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Théorie des quanta dans l'espace de Hilbert réel IV:

Champs de 2e espèce (opérateurs de champ antilinéaires),
T- et CP-covariance*)

par E. C. G. Stueckelberg et M. Guenin**)
(Universités de Genève et Lausanne)

(8. V. 62)

Abstract. In previous articles (referred to as I, II, III) we showed that quantized
fields can be, in principle, antilinear operators (i.e. anticommuting with i [/— 1).
It is shown, that antilinear scalar (or tensor) fields w cannot exist (algebraic
contradiction) For antilinear spinor fields ipA, a representation for the FD-case has been

found. An antilinear operator K4. exists, relating in ip yj K+linear (ip) and anti-
linear FD-fields (ip). (The BE case is to be excluded on account of C-covariance or
for thermodynamical reasons.)

Treating interacting fields, the antilinear formalism is shown to be impossible,
if scalar (or tensor) fields exist. Pure Fermi interaction however, is possible. One
or more of the four spinor fields ipA u\ ((i) (1) to (4)) maybe treated as antilinear
fields y>A ^. An operator K |_ must be contained in the interaction
momentum-energy density Q"- ß(int), if an odd number of ip^'s occurs. Furthermore a reality
condition for the 10 coupling constants is necessary. This assures automatically
T-covariance.

All calculations in this article could be done in CHS (Complex Hilbert Space).
However, our method of RHS (Real Hilbert Space) is much more convenient, anti-
linear operators in CHS being linear in RHS. Also, the disconnected parts of the
Lorentz group (P and X) are much easier to handle, the method providing for a
«fool proof notation».

We conclude : The theory of antilinear FD fields is isomorph to the theory of linear
FD-fields, if the (observed) separate T- and CP-covariance is postulated. BE fields can
not occur, but must be considered as 'bound states' of FD fields.

Introduction et conclusion

Dans une série d'articles1)2)3) (auxquels nous nous référerons par I, II,
III; une note 7) a déjà paru), nous avons tout d'abord (I) montré que la

*) Travail subventionné par le Fonds National Suisse pour la recherche scientifique.

**) Ce travail fait l'objet d'une thèse de doctorat de l'un de nous (M.G.),
soutenue devant la faculté des sciences de l'Université de Genève, le 14 juin 1962.

43 H. P. A. 35, 7/8 (1962)



674 E. C. G. Stueckelberg et M. Guenin H. P. A.

théorie des quanta dans un espace de Hilbert réel (RHS*)) et celle dans un
espace de Hilbert complexe (CHS*)) étaient isomorphes. Il existe notam-

ment la correspondance biunivoque J ^±i =y— 1. En III ont été
formulées les lois générales auxquelles une théorie des champs (scalaires w,
spinoriels ip) doit satisfaire. Nous avons montré, qu'outre les champs de

lre espèce, commutant avec J (III. 1. 5, Ist k.), des champs de 2° espèce,

anticommutant avec / (III. 1. 5, 2nd k.) pouvaient être conçus, a priori.
Pour simplifier nos expressions, nous les appellerons champs linéaires et
champs antilinéaires**) respectivement.

Développant le champ scalaire antilinéaire, nous montrons (§ 1), que les

deux possibilités***) de quantification amènent à des contradictions
algébriques. Il en est de même pour tout champ tensoriel. Nous en tirons
la conclusion:

Les champs scalaires et lensoriels, w, wa, sont nécessairement linéaires.
Pour le champ spinoriel antilinéaire (§§2, 3) y>A(x), nous obtenons les

deux cas: commutation (BE) et anticommutation (FD). Le raisonnement
de Schwinger4)5) (C-covariance), ou la condition thermodynamique
(Pauli6) : postulat d'une borne inférieure pour l'énergie H****) excluent
le cas BE. On s'aperçoit alors:

1. que les expressions pour les densités de quantité de mouvement-
énergie et de courant-charge ont la même forme (ipa(x) day>(x)) :

?X(0X) | X1 (Xyawß - ¥ßy*y + ¥ya fTß - vßya X) (*) - (0.2)

f(x) Ì (X y«xp-\j,y* X) (X) (0.3)

est valable pour tp et pour ip.
2. que les relations d'anticommutation (III 8. 12) et (III 8. 13) sont aussi

valables dans les 2 cas.

Développant en termes de deux systèmes de paquets d'ondes {cp'A} et
{x'A} (CI- m § 11)> on s'aperçoit que les deux ensembles {cp'} et {x'} en

y(A S,- ?'(*) V + Sx' x'TA) K (°-4)

*) RHS (CHS) Real (Complex) Hilbert Space (cf. I, II, III).
**) w,if sontdeschamps linéaires (ou, dans certaines équations, linéaires ou anti-

w, yi sont des champs antilinéaires. Tout opérateur avec une barreÄ-i-,«,
- u

est antilinéaire, i.e. [K±, J]+ 0.

***) Ces deux possibilités ne peuvent pas être caractérisées par commutation ou
anticommutation ((BE) ou (FD)).

u
****) Le symbole H en I, II, III était faux: il faut écrire H, parce que lors de

T -<r- 0T, H garde son signe :

w | H H H H
m \II,H}; 'H 0~1THOT H; 'II 0~1T 11 0T - 77 (0.1)
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doivent être identifiés. Ceci provient du fait que les aTv> et a - n'ont plus
le caractère d'opérateurs de création et d'annihilation.

