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Théorie des quanta dans I’espace de Hilbert réel IV:

Champs de 2° espéce (opérateurs de champ antilinéaires),
T- et CP-covariance¥*)

par E. G, G. Stueckelberg et M. Guenin **)
(Universités de Genéve et Lausanne)

(8. V. 62)

Abstract. In previous articles (referred to as I, IT, IIT) we showed that quantized
fields can be, in principle, antilinear operators (i.e. anticommuting with 7 = |/— 1).
It is shown, that antilinear scalar (or tensor) fields w cannot exist (algebraic contra-

diction). For antilinear spinor fields p4, a representation for the FD-case has been

found. An antilinear operator K exists, relating in v = y K linear () and anti-
linear FD-fields (y). (The BE case is to be excluded on account of C-covariance or
for thermodynamical reasons.)

Treating inferacting fields, the antilinear formalism is shown to be impossible,
if scalar (or tensor) fields exist. Pure Fermi interaction however, is possible. One
or more of the four spinor fields y4 @ ((7) = (1) to (4)) may be treated as antilinear

fields 4. An operator K__ _ | must be contained in the interaction momen-
tum-energy density 6%A(), if an odd number ofy;’s occurs. Furthermore a reality
condition for the 10 coupling constants is necessary. This assures automatically
T-covariance.

All calculations in this article could be done in CHS (Complex Hilbert Space).
However, our method of RHS (Real Hilbert Space) is much more convenient, anti-
linear operators in CHS being linear in RHS. Also, the disconnected parts of the
Lorentz group (P and T) are much easier to handle, the method providing for a
«fool proof notations.

We conclude: The theory of antilinear FD fields is isomorph to the theovy of linear
FD-fields, if the (observed) sepavate T- and CP-covariance is postulated. BE fields can
not occur, but must be consideved as ‘bound states’ of FD fields.

Introduction et conclusion

Dans une série d’articles 1) 2) %) (auxquels nous nous référerons par I, II,
ITI; une note ?) a déja paru), nous avons tout d’abord (I) montré que la

*¥) Travail subventionné par le Fonds National Suisse pour la recherche scienti-
fique.
**) Ce travail fait 'objet d'une thése de doctorat de 1'un de nous (M.G.), sou-
tenue devant la faculté des sciences de I’Université de Genéve, le 14 juin 1962.

43 H. P. A. 35, 7/8 (1962)
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théorie des quanta dans un espace de Hilbert véel (RHS*)) et celle dans un
espace de Hulbert complexe (CHS¥)) étaient isomorphes. Il existe notam-

ment la correspondance biunivoque ] THg = ]/; 1. En III ont été for-
mulées les lois générales auxquelles une théorie des champs (scalaires w,
spinoriels o) doit satisfaire. Nous avons montré, qu’outre les champs de

1r¢ espéce, commutant avec? (ITI. 1. 5, 1st k.), des champs de 2¢ espéce,

anticommutant avec jJ (ITI. 1. 5, 2nd k.) pouvaient étre congus, a priori.
Pour simplifier nos expressions, nous les appellerons champs linéaires et
champs antilinéaires ¥*) respectivement.

Developpant le champ scalaive antilinéaive, nous montrons (§ 1), que les
deux possibilités***) de quantification amenent a des contradictions
algébriques. Il en est de méme pour tout champ tensoriel. Nous en tirons
la conclusion:

Les champs scalaires et tensoriels, w, w*, ... sont nécessarvement lineaires.

Pour le champ spinoriel antilinéaive (§§ 2, 3) yp*(x), nous obtenons les
deux cas: commutation (BE) et anticommutation (FD). Le raisonnement
de SCHWINGERY)3) (C-covariance), ou la condition thermodynamique
(PAauL1®): postulat d’une borne inférieure pour 1'énergie H****) excluent
le cas BE. On s’apercoit alors:

1. que les expressions pour les densités de quantité de mouvement-
énergie et de courant-charge ont la méme forme (y,(x) = 0,p(x)):

o Iy % T L0 L o
T, (x) :IJ L@ Ty — 9 e 9 T — Py el) (1), (0.2)

) = Gﬁfy“w py*y’) (x) (0.3)

est valable pour p el pour .

2. que les relations d’ anticommutation (111 8. 12) et (III 8. 13) sont auss:
valables dans les 2 cas.

Developpant en termes de deux systémes de paquets d’ondes {¢'?} et
{34} (cf. III § 11), on s’aper(;oit que les deux ensembles {¢'} et {y'} en

=S, 9®a, + 8, 1 %) b7, (0.4)

*) RHS (CHS) = Real (Complex) Hilbert Space (cf. I, 11, ILI).
**) w,y sontdeschamps linéaives (ou, dans certaines équations, linéarves ou anti-
linéaives). w, y sont des champs antilinéaires. Tout opérateur avec une barre K4, a,
— (W)
.. est antilinéaire, i.e. [Ky, J]4 = 0.
*#%*) Ces deux possibilités ne peuvent pas étre caractérisées par commutation ou
anticommutation ((BE) ou (FD)).

o
k#*%%) Le symbole H en I, II, III était faux: il faut écrire H, parce que lors de
1T < Oy, H garde son signe:

Ic

‘ol d = a
I = {II, H}; ‘H = O 'tHOp =H; I = O0-1,HO0p = —1I. (0.1)
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doivent étre identifiés. Ceci provient du fait que les a” . et a, n’ont plus
le caractere d’opérateurs de création et d’annihilation.

