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Covalence et résonance paramagnétique

par R. Lacroix et G. Emch
(Institut de Physique théorique, Université de Genéve)

(25. IV. 62)

Résumé. La théorie de I’hamiltonien de spin est généralisée de fagon a permettre
d’y introduire les états de transfert de charge. Le résultat de cette introduction est
évalué numériquement dans le cas des ions de configuration 342 (Cr3+, Mnt+) et
3.d8 (Nift),

On montre que, dans le cas des ions Cr3+ et Mn*+, le taux de covalence évalué
a partir des résultats de la résonance paramagnétique peut étre surestimé d’un
facteur susceptible d’atteindre deux si on néglige le réle des niveaux de transfert
de charge. Si on tient compte des intégrales de recouvrement, l'effet est encore
plus marqué.

Dans le cas de I'ion Ni2t, les niveaux de transfert de charge jouent un role com-
plétement négligeable.

Summary. The spin hamiltonian theory is generalized so as to allow to introduce
into it the charge transfer states. The contribution of these additional terms is
numerically estimated in the case of ions of 343 (Cr®+, Mn?+) and 3 4% (Ni?+) confi-
gurations.

In the case of the Cr®+ and Mn?+ ions, it is shown that, by neglecting the in-
fluence of the charge transfer levels, the degree of covalency calculated from the
results of the paramagnetic resonance may be overestimated by a factor as high
as two. If one takes account of the overlap integrals, this effect is still more marked.

On the contrary, the charge transfer states contribute a completely negligible
part in the case of the Ni2+ ion.

I. Généralités

La résonance magnétique électronique d’un ion paramagnétique placé
dans un édifice cristallin est généralement décrite par un hamiltonien
fictif, appelé «hamiltonien de spin».

C’est cet hamiltonien que nous allons examiner dans le cas d’ions du
groupe du fer dont le niveau fondamental est en symétrie cubique un
singulet orbital (représentation /). Plus particuliérement, nous considé-
rerons des ions de configuration % ou 4® au centre d'un octaedre de li-
gandes.
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Appliquant a l'ion déja placé dans le champ électrique cristallin la
partie de I'hamiltonien réel faisant intervenir le spin:

H$=pB-(L+g,8)+AL-S (1a)
on obtient au deuxiéme ordre de perturbation ’hamiltonien de spin

5:/9281‘(&61';:‘"2)&/1%) Sk*iZZSiAikSk (2a)
ik ; ik
soit
5:2(ﬁgik35 S+ Dy S; Sp) (3)

i, R

ou les indices ¢ et & parcourent séparément x, y et z.
Le tenseur A, est de la forme:

0L, L,|0
Aikzz 0| gf_@él k| > (4&)

n

ou |0 désigne I'état fondamental et olt la sommation s’étend a tous
les états excités |n)> appartenant en symétrie cubique a un niveau 477,
De fait, il ne peut intervenir qu’'un seul niveau de ce type.

Il résulte de cette théorie une relation de proportionnalité entre les
tenseurs D;, = — %A, et g;. — g, 0,, = — 21 4;,, qui prend une forme
particulierement frappante dans le cas ot la symétrie cristalline est
axiale. Dans ce cas, on a:

g“:gg_ZAAH, g“L:gg—ZlAL, DZ——/P(A“-—-AL) (63)

d’otr il résulte la relation suivante entre le paramétre D, qui détermine
la séparation des niveaux en champ magnétique nul, et ’anisotropie du
tacteur spectroscopique g.

2D=1(g—g,). (7a)

Ce modéle, purement électrostatique, ignore les liaisons partiellement
covalentes qui existent entre 'ion paramagnétique et les ions voisins.
OweN?) a pallié a cette lacune en tenant compte des liaisons ¢ par la
méthode des orbitales moléculaires. Il a introduit les fonctions d’onde a
un électron:

Pi = X Pio — 1/17"?%

ol @, ¢ est la fonction d’onde en absence de covalence et y; la combinaison
des orbitales o des ligandes possédant les mémes propriétés de symétrie
que @; . (1 — «?) est appelé le taux de covalence g.

38 H. P. A. 35, 7/8 (1962)
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Cette modification de la théorie conduit 4 remplacer le tenseur 4, par
«? ;. Sion tient également compte dans ce modele de la covalence =
avec un taux de covalence (1 — g2), 4,, devient «? 24, ,. De toutes ma-
niéres, il est aisé de voir que dans 'un et 'autre cas la relation (7a) est
conservee.

Comparons maintenant les résultats de cette théorie avec les faits
expérimentaux. Cette confrontation nous conduit aux conclusions sui-
vantes:

a) L’équation (3) ou (5) est en général vérifiée a la précision des
mesures.

b) g — g, est beaucoup plus petit que la valeur calculée a partir du
modele ionique. Cette réduction peut étre telle que méme la théorie
d’Owen ne saurait en rendre compte avec une valeur raisonnable de la
covalence. Par exemple, on a un facteur de réduction de 0,19 pour I'ion
Mn*+ (configuration 43) dans SrTi0O,2).

c) En général, la relation (7a) n’est pas vérifiée, (g, — g,) étant plus
faible que ne le laisserait prévoir la valeur mesurée de D.

d) Il peut méme arriver que D ait le signe contraire de celui prédit
par (6a).

En présence de ces désaccords, il serait intéressant de généraliser I'ha-
miltonien précédent, tout en lui conservant la forme (3). Pour cela, il est
nécessaire de faire intervenir d’autres niveaux excités que ceux qui ap-
paraissent dans le calcul ci-dessus.