En termes de l'algèbre des ä > et b ¦, l'opérateur Oc effectuant la C-

conjugaison peut être donné explicitement (§ 3).
Dans le § 4 nous donnons une représentation des ay et b^. Aussi

trouvons-nous que les valeurs propres de la quantité de mouvement-énergie

(77' et de la charge (Q1) sont identiques avec celles du champ linéaire.
Le § 5 donne une expression (multivoque, en fonction de Q) de l'opérateur

Ol changeant la phase de tp.
u

L'identité des valeurs propres 77' et Q' laisse prévoir l'existence
d'opérateurs antilinéaires (K_ et K+), ramenant le formalisme antilinéaire au
linéaire, conformément à

tp(x) tp(x) K± ; (0.5)

KT± K± =K±KT± 1, (0.6)

[tp,K±]± [tp,KT±]± 0. (0.7)

(Une transformation orthogonale transformant un A en un A est impossible.)

Nous avons trouvé la représentation de ces deux opérateurs (telle

que KT± KA- (Les représentations (III. 11.14) et (4.2) ont été choisies

de telle manière que K+ les relie.)
Le § 7 prépare la théorie d'interaction, en définissant (en termes des

opérateurs de Schrödinger w(x) et tp(x)), Yhamiltonien des champs libres
Tj(lib) *\tì(i) )¦

Ensuite (§8), l'impossibilité du «formalisme tp» est démontrée si des

champs tensoriels w, w, œ>(a ß\ existent : Donc, en particulier, il y a
impossibilité d'une électrodynamique avec un champ de matière décrit par tp.

Par contre, une théorie où seuls des champs de FD interviennent, est

possible. Nous démontrons d'abord, qu'une densité de quantité de

mouvement-énergie d'interaction 6a ^mt) peut être trouvée pour des champs
linéaires

10

0a«*tf)(A) j- d«$int)(x) (0.8)
<*M-

%^(x) - tß J-1 {ga{r)(wTw y[v) v,»,) (v£, yw v,*,)

A (v>(4) y(V) V(3)) (V(2) y(v) V(i)) ëal)} (x) ¦

(0.9A'

Valable pour ip et pour ip.
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L'index a(v) dénombre les 10 différentes possibilités de couplage. Les

rlt(,)(J) ca{v)(j) (o.io)

sont les constantes de couplage, fonctions de / (<± Nombres complexes
dans FCHS). Pour les 5 interactions conservant la parité, a(v) SS, VV,
TT, AA, PP*), nous avons:

y(v) _ yO.1 a,... av _ «,[ot| a2... a„l (0.11 ctr.)

f {v) /a, a2... av
(0.11 cov.)

e, vu que y1-""1 ~ =F X* et yZ^ -F 7(») ont la même

symétrie (condition daßT daß).
Pour les interactions violant la parité, on garde la définition covariante

(0.11 cov.), mais on définit les matrices contravariantes par

yM=ys y«. «....«,; yB yl™4. (Q.^)

La condition 0°^r 0a" exige (0.9 _) pour (v) (0), (2), (4) (ou a (y)

PS, T(dual) T, SP)jt (0.9A pour (v) (1), (3) (a(v) AV, VA), vu la
symétrie des yw et yw.

Si m» sew/ champ, soit y>(4), est antilinéaire (§ 10), il est nécessaire, qu'un
opérateur antilinéaire constant Q intervienne.

On a

0^f"X) (0.9-) {Vn -> y(€) ß y-(4)) (0.12¥)

c'est-à-dire que l'on substitue l'opérateur linéaire

V"(4) y(4) ß (°-13)

pour yj(4) dans (0.9T).
Les conditions que l'on doit imposer à Ü montrent qu'il est du «type

K^ », les différentes possibilités ne faisant que modifier les représentations
des quatres tpw, nous pouvons donc écrire

V(4) V"(4) ¥»(4) ß • (0-!3)

Mais un phénomène intéressant apparaît :

S« /'o« exige l'existence d'un formalisme antilinéaire, les 10 constantes de

couplage doivent être indépendantes de J, c'est-à-dire

J-1ëm(J) CaW(J)^Xa(v) (0.14)

où les dix A„(„) sont des nombres (réels).

*) S (-calaire), V (-ecteur), T (-enseur), (vecteur) A (-xial), P (-seudovecteur).
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On voit ici le grand avantage formel du choix (0.10): ga(v)(J) / Xw
devient un opérateur pseudochrone. Ceci donne à 6aß{mt](x) la «forme
covariante» vu son caractère orthochrone. Aussi a-t-on, si les 4 phases A(i)

dans les transformations T^OT (III. 8.3) des quatres tp^ sont les mêmes,
plus exactement, si

- A(I) + X) - X) + X) hot) 0 • (0.15) *)

covariance par rapport à T <- 0T.
De la covariance p.r. à CPT (-<- OCPT) (établie dans le formalisme réel

au § 9), suit donc (§ 10) aussi la covariance par rapport à CP (<- OCP).

Nous concluons: La théorie des champs spinoriels antilinéaires tp^ est

donc, à tout point de vue physique, isomorphe à la théorie des champs linéaires

ip(iy Elle a le défaut de ne pas admettre des champs scalaires et tensoriels w,
wa, w((x®, mais elle a l'avantage de nous fournir une raison pour la
T (<- 0T)-covariance actuellement observée11)12)1*)**).

Vu les tentatives de ramener les champs w, w"-, à des champs tpf^ (par
exemple Heisenberg14)), il nous semble possible qu'un principe physique
se cache derrière Visomorphisme tpf^^ztfr4^.

