 mA < mB < mA und
m < Mx [1/2 e] im Grundband absorbiert. Für die höheren Ordnungen wird die

Mannigfaltigkeit der Störlinien noch grösser. Die Beiträge lassen sich immer in Grundband,

Randlinie und Störlinienkomplex aufteilen. Die Clustertheorie der ungeordneten
Kristalle setzt also kein Störband in Evidenz, wie das Theorien mit Supergittern hoffen
lassen, sondern einen über den Störbereich sich erstreckenden Störlinienkomplex. Man
kann versuchen, wie das in der Schmidt-Paartheorie gemacht wurde, die Linien in der
Umgebung der Hauptstörlinie durch eine stetige Verteilungsfunktion zu ersetzen,
indem man die Störatomabstände m als kontinuierliche Variable betrachtet.

b) Konfigurationsmittelung.
Von Mahanty13) wurde vorgeschlagen, an Stelle einer geometrischen Ensemblemittelung

der Eigenwertgleichung P(x) 0, zunächst eine Konfigurationsmittelung
von P(x) über alle N !-Permutationen der Massen mlt m2, mN auszuführen und das

konfigurationsgemittelte Polynom P*(x) zur Bestimmung der Verteilung f(x) zu
benützen.

P*(x) <P(*)> ~EP(X> mh mH ¦ ¦ ¦ mm) QI.1.13)

alle Permutationen von (iv i2, iN). Dies erscheint zunächst sehr willkürlich, da nur
die Mittelwerte von physikalischen Grössen einen Sinn haben. Solche vorzeitige Mittelwerte

werden öfter in der Physik verwendet (zum Beispiel in derBoltzmann-Gleichung,
Luttinger, Kohn27)) und bei genügend kleiner Varianz der vorkommenden stochastischen

Variablen als berechtigt angesehen. Eine Konfigurationsmittelung ist eigentlich
nur ein Symmetrisierungsprozess und daher schwächer als eine Ensemblemittelung.
Letztere führt auf die virtuelle Kristallapproximation eines periodischen Kristalls.
Das Eigenwertpolynom für Wechselwirkung nächster Nachbarn lautet in Normalform
(«"-Koeffizient 1)

P(x) xN - C1 X"1 + C2 X"2 - + (-f CN (II.1.14)

Die Ck sind durch die Summe der ß-reihigen Hauptminoren der Matrix

2 ft — ft 0 0

- fx2 2fx2 — fx2 0

0 - fj,3 2fj,3 - n% 0

0 0 0..-ßN 0 0..
gegeben.

mit

5 H. P. A. 36, 1 (1963)

«!«2.. kg

0 -ft \
0 0 \
0 0 \

fttf-l 2/f!v_1 —^N-l I
ftv ^ J^iV '

+ 3 • 2 a2X + 2 • 2 - 2 aul, (II.1.15)

ft, • • • ft, - (ILI.16)
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wobei die Summation über alle Indizes i\, j2.
jeweils kv k2, ks Indizes benachbart liegen.

Zum Beispiel

derart zu erstrecken ist, dass nur

al ft + ft + • • • + /% a2 ft ft + ft ft + • • • + ftv-1 ft\T + ft/ ft '

au ft ft + ft ft + ft ft + • • • + ft/ ft
(II.1.17)

etc.
Wenn man P(#) mit C(jilt /u2, /xN) multipliziert, bleibt die Verteilung derWurzeln

ungeändert. Eine Ensemblemittelung von C P(x) hingegen gibt andere Resultate als

P(x), wie aus den ersten Momenten schon ersichtlich ist. Die Ergebnisse stimmen
überein, wenn C unabhängig von fxx, fi2... fiN ist.