Si on s’en tient au modéle ionique, méme tempéré de covalence, les
seuls niveaux supplémentaires entrant en ligne de compte ont une multi-
plicité de spin différente de celle de l'état fondamental. D’aprés le
calcul de BLEANEY et O'BRIEN?), leur contribution est insuffisante pour
expliquer le désaccord. Cependant un travail trés fouillé de SUuGANO et
PETER?) sur le cas du chrome dans le rubis montre que I'intervention de
ces niveaux, conduisant, pour le parameétre D, A la valeur — 0,12 cm—!
au lieu de + 0,05 cm~?1, comble une notable partie de I’écart entre 1'éva-
luation théorique et la valeur expérimentale D = — 0,19 cm~—*. D’autre
part, cette théorie donne le bon signe pour (g, — g, ), ce qui ne serait pas
le cas avec les équations (6a); par contre, elle nécessite le méme taux de
covalence étonnamment élevé que la théorie ' OWEN.

Le probleme se présenterait tout autrement si certain des niveaux
excités possédaient la méme multiplicité de spin que le niveau fondamen-
tal. Or, nous montrerons dans la section III que de tels niveaux appa-
raissent effectivement si 'on tient compte de toutes les possibilités dont
est riche le modele covalent.

Supposant dés I'abord l'existence de ces niveaux supplémentaires,
nous nous donnerons comme premier objectif la construction de I’hamil-
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tonien de spin ainsi généralisé, en nous limitant aux contributions diago-
nales dans le spin, les seules qui interviennent & notre ordre d’approxi-
mation.

I1. Généralisation de I’hamiltonien fictif

Les états qui apparaissent dans une théorie covalente ne pouvant pas
étre reliés, comme dans le modéle ionique, A des états de l'ion central de
symeétrie sphérique, il convient d’examiner la forme de la contribution de
I'interaction spin-orbite a ’hamiltonien pour un systéme dont la symétrie
est celle d'un groupe ponctuel.

L’hamiltonien d’interaction spin-orbite 4 pour un électron étant, a un
facteur pres, égala s - (grad U x p)%), il peut s’'écrire h = u -s, ol u est
un opérateur qui agit sur la partie spatiale de la fonction d’onde et se
transforme comme un vecteur axial.

De la nous construisons ’hamiltonien d’interaction spin-orbite §*¢ pour
I'ensemble des électrons. On aura $°° = 3’ 4%, la sommation étant éten-
due a tous les électrons, avec ‘

i
B — @, gl0) =Z’u£i) sii) :Z' hii) . =, 2) .
7 ¥

$H°? pourra de méme s’écrire

SDso :25:0 :2(2 hﬁi)) .
r r 1

Ayant pour objet de traiter le cas d’'un ion dont I’environnement pré-
sente une symétrie assez peu éloignée de la symétrie cubique, nous con-
sidérerons tout d’abord un systéme de symétrie cubique (groupe 0,). Le
mode de transformation de §°° relativement a sa partie spatiale étant
celui de %, donc celui de u, ses trois parties §5° se transforment alors
comme les composantes d’une représentation I'f. 11 en résulte entre
autres la régle de sélection suivante: (I3 |$H*°| a)> = 0, & moins que
| @) n’appartienne a une représentation 1.

Comme nous avons l'intention de ne conduire notre calcul de pertur-
bation que jusqu’au deuxiéme ordre et qu’il porte sur I’état fondamental
I'f, seuls interviendront des états I';.

Considérons donc une représentation Iy et choisissons ses états de
base, que nous noterons |1, |2 et |3}, de maniére a ce qu’ils ne puis-
sent étre liés a I'état fondamental I, que par $;° 9;° et £,° respec-
tivement. Comme nous choisissons évidemment les axes x v z de maniere
a ce quils coincident avec les axes de la symétrie vraie du systéme
(plus basse que la symétrie cubique), les états |1), |2) et |3> seront
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automatiquement états de base pour des représentations du groupe de
cette symétrie.

Tenant maintenant compte du spin, nous allons exprimer les éléments
de matrice de I'opérateur §°° entre les états |/, S M) du niveau fonda-
mental et les états |o Iy n S M') d’une représentation I'; de méme multi-
plicité et qu’on distingue d’autres /5 par I'indice «. L'indice %, prenant
les valeurs 1, 2 ou 3, désigne les trois fonctions spatiales précisées ci-
dessus.

Ecrivons tout d’abord I'élément de matrice correspondant de 'opéra-
teur ") s, '

(Iy SM |l s | Iyn S M
= d T SM |l | Tyn SMy<e Tyn SM |s¥ o Iyn S M
=
ol la sommation en o porte sur les états I'y de méme configuration.

Nous traitons alors les élements de matrice de s selon la méthode
développée par CONDON et SHORTLEY®) (op. cit. § 93) en posant:

T—s0 et J=§=) s
k

On a alors (éq. 9311), en tenant compte de ce que s* commute avec
les opérateurs du groupe cubique agissant sur les coordonnées spatiales:

(& Tyn SM |s9 | a Tyn SM'y = (& ;S i@l oIy S)(SM|S,| SM"

ou (o' I'y SisialyS) est diagonal en I'; et indépendant de %, donc in-
variant aux opérations du groupe cubique.

D’autre part, comme #® commute avec S, ses éléments de matrice
sont indépendants de M.

Ty SM ||« Tyn SMy = (I, S |ul |’ Iyn S

d’ou

DT, SM |ul s |a Iyn S M)
222<F2Sl“ﬁi)|“’F5”S>(a'FSS§S(5)S“F55)<SM’SrlSM'>.
Posons alors:

<F25iU,.[OCF5nS>
:ZZ<F2S|“§i)’“'P5”S>(“’Fssgs(i)iocf’ss).
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Les facteurs (a' IS isWial%S) étant invariants aux opérations du
groupe cubique, {3 S | U, |« I'y% S) est somme d’éléments se transfor-
mant tous de la méme maniére, c’est-a-dire comme 1’élément de matrice
de la composante » d'un vecteur axial, et il se transforme donc ainsi lui-
meéme,

Nous aurons en conséquence:

(T SM|$°|alsnSM'y =3 (S |U |alsnSy{SM|S,| SM"
=l SM|U-S|alynSM>.