Nous tenons à remercier MM. J. M. Jauch, C. Piron et H. Ruegg de

leurs conseils.

§ 1. Non-existence de champs scalaires et tensoriels antilinéaires

Appliquant l'identité (III. 1.4) à la relation (III. 2.16) pour le cas d'un
champ de 2e espèce w(x), nous obtenons

«i{/ wT(x) MX Xy'X ± t/ wT(x), w(y')] w(z)}JT _!_ U "- VI, "-V /Jq:

]T ± [Jw{z), w(y')]^a2{/ w(z) [wT(A, w(y')A A U w(z), Xy'X wT(y')} (î.i)

D°(x y') w(z).

Or, pour des opérateurs antilinéaires A et B, on a la relation

[JA,B]T J[A,B]±. (1.2)

*) Ceci n'est pas la seule possibilité (cf. Roman8)). Pour avoir la covariance par
rapport à T il suffit que

(J-xg«(v))Ten(tot) =Jga{v). (0.16)

**) Le cas où nous avons un nombre pair (2 ou 4) de champs antilinéaires est
trivial. Si l'on a trois ïp^) et un seul ip^, la méthode appliquée donne le résultat.
Dans les 3 cas, la condition de réalité (0.14) doit être satisfaite.
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[w(z), w(y)]-T 0,

J[wT(x), w(y)] t D°(x y)

± ai + «2 1.

Donc, pour satisfaire (1.1), en admettant pour des commutateurs ou
anticommutateurs des nombres c (<* des opérateurs ne dépendant que de

/ vu CHS 5± RHS), on doit choisir, dans (1.1), dans le coefficient de xx le

signe supérieur et dans celui de a2 le signe inférieur, et vice versa. (1.1)
amène alors aux relations :

(1.3)

(1.4)

(1.5)

Il est essentiel que si l'on choisit le commutateur dans (1.3), c'est l'anti-
commutateur que l'on doive prendre dans (1.4) et vice versa.

Pour démontrer que ces relations n'admettent pas de solutions, nous
devons passer au développement en terme de 2 ensembles de paquets
d'ondes {u'} et {v'}, définis en III § 5. Nous écrirons

Xv) =2-* (S„. u"(y) au„ + S," ""AA K) ¦ (1-6)

L'opérateur transposé est

wT(x) 2~i (g.. u'(x) a\. A- S„- X« M • OX)

En se rappelant la définition de D°(x y) en termes de paquets (III 5.8 et
5.11), on remarque d'abord, qu'on est obligé d'identifier les deux
ensembles {u1} et {v'}.

La relation (1.3) nous amène alors à

(1.7)

(1.8)

(1.9)

et, de (1.4), suit

(1.10)

(1.11)

(1.12)

(1.13)

a,> a,, =F b1\» bT
U U i u u o,

a b1 „ ^ a „bT > =-0,

b a * ^F l> » a * 0

«X au" ±K"K' Òu'u",

A X «X + K- K ~Òu'u'"

<' K" ± ~au" K- o,

Ab\ya\, + K' ««• 0.



Vol. 35, 1962 Théorie des quanta dans l'espace de Hilbert réel IV 679

(Il est entendu que l'on doit choisir, ou partout le signe supérieur, ou
partout le signe inférieur.)

On remarque tout de suite, que le signe supérieur dans (1.11) amène à

une contradiction algébrique, parce que du> aTu- et bu> bTu- sont des

opérateurs positifs, dont la somme ne peut pas être égale à — 1.

Il ne nous reste qu'à considérer le signe inférieur. Pour démontrer que
ce choix contient aussi une contradiction algébrique, il suffit de considérer
les relations (1.7+) à (1.13+) pour u' u". Omettant l'index u', (1.8) et
(1.9) nous donnent les identités

abr=bra 0. (1.14)

Opérant avec a sur (1.10) et avec bT sur (1.11), nous obtenons, vu (1.14)

aara a; aA a aA' aT (1-15)

bTbbT -X; bbrb -b. (1.16)

Soient X' les valeurs propres de l'opérateur symétrique défini positif b bT:

bbTW' WA'; A'>0. (1.17)

Opérant avec bT sur (1.17), nous obtenons:

bTbbTW bTW'A (1.18)

mais d'autre part, vu (1.16)

bTbbTW -bTW. (1.19)

X étant positif ou nul, ces deux équations impliquent

bT W 0 (1.20)

d'où, vu (1.17), on obtient la seule valeur propre A 0. b bT est donc

l'opérateur zéro. De (1.16) suit alors

b bT 0- (1.21)

(1.7) nous donne

aa 0 (1.22)

et (1.11) implique maintenant

soit
(1.23)

(1.24)
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Tous les opérateurs en question sont nuls, résultat qui contredit les équations

inhomogènes (1.10) et (1.11). Par conséquent, les 2 choix possibles

pour (1.3) et (1.4) amènent à des contradictions algébriques.

§ 2. Le champ spinoriel antilinéaire

L'identité (III 8.8) s'écrit, pour un champ de 2e espèce tpA(x)

«i &ta(x) yaABm*), v>B'(y')h A Vwta(x), wB'(y')h y"WM}
A- «,fa(z) y«AB[fTB(x), tpB'(y')]^ ± \Aj>A(z), tpB'(y')]^ y«AB tpTB(x)}

S0B'A(y'x)y«ABtpB(z).

(2.1)

[tpA(x) ,wB(y)h 0,

[?{*), VB(y)]T S0AB(x y),

- «i T aa 1.