Falls man die Normalform mittelt, erhält man einen virtuellen Kristall mit der
Masse l/Jl, falls man mit C 1//^ jx2 /uN mittelt, einen virtuellen Kristall mit der
Masse m (letzterer Fall stimmt mit der Kontinuumstheorie für lange Wellen überein
und wird daher bevorzugt, siehe Ref. 12)). Die Konfigurationsmittelung lässt eine

grössere Klasse von Multiplikatoren zu, nämlich für alle symmetrischen Funktionen
C(fiv ju2... fiN) haben <C P(x)y 0 und <P(#)> 0 dieselbe Verteilung, da die
Konfigurationsmittelung an symmetrischen Funktionen nicht angreift, das heisst C 1 und
C ljß1 fji2... /j,n geben dasselbe Resultat, im Gegensatz zur Ensemblemittelung. Aus
demselben Grund stimmen bei der Konfigurationsmittelung die ersten drei Momente
xn* von P*(x) (in Normalform) mit den exakten Momenten x" überein. Die
Potenzsummen Sk der x" kann man mit den Newtonformeln durch die algebraischen
Grundfunktionen Ck ausdrücken :

S4 C\ - 4 C\ C2 + 2 Cl + 4 Cx C3 - 4 C4,

N x~3 <s3> <q> - 3 (C1 CA + 3 <c3>,

N A3* <Cj>3 - 3 <Ca> <C2> + 3 <C3>.

Da C± symmetrisch ist, vertauscht es mit der Konfigurationsmittelung

<CX C2> <CX> <C2> => j? *3*

und entsprechend

(II.1.18)

(ILI.19)

woraus die Behauptung durch Mittelung folgt.
Da C2 nichtsymmetrisch ist, wird

<q> * <c2>2 => ** * *** (II.1.20)
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Allgemein stimmen wegen der Struktur der Newtonformeln die Momente bis zur
Ordnung n 2 k + 1 überein, wenn Clt C2, Ck symmetrische Funktionen in

[ilt fx2... fiN sind. Untersucht man die Momente x"r*, die man aus der
Konfigurationsmittelung der r-ten Potenz (r 1, 2, 3 des Eigenwertpolynoms Pr*(x)

<Pr(x)> erhält, so findet man aus denselben Gründen eine Übereinstimmung der
ersten drei Momente

Xi X2 Xö X" (II.1.21)

während die höheren Momente um so mehr vom exakten Resultat abweichen, je grösser
r ist.

Die Polynome <Pr> für r 1, 2, 3 zeigen, wegen der Homogenität der
Koeffizienten von Pr, die Eigenschaft, dass sie nach der Mittelung < > bis auf einen vom
Homogenitätsgrad k und N abhängigen Zahlfaktor bk(N) die entsprechende symmetrische

Grundfunktion ak in /j,lt /i2, /j,n erzeugen. Man kann kein Polynom von diesem

Grundfunktionstypus

x*) 27(- )'bk(N)akx»-k (II.1.22)

konstruieren, das das 4. Moment richtig wiedergeben kann. Hingegen sieht man, dass

die Momente x"r mit den exakten x" übereinstimmen, wenn man formal r -> 0 gehen
lässt; P0(x) sei ein durch folgenden limes definiertes Polynom:

P0(x) lim H W(PAUr (II.1.23)

dabei soll man nur den Hauptteil der Funktion für x oo, der für die Momentenberechnung

massgebend ist, aufschreiben. Der Beweis folgt aus der Ensembletheorie. Ein
symmetrisches Polynom, das die richtigen Momente ergibt, muss der Beziehung
ln P0(x) <ln P(x)} genügen, da ln P0(x) <ln P(x)} ln P(x) wegen der statistischen

Unabhängigkeit von/j,lt fi2, /iN.
Im Sinne einer Momentenübereinstimmung, das heisst für asymptotische x, gilt für

ein beschränktes Spektrum von (P(x)y

P-<P>
<P> <1

für alle genügend grossen x.
Somit

lnP0 <lnP> ln<P> + (ln(l + P~^>

1r-<P>-
1 <z1P2> 1 <AP3}
2 <P>2

'
3 <P>3

(II.1.24)
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andrerseits, unter denselben Voraussetzungen

lnP„ lim—ln<Pr>
r^O r x 7

ln<P>

ln<P> lim — ln
r^o r

p-rpyy

lim — ln | 1
j-^o r

r\ (AP2}
2 <P>2

<P>

r
3

)">

<Zip3>

<p>3

PoW iîIF<P>rT^<p>r
1 <ZlPs>

(II.1.25)

(II.1.26)

P0(x) ist offenbar nicht vom Grundfunktionstypus (II.1.22), da <ZlP2> symmetrische
Funktionen höheren Grades involviert. Der Exponent ist von der Ordnung ljx* und
korrigiert alle Momente vom 4. an aufwärts.