Remarquons que la démonstration précédente n’est pas limitée au cas
particulier dans lequel nous 'avons établie. Fondée sur des propriétés de
commutation valables pour tous les groupes ponctuels, elle nous montre
que dans la quantification |« /"% S M), la partie diagonale dans le spin
de l'interaction spin-orbite peut s’écrire

$°—U-S.

Il nous est encore possible de donner aux éléments de matrice de $°°
une forme plus particuliére et mieux adaptée a notre propos. U et le
moment cinétique orbital L ayant le méme caractére tensoriel, puis-
qu’ils sont tous deux vecteurs axiaux, il est possible d’appliquer la théorie
de KosTER?) & leurs éléments de matrice correspondants. Cette théorie,
généralisation du théoréme de WIGNER-ECKART, montre que les ma-
trices de deux opérateurs qui se transforment selon la méme représenta-
tion d'un groupe peuvent étre développées en une somme de matrices
qui ne difféerent que par un facteur numérique. Dans le cas présent, cette
somme se réduit & un seul terme, comme nous le montrent les tables
calculées par KOSTER et STATZ®) pour un opérateur se transformant
comme un vecteur axial. En conséquence, les matrices de U et L entre
les représentations I, et I'y sont proportionnelles.

(8 || Ty 8 85 = 9, {F 5 | Ly| B T 0 5

ou la constante de proportionnalité », dépend évidemment de «, c’est-a-
dire est différente suivant celle des représentations /5 qui est prise en
considération.

Les éléments de matrice de l'interaction spin-orbite seront alors de
la forme:

(LySM|$°|aTsn SM™y — 5, (I, SM|L-S|aTyn SM'y. (8
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Il ne nous reste plus qu’a répéter les opérations développées dans la
section I en utilisant ’hamiltonien:

D=pFB-(L+gS)+95°. (1b)

Le calcul de perturbation mené jusqu’au deuxiéme ordre nous donne,
en tenant compte de la relation (8), I'hamiltonien de spin:

55:52Bi (8e0ix — 2 M) Sk_ZSiNik Sk | (2b)
Tk -
ouon a
Mz‘kZZ"aAfk’ Nikzzxifl?k ‘ (4b)
avec

B Iy S|Ljla'gn Sy I'gnS|Ly| I'yS>

L’hamiltonien de spin retrouve donc bien la forme (3), mais sans que
subsiste la relation de proportionnalité entre

Dyy=—N; et g,y —g,0;,=—2M,.

Si on considére maintenant le cas particulier d’'une symétrie axiale,
I’hamiltonien de spin reprend évidemment la forme (5), mais avec les
relations particuliéres:

g =8 =22 %, A%, g =8—23 u, 47,

; (6b)
D=—p"x (AF — A%).
o

On voit immédiatement que les termes supplémentaires qui distinguent
(6b) de (6a) pourront modifier sensiblement les résultats, d’autant plus
que, comme il apparaitra plus loin, certains des x, peuvent parfois étre
négatifs.

Pour l'instant, il nous reste d’abord a établir qu’il existe effectivement
dans le modéle covalent plusieurs niveaux Iy de multiplicité maximum
et qu’ils ont des %, différents.

III. Les états du modéle covalent

Comme nous I’avons dit au début, nous considérons un ion de configu-
ration 42 ou 4® placé au centre d’un octaédre de ligandes. La symétrie est
alors celle du groupe cubique holoédrique O,.
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Les cinq fonctions d’ondes & de I'ion se subdivisent pour cette symétrie
en trois fonctions de qui sous-tendent une représentation I'}; et deux
fonctions dy correspondant 4 une représentation I

Quant aux ligandes, dont nous ne ferons intervenir que les orbitales
de la derniére couche électronique, nous pouvons également en regrouper
les orbitales p o et pz en fonctions formant base de représentations de
0,%:

Qo=+t +r0, Ypa=rf+ I+ I7 + Iy,

Nous aurons ainsi la possibilité de combinaisons invariantes a 0, for-
mant des liaisons o entre les orbitales dy et la représentation I} issue

des orbitales p¢; de méme des liaisons & peuvent s’établir grace aux
€lectrons de et a la représentation I} construite a partir des orbitales ¢ 7.

0 (2) .
I e
/ ~
[ \\
I o
1 ~
/ . #sa
!
i !
I /
/ 1
I
] ALY ;
/ / g /
/ f.' “\‘_\ ’.' 3d
] -
/ T~ 4y @
’,l ,/ Ed (6} I Iﬂ
v/ Tt Jde
I / | -~
it / l/ ’
I Ly
/ 4 I /
I if / /
14 K4 I}’ /
/
/1 f/ /"! //
+ //,:’ / 4 /ff’ /
i
prly -0 5 A— (6) b y:/
L.l /
+ f-,( r
pol; AN 7
/ i ’
p][]’+ / \‘-\...__ZL({)__// rf
I ¥ S Y
f T V.
! T ___E_!_/_f___}_, /
¥ ~ !
B /
pD'f; \\\ ]

Position vraisemblable des niveaux d’énergie correspondant aux orbitales paires.
Entre parenthéses le nombre d’occupation maximum de chaque niveau

Les électrons 4 de l'ion central seront donc impliqués dans des orbitales
liantes et antiliantes y(o, I'y) et &(=, I'y7). Si on tient compte du spin,
nous aurons quatre orbitales liantes y, et quatre-antiliantes y, de méme
que six orbitales liantes ¢, et six antiliantes ¢,. Nous avons représenté sur
la figure toutes les orbitales paires provenant des électrons p des ligandes
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et des électrons 4 ou s de 1'ion central. La position relative des niveaux
d’énergie est celle qui nous a paru vraisemblable dans le cas de I'ion Cr3+
dans le rubis [cf. MCCLURE?), p. 445 et 488].