Sauf en ce qui concerne le signe de <xx, cette relation est identique à celle

pour le champ de lre espèce (III 8.11). Pour des commutateurs, ou
anticommutateurs nombre c, (2.1) est satisfait par les relations

(2.2T)

(2.3T)

(2.4T)

Les règles (2.2) et (2.3) sont donc identiques à celles pour le champ de

lre espèce (III 8.12), (III 8.13). (2.4) diffère de (III 8.14) par le signe de ocx.

De manière analogue au cas scalaire, nous développerons

WA(x) S,- <p'A(x) V + S,- X1A(x) ï\, (2.5)

en termes de deux ensembles de paquets d'ondes {cp'A} et {x'A}-
L'opérateur transposé est

vTB(y) S,- r"s(y) «V + Sx- x"TB(y) X • (2^T)

Pour satisfaire les règles d'(anti-)commutation, nous devons à nouveau
identifier les paquets {cp'} {x'}.

(2.2) nous fournit les relations homogènes

a a „ T ft J /
<p tp i qr (p

0, (2.6A

a > bT * =F a „bT
¦y (fr 1

q> tp
0, (2.7T)

bT a m T bT „ a„/
q> (p" \ <p <p

0 (2.8T)
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et (2.3) les relations inhomogènes

681

v *V a v & V "Vf (2.9T

T «V V + &V v Vf - (2.10T

v V t *V *V 0. (2.11T

Mettant en évidence /-1, les expressions pour la quantité de
mouvement-énergie (III 8.4) ont la forme suivante :

(2.12<l>)n™,= -J^j(doayTy«^)(y),

n^,= -J-1f(daJlly-tp"r)(y),

x/ft^^fy)' (2.12<2>)

Les expressions pour la charge ont la même forme que pour les champs
de lre espèce, soit

QV j(doxtpTy«f)(y),

Q®= f(doJ>y«yT)(y).

(2.13'1»)

(2.13'2»)

En termes des opérateurs ay et bv-, ces expressions sont (dflcp'(x)

Jk',cp'(x)):

nn^SfFï-bb^V,, (2.14<«)

#»„ s - S,- (« «r -bT \- X ' (2-14<2))

Ç(1>=SXârâ + ^V (2-15<1))

Ç(2) S,- (««r + ^r *v • (Z15(2))

L'expression pour 77^ est

77A ai/7% + a877<^ (2.16)

avec (2.4). Si nous exigeons pour la charge Q la relation (III 9.2), i.e.

XÇXXy'X yXy') (2.17)
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l'application de l'identité (III 8.8) (où, vu l'anticommutativité de tp avec
i_j

/, ocj doit être remplacé par — olx) nous amène à

Q ßx Cm + ß2 Qw (2.18)

avec, maintenant
A -Kl; ß2=-z2 (2.19)

au lieu de (III 9.3).

§ 3. La conjugaison de charge

Nous procédons comme en III : nous exigeons qu'une transformation

0-^ 0C (0C<-C) existe, telle que (III 10.3)

'^p(x) 0-1ctp(x)Oc tpT(x) (3.1)

laisse invariante les règles de commutation (2.2T) et (2.3T) ainsi que

77^. Or, de nouveau, la symétrie de SAB(xy) (III 10.2) nous décide

pour F anticommutation. Etant donné que l'on a maintenant (vu (2.12))

0-\fr\ Oc=- TT®,, (3.2)

0-ic77<^Oc=-i7%, (3.3)

le seul choix possible, est

- «i «2 2 ¦ (3-4)

Si l'on met J-1 en évidence, soit en (2.12) soit en (III 8.2) (pour Taß), on

s'aperçoit que (0.2) est valable pour tp aussi bien que pour tp.

Utilisant les relations (2.9+) et (2.10+), nous pouvons écrire 77„ en

termes des Zy, soit

#„ s S,- (bT b +bbT - X- X S* äß, • (3.5)

On voit, qu'à part une contribution négative de «point zéro» égale à celle

du cas linéaire (III 11.15), l'énergie par onde plane cp'^k'^ est définie

positive (k'4 > 0). Pour la charge, l'utilisation des relations (2.9+) et
(2.10+), donne, vu (2.18), (2.19) (i.e. ßx 1/2, ß2 -1/2)

Q J (Qm - <?(2)) S,- («X - « aT),p, S,- ÇV t3-6)

soit (0.3).
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Il ne nous reste qu'à donner la forme explicite de Oc. Pour faire ceci,
nous introduisons les deux opérateurs antisymétriques :

V / (("T)2 + («)2V - H(bTf + (b)\ - - ni. (3.7)

X J(äTä- bbT)v, =-J(bTb-a aT)¥ - f/ (3.8)

qui satisfont, en vertu des relations (2.6+) à (2.11+) à

Xv]-XUV/f (3.9a)

X.^-]- -/\X" (3-9b)

[^',«Vj- /Vf«V< (3.10a)

[XXX -XWV- (3-10b)

Nous décomposons ensuite Oc en

(3.11)

(3.12)

(3.13a)

(3.13b)

(3.14)

(3.15a)

(3.15b)

Donc Oc (3.11) transforme aç>, en aA(f- et bTv> en b^. Etant donné (2.5) et
(2.5T), cette transformation exprime (3.1).