Zum Schluss wollen wir noch einige Aussagen über eine Clustertheorie zu P* < P>
machen.

Analog zu (ILI.2) wird

N 27^ i
2 ti In' (x)dinP*(x)

R*(x) lim -rrA'_oo N ln<P>, F*(x) - lim J R* (x + i Ô)
71 0-^ + 0

Eine Clusterentwicklung für ln<P> und somit für F*(x) ergibt:

ln<P> ln<P°> +
N

c(in <n>\
<p°> / '

N
ln <pl? <P°>

<X>2 >+

(II.1.27)

(II.1.28)

(II.1.29)

Die Konfigurationsmittelung greift an P° und P\ nicht an, desgleichen nicht an den

Logarithmen von symmetrischen Ausdrücken. Daher wird mit P* it... ;fc/P° Zl*/2... lk

ln<P>-lnP°
2V

clnzl1
N

^-(A
<4V- + (II.1.30)

Der Unterschied zu der exakten Entwicklung liegt darin, dass die Konfigurationsmittelung

im Argument des Logarithmus stattfindet. Die Ausführung der Mittelung
ergibt

^-iih^^^^iy^cWiAr^ \+...} (II.1.31)2tr '

)C v '

mit x sin2 (t/2) und C dem Weg aus Figur 3. Dabei zeigt sich eine Übereinstimmung
mit der Clustertheorie für A F in 1. Ordnung in c, während die höheren Terme den für
das Auftreten der Nebenstörlinien verantwortlichen Logarithmus nicht mehr
enthalten ; für die Hauptstörlinie 1 + i e tg (t/2) 0 treten Pole höherer Ordnung auf. Damit

ist die Behauptung Bk B% * bewiesen. Aus dem Koeffizienten von c2 kann man
die Vermutung (1.2.30) leicht allgemein bestätigen. Bis jetzt haben wir uns nur um
allgemeine Eigenschaften der Konfigurationsmittelung gekümmert und das Verfahren
kritisch beleuchtet. Der grosse Vorteil liegt darin, dass man das Frequenzspektrum von
P* <P>, abgesehen von algebraischen Schwierigkeiten, durch eine Sattelpunktsmethode

finden kann.
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§ 2. Auswertung des konfigurationsgemittelten Eigenwertpolynoms mit Hilfe
der Sattelpunktsmethode

Während die Clustertheorie auf Entwicklungen der Verteilungsfunktion F(x) führt,
die nur für kleine Störkonzentrationen brauchbar sind, erlaubt das konfigurationsge-
mittelte Eigenwertpolynom im Prinzip eine exakte Auswertung.

In Verallgemeinerung des Mahanty13)-Ansatzes lassen wir für die Grundformel
eine behebige Wechselwirkung für die h nächsten Nachbarn und mehrere Atomsorten
der Masse mk und der Konzentration c* NkjN, k 0,1,2 r zu. Dann wird die
Eigenwertgleichung für die eindimensionale Kette :

-mlxul K1 (ul+1A-ul_1-2ul) + K2 (ul + 2A- ut_2-2ut)

+ ¦¦¦ + Kh{"i+h + ut-h-'2-uò

was in Matrixform geschrieben wird

(II.2.1)

w/-ft+l
Ul-hA-2

0 i 0

0 0 1

0 0 0

i
0

¦• 0

0

1

0

0

0

1 ¦•

0

1

0

0

1

fh-l - P*-2 ßi 2a-

"i-i,
*J-A + 1

:%)»,.„ (II.2.2)

wobei

K.
ßi 1^(i l,2...h-l), x=2Jßi+1-

Die Eigenwertgleichung folgt aus der zyklischen Randbedingung

wN w0, wN H(mN) H(mN_^} H(mA, w0=l ¦ w0, (II.2.3)

0 | H(mN) H(mi) - 1 | 2 - S p H(mx) E(m^ (II.2.4)

wegen \H(mj) | 1.