Remarquons que les états du modéle ionique correspondent dans le
modele covalent aux configurations pour lesquelles les orbitales liantes
sont toutes occupées. Les configurations qui nous apporteront quelque
chose de nouveau seront donc celles ol subsistent des places libres dans
ces orbitales, c’est-a-dire les niveaux de transfert de charge.

A. Ions de configuration d3

Le niveau fondamental ¢/";" appartient a la configuration &} dont il est
le seul quadruplet. Ce niveau n’est lié par un élément de matrice de §°°
qu’a des niveaux /)" appartenant a une configuration ne différant de &}
que par un seul électron. Comme nous I'avons dit dans la section II, nous
ne nous intéresserons qu’aux quadruplets.

Tableau 1
Configurations pour un ion 43. Entre parenthéses, nombre de «trous»
Nombre d’¢lectrons Nombre de | Ordre de grandeur

& 7, 5 g, v, o, niveaux 4/} de I’énergie

6 4 6 3 0 0 0
6 4 6 2 ! 0 1 E(y,)— E(e,)
6 4 A1) | 4(2) 0 0 1 E(g,)— E(9)
6 3(7) 6 4(2) 0 0 1 E(e,) - E(y)
a(7) 4 6 | 4(2) 0 0 1 E(g,) — E(&)
6 4 Sy | 33) | 13 0 8 E(y,) — E(9)
6 [ 3| 6 |33 |13 | o 4 E(y,) — E(y)
(1) | 4 6 | 33) |13 | 0 8 E(yq) — E(&)
6 4 a(l) | 33 0 7(1) & E(x,) — E(9)
6 3(7) 6 3(3) 0 7(7) 2 E{ag)— E(yy)
g1 4 6 3(3) 0 7(7) 3 E(ex,) — E(g)

Nous allons établir le tableau des configurations donnant lieu a de tels
niveaux 4/ (tableau 1). Nous n'y ferons pas figurer les électrons «,, car
ils n’ont aucune part a ces configurations.

Le tableau 1 pourrait nous donner & penser que le nombre de niveaux
4], supplémentaires intervenant dans le probléme est de 33. Une analyse
plus approfondie va nous montrer qu’en réalité il n’en est rien. En effet,
la configuration &} yj 8%2y, différe de la configuration fondamentale
&} vi 8% par le passage d'un électron de la couche y, & la couche y,. Si
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on veut avoir entre deux de leurs fonctions d'onde respectives un élément
de matrice de §°°, opérateur a un électron, il faut qu’elles ne différent que
par ce seul électron; en conséquence, les trois électrons ¢, doivent étre
dans le méme état pour les deux fonctions. Il en résulte pour les repré-
sentations 4I'; 1a condition d’étre le produit 4% (e3) x I'y (¥} y,). Or, la con-
figuration y} y, ne comporte pas de représentation I’,. Aucun des quatre
états 4[7; de &f 93 8%? , n’intervient donc dans le probléme Pour la
méme raison, les niveaux 41y des configurations & y? 8%2 «, et &)y} %) o
seront également hors de jeu.

De manieére toute semblable, nous aurons pour la configuration
ey vi 8°€3 v, la relation nécessaire 4175 = 4I5(ed) x I'y(d%y,). Dans ce cas, il
existe les deux représentations 1/7,(d%y,) et 3[,(d%y,) qui y satisfont.
Nous montrerons en appendice que le premier cas conduit a des éléments
de matrice (415 | $°°| 4I',> nuls et le second & des éléments (475 | L| 4[>
nuls. Le premier des 4/ ne joue donc aucun réle, alors que le deuxiéme ne
contribue qu’au tenseur N;, de I'équation (2b), mais pas a M, et, par
conséquent, n’exerce aucune mﬂuence sur le tenseur g,,. L'examen des
configurations & v 6%2 v, et & yi 0%} «, conduit & une conclusion en
tout point semblable.

En résumé, nous aurons, dans le calcul du tenseur g, ,, intervention de
trois niveaux 4’y supplémentaires, alors que trois autres s’y adjoindront
pour contribuer au tenseur N,

Les trois configurations &/ 'yf’ 0%k, ef y? 8% &t et &y} 8%; dont le ni-
veau I'; contribue au facteur g ont ceci en commun qu’elles sont formées
de couches plus qu’a demi-pleines et qu’'on peut donc les considérer

comme des configurations formées de trous, soit respectivement de;, v, &5
et ¢, 2. Il va en résulter que, pour les trois représentations Iy correspon-
dantes, le facteur x», introduit dans1’équation (8) sera négatif, alors qu’il
est positif (x» ~ 1) pour le niveau 4y habituel, appartenant a la configu-
ration & y,.

On voit donc que la contribution 4 Ag = (g, — g) due aux niveaux de
transfert de charge est de signe opposé a celle dont on tient compte habi-
tuellement. Il en résulte, pour des taux de covalence ¢ et & fixés, une ré-
duction considérable de Ag par rapport a la valeur calculée a partir de
la théorie d’Owen.

En d’autres termes, les taux de covalence qu'il convient d’introduire
pour rendre compte du Ag expérimental seront fortement réduits par
rapport a ceux qu’exige la théorie d’Owen.

