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On the Diamagnetism of the Conduction Electrons
in the Alkali Metals

by A. M. de Graaf
(Laboratorium für Festkörperphysik, ETH, Zürich)

(3. V. 62)

Summary. The field independent diamagnetic susceptibility of the conduction
electrons in the alkali metals has been calculated. The method for determining the
energy levels of Bloch electrons in a magnetic field, recently proposed by Y. Yafet,
has been used. Special attention is paid to magnetic field induced band transitions.
In the case of lithium an s-p band model is used, while sodium is represented by
a p-s-p band model. The s bands are considered to be parabolic in both cases. The
band interaction is included to all orders. Although a reasonable description of the
susceptibility is obtained in this way, higher bands play an important role. Kjeldaas

and Kohn in an earlier calculation considered all bands, but the band
interaction up to fourth order only. It is shown that the band interaction of higher order
cannot be neglected.

Zusammenfassung. Es wurde die feldunabhängige diamagnetische Suszeptibilität
der Leitungselektronen in den Alkalimetallen berechnet. Zur Bestimmung der
Energie-Niveaux der Bloch-Elektronen in einem Magnetfeld wurde die kürzlich von
Y. Yafet vorgeschlagene Methode verwendet; spezielle Beachtung wurde den
durch ein Magnetfeld induzierten Bandübergängen geschenkt. Für Lithium wurde
ein s-p-Bänder-Modell benützt, während Natrium durch ein ^>-s-£-Bänder-Modell
dargestellt wird; in beiden Fällen werden die s-Bänder parabolisch angenommen.
Innerhalb dieser Voraussetzungen wird die Bandwechselwirkung exakt
berücksichtigt. Obwohl man auf diese Weise eine zweckmässige Darstellung der
Suszeptibilität erhält, musste sie noch durch Hinzunahme weiterer Bänder ergänzt werden.
Kjeldaas und Kohn behandeln in einer früheren Rechnung alle Bänder. Sie

berücksichtigen die BandWechselwirkung jedoch nur bis zur vierten Ordnung. Es
wird gezeigt, dass die höheren Ordnungen der Bandwechselwirkung nicht vernachlässigt

werden dürfen.

1. Introduction

Despite many attempts to explain the magnetic susceptibility of the
alkali metals theoretically, there still remains a discrepancy between

theory and experiment1). If we assume that the conduction electrons and
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the core electrons can be treated separately and if we moreover take into
account the fact that the spin orbit coupling in the alkali metals is very
small2), the total susceptibility can be written as a sum of three terms.

X Xc + Xs + Xd- (!•!)

Here %c is the core susceptibility and is given by the familiar Langevin
formula3). Since the spin susceptibility %s, as calculated by Pines4)
agrees well with the experiments by Slichter5), we are led to the
conclusion that the discrepancy is due to a lack of understanding of %d, the
diamagnetism of the conduction electrons.

Since the fundamental paper of Landau6) on the diamagnetism of a
free electron gas, much work has been done to solve this problem for
electrons moving in a crystal lattice. A first step in this direction was
made by Peierls7), who proved the following important theorem. The
exact Hamilton function

x ^r^ + FW ^
where V(r) is the periodical potential, is approximately equivalent to the
hamiltonian, that one gets by replacing k in

E(k) EH(k) + H2 e(k) (1.3)

by an operator K, satisfying the commutation relation

KxKy-KyKx AAHz. (1.4)

Here E^(k) is a function with the same dependence on the wave vector ft
as the eigenstates En(k) of the hamiltonian without magnetic field. However,

E%(k) may still depend weakly on the magnetic field. The second
term in (1.3) is the level shift due to the magnetic field Hs). Peierls
himself worked out his theorem in the tight binding limit, but as has
been proved by Harper9), the theorem is more generally valid. It should
be emphasized that the mixing by the magnetic field of wave functions
belonging to different bands has been neglected in this procedure. For
that reason the band index n still occurs in (1.3). The theorem is also not
applicable to degenerate bands.

By means of the density matrix technique Peierls was able to derive
the susceptibility resulting from (1.3). He gets three terms, one of which
(Xi, in Peierls' notation) has no unique sign and no easy physical
interpretation. The second (%2) is the analogue of the atomic diamagnetism,
whereas the third (x3) is a generalization of the original Landau formula.

Special cases of this theorem have been obtained by Luttinger10) and
later by Luttinger and Kohn11).
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These authors develop En(k) into a power series in ft, up to second
order terms and substitute for ft the operator p — (ejc) A. The susceptibility

obtained in this way is just the Landau susceptibility with the free
electron mass replaced by the zero field effective mass. They also
discussed the effect of spin orbit coupling. Luttinger12) generalized this
theory to degenerate bands, so it is applicable to semiconductors with
large band widths, for which the effective mass concept is particularly
appropriate.