En termes de l'algébre des a, et b, I'opérateur O, effectuant la C-
conjugaison peut étre donné explicitement (§ 3). B

Dans le § 4 nous donnons une représentation des a, et b .. Aussi trou-
vons-nous que les valeurs propres de la quantité de mouvement-énergie

(ﬁ ".) et de la charge (Q') sont identiques avec celles du champ linéaire,
Le § 5 donne une expression (multivoque, en fonction de () de 1'opéra-
teur O, changeant la phase de y.
L’identité des valeurs propres 7 ', et Q' laisse prévoir I'existence d’opé-
rateurs antilinéaires (K _ et K ), ramenant le formalisme antilinéaire au
linéaire, conformément a ' '

p(x) = px) K, ; (0.5)
K' K, =K, K" =1, - (06)
p K ). =[p, K'.]. =0. (0.7)

(Une transformation orthogonale transformant un Aenun A est 1mpos-
sible.) Nous avons trouvé la représentation de ces deux opérateurs (telle
que K*, = K_). (Les représentations (ITI. 11.14) et (4.2) ont été choisies
de telle maniére que K . les relie.)

Le § 7 prépare la théorie d’interaction, en définissant (en termes des
opérateurs de SCHRODINGER w(%) et (X)), I'hamiltonien des champs libres
i)

Ensuite (§ 8), 'impossibilité du «formalisme » est démontrée si des
champs tensoriels w, w*, w*#, ... existent: Donc, en particulier, il v a im-
possibilité d’une électrodynamique avec un champ de matiére décrit par y.

Par contre, une théorie out seuls des champs de IFD interviennent, est
possible. Nous démontrons d’abord, qu'une densité de quantité de mou-
vement-énergie d'interaction %) peut étre trouvée pour des champs
linéaires

10

g i) () — 37 gaflinn(y) (0.8)

a(v)=1
Bg(f)(mt) (%) =—g*P Jt {ga(v)(@JT(l) v "P(z)) @(1:;) 140 ‘/’(4))
+ ("7))(1:;) V) ‘P(s)) (%P)(Iz) 7’(”) "l’(l)) Ea,%;) (%) -

*) Valable pour y et pour .
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L’index a(v) dénombre les 10 différentes possibilités de couplage. Les

o

T () = Can]) (0.10)

sont les constantes de couplage, fonctions de f (&= Nombres complexes
dans I'CHS). Pour les 5 interactions conservant la parité, a(v) = SS, VV,
IT,AA, PP¥*), nous avons:

,y(”) _— ,})(11052'“05;; e y[al oy oyl 5 (011 Ctr.)
Py = Ponytts.oum, = 113 (0.11 cov.)
(0.9_) est alors valable, vu que ¥V~ = F 5 et ¥;, = F ¥, ont la méme

symétrie (condition 0*# 7 = §*F),
Pour les interactions violant la parité, on garde la définition covariante
(0.11 cov.), mais on définit les matrices contravariantes par

y(v) — s yalaz...cxv Doy — V1234- (0_115)

La condition 6*#7 = 6*# exige (0.9_) pour (v) = (0), (2), (4) (ou a(»)
= PS, Tiyuay T, SP) et (0.9,) pour (») = (1), (3) (a(y) = AV, VA), vu la
symétrie des 5 et 7,

Si un seul champ, soit y,,), est antilinéaire (§ 10), il est nécessaire, qu'un
opérateur antilinéaire constant {2 intervienne.

On a

Bg(f)”””(x) = (09;) (’QP(4) — 1/3(4) Q= i’(4)) (012;)
c’est-a-dire que I'on substitue 'opérateur linéaire

Ya = ¢(4) Q (0.13)
pour ¥, dans (0.9.). B
Les conditions que 1'on doit imposer a £ montrent qu’il est du «type

K o », les différentes possibilités ne faisant que modifier les représentations
des quatres v, nous pouvons donc écrire

Yiay = Pia) — Yoy 2 - (0.13)
Mais un phénomeéne intéressant apparait:
Si Uon exige Uexistence d’un formalisme antilinéaire, les 10 constantes de

couplage dorvent étre indépendantes de J, c’est-a-dire

o () ()

]_ ! E)a(v)(]) - Ca(v)(]) = )'a(v) (014)

ou les dix A, sont des nombres (réels).

*) S (-calaire), V (-ecteur), T (-enseur), (vecteur) 4 (-xial), P (-seudovecteur).
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U

On voit ici le grand avantage formel du choix (0.10): guy(J) = J Aup)
devient un opérateur pseudochrone. Ceci donne & 0*#(x) la «forme co-
variante» vu son caractere orthochrone. Aussi a-t-on, si les 4 phases 4,
dans les transformations 7"« O (III. 8.3) des quatres y; sont les mémes,
plus exactement, si

= Ay Ay — Ay Ay = Ay = 0 (L.13)%)

covariance par rapport a 7" < O.

De la covariance p.r. & CPT (< Op7) (établie dans le formalisme réel
au § 9), suit donc (§ 10) aussi la covariance par rapport & CP (< O¢p).

Nous concluons: La théorie des champs spinoriels antilinéaires vy, est
donc, d tout point de vue physique, isomorphe a la théorie des champs linéaires
Y- Elle a le défaut de ne pas admettre des champs scalavves et tensoriels w,
w*, w* B .., mais elle a I'avantage de nous fournir une raison pour la
T (< Op)-covariance actuellement observéel)12)13) %) .