Da die Verteilungsfunktion im limes N -> oo nicht durch die Konstante des Polynoms

beeinflusst wird, darf man setzen

P(x) SpH(mN)...H(m1) (II.2.5)

Entsprechend dem Vorhandensein mehrerer Atomsorten wird die erzeugende Funktion
der Konfigurationsmittelung

wobei
(H0 + z1 Hx + + zr Hv)

Hk H(mk) k 0, 1,2 ...r.

(II.2.6)



M
r dzx dzr
1 *f1+1 '" ^x+i

X (H0 Arz1H1A- .A-zrHrf.
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Der Koeffizient von z^ z^'... z?' gibt die über alle N\IN0\ Nx\ Nr\ Konfigurationen

gemittelte Eigenwertgleichung wieder; in komplexer Schreibweise wird

V ' N \ (2 TliY J zNi AI ^rAl (H.2.7)
UiASj ...Nr]

Wegen Nx c1 N, Nr CN, und da wir nur an der für N -> oo kontinuierlich
werdenden Frequenzverteilung interessiert sind, liegt es nahe, das mehrfache komplexe

Integral asymptotisch auszuwerten ; dabei ist zunächst eine Matrix H vom Typ H mit
einer mittleren Masse m (m° + z1m1 A- A- zr mr)l(l + z1 + + zr) zu diagonali-
sieren, was auf die Lösung des periodischen Problems zurückgeführt werden kann.

Hdia=(eu^-^dj/), (II.2.8)

wo Àj(zl zr) über die Masse m von zx zr abhängt. Damit wird die für die Asympto-
tik geeignete Form

<^>=«¦*w§w ¦ ¦ • x (1+y..<+'T ^+-+eiNKh) ¦ (ilz9)

Die Konsequenzen der Asymptotik seien für den Fall k h 1, das heisst binäre
Kristalle mit Wechselwirkung nächster Nachbarn näher untersucht :

1 X àz /1 A-z\N
<P> const ^-X S — (±¥) (ew^ + eiN^]) (II.2.10)

^ TT î j Z \ Z /

wo X, X2 Eigenwerte von

sind; daher

0 1 N

-12— ™A + mBz A
lA-z Kr

sin T rT-j ^, Kx-K, A2--A.

X r£ X ^7/.« a- yt-^\
Damit wird

<P> const -y—r d) -^- (X/+(2) + eNUz)) (II.2.11)

Nach der Sattelpunktsmethode folgen die Sattelpunkte zjr,... und zr,... aus (df+/dz) (z+)

0 und (df-jdz) (z~) 0. Da f+'(z) und /-'(«) konjugiert komplex sind, wird f+'(z)
f~'(z) 0 eine reelle Gleichung für alle Sattelpunkte darstellen. Bekanntlich ergibt die
asymptotische Auswertung von

2 Ttt
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je nach der Lage des Sattelpunktes z0 ein rein exponentielles Verhalten

~(2 7iNf"(z0))-ll2eN'M

(falls f(z0) reell), bzw. für konjugiert komplex liegende Paare von Sattelpunkten
zv z2 z* ein exponentiell oszillatorisches Verhalten

~ (2 n N | /'Xt) |) -1/2 eN »«*> 2 cos [tf / /(*J - \ arg /"&)] (falls f(z2) /*(*,)).

Die Linearität des Argumentes in N ermöglicht für die Nullstellen N J f nv des

asymptotischen Ausdrucks einen sinnvollen Grenzübergang N -> oo. Wegen des
beschränkten Gültigkeitsbereiches der asymptotischen Formel ist v nur über einen
endlichen Bereich, z. B. 0 < v < N zu erstrecken ; die Wahl des Bereichs lässt sich an Hand
der Normierung sehr leicht prüfen. Die Variable v/N wäre danach im limes N -> oo

gleichverteilt, was eine bestimmte Verteilung für / / und somit für x nach sich zieht.
In unserem Beispiel lautet die Sattelgleichung

X /-' (tT7 - ïî + {X'{Z))Ì ° (IL2,12)

oder für

bei passender Wahl der Frequenzeinheit

P8(f | *, J, /i) C3 [1 + 2 * (/> + qfi) - 2 x (1 + p)]

+ C2 [- * (p + qp)2 - 2 (p + qp) + x (p2 + 4 fi + 1)] (II.2.13)

+ X(i* + p)2 - 2 p x (1 +p)]+ x p2 0.