An extension of the Luttinger-Kohn theory was given by Kjeldaas
and Kohn13) who develop En(k) up to fourth order terms. The effective
hamiltonian then consists of two parts. A completely symmetrized term,
En(K) to fourth order in K (with K p — (ejc) A), plus a remainder
R(K), which comes from the noncommutivity of the components of K.
En(K) results in a special form of Peierls' Xs, whereas the contribution
from R(K) agrees with #2 in the tight binding approximation.

Recently, Y. Yafet14) proposed a new method for determining the

energy levels of Bloch electrons in a magnetic field. This method is an
improvement over the Luttinger, Kohn, Kjeldaas versions in that it
is in principle valid for all ft and allows for magnetic field induced band
transitions to all orders. The energy levels of the electrons in different
bands are obtained by solving a set of homogeneous linear algebraic
equations, instead of a system of coupled differential equations. In order
to be able to derive analytical expressions for the energy levels it is

necessary to limit the number of bands. It is the purpose of this paper
to discuss the effect of band interaction on the susceptibility in the case
of the alkali metals with the aid of this technique.

There exists another class of treatments, which do not calculate the

energy levels explicitly, but which use the density matrix formalism15)
16)17). Although the results are in principle exact (except that spin orbit
coupling is neglected and non degenerate bands are assumed throughout),
the final formulae for the susceptibility are so complex that no physical
interpretation or numerical application is possible.

Finally we want to mention a letter by Blatt1) who suggests that a

touching of the Fermi surface and the border of the first Brillouin zone
is responsible for the observed anomalies in the alkali metals. However,
this question is still unsettled18) and we shall not discuss it further.

In section 2 we give a description of the Yafet method. In sections 3

and 4 the energy levels within an s-p band model (in the case of Li) and
within a p-s-p band model (in the case of Na) are obtained. Here it is
assumed that the bands are parabolic. In section 5 the corresponding
susceptibilities are derived. In section 6 a discussion of the results is
given.
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2. Description of Yafet's method

In this section we shall give an account of Yafet's method for
determining the energy levels of Bloch electrons in a magnetic field. We shall,
however, only mention those features, which will actually be used in later
sections.

Let X0 and X be the Hamilton functions of an electron in the periodic
potential without and with magnetic field respectively. The eigenfunc-
tions of X0 are the Bloch functions xpn k and the corresponding eigenvalues
En(k), where n is the band index and ft the wave vector running from
zero to the border of the first Brillouin zone.

The functions xpn k are written as

Vnk Kke1"- (2-1)

where unk is a function with lattice periodicity.
If we choose the magnetic field in the z-direction and if we introduce

for the vector potential the special gauge

Ax 0, Ay -Hzx, Az=0 (2.2)

the Hamilton function with magnetic field becomes

X X0A-A.xp+A^x2 (2.3)u m 'y 2 m

with s e Hzjc.
In order to find the wave function xp with the magnetic field present

we have to solve the Schrödinger equation

Xxp=Exp. (2.4)

For that purpose Luttinger and Kohn introduced a set of functions

X»* ^<X*'r (2-5)

in which xp is to be expanded. This set is complete and orthonormal if
the xpn k are. Expanding

V=Z f dk'An'(V)XnV (2-6)
n' •>

and inserting this in (2.4) we get a set of equations for the An(k), which
read:

Z dk'(nk\X\ri k'y An.(k') E An(k). (2.7)
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Here

(n k | X j n' k'y [(En(0) + -|£) ônn. A- ~Pln\ » (k' - k)

+ ir(ftkyônn.A-p>nn,)i-A>-ô(k'-k)

s2 d2ô (k'-k)
Am Akl nn'

(2.8)

is the hamiltonian in the Luttinger-Kohn representation11). At this point
Luttinger and Kohn make this hamiltonian subject to a canonical
transformation in order to remove interband elements of first order in ft.

Afterwards they neglect interband terms of the order k2 but keep the
intraband terms of this order. In this way these authors are led to the
following equivalence theorem. In order to find an approximate hamiltonian

for an electron moving in a periodic potential in the presence of
a magnetic field one has to develop En(k) into a power series of ft up to
second order terms and replace % ft by the operator (p — (ejc) A). Here
En(k) should be a non degenerate band. Kjeldaas and Kohn13) go a step
further and apply another canonical transformation to remove interband
elements of order k2. Now interband elements of fourth order in ft are
neglected whereas intraband terms of this order are kept. By making a

sufficient number of canonical transformations to decouple bands, one
could get a very good one band approximation, but soon the formulae
become not very transparent. Moreover, this procedure does not work
so well in case the bands under consideration are degenerate.