Vu les tentatives de vamener les champs w, w*, ... a des champs fcpﬁ) (par
exemple HEISENBERG 1)), 4/ nous semble possible qu’un principe physique
se cache derriére I'isomorphisme yiy ==y,

Nous tenons a remercier MM. J. M. JaucH, C. PiroN et H. RUEGG de
leurs conseils,

§ 1. Non-existence de champs scalaires et tensoriels antilinéaires

Appliquant I'identité (ITI. 1.4) & la relation (III. 2.16) pour le cas d'un
champ de 2¢ espéce w(x), nous obtenons

a0 {J @) [0), #0)]= £ [] #" (), #(')]; #(2)) ]
+ ap{J 0(2) [07(x), @), + [] B(2), Bly)], 7 ()} (1.1)
= D(x y') wlz). [
Or, pour des opérateurs antilinéaires 4 et B, on a la relation
[] 4, Bl, = Ji4, Bl,. (1.2)

*) Ceci n’est pas la seule possibilité (cf. Roman?8)). Pour avoir la covariance par
rapport a T il suffit que

- T Ti ¥

(]—lga(v)) g R = J gapv) - (0.16)
**) Le cas oll nous avons un nombre pair (2 ou 4) de champs antilinéaires est

trivial. Si I’on a trois ;) et un seul y,), la méthode appliquée donne le résultat.

Dans les 3 cas, la condition de réalité (0.14) doit étre satisfaite.
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Donc, pour satisfaire (1.1), en admettant pour des commutateurs ou anti-
commutateurs des nombres ¢ (& des opérateurs ne dépendant que de

J vu CHS 2 RHS), on doit choisir, dans (1.1), dans le coefficient de «, le
signe supérieur et dans celui de a, le signe inférieur, et vice versa. (1.1)
amene alors aux relations:

[w(z), w(y)]; =0, (1.3)
Jlw(x), w(y)], — DO(xy), (1.4)
+o, +a,=1. (1.5)

Il est essentiel que sil'on choisit le commutateur dans (1.3), c’est I'anti-
commutateur que I'on doive prendre dans (1.4) et vice versa.

Pour démontrer que ces relations n’admettent pas de solutions, nous
devons passer au développement en terme de 2 ensembles de paquets
d’ondes {«'} et {v'}, définis en III § 5. Nous écrirons

w(y) = 274 (S, u' () 3,0 + S, 0" () B7,.). (1.6)
L’opérateur transposé est
wl(x) = 278(S, (%) a’, + §, vT(¥) b,) . (1.67)

En se rappelant la définition de 50(95 y) en termes de paquets (III 5.8 et
5.11), on remarque d’abord, qu’'on est obligé d’identifier les deux en-
sembles {u'} et {v'}.

La relation (1.3) nous ameéne alors a

au' au” $ ETu” gTu' = ()’ (17)

a,b",Fa,b’, =0, (1.8)

o’ a, F o', a, =0 (1.9)

et, de (1.4), suit

al, a, +bT,b.=0,.., | (1.10)

tt au aTu + Bu I;Tu” = 61; u” (111)

a’, b +a,b, =0, (1.12)

+ o7 a%, +b.a, =0 (1.13)
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(I1 est entendu que 'on doit choisir, ou partout le signe supérieur, ou
partout le signe inférieur.)

On remarque tout de suite, que le signe supérieur dans (1.11) ameéne a
une contradiction algébrique, parce que a, a’, et b, b7,
opérateurs positifs, dont la somme ne peut pas étre égale a — 1.

Il ne nous reste qu’a considérer le signe inférieur. Pour démontrer que
ce choix contient aussi une contradiction algébrique, il suffit de considérer
les relations (1.7, ) a (1.13,) pour #’ = «". Omettant 'index #', (1.8) et

(1.9) nous donnent les identités

sont des

abT=0Ta=0. (1.14)
Opérant avec a sur (1.10) et avec b7 sur (1.11), nous obtenons, vu (1.14)
a=a; ataa®” =a" (1.15)
BT obT = —bT; bbTb=—0. (1.16)
Soient 4’ les valeurs propres de 1'opérateur symétrique défini positif b ol
ETW =W ) A >0, (1.17)

Opérant avec b7 sur (1.17), nous obtenons:
T Y = T ) (1.18)

mais d’autre part, vu (1.16)

PTHeT W = — T Y, (1.19)

A" étant positif ou nul, ces deux équations impliquent

prY =0 (1.20)
d’out, vu (1.17), on obtient la seule valeur propre A’ = 0. b b7 est donc
I'opérateur zéro. De (1.16) suit alors

b=bT=0. (1.21)
(1.7) nous donne :

a%=10 (1.22)
et (1.11) implique maintenant

aaa’ =a (1.23)
soit |

a=a’ =0 (1.24)
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Tous les opérateurs en question sont nuls, résultat qui contredit les équa-
tions inhomogeénes (1.10) et (1.11). Par conséquent, les 2 choix possibles
pour (1.3) et (1.4) aménent & des contradictions algébriques.

§ 2. Le champ spinoriel antilinéaire

L’identité (IIT 8.8) s’écrit, pour un champ de 2¢ espéce p?(x):

1y (0740 Y90, 9 )]+ Ta(x), 7% )] 74 950} ]
T o {4(2) AT E (), PF ()] [940), 95 )] 4 97 B}
= go B’A(y’ x) VaAB ‘Z’B(z) . J

Sauf en ce qui concerne le signe de o, cette relation est identique a celle
pour le champ de 1*¢ espéce (III 8.11). Pour des commutateurs, ou anti-
commutateurs nombre ¢, (2.1) est satisfait par les relations

(2.1)

[p* (%), p"()]+ = 0, (2.2..)
[p? (%), 9" 5(0)] = S*“5(x y) (2.35)
— oy Fay=1. (2.4.)