Die charakteristische Gleichung P3(C [ x, q, p) 0 hat im allgemeinen drei Wurzeln,
von denen nur konjugiert komplexe Paare bei einer asymptotischen Auswertung einen

exponentiell oszillatorischen Beitrag liefern. Die eine der Wurzeln ist dabei ein Sattelpunkt

von/+, die andere einer von /-, da f+*(z) f~(z*). Das Spektrum erstreckt sich
daher über einen ^-Bereich, in den die Gleichung P3(f [ x, q, p) 0 zwei konjugiert
komplexe Lösungen besitzt. Die Diskriminante

nk c'* | *A + ßzo 0»y» «ßyo (TT 2 141U1S * 4 + "
27

"
108 6 in^.i-r;

P3(0 ^C3 + ßC2 + yC + o

entscheidet über die Anzahl reeller Lösungen. Da ct., ß, y, ò lineare Funktionen in x sind,
wird Dis Pt(x [ q, p) ein Polynom 4. Grades in x, das x 0 immer als Lösung hat.
Da reelle Lösungen immer paarweise vorkommen, existiert zu xx 0 ein reelles x2, das
den oberen Rand des Grundbandes ergibt. Es kann aber ausserdem noch ein Störband
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auftreten, wenn x3 und xt ebenfalls reell sind. Darüber entscheidet die zum Polynom
3. Grades Pi(x\q, p)jx gehörige Diskriminante Dis* P(q, p), wobei P(q, p) ein

Polynom höheren Grades in q und p bedeutet.

a) Es wird nun der Spektralbereich im Spezialfall von Gittern mit gleicher Konzentration

p q 1/2 diskutiert. Sei

Aß
(l+p)x- (1+/*)2

dann lässt sich das Polynom

Dis P4(% | q, p) F(u, v)

als symmetrische algebraische Funktion 4. Grades schreiben.

F(u, v) -9u2A-36uv-9v2A-8u3-30u2v-30uv2 + 8v3A-27u2v2. (II.2.15)

Es genügt, sich für die Diskussion auf p < 1 zu beschränken, da für p -> p Ijp,
x -»- x' x\p das heisst bei Vertauschung der beiden Massen und Einführung eines

neuen Frequenzmaßstabs u und v in sich übergehen. Man findet dabei für einen

Massenquotient, der grösser als ~ 1: 6 (genau u 1, v 1/2 =*- x 1/2 + |/2/4, p 3 — j/8)
eine Trennung des Bereichs im Grundband und Störband. Der genaue Verlauf der

Spektralgrenzen ist in Figur 4 dargestellt.
Ein Vergleich mit den üblichen Methoden zeigt, dass das Störband eine sehr grosse

Ausdehnung besitzt, aber die theoretische Maximalfrequenz xmax 1/p nicht erreicht.
Die Hauptstörlinie der Clusterentwicklung liegt im Innern des Störbandes, ebenso das
bei einer periodischen Anordnung entstehende optische Band.

'fi

OA
xAyAx \<^

0,15
11 > "^^^^^S^T^rar^

na l/^~—--^— Ä.

Fig. 4

theoretische Maximalfrequenz
Hauptstörlinie der Clustertheorie

//////////// optisches Band für periodische ABA B... -Anordnung
Grenzen des Spektralbereichs
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Ein Vergleich der zugehörigen Verteilungsfunktion könnte erst über die Güte der
virtuellen Kristallapproximation bzw. eines Supergittermodells entscheiden. Die
Diskussion der Verteilungsfunktion an sich ist nur mit einem erheblichen Rechenaufwand

möglich, da die komplexen Wurzeln zv z% z* zu suchen sind, die, in / f+(zj)
eingesetzt, durch Differentiation nach x die Verteilungsdichte ergäben. Eine qualitative

Diskussion ist an Hand der früheren Bemerkungen über die Clusterentwicklung
von P*(x) möglich; danach wird sich die Verteilung im Störband für kleine
Störkonzentrationen um die Hauptstörlinie konzentrieren, während die Nebenstörlinien,
wegen des Verschwindens des Logarithmus bei der Konfigurationsmittelung,
wegfallen. Die Wahrscheinlichkeit ist daher in den Flügeln des Störbandes klein. Für
grössere Konzentrationen ist eine Verkleinerung der Flügel zu erwarten.