Nous avons éliminé les lois de commutation, en nous servant d'un
procédé analogue à celui de Schwinger4)5) (invariance p.r. à la «strong
reflection», d'après Pauli6)). Or, Y argument thermodynamique de Pauli6)
(énergie bornée soit vers le bas (soit vers le haut), température T> 0

Alors, en vertu de (3.9)

satisfait à

et

transforme suivant

Oc 0(i) 0(2,-

0<i> .-ntly'fô

0_1w V °m Ja\',

o-\x)V\- 0,i) - J V

0(2, e*A'l2

0-% /«V 0(2) aT¥

0"% (- /M o(2) V.
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(soit T < 0) (cf. III)), est aussi valable. En effet pour le cas des commutateurs,

on a

n, S,- (bT b - bbT - !V (*i - «¦) X- (3-16)

— ocx — oc2 1. (3.17)

Quel que soit le signe de (a.x — a2), 77„ n'est borné ni vers le haut, ni vers
le bas, car b bT et bT b, qui ont des signes opposés, ont tout les deux des

valeurs propres non bornées {0, 2, 4, 6, ...} (qui ne peuvent pas se com-

penser sinon 77^ serait un nombre; ce qui contredit (III 8.5)).

— — >-j

§ 4. Représentation des av- et bv- et valeurs propres de Up et Q

Il s'agit maintenant de démontrer, qu'une représentation des äv> et bv-,
satisfaisant (2.6+) à (2.11+) existe. Nous écrirons

J j x 14 x 14 x 14 x x 14 x 14 x 14 x (4.1) *)
et

ai,Q) ÄxcrX(TXcTX...xo-xaXTXTX... (4.2a)

b {g) kxaxaxax...xaxßxrxxx... (4.2b)

où a respectivement ß sont à la Qwme place, j et k sont des pseudo-quaternions

(matrices à 2 lignes et colonnes (I A-4.8)*)). Les 14*), a, x, a et ß
sont des matrices à 4 lignes et colonnes

; (4.3)

0 0 0 IN

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0 0
T

0 0

'0 0

0 0

0 0 0
(4.4)

•>'-C"»"-(J-3= '-Ci)' Hoi); w*
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On vérifie que toutes les relations sont satisfaites. Le calcul étant assez

fastidieux, nous donnons les relations utilisées:

ar x a k x k

qT oTOLG ¦

r a. ¦¦

air-

a2-

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

aß'; aa. ß'a;

-ßTx; ocx=-xßT;

- (ßT)2 a ßT ßT a 0

r2 a X + ß ßT X a + ßT ß 14

Les valeurs propres de la charge Qv> et de la quantité de mouvement-

énergie 77^- par paquet cp' sont, vu (3.6) et (3.5)

'0 0 0 0N

0-1 00
0 0 10

,0 0 0 0,

<X 1 x 14 x X 14 X (4.10)

#,• 1 X 1- X X

0 0 0 0

0 10 0
X 1. X

0 0 10
0 0 0 2

k\. (4.11)

En termes de matrices à 2 lignes et colonnes (III 11.13) et (III 11.14) nous

pouvons aussi écrire

0 0 0 o-

0 -1 0 0

0 0 1 0

0 0 0 0

0 0 0 0\
0 1 0 0

0 0 1 0

0 0 0 2/

{N x 1) - (1 x N) ; (4.13)'

(N x 1) A- (1 x N)

»-n-r—a

(4.14)

(4.12)
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Soit, en utilisant les a^ et by, des champs de lre espèce (III 11.10+ et
suiv.)

Q S,'N,'-S-ANy (4-15)

n„ S,- (X- -y) X + S,- (X- - y) X • (4-16)

Ceci montre, que les valeurs propres de Q et II' sont identiques à celles
des opérateurs correspondant de lre espèce (III 11.12 et 11.15). (Le choix
des représentations a été fait de manière à avoir non seulement l'égalité
des valeurs propres, mais l'identité des représentations de Q et TI'

§ 5. La transformation de phase

Nous cherchons la transformation orthogonale Ox, satisfaisant à

'tp(x) 0-\ tp(x) O, e'x tp(x) (5.1)

p. r. à laquelle les observables 6*ß(x), s*ßy(x) et j"(x) sont invariantes.
Ecrivant

Ox è?xw, F FT, [J,F]_=0 (5.2)

nous avons l'identité

-UF,tp]_ - J[F, v]+ Jtp. (5.3)

Or, F devant être un scalaire, nous ne disposons, essentiellement, que de

Q. Soit donc
oo

F F(Q) £cnQn (5-4)
«- 0

où les c„ sont des nombres (réels). La propriété (2.17) de Q peut s'écrire

QÏ yi(Q-l) (5.5)
d'où résulte

Ç»V V(0-1)" (5.6)

et

F(Q) rj, fF(Q-l). (5.7)

D'autre part, (5.3) exige

F(Q)tp tp(-l-F(Q)). (5.8)

La comparaison des deux équations nous conduit à l'équation fonctionnelle

F(Q) + F(Q+1) -1 (5.9)
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dont la solution générale est

F(Q) - Y + G(Q) (5.10)

où G(Q) est une série trigonométrique en Q, solution de

G(Q) - G (Q + 1), (5.11)

G(Q) 0 (5.12)

étant la solution la plus simple.

§ 6. Relation entre champ linéaire et champ antilinéaire

Comme les valeurs propres de Q et de 77^ sont identiques, on s'attend
à ce que le champ de 2e espèce puisse être relié au champ de lre espèce.