Les regles (2.2) et (2.3) sont donc identiques a celles pour le champ de
1re espéce (IIT 8.12), (ITI 8.13). (2.4) différe de (III 8.14) par le signe de «;.
De maniére analogue au cas scalaire, nous développerons

i) =S, ¢4 a, + S, T4 b7, (2.5)

en termes de deux ensembles de paquets d’ondes {p'4} et {y"4}.
L’opérateur transposé est

= o - bt/ 7
WTB(y) = S.p” ‘P”B(y) aT.p” + Sx” 4 TB(y) bx,, . (2-5T)

Pour satisfaire les régles d’(anti-)commutation, nous devons a nouveau
identifier les paquets {p'} = {¥'}.
(2.2) nous fournit les relations homogénes

a, a, F bl b7, =0, (2.6.)
a, b7, Fa, b, =0, (2.75)
o

b a, F 0%, =0 (2.8.)
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et (2.3) les relations inhomogénes

P & 3 T _

Ay @ o F by 070 =00 0, (2.95)
F ETq,,, a, + quD, by =0, (2.10.)

ay b, Fal,bl,=0. il

Mettant en évidence J—1, les expressions pour la quantité de mouve-
ment-énergie (III 8.4) ont la forme suivante:

oo, =—J= [ @9 v9) ), (2.12%)
e, = — ] [ (@3, 9,7 %) ).
= T [ @aer i) o). (212)

Les expressions pour la charge ont la méme forme que pour les champs
de 17¢ espéce, soit

o= [ (@, 9" ) 0, (2.13%)
00— [ (@5, 975" ). 2.13)
En termes des opérateurs g, et b;,, ces expressions sont (0,¢'(x)
> J K, ¢'(x):
oo, =8, @ a—bb"), &, (2.14)
e, ~—§, @a - b,k (2.14®)
=8, @ a+beh,, (2.150)
0o =§, @a’ +b70),. (2.15®)
L’expression pour 17, est
I, = oy IT®, + a, [T, (2.16)

avec (2.4). Si nous exigeons pour la charge Q la relation (III 9.2), i.e.

— [0, 9% ). =" (2.17)
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I'application de I'identité (III 8.8) (ou1, vu I'anticommutativité deyp avec

J, o, doit étre remplacé par — «,;) nous amene a

Q=p00+ 6, 0% (2.18)

avec, maintenant

Br=—a; fo=—a (2.19)
au lieu de (III 9.3).

§ 3. La conjugaison de charge

Nous procédons comme en III: nous exigeons qu’une transformation
O~ ... O; (Oc < C) existe, telle que (IIT 10.3)

Y(x) = 0~ yp(x) O = v' (%) (3-1)

laisse invariante les régles de commutation (2.2.) et (2.3.) ainsi que

()
II,. Or, de nouveau, la symétrie de S4%(xy) (III 10.2) nous décide
pour l'anticommutation. Etant donné que I'on a maintenant (vu (2.12))

01,110, 0, — — 1%, (3.2)

0-1. 12, 0, — — 11, (3.3)

le seul choix possible, est

1

= (3.4)

Sil'on met j}—l en évidence, soit en (2.12) soit en (III 8.2) (pour 7%), on
s’apercoit que (0.2) est valable pour y aussi bien que pour . g

Utilisant les relations (2.9,) et (2.10,), nous pouvons écrire [, en
termes des b, o» SOIt

\J

II,=~8S, 6" b+b0"—1), Ssv (3.5)

On voit, qu’a part une contribution négative de «point zéro » égale a celle
du cas linéaire (III 11.15), I'énergie par onde plane ¢’ == k est définie

positive (;’4> 0). Pour la charge, l'utilisation des relatlons (2.9,) et
(2.10.), donne, vu (2.18), (2.19) (i.e. f, = 1/2, By = —1/2)

0=, (-0 =8, @a-ad),=8,0, (6
soit (0.3).
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I1 ne nous reste qu'a donner la forme explicite de O.. Pour faire ceci,
nous introduisons les deux opérateurs antisymétriques:

(612 + )2, = =g, (3.7)

ny = J (@) + @2, = —

i

("o —aal),; =—¢&,7  (3.8)

S~

£, —J@a—bb"), =—

qui satisfont, en vertu des relations (2.6,) a (2.11,) a

(s Bl - = ] 8,0 Ty (3.9)
[0, BT ,) = — J 0,0 by, (3.9b)
(6,0 %] = J 0 %, (3.10a)

£y byl = — J 0,0 by (3.10b)

Nous décomposons ensuite O en

Oc= 04, 0, - (3.11)
Alors, en vertu de (3.9),
0(1) 2y H 6—:’51]@'/2 (3.12)
o
satisfait a
O Yy @, Og5=J o', (3.13a)
N (3.13b)
et
O = [ ] 5" (3.14)
@
transforme suivant
0 g J a’, O = ETQ),, (3.15a)
0~y (— Jb,) Og) = by - (3.15b)

Donc O (3.11) transforme a,, en 2’ et b7 . en b .. Etant donné (2.5) et
(2.57), cette transformation exprime (3.1).

Nous avons éliminé les lots de commutation, en nous servant d'un pro-
cédé analogue & celui de SCHWINGER?)?) (invariance p.r. & la «strong re-
flection», d’aprés PauLi®)). Or, 'argument thermodynamique de PAULI®)
(énergie bornée soit vers le bas (soit vers le haut), température 7 > 0
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(soit T" < 0) (cf. III)), est aussi valable. En effet pour le cas des commu-
tateurs, on a

et —_ - —_— w

II,=8, 0T6—b507 — 1), (a0 — ) #

1

(3.16)

w’

- a]_ e 0(2 = 1 . (3.17)

o
Quel que soit le signe de (x; — ), /1, n’est borné ni vers le haut, ni vers

le bas, car b 57 et b7 b, qui ont des signes opposés, ont tout les deux des
valeurs propres non bornées {0, 2, 4, 6, ...} (qui ne peuvent pas se com-
U

penser sinon /7, serait un nombre; ce qui contredit (III 8.5)).