Eine vollständige Diskussion der Frequenzverteilung ist in den Spezialfällen p 0

und p oo möglich, weil sich die Eigenwertgleichungen durch ultrasphärische
Polynome P$(x) (Szegö28)) darstellen lassen.

Def.:

^-Ai§~hrr^- (IL2'16)

b) Spezialfall p 0, mB 0 (Leerstellen siehe Stripp, Kirkwood30))

const

¦P{2Nl(]/x), p=y (II.2.17)

1 X dz
(II.2.18)¦2m J (X-2yzA-z^Nz2^N+1 '

2 pinz - qin(l - 2 y z A- z2) (II.2.19)

-io y 2Vp-'A cosp=—, y0= XX- (II.2.20)

m -

hat die Sattelpunkte

Zl,2 ÌP

Die asymptotische Auswertung ergibt :

<P> ~ const sin (N J f(zt) + 0(1)),

deren Nullstellen

N Jf(Zl)A-0(1)= 7ZV

sind.
Da P(V (x) n Nullstellen für negative und positive x besitzt, hat die gerade Funktion

P2A;i(y) A4 Nullstellen für positive y ; daher ist für den Anteil positiver Frequenzen v
über 1, 2, A/j zu erstrecken. Folglich ist vjNx im limes N -> oo gleichverteilt :

q limXi/ f(zx) (II.2.21)e AT-j-oo Nx 71 p J ' v 17 v '
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Somit

e*M =dA A r^_ 1±X y^A
s yyl dy tt J y-zx np 1-y2

oder

/*(x) g* (ß)~ Arl^AzA^. (II.2.22)' 2\/x 27ip\/x (1-x)

Diese Verteilung ist auf 1 normiert und berücksichtigt nur die im Endlichen liegenden
Frequenzen; die Gesamtverteilung hat aber N2 Eigenwerte x oo wegen mB 0.

1A-P ]/x,
ltot\*1

wobei

/&(*) ^Xf i/- ,1 ; + ^ (* - ~). (II.2.23)
z ^ yx (1 — x)

__
4j*

*° ~ (1 + «2 •

Für kleine §• wird

/&(*) ^ T/=7f=r (^ - l) - j-à (x - 1) A- qô (x -oo) A- 0(q2) (II.2.24)
1/ X (.L — .# « '

c) Spezialfall

p oo mB oo, <P> const xN* P^"' (1 - 2 «)

die Auswertung ist analog dem Fall b).
Man findet

'•wXXXX^ <"-2-25>

ohne Berücksichtigung der N2 Nullstellen x 0. Somit wird

fZM | J^rg^jff + aw (II.2.26)

oder im Grenzfall kleiner (7 :

M ^ rr=L~ + | («(*) - d (x - 1)) + 0(q2). (II.2.27)
y X J- — X

Die berechneten Verteilungsdichten f*t(x) fürp 0, 00 sind für alle 0 < q < 1 positiv.
Die für die Clustertheorie typischen Randsingularitäten findet man bei einer formalen
Entwicklung nach q. In diesem Sinne sind sie nur die Folge der Verschiebung des
oberen Randes, bzw. erreichen sie in geschlossener Form geschrieben das Verschwinden
der für das periodische Problem charakteristischen Singularität l/|/l — x am oberen
Rand. Inwieweit die senkrechte Tangente in x0 auch für die exakten Verteilungen
zutrifft, lässt sich noch nicht entscheiden. Jedoch kann man im Fall mB 00 zeigen, dass
die exakte Lösung, falls man sie stetig approximiert, am oberen Rand f(x) xe~ const«/(1 -*)

wird; das heisst die sich bis x (1 + i/l — g,2)/2 erstreckende Lösung der Konfigura-
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tionsmittelung verliert einen exponentiell kleinen Randanteil. Auch die numerischen
Methoden zeigen eine Ausdehnung des Spektrums über den ganzen Grundbereich mit
einem rapiden Abfall gegen den oberen Rand.