Utilisant des formules que nous établirons en appendice, nous avons
calculé les taux de covalence ¢ et x dans le cas de 'ion Cr3+ dans le rubis,
pour lequel on a?) ¢ = 1,986, soit Ag,,, = 0,4 Ag;,,, ou Ag,,, est le Ag
théorique calculé avec I'équation (6a).
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Ce calcul fait intervenir en parameétres les constantes d’interaction
spin-orbite {3, de Cr3+ et £, , de O%~, les intégrales de recouvrement des
orbitales dy et p o, et de et px, ainsi que la position des quatre niveaux
4I;. Nous avons tiré des tables Afomic emergy levels') les valeurs
{34 =275cm et {,, = 85 cm~1. Cette derniére estimation a été obtenue
par une extrapolation a partir des spectres de OI et OIII et des atomes
et ions isoélectroniques de Ne, Na, Mg et Al

Quant aux intégrales de recouvrement, nous les avons évaluées au
moyen des tables calculées par JAFFE et Doak!2)13) pour des fonctions
de Slater, ce qui nous a donné les valeurs

S (dy,po) =022 et S(de, pm) =0,16.

Nous avons d’autre part représenté sur la figure les énergies des diffé-
rentes orbitales, qui ont été estimées a:

E(y,) — E(g,) = 18.000cm—*, E(g,) — E(5) =45.000cm~1!,
E(e,) — E(y,) = 60.000 cm—', E(g,) — E(g;) = 70.000 cm—1.

Seules les deux premieres différences d’'énergie correspondent a des
transitions observées [McCLURE?), p. 488]. Négligeant la répulsion inter-
électronique, nous avons pris ces valeurs pour 'énergie des niveaux 4
correspondants.

Enfin, comme nous n’avons qu'une donnée expérimentale, Ag, pour
déterminer les parameétres o et f qui caractérisent la covalence o et =z,
nous avons, apres examen des intégrales de recouvrement et des niveaux
introduit la relation |/ (1 — a2)/(1 — %) = 1,5. Cette relation est, & vrai dire,
assez arbitraire, mais permet de fixer les idées et n’'influe guére sur les
conclusions que nous tirerons des résultats numériques.

Nous avons rassemblé dans le tableau 2 les valeurs de « et 8, des taux
de covalence T, =1 —a? et T, =1 — 2, ainsi que de P, et P,, pro-
babilités de présence sur les ligandes des électrons y, et ¢,. Ces données
ont été calculées dans quatre cas:

0: Théorie d’OWEN.

I: Présente théorie, mais en négligeant, comme 1'a fait OWEN, la con-
tribution des ligandes aux matrices de L et §°°, ainsi que le recouvre-
ment des fonctions d’onde de I'ion central avec celles des ligandes.

II: Présente théorie, en ne négligeant que le recouvrement.
III: Présente théorie, en ne négligeant ni l'une, ni l'autre.

Remarque. On a négligé dans tous les cas le recouvrement mutuel des
fonctions d’onde des ligandes.
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Comme on peut le remarquer, dans le cas II1 7 et P sont différents,
car, méme s'il n’y a pas de covalence, les fonctions d’onde sont une com-
binaison d’orbitales de l'ion central et des ligandes. Cette distinction
serait particuliérement importante si, au lieu d’ions oxygéne, on avait
des ligandes possédant un moment nucléaire, car ce serait alors P qui
interviendrait dans le calcul de la structure super-hyperfine.

Tableau 2
o ﬁ TO" Pﬂ' Tﬂ' P7T
0 0,715] 0,885 0,49 0,22
I 0,78 | 0,91 0,39 0,17
II 0,84 | 0,93 0,29 0,13
ITI 0,89 | 0,955| 0,21 | 0,30 { 0,09 | 0,17

Comme second exemple, nous avons traité de la méme maniere le cas
encore plus remarquable de l'ion Mn%* dans SrTiO,, pour lequel?)
Ag,.p = 0,19 4g,,,,. Dans ce cas, les paramétres ont été estimés a:

l34=400cm~t,  S(dy,po) =018, S(de pm)=0,10,
E(y,) — E(g,) = 24.000 cm~1,
E(e,) — E(y,) = 45.000 cm~1,

Es,) — E(8) = 30.000 cm-1,
E(e,) — E(g;) = 50.000 cm~1.

La premiere de ces différences d’énergie est connue expérimentale-
ment2) et la deuxiéme a été estimée & partir du cas de Cr®+ en comparant
avec le spectre de transfert de charge d’ions isoélectroniques de configu-
ration 4 4. En particulier, on trouve!4) le rapport 1,5 pour la fréquence
de la premiére raie des complexes 4 d® = MoCl;? et TcCl;2*),

Nous avons de plus posé¢ |/ (1 — «2)/(1 — f2) = 1,8.

Tableau 3

« g | . | P | T | P

o a m T
0 0,50 | 0,875 0,75 0,23
I 0,71 | 0,92 0,50 0,15
II 0,78 | 0,94 0,39 0,12
III 0,815| 0,945 0,10 | 0,15

0,33 I 0,38

»

*) Aprés rédaction de cet article, nous avons regu communication par M. S.
GescHwWIND!?) d'un prétirage sur la résonance magnétique et le spectre optique
de ’ion Mn?+ dans le corindon. Il résulte en particulier de ce travail que le spectre
de transfert de charge de Mn#* est situé 15000 cm~1? plus bas que celui de Cr?+ dans
le corindon également, ce qui confirme notre estimation.
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Les résultats des tableaux 2 et 3, fondés sur des données dont certaines
sont approximatives, voire hypothétiques, n’ont pas la prétention d’étre
une évaluation absolument exacte de la covalence. Néanmoins la con-
frontation des lignes O et III de 'un et I'autre tableau montre avec évi-
dence que le taux de covalence tel qu’'on 'évalue habituellement est
fortement surestimé, parfois méme de plus du double.

L’importance des niveaux de transfert de charge apparait clairement
si on examine en détail la contribution de chacun d’eux a Ag. Faisons-
le dans un cas particulier, la ligne III du tableau 3. Le cristal est cubique
et le tenseur A, , n’a qu'une composante indépendante, A.