—= S |
§ 4. Représentation des ay’ et by’ et valeurs propres de II, et Q

Il s’agit maintenant de démontrer, qu'une représentation des a,, et E(p,,
satisfaisant (2.6,) a (2.11_) existe. Nous écrirons

()

]:j‘.X14X14X14X...X14X14><14X... (4.1)*)
et

) =kEXOXOXOX...XOXAXTXTX... (4.2a)

Z_aq,(g)szGXGxax...xaxﬁxrxrx... (4.2b)

ol o respectivement  sont & la p*™ place. 7 et % sont des pseudo-quater-
nions (matrices a 2 lignes et colonnes (I A-4.8)*)). Les 1,*), o, 7, 2 et
sont des matrices a 4 lignes et colonnes

0O 0 0 1N 0 O 0 1
0 1 0O 0 O -1 0 O
=g ; T= =77 ;(43)
0O 0 -1 0 0 0O 1 0
1 O 0 O i 0O 0 O
O 0 1 0 ‘0 0 O 0
1 0 0 0 0O 0 O 0
) ﬁ - (4'4)
O 0 O o0 0O 0 0 —1
0O 0 0 0 0O 1 0 0
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On vérifie que toutes les relations sont satisfaites. Le calcul étant assez
fastidieux, nous donnons les relations utilisées:

or=ro=kxk, (4.5)
xo=0cp"; oca=p"o; (4.6)
ta=—pT1; ar=—1p"; (4.7)
— (), af’=p"a=0, (4.8)
= =aal + T =aTa+ B f=1,. (4.9)

Les valeurs propres de la charge Q- et de la quantité de mouvement-

énergie 11, - par paquet ¢’ sont, vu (3.6) et (3.5)

0O 0 0 O
0 -1 0 O
Qp =1x1yx ... X 5 4 4 B x 1, x ..., (410
0O 0 0 O
0000
o 0100 U
.W,: 1x1,x...x —_ —1, | x1yx.. 0k, (4'.11)
| 000 2 )

En termes de matrices a 2 lignes et colonnes (ITI 11.13) et (ITI 11.14) nous
pouvons aussi écrire

0 0 0 0
o-1 00 —(Nx1) —(1xN), (4.13)%)
0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0
(Nx1)+ (1 x N). (4.14)
0 0 1 0
0 0 0 2>
x) N=(8(1))=a - 83) (4.12)
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Soit, en utilisant les a,- et b, des champs de 17 espece (IIT 11.10, et
suiv.)

= Stp’ N‘P' - Sx' Nx' ’ (4.15)
J 1 U' 1 \J’
I,= 8y Ny = 5) ¥+ S (N — ) #o- (4.16)

Ceci montre, que les valeurs propres de @ et /], sont identiques a celles
des opérateurs correspondant de 17 espéce (IIT 11.12 et 11.15). (Le choix
des représentations a été fait de maniére a avoir non seulement 1'égalité

L=y
des valeurs propres, mais l'identité des représentations de Q et 11,).

§ 5. La transformation de phase

Nous cherchons la transformation orthogonale O,;, satistaisant a

= Ly Y —_—

p(x) = 0~ 9p(x) O, = ¢/ *y(x) (5.1)

p. r. & laquelle les observables 6*#(x), s*#7(x) et ;;‘(x) sont invariantes.
Ecrivant

0,—e¢*F, F—F' [J,F]_=0 (5.2)

nous avons l'1dentité

Or, F devant étre un scalaire, nous ne disposons, essentiellement, que de
Q. Soit donc

co
F=F@Q) =2¢c0Q" (5.4)
n=1=0 )
ou les ¢, sont des nombres (réels). La propriété (2.17) de Q peut s’écrire
Qu=v(Q—-1) (5.5)
d’ou résulte ~
Py=p(Q@-1)" (5.6)
et
FQp=yF(Q-1). (5.7)
D’autre part, (5.3) exige
FQy=y(—1-F(Q). (5.8)

La comparaison des deux équations nous conduit a I'équation fonctionnelle

FO+FQ@+1)=-1 (5:9)
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dont la solution générale est
1
F(Q) = — + + G(Q) (5.10)

ol G(Q) est une série trigonométrique en Q, solution de

GQ) =—G(Q+1), (5.11)
G(Q) =0 (5.12)

étant la solution la plus simple.

§ 6. Relation entre champ linéaire et champ antilinéaire

U
Comme les valeurs propres de @ et de /I, sont identiques, on s’attend
a ce que le champ de 2¢ espéce puisse étre relié au champ de 1*¢ espéce,
On pense d’abord a une transformation orthogonale

Oty O=yp. (6.1)

Or, on voit qu'une pareille transformation n’est pas possible. En effet,
en écrivant (cf. (III 1.7))

F=FkxF,+Ixk, (6.2)

F=1xF, +71xE, (6.3)

cela exigerait 'existence d'une matrice orthogonale & 2 lignes et colonnes
01 = o7 telle que

0" lko=A14+pujg. (6.4)

Or, cette équation n’a pas de solutions, vu que % est symétrique et a la
trace nulle. Il en est de méme pour /. L’autre possibilité est donnée par

les équations (0.5) & (0.7). Ces 2 opérateurs K , existent. Dans notre re-
présentation particuliére (4.2), I’opérateur