Yafet14), however, found a method to replace the set of coupled
differential equations (2.7) (2.8) by a set of coupled homogeneous algebraic
equations.

We now introduce the following operators

*,= »*„ ky %ky + is±-, kz=hkz. (2.9)

With the aid of these operators and with \k') eik'r (2.8) can be
written

(nk\X\nk'y En(0) ònn, Ò (ft' - ft) + ***- <ft | ka \ k'y

+ jm-ônn,(k\kl\k'y.
(2.10)

Since (2.10) contains only derivatives with respect to kx it is clear that
solutions of (2.7), (2.10) are of the form:

An(k) ~ Ò (k'y - ky) ô (K - k,) Fn> u k, Akx) (2.11)
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where X/,*',*X*) ls a function of kx only. It may still depend para-
metrically on », k'y, k'z and /. Here / denotes the degree of freedom of kx.

By substituting (2.11) into (2.7) and (2.10) we find for the equations
for F(kx)

En(0)+~^-E)Fn{k3) + ^ Z Pln'KFn'(h)=V- (2.12)

The indices /, k'y and k'z of F(kx) have been dropped and use has been
made of the fact that p*„ 0.

For Fn(kx) we make the Ansatz

Fn(kx) <XW* Gn(kx) (2-13)

where Gn(kx) is again a function of kx only and which still contains the
parameters /, k'y and k'z.

By means of this transformation the variable ky is removed from (2.12)
as can be easily verified. Consequently the energy levels do not depend
on ky. After carrying out the transformation (2.13) the equation for Gn(kx)

can be written as

(2.14)

{X(0) + i(äX2 + ^ -^)-E}Gn(kx)
+ 1 Z (tì* X + p-nW X + fnn. K) Gn,(K) o

n' 4= w

with p± - (i>% A- i Py ¦)

and &j_ % kr =F s ^^
Yafet made the observation that an approximate solution for can be

found if one puts

un0 Rb(r) Yf (cp, 6) Rb(r) <X* pf(cp, 6) (2.15)

where Rb(r) is a radial function for the band b and Y™(cp, 6) a spherical
harmonic for angular momentum / and a component of angular momentum

m in the direction of the magnetic field. The band n is now characterized

by the three indices b, I, m. The approximation (2.15) contains

implicitly the assumption that the energy bands, at least as far as the
filled portions are concerned, are spherical. This should be a good approximation

for the s bands of the alkali metals. What has also been neglected
by taking (2.15) is lattice broadening, i.e. the fact that when the energy
band is not spherical the Landau levels are broadened into a narrow
band19)20). This should only be of importance at the corners of the
Brillouin zones, and can presumably be neglected in the alkali metals.
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With (2.15) the matrix elements p£n, and pznn, obey the important selection

rule, that p^n, may only be different from zero ii m m' Ac 1 and
that pznn, vanishes unless m m'.

Next we notice that the reduced operators a± k±\fls% satisfy the
commutation relation

(a a1 (2.16)

which is just the harmonic oscillator commutator.
Therefore the eigenvalues of the operator a+ a ~ are integers and the

corresponding eigenfunctions the harmonic oscillator wave functions cpt.

Further a+ acting on cpi increases i by unity whereas a' diminishes i by
unity.

Using these properties and the selection rules for p^n, and pzn „, we find
that solutions of (2.14) are given by

G,, »,(*,)-Q »(*,./. s)^-
|/2 s H

0

f y m,

i y m

(2.17)

where / is an integer and C\ m(kz, j, s) are constants which indicate the
mixture of Landau wave functions cpj_m in different bands. The set of
coupled algebraic equations for these constants is immediately obtained

(£„(0) + ^aw - E) CX + X y
» 4= M

x (PL-ßm~l c;y-1 a-p-nn,ym+1 c;y+1 + fnn, öm ci;y) o

(2.18)

where the summation over m has already been carried out. The coefficients

am, ßm, ym and òm follow from the well known harmonic oscillator
matrix elements.

«" fy-*. k2 Vi-J =n2kl + sn(2fA-l-2m),
ßm - (V,- Vi- fs%f-m
X (Vi-m+v X Vi-J =psHf-m+l
àm (v1-m>KvJ-J-*K-

(2.19)

The equations (2.18) give rise to a secular determinant from which the
eigenvalues E are to be determined.