Les valeurs précises utilisées pour le calcul sont: o« = 0,816, f = 0,947,

iy (Ey) 2xAd= 0416 4g,,,
iy (08 2xA=—0,004Ag,,,
sy, &) 2xd=—02134g,,,
iy (8,80 2xAd=—0,009A4g,,,

Ag=23"n, A*= 0,190 Ag,, .

On voit que l'intervention des trois états de transfert de charge réduit
Ag par un facteur 0,190/0,416 = 1/2,2.

S’il est relativement aisé d’évaluer la partie isotrope du tenseur Ag, il
est par contre beaucoup plus compliqué de calculer 'ordre de grandeur
de la contribution des niveaux de transfert de charge a ’anisotropie de g,
ainsi qu’a la constante D de I'hamiltonien de spin. Il n’est, en effet, guére
possible de connaitre expérimentalement la séparation des niveaux pairs
de transfert de charge due a la symétrie axiale et une évaluation théo-
rique nous parait, pour l'instant, assez hasardeuse. C’est pourquoi nous
laisserons de c6té cet aspect du probléme.

B. Ions de configuration d®

Le niveau fondamental 8/'; appartient & la configuration 9} et il ne
peut étre lié par l'interaction spin-orbite §°° qu’a des niveaux /'y dont
la configuration ne différe de y5 que par un électron. Ne nous intéressant
qu’aux triplets 3/, nous allons établir le tableau des configurations dont
ils peuvent provenir. Les électrons «, et y, n'y figurent pas, car ils n'y
jouent aucun réle.

Des considérations analogues a celles que nous avons faites dans le cas
d’un ion 4% impliquent que les niveaux 3y des configurations &} 6° & y; «,
et & 6%l y2 o, n'interviennent pas dans le probléme. Quant aux trois
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représentations 31’5 de & 6° &% 2 «,, aucune n’a d’influence sur le tenseur
M, ,, donc sur g;, et une seule contribue 4 N,,.

Nous aurons donc trois niveaux /7 jouant un réle dans’établissement
du facteur g, tous trois appartenant & des configurations pouvant étre
considérées comme formées de trous: v, &, 7, 0 et v, ¢,. Seul le premier
est pris en considération dans la théorie habituelle.

Tableau 4
Configurations pour un ion d® Entre parenthéses, nombre des «trous»
Nombre d’électrons Nombre de | Ordre de grandeur

& S &, Va %, niveaux 3[7 de I’énergie

6 6 6 2(2) 0

6 | 6 |5 | 30 | o 1 E(y,) ~ E(g,)

6 5(7) 6 3(7) 0 1 E(y,) — E(9)
sy 6 | 6 | 30| 0 1 E(y,) - E(g)

6 6 S5( | 2@ | 1() 2 E(o,) — E(g,)

6 5(7) 6 22) | 1) 3 E(x,) — E(9)
a(7) 6 6 212 | 1(7) 2 E(e,)— E(¢)

Contrairement au cas 43, les contributions des deux niveaux supplé-
mentaires au tenseur g présentent un facteur », de méme signe (négatif)
que celul dont on tient compte habituellement, ce qui tend & augmenter
I'écart Ag = g — g,. On peut donc s’attendre, ici, & ce que l'introduction
des niveaux de transfert de charge augmente la covalence évaluée a
partir de la valeur expérimentale de Ag. C’est bien ce qui se passe, mais,
comme le montre le tableau 5, cette contribution est si faible qu’elle est
plus que compensée par la participation des ligandes aux matrices de L
et §°° et par I'intervention du recouvrement des fonctions d’onde.

Tableau 5
B g |1, | P | T, | P
o | 089 | 0,975 0,21 0.05
T | 088500975 0,22 0,05
L 11 | 0,005 | 0,08 0,18 0,04
IIL | 0915 | 0,98 | 0,16 | 0,21 | 004 0,06

Nous avons pris comme exemple numérique le cas de l'ion Ni?+ dans
MgO. Les mesures tant magnétiques qu’optiques effectuées par Low5)
donnent le rapport Ag,,, = 0,75 Ag,,,.
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Les paramétres nécessaires a une comparaison avec la théorie ont été
estimés a:

(3,=0645cm=1, S (dy, po)=0,085, S (de, pn)=0,042,
E(y,) — E(e,) = 9600 cm™1,
E(y,) — E(6) = 50.000cm—1,
E(y,) — E(e,) = 70.000 cm~1.

Nous avons encore posé V(‘l—‘cxW(T—“ﬂzT = 2.

Alors que E(y, — E(e,) est connu expérimentalement??), les deux
autres différences d’énergie ont été estimées, faute d’éléments solides,
d’une maniére toute intuitive. Cela n’a néanmoins que peu d'importance,
car une variation du simple au double de ces derniers parametres n'in-
fluerait que d’environ 19, sur Ag.

Nous avons fait figurer les résultats de notre calcul dans le tableau 5
selon la méme disposition que pour les cas précédents.

La comparaison entre les lignes 0 et III du tableau 5 nous indique
qu’ici aussi le taux de covalence est surestimé, mais seulement d’environ
209;.

IV. Conclusions

Les évaluations numériques dont nous avons donné les résultats dans
les pages qui précedent montrent avec évidence qu’on peut étre conduit
a une estimation manifestement exagérée du taux de covalence si on
tient compte de celle-ci selon un modéle trop simplifié, par exemple en
se contentant d’un facteur de réduction orbitale. Il nous est apparu qu’il
convenait de ne pas négliger le role de la partie de la fonction d’onde
attachée aux ligandes, ni celui des intégrales de recouvrement. Cependant,
dansle cas desions de configuration 3 d%, une erreur encore plusimportante
s’introduit si on néglige les états de transfert de charge.