K, =kXTXTXTX... (6.7)

transforme en effet (¢’ = y’), conformément a
4, K, =a, =1x (Exkx..x@x1)xlx... (68

=bT , =1x(kxk x...x(kxal)x1,x.. (6.9)

T+ x
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les opérateurs antilinéaires dans les opérateurs linéaires dans la représen-
tation choisie (IIT 11.14). On a utilisé (4.5) & (4.9) et, en plus,

0O 0 1 0

0O 0 0 1
®T = 6 B 0 0 =ax1, (6.10) *)

0O 0 0 O

0O 0 0 O
B = Loo0e = Fxa. (6.11) *)

0 0 0 O

0 0 -1 0

L’opérateur K _ est, dans notre représentation,

E_=k><0><a><o><... (6.12)

Les opérateurs transformés suivant K _ satisfont également a toutes les
régles d’anticommutation, mais la représentation est «l'inverse» de celle

que 'on obtient avec K o §
a, K_=1x1;x1;X...x(—axk)x (kxk)x(kxEk)x..(613)
oK =1x1,x1,%x...x (Ixa®) x (Exk) x (kxk)x.. (6.14)

Ecrivant les densités de quantité de mouvement-énergie et de courant-

L
charge 6%f(x) (resp. T%4(x) et s*#¥(x)) et y*(x), en utilisant chaque fois
les valeurs appropriées des coefficients o, o, f; et B,, on s’apercoit bien
qu’ils ont la méme forme si on les écrit en termes de y ou de y reliés par

K,.

§ 7. Forme Schriodingerienne de I’hamiltonien du champ libre

Pour pouvoir formuler la théorie d’interaction, nous introduisons les
opérateurs de SCHRODINGER (I 5.13) **). Pour le champ scalaive linéaive:

w(x) = wx t) = w®), (7.1)
0,0(x) = 0,2(x t) — w(x) = 7l (%) (7.2)
*) cf. (II111.13), a = ((0) (1)) al = ((1) 8) .

**%) F(x) = F(#) en (I 5.13); nous omettons le — en F(#), étant donnée son autre
signification dans le présent article.
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et nous définissons, vu oy = oy = 1/2 (I1I 4.3)

HEZJ?) _ ﬁ4 (#ib) :f(dga (Z et %6(2)“4)) (v)

> 3 [WV6) wal +ata+ (73)

w?. (M) —A)w+ (M, — 4) w.w?) (y).

De (III 2.18 et 2.19 15t k.), on tire

-

[w(}), w(y)]_ = [w(x), wT(y)]— = [Jt(%), 75(3’)]_

I (7.4)
= [n(x), 7" ()] _ = [w(x), z" (¥)]_ =0,
U U N A 5 =
Jln(), wy)]_ = Jia'(x), w"(y)]_ =6 (x — ) (7.5)
d’'ot1 résulte
JHGY, wx)]_ =a"(x), (7.6)
[T HED, 77 (2)]_ = (4 — M) (). (7.7)
Dans une théorie d’interaction, nous admettons pouvoir écrire
H = ZH(hb) H(mt) (78)

la sommation s’effectuant sur tous les champs, dénotés par un index
(#) (k) = (1) (2)... (Ane pas confondre avec l'index spatial 1 &2 =1, 2,...).
On postulera

[ H™), w(@)]_ =0, (7.9)

-

(] H, 77 (3)]_ = o(%) . (7.10)

Lemme: 11 est nécessaire que ] beyg

autre champ (%):

7 HEY, wyy ()] []H“b),%’m( )]_

commute avec les opérateurs d'un

A . (7.11)
= IH(fﬁb)» "P(k)(x)]_ =0; () * (k).
On aura donc en particulier:
[T H, w@)]_ = a7() = b(3), (7.12)

-

[f H 7' ()] = — M) 0@ +ox) =a"(x) =w@®) (7.13)

44 H.P. A. 35, 7/8 (1962)



690 E. C. G. Stueckelberg et M. Guenin H.P. A.

d’ot ressort, écrit en termes d’'opérateurs de Heisenberg, 1'équation
d’onde inhomogéne

(O — M) ©(x) = —o(x) . (7.14)

Pour le champ spinoriel, linéaive ow antilinéaire () ou y;) nous définis-
sons 774" en ajoutant au terme (0.2) un terme qui est nul pour les
champs hbres, soit

o (Iib) _ Ta (0 __ * 718
Ty (%) = T4 I J1o%

X {20, + My p— 3 (20, — M y°).p + . | (71

x (20, +My") p" —p (20, — M%) .97}, (x)

équation avec M = M,;, valable pour et 1}5“ Cette forme a I’avantage

qu’en termes des operateurs Y, (x) ou ;) (x), les dérivés temporels s’an-

nulent en H{y”

D = [(@%, To4) (9) = 5 ] [V G)
J o 1 2

N (7.16) %)

—

X TGO+ My)p— 30+ My 93D, ().

Les relations d’anticommutation sont ((III8.12 et 8.13 ) ainsi que (2.2,
et 2.3, ) étant des relations identiques)

["P(i)(}‘)» V’(i)@)]w;. =0, (7.17)
[‘PA(i)(;C): ﬁ({) B@)]+ = 7’4 AB 6(;5 - 37) (7-18) **)

(vu les définitions (ITI 8.9 et III 2.12): 64(x y) = —34(96 y) = 8(x — 9)).
Les équations (7.17) et (7.18) sont valables pour y,; et ;. On tire de ces
relations (pour yy; et ;):

[‘] Héi_;'b)’ 1'U(i)(;‘s)] - 74 (:}; 0 + yo ]u(z‘)) W(i)(-_{f) . (719)
Utilisant (7.11) et postulant
v N .
[J H™, "/)(i)(x)] =y i) (%) (7.20)

*) N. B.: Le 1¢ terme est $Tp « (p ...)Bc yC et le 2¢ (p ...)Bc 9C.9Tp.
**) Si l'on pose (cf. III 7.14) ¥4 g = y*4p, on a pour
[p4i @), T BG4 = 0 8GF-7)
une expression définie positive, comme ce doit étre le cas.