On pense d'abord à une transformation orthogonale

0-1tpO ip. (6.1)

Or, on voit qu'une pareille transformation n'est pas possible. En effet,
en écrivant (cf. (III 1.7))

F kxFmA-lxF{l), (6.2)

F=lxFm+jx FU) (6.3)

cela exigerait l'existence d'une matrice orthogonale à 2 lignes et colonnes
o-1 oT telle que

o-1ko Xl+ uf. (6.4)

Or, cette équation n'a pas de solutions, vu que k est symétrique et a la
trace nulle. Il en est de même pour l. L'autre possibilité est donnée par
les équations (0.5) à (0.7). Ces 2 opérateurs K± existent. Dans notre
représentation particulière (4.2), l'opérateur

K+ kxxxxxxx (6.7)

transforme en effet (cp' x'), conformément à

a^ K+ av. 1 x (k x k) x x (a x 1) x 14 x (6.8)

bT K bT 1 x (k x k) x x (k x aT) x 14 x (6.9)
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les opérateurs antilinéaires dans les opérateurs linéaires dans la représentation

choisie (III 11.14). On a utilisé (4.5) à (4.9) et, en plus,

'0 0 1 0X

0 0 0 1

« x 1, (6.10)
0 0 0 0'

v0 0 0 0y

x0 0 0 0N

.10 oo,ßTx=\ \ kxaT. (6.11):1

0 0 0 0
"

v0 0-1 0y

L'opérateur K_ est, dans notre représentation,

K_ =kxaxaxax (6.12)

Les opérateurs transformés suivant K _ satisfont également à toutes les

règles d'anticommutation, mais la représentation est «l'inverse» de celle

que l'on obtient avec K+ :

a K_ 1 x 14 x 14 x x (— a x k) x (k x k) x (k x k) x (6.13)

îri,J(_ lxl4xlix...x(lx«r)x(ixii)x(ilxi)x... (6.14)

Ecrivant les densités de quantité de mouvement-énergie et de courant-

charge daß(x) (resp. T*ß(x) et saßr(x)) et fa(x), en utilisant chaque fois
les valeurs appropriées des coefficients <xx, a2, ßx et ß2, on s'aperçoit bien

qu'ils ont la même forme si on les écrit en termes de tp ou de tp reliés par

§ 7. Forme Schrödingerienne de l'hamiltonien du champ libre

Pour pouvoir formuler la théorie d'interaction, nous introduisons les

opérateurs de Schrödinger (I 5.13)**). Pour le champ scalaire linéaire:

w(x) w(x t) —> w(x) (7.1)

diw(x) dtw(x t) -> w(x) nTÇx) (7.2)

,CM.nn.13), ._Q. .r.gj).
**) F(x) ->- F(x) en (I 5.13); nous omettons le _ en F(~x), étant donnée son autre

signification dans le présent article.
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et nous définissons, vu ax a2 1/2 (III 4.3)

Hffi =774<w> =f(daa (^dW** + \e^^)) (y)

-> \JdV(y) (n nT A- nT n +
^

(7-3)

wT. (M{w) - A) w A- (M{w) - A) w.wT) (y).

De (III 2.18 et 2.19 Ist k.), on tire

[w(x), w(y)]_ [w(x), wT(y)]_ \?x(x), 7i(y)]_

[7i(x), 7iT(y)]_ [w(x), 7iT(y)]_ 0,

J[n(x), w(y)]_ RnT(x), wT(y)]_ ô (x - y)

d'où résulte

[JH^,w(x)]_=jiT(x),

[JH^,tA(x)]_ (A-M{w))w(x).

Dans une théorie d'interaction, nous admettons pouvoir écrire

H JT'H{lih]\i} A- H{!nt)
(i)

la sommation s'effectuant sur tous les champs, dénotés par un index
(i) (k) (1) (2)... (à ne pas confondre avec l'index spatial i k 1, 2,...).
On postulera

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

[/ Hm, w(x)] _
0

[//XXX(X _ <?(*)

(7.9)

(7.10)

Lemme: Il est nécessaire que / Hffi commute avec les opérateurs d'un
autre champ (k) :

[JH^,w(k)(x)]__ [JH^,nfk)(x)}_

[JH$),itp){k)(x)]_=0; (»•)*(*).

On aura donc en particulier :

[/ H, w(x)] __
AAÇx) w(x),

(7.11)

(7.12)

[/ H, nT(x)] _ (A- M(a)) w(x) A- q(x) tAÇx) w(x) (7.13)

44 H. P. A. 35, 7/8 (1962)
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d'où ressort, écrit en termes d'opérateurs de Heisenberg, l'équation
d'onde inhomogène

(D - MJ wÇx) - q(x) (7.14)

Pour le champ spinoriel, linéaire ou antilinéaire (tp^ ou tp^) nous définissons

T^-ß-1^ en ajoutant au terme (0.2) un terme qui est nul pour les

champs libres, soit

T«™(x) T«™-\j-1ô%

X {tpr.(yO de + MyO)tp- ipT (ye dg -My°).tp + W

x (f dgA-My0) tpT -tf(fdg-M y0) .tpT}(il (x) J

(7.15)'

équation, avec M M(i), valable pour tp^ et tp{iy Cette forme a l'avantage,
qu'en termes des opérateurs tp^(x) ou X)(X ^es dérivés temporels
s'annulent en H{f »

Ri{f [(<&* TÏÏm) (y) \ J~lfdv(y)
(7.16)'

x (tpT ¦ (y d A- M y0) tp - (y d A- M y°) f.yT){i) (y).