Il est intéressant de remarquer que, si les corrections que nous avons
introduites sont essentielles pour 1'évaluation de la covalence, celles qui
interviennent dans le travail déja cité?) de SUGANO et PETER jouent un
role tout aussi important sur ’anisotropie du tenseur g et sur le parameétre
D du champ cristallin. Aussi est-il permis de penser qu'un accord encore
plus serré entre théorie et expérience résulterait d'une analyse ol seraient
combinées les deux méthodes.

L’effet considérable de la covalence, et de la maniére dont on en tient
compte, sur le facteur g des ions 3 d® et, a un degré moindre, sur celui des
ions 3 d® nous permet d’inférer qu’il convient d’étre trés prudent lorsqu’on
évalue la covalence d'un complexe paramagnétique a partir du facteur g
de sa résonance électronique. C’est pourquoi il est certainement d'un
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égal intérét d’appliquer les méthodes que nous venons d’exposer aux
ions des autres configurations 3 d". Pour notre part, nous avons d’ores
et déja entrepris une telle étude sur la configuration 3 4°.

Nous tenons a exprimer nos remerciements au Prof. M. PETER, au Dr
C. K. JOrRGENSEN et au Dr K. A. MULLER, qui nous ont communiqué
leurs travaux avant publication et avec qui nous avons eu d’utiles dis-
cussions.

Cette étude a été réalisée dans le cadre d’une recherche appuyée par le
Fonds national suisse de la recherche scientifique, que nous remercions ici.

Appendice
A. Fonctions d’onde

Nous allons, dans cet appendice, indiquer les méthodes utilisées dans
les calculs numériques dont les résultats précédent.

Il convient tout d’abord d’établir la forme des fonctions d’onde dont
nous aurons besoin. Nous employerons des combinaisons linéaires d’orbi-
tales atomiques (méthode LCAO). En particulier, les combinaisons des
orbitales p des ligandes présentant les propriétés de symétrie requises
pour servir de bases aux représentations I}, Iy (orbitales o) et I/,
I’ (orbitales 7) sont les suivantes:

I |p01>:VL6{_|px1>+|px4>—&1)y2>+|1>y5>
—[p23)+ [p26)},
ry: ]pau>=§%{{—2|pz3>+2|pz6>+]z’wl>

—|px 4>+ [py 2> — [Py 5>},
povy = {—|paly+|pxd>+ [py2> — |py 5},
rpr pazy = {py D —py 4 —pa2 +|pa5},
[payy =S {pa3>—|px6)— |pzly+ |24},
[paxy =5 {pz2y—|p25y—[py3> + |py6)},
I pmay = {py 1y — [py 4+ [pa2>—[pa5)},
[paby =5 {|px3y—|px6)+ |pzly—|pz4)},
[pacy = {|p22>— |p25>+|py3y— |py6))
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ou nous avons noté |« et |v) les fonctions qui se transforment comme
1/)/3 (322 — 7)) et (x2 — 4?). Les états |x), |y> et |z> se transforment
comme les variables correspondantes, alors que les états |a), |b) et
| ¢ se transforment respectivement comme x y, z x et y z. Les notations
pour les états p des ligandes sont celles utilisées par STEVENSI®). Le
nombre en troisieme place indique la position du ligande, qui a pour
coordonnées le vecteur a'”.

a® = (a,0,0), a® = (0, a, 0), a® = (0,0, a),

a® = (—a,0,0), a®=(0,—a,0, a®=(0,0,—a).

Passons maintenant aux combinaisons liantes et antiliantes des fonc-
tions d’onde de l'ion central avec celles des ligandes.

1. Sans recouvrement.

Nous n’écrirons qu’une fonction d’onde par représentation.
Voo |uy =a|duy —)1—a |pouy,
Y, |u'>='/71ﬂ7—7&g|du>+a|pau>,
e |ay =plday —)1—p |pma),
g |ay=)1—p2|day + B |pmay.

2. Avec recouvrement.

Nous notons 2, = 2 S (dy, po) et 2, = 2 S (de, pm), les intégrales de
recouvrement de groupe.

Avant de faire intervenir la covalence, il faut orthonormaliser nos fonc-
tions de départ. Nous aurons pour la représentation [ :

o) = & |duy + 7 |pouy,
|ugy = m [duy + & |pou)
ol
1 1 1 1 1
== e T e t —= = W e B e e .

F=3 (1/1—2(, - V1+2(,) == 2 2 (Vl—Ea 1/1+2.},)

Les fonctions de [}" sont de la méme forme, en remplacant 2 par 2 .
| a0y = & |day + o' |pmay,
|agy =% |day + & |pma).



Vol. 35, 1962 Covalence et résonance paramagnétique 609

En présence de covalence, les combinaisons adéquates seront alors:

Vol |ud :oc|u0>—]/_1‘_—?!u{,>, &l | ay :ﬁ|a0>—i/71"—jﬁ‘3'|a(’,>,

B. Eléments de matrice entre états atomiques

Le calcul de la partie isotrope du tenseur g;, ne fait intervenir que 'ap-
proximation cubique de 'environnement cristallin. A cette approxima-
tion, le tenseur A,;, est sphérique et ne posséde qu'une composante in-
dépendante, A = A,;,. Il nous suffit donc de calculer 4, . Les seuls opé-
rateurs a un électron dont les éléments de matrice nous intéressent sont
alors 7, et u,.

Nous donnons ci-dessous quelques exemples de I'action des opérateurs
[, et u, sur les fonctions atomiques.

I |dby =i |dey, I, |dvy=24i]|da).