How this is actually done, will be shown in the next sections for a few
special cases.
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3. Energy levels in an s-p band model

We consider an s band and a higher lying p band. Both bands are
assumed to have their energy extrema at ft 0 and these extrema are A

energy units apart. This model should be representative of lithium,
because here the 1 s band does not couple with the 2 s conduction band
through the matrix elements p^n, and pznn,, and the higher lying 3 s band
is energetically far away.

We now want to calculate the energy levels in the conduction band
in the presence of a magnetic field taking into account the interaction
with the p band. For that purpose we need the following property of the
matrix elements p^rn- and p'n„-. If we write />X pt,i, m, v, v, »' and using
the symmetry operation cp -> — cp one can show, that

Pb,l,m,b',l',m' ~~ Pib, I, —jm, b', I',

and

(£± ,)* p=, : (pz A* p%.\rnn f rn n> \rnn } rn n

(3.1)

(3.2)

where the star means complex conjugate.
Consequently the only matrix elements occurring in (2.18) are

and

Pb, 0, 0, 6', 1, -1 — Pb, 0, 0, b', 1, 1 — Pb', 1, 1, 6, 0, 0 — Pb', 1, -1, b, 0, 0 — P

Pb, 0, 0, V, 1, 0 Pb', 1, 0, b, 0, 0 ~ P

where b refers to the s band and b' to the p band. There are no transitions
within the p band, because for such transitions the angular momentum I
does not change.

The number of equations (2.18) for the C\ m reduces to four. The
corresponding secular determinant is

x yp+yo
m ' '

— p+yO X + A + AA
m m

-P+ ß°

p*ò°

p+ ß°

0

A-
0

s h

-P*ô°
m '

0

0

XA-A

0 (3.3)

where X E„(0) A- (Iß m) a? - E. From (2.19) it follows that ß'1 y0
and p10 y', which fact has been used in (3.3). It should be emphasized



660 A. M. de Graaf H. P. A.

that in (3.3) the quantum number / > 1. For j 0 we have another set
of equations with secular determinant

0 (3.4)

Before solving the equations (3.3) and (3.4) it is useful to write down the
secular determinant in the absence of a magnetic field. The matrix
elements of the Hamilton function between Luttinger-Kohn states are now
(n ft | X0 j n' k'y. Solutions of (2.7) have then the form

XW ~ô(K- kx) ô (*; - ky) ô (k'z - kz) c„_,., *,, k, (3.5)

while the equations for the constants CMj k',h', w are

X — pAyO
m '

1

p*(Y>
m

m [ ' X + A + ^A
m

0

— P*ò°
m ' 0 xa-a

x' ny>

lì1 l2 r,v ^ ÌÌ

n' #= «

X (PL' *- + Kn' K + Kn' K) X 0

(Eb(0)A-J^k2-E)CnA-n- Z\ " 2 m I m r-J (3.6)

where k± kx Az i ky.
The secular determinant which follows from (3.6) can be obtained by

replacing in (3.3) ß° and y° by fl k_ and h k+ respectively and dropping the
term s %jm from the diagonal elements. The eigenvalue X now has the
meaning X Eb(0) + (Ä2/2 m) k2 — E. The fourth order equation for this
X becomes

(X + A)2 [x2 + XA- W»*-*++W»».} _ 0 p.,,

One can prove, using explicit expressions for the spherical harmonics Y°,
Yr1, Y°, Y\ and writing (pxA-ipy) in polar coordinates that 2(p+)2

(-p*)* p2. Therefore (3.7) can be written

(X + A)2 ÌX2 + XA- P-^ki\ 0 (3.8)

The energy levels of the s band are obtained from (3.8) by solving the
quadratic equation for X and taking the highest value of X.

(3.9)

E >(0) +
h2

2 m
k2--X

E»(0) +
n2

2 m
k2A-

A
"2 — 1/1 4-

4S2*2>*2
2 V m2A2
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which for small k (parabolic approximation) takes the form

X(0)
s2

k2
%2p2

2 m m2 A

with the reciprocal effective mass

11 2p

k2=Eh
h2

2 m*
k2 (3.10)

m* m m2 A

The fourth order equation for X, with the magnetic field present is

p2(h2k2A-sh(2jA-l)) 1

(XA-A)2 \X2 + XA-
s2 n2

¦in-
(XA-A)

I

P2 n2 k\ -X(Xa-A)\ 0

(3.11)

(3.12)

which is the analogue of (3.8).
We develop X in a power series in s. For the temperature independent

susceptibility we need X only up to second order in s. With

X A A-C s A- Bs2

in analogy with (3.10) A satisfies the equation

A2 A- A A - XX2±XXXX1X! 0.