Les relations d'anticommutation sont ((III 8.12+ et8.13+) ainsi que (2.2+
et 2.3+) étant des relations identiques)

[V,ofô.V(o(y)]+ 0, (7.17)

lVA{iì(x),¥!iÌB(y)ì+ -yiABà(x-y) (7.18)**)

(vu les définitions (III 8.9 et III 2.12): P(xy) -\(xy) ôÇx - y)).
Les équations (7.17) et (7.18) sont valables pour tp^ ettp{i). On tire de ces

relations (pour tp^ et ip{i)) :

[/77{f>, tp(i)(x)] _=yi(yd + y° M{i)) tp{i)(x). (7.19)

Utilisant (7.11) et postulant

r//XX^)]_=y4zw(*) (7.20)

*) N. B. : Le 1er terme est \pTB ¦ (y ...)Bcy>c et le 2e (y .)BC ipC-V>TB-

**) Si l'on pose (cf. III 7.14) tjaS AAB, on a pour

[rV)(X vTB(Ay)A - »î ôÇx-y)

une expression définie positive, comme ce doit être le cas.

***) Un opérateur à droite du point (.dx) opère à droite! Un opérateur à gauche
d'un point (da.) opère à gauche! (cf. III Note*) p. 682).
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(avec xa) ou x(i)), l'équation

[/ H, tp{i)(x)] _ y* ((y S + y° M(i)) tp{i) + %(i)) (x) ?w(*) (7.21)

s'écrit, vu (y4)2 — y0, pour les opérateurs de Heisenberg

• (ya da + M{i) f) tp{i)(x) - X(i)(x) (7-22)

wdx)(Yaàa-M{i)f).= xdx)- X23)

Si l'on calcule la divergence de Ta^ on trouve, en termes de X(i) '¦

àj"^](x) j /-1 (wTß x + xTvß + ¥ß xr + x vX W • <7-24)

§ 8. Impossibilité de l'existence de champs scalaires ou tensoriels
si des champs antilinéaires existent

Si nous avons un ou plusieurs champs antilinéaires tp^, nous devons
avoir selon (7.11)

[/ H{w), y>{i)(x)] _ RH(W), tp{i)(x)]+ 0 (8.1)

c'est-à-dire que i7(w) (7.3) doit anticommuter avec tp^. Or, utilisant la
représentation des champs libres (III 5.10 et 5.15) et (2.5 et 4.2) nous
devons écrire formellement (en séparant 12 resp. k, cf. (I A-2.3, III 1.7))

w l2xœ>'x^4, tp k x B x tp' (8.2)

(espace produit). Donc, B doit anticommuter (ou commuter) avec w'T w' et
avec w' w'T, et tp' commuter (ou anticommuter) avec A T A et A A T. Or
il n'existe pas d'opérateur B qui anticommute avec toutes les possibilités
du type

(1 x 1) x x (a(^ose) x 1) x x (a(Bose) x 1) x (8.3) *)

On peut, par contre, poser B (lxl) x(lxl) x et ii existe l'opérateur

r= (kx k) x (kx k) x (8.4)

qui anticommuterait avec tous les opérateurs du type

-\— axax...xaxaxxxxx... (8.5)

cf. (III 5.14).

0 1/10
0 0 1/2

a Bose
0 0 0
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Mais il n'existe pas d'opérateur A tel que l'on puisse écrire

r=ATA AAT (8.6)

les valeurs propres de T-1 étant Az 1-

Ce résultat peut être généralisé pour des champs tensoriels (qui doivent
également être linéaires).

Donc, si l'on admet l'existence de champs spinoriels antilinéaires, aucun
champ scalaire ou tensoriel ne peut exister.

Il ne nous reste donc qu'à étudier une théorie ne faisant intervenir
que des champs spinoriels (interaction de Fermi).

§ 9. L'interaction de Fermi pour les champs linéaires

Formons de (0.9), Vhamiltonien d'interaction

h$ r1/^ {?.(,,($, y{v) v,„) (%) y,„ vW

T (vfo y{v) y,,,) (% y(v) fm) IU) (v)
¦ (9-1,

(^aöa4(!Xw)(y)-

Pour que / Hffi commute avec tp{K) ((i) 4= (k)), les différents champs tp\fj
doivent commuter ou anticommuter entre eux. Nous choisissons,
arbitrairement, l'anticommutation.

bt>(>), ¥»(*)]+ tV<g. VrW]+ 0 (»') * (*) • (9.2)
On a alors

(#„•) X> yTw) ± #rW X> VW) si y<" ~ T 7W • (9-3)

Les inhomogénéités sont (signe de (9.1) et (9.3))

x{v\d tu y{v) fm (va yw V(4)) > (9-4(d)

PX(2) T yW W(!)(%) yM V(8)) &W - (9-4(2))

Z(3) (v) ga(,) y(v) v>{i)(¥m y(r) vW • (9.4(3))

xw w T y{v) V(3)(V(ï) r" v«) ^w • (9-4iw
Utilisant (7.24) et (9.3), on peut écrire, sans commuter les dérivés tp(i)ß
avec les tpm

àj%^(x) dmr'2JiltM)^^^ (v5)ywv,«,)
«w

T (v>(4) y(v) V(3)) (%> y(») V(d) £.w> W
(9.6T'
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où dß{i) n'opère que sur xß en tp^(x) et en tpT^(x). En outre, on peut constater

(utilisant (7.24)), que si l'on complète JJ T*^ en ajoutant
y] 1/2 de sS(*ß avec la densité de spin

s*« % (x) J'11 (% f « ' Vm + ${i) f « ' #)) (x) (9-7)

on obtient d«ßm X ö<flÄW) #'nm. Ajoutant à ce 6aßHb) le d*ß{int)
(»")

(0.8) (0.9), on obtient donc un d'xß(x) satisfaisant à l'équation de continuité
et à la symétrie (I 0.25) *).