**%) Un opérateur & droite du point (.0,) opére a droite! Un opérateur a gauche
d’un point (0y.) opére a gauche! (cf. III Note*) p. 682).
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(avec y;) ou yx;), I'équation

[7 H, "/’(«;)(52)1 =y ((7‘3 5 + 9° ]W(z)) Yy T X(@)) (;5) = 1/)(1:)(52) (7.21)

s'écrit, vu (y%)2 = — 99, pour les opérateurs de Heisenberg
: (,yoc Oa + ]M(i) ,}/0) W(i)(x) = - X(,;)(x) 5 (722)
Yo%) 0, — My ¥°) .= x5(%) - (7.23)

Si l'on calcule la divergence de T“ﬁg’)'b) on trouve, en termes de y;:

o (I 1 Um J : u>
0,175 (%) = 5 J " @' p 2 + s+ "7’13 '+ Tvs) (x). (7.24)

§ 8. Impossibilité de I’existence de champs scalaires ou tensoriels
si des champs antilinéaires existent

Si nous avons un ou plusieurs champs antilinéaires 4, nous devons
avoir selon (7.11)

[}Jﬂ(w): @(i) ()] _ = f['[{(w)’ @(i)@)h =0 (8.1)

c’est-a-dire que H\,, (7.3) doit anticommuter avec y,. Or, utilisant la re-
présentation des champs libres (III 5.10 et 5.15) et (2.5 et 4.2) nous de-
vons écrire formellement (en séparant 1, resp. &, cf. (I A-2.3, III 1.7))

w=1l,xw x A, p=kx Bxy' (8.2)

(espace produit). Donc, B doit anticommuter (ou commuter) avec @' ' et
avec w' w'7T, et 9’ commuter (ou anticommuter) avec A7 4 et 4 A”. Or
il n’existe pas d’opérateur B qui anticommute avec toutes les possibilités
du type

(1 X 1) X oo X (@Boge) X 1) X oot X (@pogey X 1) X ... (8.3)%)

On peut, par contre, poser B = (1 x1) x (1x 1) x ... et il existe l'opéra-
teur

= (kxk x (kxEkx... (8.4)
qui anticommuterait avec tous les opérateurs du type

@g(0)

F = O0X0X . L XOXaXTXTX ... (8.5)
0)y1L o
) e = © ° V2 - ) ot i 5.4

0 0 0O
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Mais 11 n'existe pas d’opérateur A tel que I'on puisse écrire
Fr=ATA=4 A7 (8.6)

les valeurs propres de I' étant -+ 1.

Ce résultat peut étre généralisé pour des champs tensoriels (qui doivent
également étre linéaires).

Donc, st U'on admet Uexistence de champs spinoriels antilinéaives, aucun
champ scalaire ou tensoriel ne peut exister.

I1 ne nous reste donc qu’a étudier une théorie ne faisant intervenir
que des champs spinoriels (interaction de Fermi).

§ 9. L’interaction de Fermi pour les champs linéaires

Formons de (0.9), I'hamiltonien d’interaction
Hc(:(,:»? = ]_lf(dV {E:z(v) ("?U}(Tl) 7’(”) 7!’(2)) (":”J(I:;) Y ‘P(;))
+ (‘7’)(1;) V(v) "P(s)) (;/)J(I;) V) '/)(1)) Ea{;)}) 6’) (9-1¢)

= [ @5, 0%4,,,) ().

o 5
Pqur que J H Ef;“,b) commute avec ((z) + (), les différent§ (':hamps y)gg)
doivent commuter ou anticommuter entre eux. Nowus choisissons, arbi-
trairement, I’ anticommutation.

Wiy Yde = Wap ¥ mle =0, () + (R). (9.2)
On a alors

\ ('71(@') '.VM "/’T(k)) = + (’b}T(k) 'VM w(i)) , sl \'Jj(v)w = =] ?m . (9.3)

Les inhomogénéités sont (signe de (9.1) et (9.3))

270 = Ean 7™ P @) Vi) Vi) (94))
Z(y)(z) = '}’(v) ’P(1)('LPJ(£) V) 'P(a)) gaﬁ) ) (9-4(2))
25 () = Bats) Yoy Y@ ¥ vi) (9-45)
Ymts = =+ P ‘P(g)(ﬁ(ﬁ"a‘) Yl Yay) E)a%‘v) . (9-44)

Utilisant (7.24) et (9.3), on peut écrire, sans commuter les dérivés y; 4
avec les yy,

oaT“ﬁEf-ﬁb)(x) = Oﬁ(i)]ulg{é"a(v} (\'95‘(7;) ,},(v) 'I’(z)) ('7’}3?:) V) "‘/’(4))

+ @(1:1) i 'P(a)) (ﬁ(:rz) Yo Yy) Eaj("v)} (%)
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ol 04;) n'opére que sur x¥ en (%) et en p’ ;) (x). En outre, on peut cons-
tater (utilisant (7.24)), que si I'on compléte 2 T“ﬁ "’“b en ajoutant

D) 1120, 5357 avec la densité de spin (”
(%)

Sgaﬁ y(x) = ] ! ( z)ygaﬁ"l)f; +§i"}’gaﬁ‘.’)é‘ﬂ)) (%) (9.7)
on obtient §* %) Z g M Ayoutant 3 g GEAR) g, g% bR

(0.8) (0.9), on obtrent donc un 0%F(x) satisfarsant a I’ équation de continuité
et a la symétrie (I 0.25)%).