(3.13)

(3.14)

By substituting (3.13) into (3.12) we find immediately that C 0 for
the s band. Thus we are left with X A A- B s2. The equation for B is then

B (A A- B s2 + zl)2 (2 A + B s2 + A)

IX. (A a- B s2 A- A) + ****** -(A + Bs2)(AA- Bs2 + A) 0.
(3.15)

Since the s independent part of B is required in (3.13) we get for B from
(3.15)

B XX) (m m2 J

(3.16)
(A A-A)2 (2 A A-A)

If we again make the parabolic approximation, i.e.

A h!Al+s AAAAA
2 fi

where ljpi ljm — ljm*, the final expression for the energy levels of the
s band in the presence of the magnetic field is

(3.17)

X(0)

E(h,i+\)
'"^-~P^1] -BlKAA-'Às2, ;>1.2 m* \ 2 /

(3.18)
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In much the same way one can find the zero point energy (j 0) from
(3.4)

E(kz) Eb(0) A- h22^,SH ~ B'(K) s, 1 0 (3.19)

where

B'^ ~ mX(A'AA)^AA^rJ • <3-20>

Here A' is the same as in (3.18), with / 0.

If / is so large that am, ßm and ym in (2.19) can be written as

aj" %2k2 + s%2i

ß"> )J2s% fj
ym =^2s% fj

the energy levels which follow from (3.3) are

E Eb(0) A- —'/j/—? (3.22)

so that the total energy is

E Eb(0) A- -hi +S2l^~ — -B's. (3.23)

In section 5 it will be shown that — B' s does not contribute to the
susceptibility. Therefore (3.23) gives the susceptibility which one would have
expected in a one band approximation. Using a semi classical picture,
large / means that the Landau orbits are large compared to the lattice
spacing d i.e. )J% cje H > d. This condition for the applicability of the
one band approximation has already been obtained by Zil'berman on
intuitive grounds21).

4. Energy levels in a p-s-p band model

A model of this type may be representative of the conduction band in
sodium. There is still a lower lying s band which couples strongly with the
lowest p band. This p band could give a contribution to the susceptibility
which however, we shall not calculate. For full bands the non parabolicity
plays an essential role. The Luttinger-Kohn representation will not give
reliable results in such cases, unless a sufficiently large number of bands
is included. There are indications that the contribution of the lowest p
band is rather small. These will be explained in section 6. We denote the

upper p band with index p and the lower with index q. The conduction
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band gets the index 0. The equation of seventh order for the case of zero
magnetic field is

(X + Ap)2(X-Aq)2 |

x{X(X + Ap)(X-Aq)~--t^(X-Aq)-^^(X + Ap)} 0 j
(4.1)

where Ap Ep(0) - E0(0) and Aq= - Eq(0) + £0(0).
The energy levels of the s band in the parabolic approximation are

readily obtained

with
1 j A. (AA _ X\

m* m m2 \Ap Aq J

Analogous to (4.1) the secular equation with the magnetic field present
can be written

(X + Ap)2(X-Aq)2\x(X + Ap)(X-Aq

__
p2(h2k2 + sh(2j + i)) _ â

m2 q

_ ÏAêt^AlAAAAAA (x + A)m2 &

-S^(X + ApY(X-Ag)X-^(X-AqY(l + Ap)X

+ s2UP-(^ + Ap)A-p-%^\(X-Aqr
m' (m K p m' v q

+ ^K- (a - x) + -"^4 (*+X)3m2 (m v 1' m2 ^ p'

+ ^h^ k\A-s%(2fA- 1)}£ (X A- Apf (X - Aq)

+ S'^{W kl+s%(2fA- 1)}£ (X - Aq)2 (X A- Ap)

+ ^X(X + Ap)(X-Aq)

-^\Ê-(X + Ap)A-^fi\(X-Aq)m1 (m y p/ m* q

-^[^(X-Aq) + ^kì\(X + Ap) 0.
m1 m v q m* \ v

(4.3)



664 A. M. de Graaf H. P. A.

Putting again X=A + Cs+Bs2 where A satisfies the equation

(4.4)

A (A A- Ap) (A - Aq) - W "tA^lA m (A - Aq)

_ W2 + .W + 1)) {A+A)=0m2 v

one finds that C for the conduction band is zero.
In the parabolic approximation

A_ h2k2 + sh(2i+l) (4_5)

with Ij/A, ljm — ljm*, ljm* being defined by (4.2).
For B we obtain by substituting X A A- B s2 in (4.3)

B (**• j+l) &[^ +X)3 (A -X)A + (A -X)3(A +X)A

(4.6)