Avant de procéder aux champs antilinéaires, nous voulons considérer
les propriétés de covariance p. r. aux opérations C, P et T (¦<- Oc, 0P et
0T), pour démontrer l'avantage du formalisme réel, où toutes les opérations

sont linéaires. Nous supposons d'abord que les 4 phases A(i) en (III 8.3)

sont toujours égales (plus exactement (0.15)).
Les termes sont alors ortho-chores ou pseudo-chores p. r. à P <- 0P

suivant leur parité.
Par rapport à T ^- 0T, les termes ne sont covariants que si (0.14)

(constantes de couplage réelles) est satisfait. Autrement la constante de

couplage change conformément à

o-m/x.XtHX?;/. (9-8)

L'opération C <- Oc change (vu (9.3)) suivant :

0^c(¥l)ylviV{k))Oc=(f{t)y^tpfk))

±(WWX)); yw~ =FyX

Donc, au signe près, les 2 termes dépendant du champ en Ba ^'"Xm s'inter-
changent. Si yw etX ont la même symétrie on a le signe (—) en (0.9_)

KJ

pour tous les termes (sauf AV et VA, où /_1ga(„) est remplacé par

-X1 ïajv) (J"1 ga(v))T)- Si leur symétrie est opposée, cas A V et VA,
on obtient le même résultat, vu le signe (+) en (0.9+). Donc, les 5 termes
conservant la parité sont covariant p. r. à P <- 0P et p. r. à CT <- 0CT.

Les autres 5 termes ne sont invariants que p. r. à

CPT <<- OCPT (9.10)

En particulier, les 5 termes conservant la parité sont covariant p.r. àC<- Oc,

P <r- 0P, T <- 0T individuellement, si les constantes de couplage sont réelles,

(9-9)

*) Nous avons esquissé le calcul aboutissant à (9.6) vu qu'il n'est pas trivial
(non commutativité des^j^). Aussi est-il remarquable que, au moins formellement,
une densité de quantité de mouvement-énergie 6ta^(x) existe pour l'interaction de

Fermi, vu la remarque de Stepanov9) et de Bogoliubov et Shirkov10).
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i.e. (0.10). Celte condition de réalité (0.10) assure donc, pour les 5 termes
violant la parité, leur covariance p. r. à T <- 0T et CP <- 0CP.

§ 10. L'interaction de Fermi si un champ est antilinéaire

Nous considérons tout d'abord le cas, où un seul champ, tpw, est
antilinéaire. Le 0a«™<) et H{mt) sont donnés par (0.12) et (9.1). Nous utilisons
le symbole ^(4) yi(4) Q, pour bien marquer, qu'à priori, tp(i) n'est pas un
champ linéaire (satisfaisant aux (III 8.12+j et (III 8.13+)) mais seulement
un opérateur linéaire (nous démontrerons par la suite que yi(4) ^(4)).

Pour garder les équations de continuité (9.6), nous devons exiger que
y>(4) satisfasse les relations de tp,t) en (9.2). Pour que tpi commute avec

KJ

J H\q, nous devons exiger

[y». vWU tv«. wrwh ° ; (*) * (4) • i10-1)

D'autre part, pour que Q ne soit pas un nouveau champ (ce qui est
impossible, vu, qu'étant scalaire, un champ scalaire antilinéaire n'existe pas)
il faut

[Q, yy T - [Q, tpT{i)] T
0 ; (i) (1) (2) (3) (10.2)

valable aussi pour y(4) *) :

[Q,tp{i)]^ [Q,yTw]T 0. (10.3)

En plus, faut-il que la condition de réalité (0.13) soit satisfaite. Ces conditions

déterminent Q presque univoquement. On peut par exemple avoir

Q K + kx(axaxaxr) x(o-xc7xctxt)x... (10.4)

ce qui décide pour (10.2_). On a alors forcément (10.3+). Les seules autres

possibilités sont, soit K avec... x (a x a x a x a) x soitK++++
des autres K^mixtes) avec partout le même facteur à 16 lignes et colonnes formé

par le produit direct de 4 a et t's, par exemple x (x xx xa xx) X
Ces autres facteurs ne font que changer les représentations des «(i)?/ et b^x-.

On obtient, avec (10.4) (signe conformément à (9.1T)):

XW m T & y,„) V<8)(v5) y{v) V(i)) Sal) ¦ (10X)

(C'est dans ce calcul, qu'il est essentiel que, vu la réalité de (0.13), Q et tpw
KJ

anticommutent avec gaW J K{vA Cta s'aperçoit alors, vu (9.4(4)), que
(Q écrit derrière les 4 opérateurs linéaires (g étant opérateur))

On ne peut qu'avoir 4x [.,.]_, 4x [.,.]. ou 2 X [.,.]_ et 2x [.,.
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W(i) V(i) & satisfait l'équation inhomogène (7.22) (vu Q7Q 1).
D'autre part l'équation de continuité (9.6) est assurée pour tpw avec

W{i) -*~V>(ty Finalement on voit, que, vu (10.4) et (0.5) (cf. §6), on a

Y>(4) V(4) • (10-6)

Le cas où plusieurs champs sont décrits par des opérateurs antilinéaires
peut également être traité. Tout se ramène à

y{i) V(i)Q tp{i). (10.7)
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