Zusammenfassend kann man sagen, dass die Konfigurationsmittelung des
Eigenwertpolynoms die globalen Eigenschaften des Spektrums gut wiedergibt, während die
für kleine q c differenzierte Struktur der Nebenstörlinien in einem Störband mit im
wesentlichen einem Maximum aufgeht. Inwiefern die Grenzen des Störbandes auch mit
dem Bereich des Hauptbeitrags übereinstimmen, lässt sich nur durch eine eingehende
Untersuchung von f*(x) entscheiden.

§ 3. Schlussbemerkungen

Die bisherigen Überlegungen befassten sich nur mit den Frequenzspektren von
Gitterschwingungen. Diese sind einer wahrscheinlichkeitstheoretischen Untersuchung
zugänglich, da das Problem auch in mehr Dimensionen auf eine algebraische Aufgabe
zurückgeführt werden kann. Viel schwieriger liegen die Verhältnisse bei Elektronen-
energiespektren, da die realen Wechselwirkungen weit über die Einheitszelle des Gitters
hinausreichen. Damit hat man eine Differentialgleichung mit stochastischen
Koeffizienten zu lösen ; diese Art von Gleichungen ist aus der Theorie der Brownschen
Bewegung (stochastische Erregerkraft) bekannt. Die Schrödinger-Gleichung ist aber
unter diesen Umständen bedeutend schwieriger, und man kann nur durch physikalisch
plausible Näherungen (Korringa29)) eine brauchbare Lösung erhoffen. Für delta-
förmige Atompotentiale binärer Kristalle kann man sowohl eine Clustertheorie als auch
eine Konfigurationsmittelung (siehe Ref.14)) durchführen. Wegen der Transzendenz
der Eigenwertgleichung zerfällt das Spektrum in abzählbar unendlich viele normierbare
Verteilungsfunktionen Fm(x) (m 1, 2 Bandindex). Die einzelnen Bänder sind
wegen des Saxon, Hutner, Luttinger (siehe Ref.3)4)) Theorems streng getrennt;
jedes der Bänder zerfällt unter Umständen in Grund und Störbereich, in denen ähnliche
Verhältnisse herrschen wie im Fall der Frequenzspektren (siehe Faulkner,
Korringa14)).

Die Konfigurationsmittelung wurde aus technischen Gründen bisher nur auf
eindimensionale Probleme angewandt. Im Prinzip kann man sie auf den Raum erweitern,
wobei die Übereinstimmung der ersten drei Momente und der Resultate in 1. Ordnung
in c bestehen bleibt. Die eigentliche Schwierigkeit liegt darin, eine für die Asymptotik
N -> oo geeignete Integraldarstellung des konfigurationsgemittelten Eigenwertpolynoms

zu finden.
Eine andere Approximation fed(x) könnte man durch Beschränkung auf die

reduzierbaren Anteile der Momente erreichen, welche in 2. Ordnung in c mit der
Konfigurationsmittelung zusammenfällt. Langer16) benützte zur Berechnung der Verteilung
in 1. Ordnung eine in der Theorie der Mehrfachstreuung übliche Entwicklung des

Phononpropagators, die gewisse einfach zusammenhängende Graphen der Entwicklung
in allen Ordnungen in c berücksichtigt. Das entspricht im wesentlichen einer Reduktion
von 2J EtlliEltlt...Elnh. Inwiefern die beiden Verfahren übereinstimmen, sei

hi *i • • • *n
einer späteren Untersuchung vorbehalten.
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Herrn Prof. A. Thellung möchte ich für sein reges Interesse und wertvolle Diskussionen

danken. Herrn Prof. B. L. van der Waerden verdanke ich einige kritische
Bemerkungen zur Wahrscheinlichkeitsrechnung.
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