{-| m
(A + A,) +

p2 %2k

m2 4 (A - Aqy

m (A-Aq) + q2n2k
m2 ')(AA- APY

p~2^A(AA-Ap)2(A-Aq,

'22ftA(A-Aq)2(A+Ap)}}

(A + Ap)~2 (A - Aq)-2\A (A a-Ap)+A(A- Aq)

A- (A - Aq) (A A- Ap) - ^(p2 A- q2)
i

The energy levels of the conduction band are finally

E((kz,fA-\) E<s(0) + -kì+Sn(2Ì + 1)

2 m*

-B{kz,fA-~)s\ ;>1.
(4.7)

The secular equation for j 0 leads to the zero point energy of the
conduction band

E(kz) E,(0) + ^*'4-/* - B'(kz) s (4.8)
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with

B'(kz) X [A' (A' A- Ap)2 (A' - Aq) + A' (A' - Aq)2 (A' + Ap)

^(A'A-Ap)(A'-Aq)2FA'

-^(A' + Ap)(A'-Aq)2fzA'
(4.9)

~ &%i k* (A' - AF -ì^kKA'A- Ap)2}.

(A' A- A,)-1 (A' - AJ-1 \a' (A' A- Ap) A- A' (A' - Aq)

A- (A' + Ap) (A'-Aq) - ^f (P2 + q*)\\
where

A' AlAÏAA11 (4.10)

in the parabolic approximation.
For large / one gets again the familiar expression for the energy levels

in the one band approximation.

5. Susceptibility
The energy levels E, as calculated in the two preceding sections, determine

the free energy F22).

+ oo

F NC- c\f-kBT Z I AUn[l + ^C-£(M + (1/2,)1/Äßr]
7 0 J

XX kBT f dkzin[lA-e«-E^onik"r} \ (5.1)
c h j— CO

+ oo

2-^kBT f ^ln[l + X-W«X

N is the number of conduction electrons per unit volume.
£ is the Fermi energy.
We calculate F up to second order in H, so that the magnetic field

independent susceptibility is

1 dF

x^-wm- (5-2)
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s-p model. By means of Euler's formula the sum in (5.1) can be
transformed into

oo +00

-2-S-kBT f àx f dkzln[lA-e^-E^"mBT] (5.3a)

+ 00

0 - oo

dE(kz, X)

fx-0
+ 12ch2 J Ak'

1 + e-[C-S(VW*J,T • (5-3b)

- 00

We evaluate first the double integral in (5.3a).
It is convenient to introduce new variables

__
%2 k2 s h ,_

y - 2 m*hBT ' Z
m*kBT

K ' (ÒA>

With (3.18), (3.16) and (3.17) the double integral then becomes

2 71
(2 w*)3'2 (kB Tf2 J y-Wdy j dz

0 0

xln[l + X-y-z"AH!/(J''î)]l
Here f(y, z) is

m À (y A 2 A À) A- Ày - (y A- z + À) (y A- z)

(5.5)

(5.6)
2(1 (y + z + A)2(2y + 2zAÀ)

and

f=_L_ À=—/iA R —-^ (5.7)
kB T ' m* kB T ' m2 c2 m* k2B T2

We develop (5.5) into a power series of H2. For the susceptibility we
need only the first order term, which is

2 A (2 m*r (kB Tf* R g* I y-M2 dy / dz m?—. (5.8)
" J J 1 +e- it -y -»1

Since we are only interested in the temperature independent susceptibility,

(5.8) can be written as

t ì-y
4f (2 m*fl2 (kB Tf2 R H2 J y"1'2 dy J dz j(y, z) (5.9)

0 0

From now on the integration is elementary, and will not be shown
here. With (5.2) we find that the contribution to the susceptibility from
(5.3a) is



Vol. 35, 1962 On the Diamagnetism of the Conduction Electrons

jj, m* I ß A U/2

667

Xal \Xl\2^ lJALA
[tk* c 1

1 Im* Ç \3/2 1 im 1 \ 1

3" I /J.A j ~
m* A ~ \X + 37 "j/f
// zi

I 2 m* C \i/2 / «« 5 \ I m* C A2arctan(~xH + (x + x)arctanh^n)
/m* f \l
lx^~/

4 /ot* C \i/2
y

• (5.10)

where

Xl
(2 OT*

£1/2
24 n2 % m*2 c2

is the Landau susceptibility with the effective mass m*. The contribution
from (5.3b) has been calculated in the same way, and is

Xbi -\XL\- (5-11)

It can be shown, following a similar method of integration, that the
contributions of the second and third term in (5.1) cancel, so that the
total susceptibility is

Xi Xai + Xbi- (5-12)

If Xai1S developed in a power series of ÇjA, the first two terms are

A m \X~- m j

Xl
72 (A m*

m (A-A 13 m*
9 m X

(5.13)

p-s-p model. To make the integration somewhat easier, we assume
that m m*, which means p2jAp q2jAq (see (4.2)).