Avant de procéder aux champs antilinéaires, nous voulons considérer
les propriétés de covariance p.r. aux opérations C, P et T («— O, Op €t
O7), pour démontrer 'avantage du formalisme réel, ou toutes les opéra-
tions sont linéaires. Nous supposons d’abord que les 4 phases A, en (ITI 8.3)
sont toujours égales (plus exactement (0.15)).

Les termes sont alors ortho-chores ou pseudo-chores p.r. a P < 0Op
suivant leur parité.

Par rapport & T < Oy, les termes ne sont covariants que si (0.14) (cons-
tantes de couplage réelles) est satisfait. Autrement la constante de cou-
plage change conformément a

Sia €ai) O — (" a) - (9-8)

L’opération C < O, change (vu (9.3)) suivant:

-1 (MT Y Uy,
Ol ¥ 9) Oc = By 7 9i3y) |(9%
=+ (’7))(11;) V(v) TP(;‘)) ; y(v) ~Es 'V(v) [

Donc, au signe prés, les 2 termes dépendant du champ en 6%, s’inter-
changent. Si $* et ) ont la méme symétrie on a le signe (—) en (0.9_)

()
pour tous les termes (sauf AV et VA, ot J~1 ?g’a(,,) est remplacé par

] Y g (f"l Zaw) 7). Sileur symétrie est opposée, cas AV et VA4,
on obtlent le méme résultat, vu le signe (+) en (0.9,). Donc, les 5 termes
conservant la parité sont covariant p.r. & P <~ Opet p.1. 4 CT < Ocr.
Les autres 5 termes ne sont invariants que p.r. a

CPT < Ogpy. (9.10)

En particulier, les 5 termes conservant la parité sont covariant p.v. a C<— O,
P < Op, T < O individuellement, si les constantes de couplage sont réelles,

*) Nous avons esquissé le calcul aboutissant & (9.6) vu qu’il n’est pas trivial
(non commutativité des y(;)g). Aussi est-il remarquable que, au moins formellement,
une densité de quanitité de mouvement-énergie 0% P)(x) existe pour linteraction de
Fermi, vu la remarque de STEPANOV?) et de BoGgoLIUBOV et SHIRKOV1?).
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t.e. (0.10). Cette condition de réalité (0.710) assure donc, pour les 5 termes vio-
lant la parité, leur covariance p.v. @ T < O et CP < Ocp.

§ 10. L’interaction de Fermi si un champ est antilinéaire

Nous considérons tout d’abord le cas, ot un seul champ, 1/";(4), est anti-
linéaire. Le 680 et H™) sont donnés par (0.12) et (9.1). Nous utilisons

le symbole g,y =y £2, pour bien marquer, qu’a priori, 4 n’est pas un

champ linéaire (satisfaisant aux (III 8.12_ ) et (III 8.13_)) mais seulement

un opérateur linéaire (nous démontrerons par la suite que 9y = y4q))-
Pour garder les équations de continuité (9.6), nous devons exiger que

P4 satisfasse les relations de 4 en (9.2). Pour que 9, commute avec
U

JH fi-’;b), nous devons exiger
W(i): @(4)] x = W(i)’ iU_T(4)]:F =0; (o) +(4). (10.1)

D’autre part, pour que £ ne soit pas un nouveau champ (ce qui est im-
possible, vu, qu’étant scalaire, un champ scalaire antilinéaire n’existe pas)
il faut

(2, 9]y = [ 97 )==0; ()= (1) (2) (3) (10.2)

valable aussi pour ) *):

9, Pl =12 ] =1, (10.3)

En plus, faut-il que la condition de réalité (0.13) soit satisfaite. Ces condi-
tions déterminent £ presque univoquement. On peut par exemple avoir

ézlz___+::kx(axaxcxr)><(a><0><cr><r)><... (10.4)

ce qui décide pour (10.2_). On a alors forcément (10.3 ). Les seules autres

possibilités sont, soit K_ _ _ _ avec ... X (6 Xg Xox0) X ..., s0it K, .

des autres K (mixtes) aVeC partout le méme facteur a 16 lignes et colonnes for-
mé par le produit direct de 4 ¢ et 7’s, par exemple ... X (T XT X0 XT) X ...

Ces autres facteurs ne font que changer les représentations des Airgr €L By
On obtient, avec (10.4) (signe conformément a (9.1.)):
_ : , y
oo = TF 2Ty, ve@% v va) 8ahy - (10.5..)

(C'est dans ce calcul, qu'il est essentiel que, vu la réalité de (0.13), €2 et )
(=

anticommutent avec :gi,(y) = J Zq»). On s’apergoit alors, vu (9.4(), que

(£2 écrit derriére les 4 opérateurs linéaires (¢ étant opérateur))

*) On ne peut qu'avoir 4 x [.,.]_, 4x[.,.], ou 2x[.,.]_et 2x[.,.],.
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1,;(4) = P Q satisfait I'équation inhomogéne (7.22) (vu 070 = 1).
D’autre part I’équation de continuité (9.6) est assurée pour y, avec
Y4 = Pgy- Finalement on voit, que, vu (10.4) et (0.5) (cf. §6), on a

1/~’(4) = Y - (10.6)

Le cas ou plusieurs champs sont décrits par des opérateurs antilinéaires
peut également étre traité. Tout se raméne &

P =YoL=wy- (10.7)
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