From (4.5) it then follows that A 0, so that (4.6) becomes

A-^sHAq(A2-A2)(2j+l)}.

M2/+1))}"1 (5.14)X"2X2XX p2Ac (VK
and a corresponding expression for B'(kz).

Again the contributions to the susceptibility of the second and third
term in (5.1) cancel, while (5.3b) gives

Xb2=-\XL\- (5-15)

Here, Xl is the Landau susceptibility now containing the free electron
mass m.
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The integral (5.3a) can be written in the form (5.9), where Rf is now

2(p2+q2)kBT

m2c2kBT m A2 A2 YLS<i'rz-KB± Aj>

X 1 + mAvAq
(y

(5.16)

After carrying out the integration we find for the total susceptibility of
the s band x% Xa 2 + Xb 2. where

1

Xa 2 - I Xl I 24 [1 - -(^rarc tan (^C)1'2} - UJ 32

Av-A„ I
1

The symbol E has the meaning

\-E-Q

E

1

(27 C)1'2

2(^2+ga)
mAvAq

arc tan (^C)1/2j.
(5.17)

(5.18)

Developing ^a 2 into a power series of f, we get for the first two terms

Za2 -kj827C+UJ2'-(^C)2-kJ^#zÇ4M^C)2. (5.19)

6. Discussion of results

In this section we give a numerical estimate of the above calculated
susceptibilities. Further we discuss the tight binding and weak coupling
limit respectively. And finally we compare our calculations more carefully

with those of Kjeldaas and Kohn.
s-p model, numerical estimate. In section 3 we mentioned that this

model should be representative of lithium. We now look to what extent
this hypothesis is fulfilled. A reasonable value for the effective mass in
lithium lies between 1.40 m and 1.80 m. The Fermi energy consequently
varies from 3.37 eV to 2.62 eV. The energy gap A is not known and we
assume it lies somewhere between 3 eV and 10 eV. With these values we

Table 1

The relative susceptibility XiI\Xl\ as a function of the interband distance A for
two values of the effective mass m*

A
in eV XiIÌXlÌ (m*Im 1.4) XiI\Xl\ Ai*\m 1.8)

3 -0.39 -0.09
3.5 -0.85 -0.82
4 -1.16 -1.28
5 -1.50 -1.86
7 -1.75 -2.26
9 -1.76 -2.39
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have computed Table 1 for XiI\Xl\- Here Xi ls defined by (5.10). From
Table 1 we see that the total suceptibility Xi in the case m* 1.4 m lies
between — 0.39 \xl\ and -~ 1-76 \xl\- For m* 1.8 m it lies between

- 0.09 |*£| and-2.39 | jfr|.
Experimentally Xiexp — (~ 0.7 ± 0.75) \xl\- The best value for A

which fits the experiment is therefore between 3 eV and 4 eV in the
case m* 1.4 m as well as for m* 1.8 m. As the experimental value
is not accurate, these results are not very conclusive.

Tight binding. To get a little more insight, we consider the tight binding

limit. If m* tends to infinity, the total susceptibility becomes

Xl= Hm \XL\8^AA(1^ArL) ^N^l (6.i)A m»-roo 'Ai-' A ot V m ] m c2 A v '

Here N is the number of electrons per unit volume. Since in this limit
2 p2jm A 1, the susceptibility can also be written

A7
e2 ?l2 2Pbb'Pb'b AT 2 e ,,- 0,

*1 -NAAAyA^A^ -^AAAz™z»'»- ^
Here we have used the relation

-inplb. mAwzbV (6.3)

which follows from the commutative properties of p and z with the
Hamilton function. zb b- is the matrix element of the z coordinate between
the s band and the p band. The atomic diamagnetism is given by

Xatomic - N-6^r* (r2)bb (6-4)

which should be compared with (6.2). To give an idea we evaluate (6.2)
and (6.4) for hydrogen like 2s and 2p wave functions with effective
charge Z. This gives 1 „

where (r2)bb 42 (aJZ)2. Here a0 is the Bohr radius.
This is too large by a factor 18/7 compared to (6.4). Although the use

of hydrogen wave functions may not be justified, this suggests that our
model is not complete, and higher bands are likely to contribute to the
susceptibility.

Weak coupling. In the weak coupling limit (m* -> m) the free electron

susceptibility is obtained correctly.
Comparison with the treatment of Kjeldaas and Kohn. The treatment of

Kjeldaas and Kohn consists in the successive application of canonical
transformations. Each of these gives rise to a further term in a power
series expansion of the susceptibility as a function of t,.

X= - \Xl I {1 + aC + pX2 +•••}.
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Kjeldaas and Kohn evaluate oc, which contains interband effects as
well as corrections from the non parabolicity. Using the expansion (5.13)
of our result (5.10) a comparison of the two treatments is possible in
several respects.

a) First of all we shall examine the validity of the parabolic approximation,

which we have made. For that purpose it is necessary to apply
the Kjeldaas-Kohn treatment to the s-p model. Formula (3.9) of
reference 13 evaluated for this restricted number of bands gives

Xi Xl\ f m1lm*__r_ 2 C/«l_1\«| (66)
A m \ m / 3 A \ m J

where the effective mass m* is defined in (3.11).
Comparing this formula with the first order term of our expansion

(5.13) we see that there is an additive correction due to the non
parabolicity. Since numerically, it amounts to 5 per cent at most, the parabolic

approximation appears to be justified.

Table 2

The relative susceptibility up to the first order term in f
A in eV XiI\Xl\ [rn*\m 1.4) XiI\Xl\ (m*\m 1.8)

3

9
-6.03
^2.68

-11.06
- 4.35

b) To see the importance of higher order terms in f we compare our
full result (5.10) with the first order term in (5.13). Comparing values in
Table II with those in Table I we find that higher terms give an considerable

paramagnetic contribution to the susceptibility. This suggests that
Kjeldaas' and Kohn's treatment is incomplete.

c) The influence of higher bands finally becomes evident by comparing
our first order term (Table II) with the full Kjeldaas, Kohn result

X — ~ I Xl I co ^o + 0.63 | %L [ (with m*jm 1.4; see ref. 13). The
significant difference implies that higher bands play an active role.

p-s-p model. Here things are a little more complicated, because the
deeper lying 2 p band might contribute to the susceptibility. However
we believe its contribution is small. To explain this we use the very
general formulae for the susceptibility obtained by Hebborn and
Sondheimer17). The terms containing the factor df0(Em)ldEm(f0(Em) is the
distribution function) are zero, because this p band is completely filled.
The term containing the factor dEJdk% (Em is the energy band) should
be small because the p electrons are tightly bound. The only term we
need to consider is

-4/27Xe ^.XXtr*.^- <—'•"»
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This term is zero in the weak coupling limit, and reduces to the atomic
diamagnetism in the tight binding approximation. Since the atomic
diamagnetism is small, and if we assume that interpolation is allowed, it
follows that the contribution of the p band might indeed be small.

A numerical application of the formula (5.19) is not very conclusive
because Xi depends on the ratio ApjAq. The experimental value of the
susceptibility is Xexp X °-27 ± 0.40) \Xl\. Since X2b ~ \Xl\ a
paramagnetism is needed. For Ap Aq the correction to the Landau term has
the wrong sign. It is again evident that higher order terms in £ give
appreciable contributions.

Since in this model we only considered the case m* m, the tight
binding limit cannot be studied here.

It should be noted that also in this model in the weak coupling limit
(A -> oo) the free electron susceptibility is obtained.

7. Conclusion

There exist now two approaches to the problem of the diamagnetism
of Bloch electrons which have actually been applied to a simple metal,
like lithium. The merits of the two methods are displayed in Table 3.

In each of the three comparisons the more complete model is listed to
the left. Its susceptibility is in each case more paramagnetic. This is in
agreement with the general trend that experimental values for the
susceptibility are too paramagnetic if compared with trivial theories.

The main conclusion of this work is that interband effects give important

contributions to the susceptibility. At present no numerically
reliable theory has been developed. A straight forward extension of the
Kjeldaas-Kohn treatment is cumbersome. On the other hand an improve-

Table 3

Comparison of our with Kjeldaas' and Kohn's treatment

Comparison of the models Difference in f Conclusion

Kjeldaas-Kohn
model restricted
to s-p bands

s-p model
linear in £

small
parabolic
approximation
justified

Complete s-p
model

s-p model
linear in £ appreciable

higher terms
in £ important

Complete
Kjeldaas-Kohn
model

s-p model
linear in £ appreciable

higher bands
important
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ment of our model seems hopeful in view of the following fact. The
Luttinger-Kohn representation starts with bands containing free
electrons. However p electrons behave so differently, that their energy
spectrum is even inverted. Therefore a model for which the highest and lowest
bands are s bands or d bands would be more satisfactory. In the case of
lithium this is an s-p-s band model, while for sodium an s-p-s-p-d-s band
model would serve.
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