Si on fait agir /, sur les états des ligandes, il faut tenir compte du dé-
placement de 1'origine des fonctions d’onde [cf. STEVENS16)]. Si on agit
sur le »*" ligande, on a:

I=(rxp)=(r" x p) + (@ x p) =1" + (a” x p)

ou 7 est le rayon vecteur A partir du noyau du ligande.

L1px3y=1|py3),

Lipx1y =0 |pxly+ap,|pxly=ilpylytap,|[pxl),

L pxdy=I1|pxdy—ap, |pxd)=1i|pyvd>—ap,|px4).

Quant aux éléments de matrice mixtes, ils sont de la forme:
(db|l|p22y=—<pz2|l|dby=—i{pz2]|dc)y=—15(depn),
(v |L|pyly=—Cpyl|l,|dvy=—2i(pyl|day=—24S (e pm),
<dallzlpx1>:—<;bx1]lzfda>%2i<px1]dv>= — 21 S (dy, po).

Les éléments de u, peuvent étre approximés de la fagon suivante:

u=CgradUx p)=C {(grad Uy x p) + ) (grad U, x p)}

= E&(r) (r x p) + Y] &™) (¥ x p)

39 H. P. A. 35, 7/8 (1962)
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ot on considére le potentiel électrostatique comme la superposition de
potentiels sphériques dus a l'ion central (U,) et aux ligandes (U,).

u, = E0) L+ X ) 1.

Les fonctions &(r) sont approximativement proportionnelles a 1/#% et
ne sont ainsi importantes qu’au voisinage de l'origine, ce qui fait que les
intégrales a deux centres ou elles interviennent sont négligeables. Prati-
quement, il n'y aura donc pas de matrice mixte pour u,.

Quant aux autres éléments, nous aurons, par exemple, pour un ion 3 d*
entouré de ligandes 2 8.

| {de |uy| dby = (de |£(r) L, | dby = Eyg<de | 1| dby =1 Lqy,
pyllu|pxly=Cpy1|&ED) IV pxly =00, py|l|px)=1Cs,

ol {3, et {, , sont respectivement les constantes d’interaction spin-orbite
pour un électron 3 d de I'ion central et pour un électron 2 $ des ligandes.

C. Eléments de matrice entre états d’un électron

Ici encore, nous donnerons seulement quelques exemples des éléments
de matrice intervenant dans le calcul de I’hamiltonien de spin.

1. Sans recouvrement.
(all|vy =1 (Zoc f— Vvl——‘o?z— ]/li_ﬁ) ,
a qul vy :i(ZmﬁCSd—Vl — o? ]/1 = 2 CZp) )

allL|vy =i(2p)1—w+a)1—p),

{a |“z|U’>:i(zﬁl/iioﬁzéad+a]/ii?§zp),
||y =5 8Y1-f,

<C‘%z|b’> :iﬁ]/]_‘;4ﬁE (ng“%‘gzp):

elllyy == ;Y1-8,

lu|yy=—LY1—F s,
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2. Avec recouvrement.

Posons:
4 =288 —npy+22 98 +22. &,
B =2qny —E& +2Z 9 +22, 98,
C =28y —qn& +2Z nof +2Z,E&,
D =2qnf —&y +2X 8 +25, 97,
A'=2&¢ —Rqy,
B =2nn'—REE,
C'=2&w —Rné&,

‘ D'=29& —RE&y

ou

ol

On aura alors:
a|l.| v
—i[Aap+ Bl -2 1 - —Ca)l—p —DBJ1—w?],
(alu,|v) _
i [Aapr B I— TIofF - Ca)i—p - DBYI— ]

la |l | v
=i[Dap—CYl—a2 )l -2 -~ Ba)f1— 2 + 4)1—a2],
<d \%zlv’>

Clilvy =5 [8Y1—8 & =0 +& ],

Cofu| by =ily, [BY1—p € —n?) (1— 7 R) — &5 (1+5 R)],

2

Clllyy =5 (Bn—y1-p &),

7

Celuyyy =" (Bn Y1 =B &) Cs,.
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D. Eléments de matrice de L, et U, pour un ion 3 d®

Les éléments de matrice de L, et U, étant indépendants du nombre
quantique M, nous les calculerons entre des états de M maximum, soit
M = 3/2. De plus, pour chaque représentation */’5 nous n’écrirons que
I'état se transformant comme x y, car c’est le seul qui intervient dans le
calcul de 4, ..

Les fonctions sont des produits antisymétrisés de fonctions a un élec-
tron. Les symboles pour un électron représentent un éelectron ou un trou
suivant que la configuration est formée des uns ou des autres.

Configuration &2 ou &

1r,: |0y =|abéy état fondamental.
Configuration &2 vy,

ry: |AD=|bco).
Configuration & y,

ity dp =050y,

Configuration & ¢,

s Ay =—{lab¥y—|cacd}.

Configuration &2 &

e | A =—-{

L,

A1>:<&5E‘Zzi;

0|U,S.

ApD :<E§bE iZuizsiZI
3 1 + +
27<0 |Uz' A1>: ”2_<a \le 'U>,

O|U,| 4y) = < |u,| v,
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COL [ 4oy =<all |0,
1 .
<O|U3|A2> = 3 <€l, M’tzlv>'

Le signe (—), a la derniére ligne, provient de ce qu’on a affaire a une
configuration formée de trous.

O] L.

1 y '
A3>: I/Z[<C|lz|b>_<bllzlc>]:

T A5y == e w0y = Bl )],
O Lo 4 == Ke|Llyd + L] 4],
01U, | gy = = — e || 9" + b || 2]

3y2

E. Contributions a I’ hamiltonien de spin

Il nous est maintenant loisible de calculer les constantes x, et A%, = A%
qui contribuent au facteur g.

g=g,—2) n, A%,

1. Sans recouvrement.

1 A
%1/1 B 7E1"‘ Eoﬁ
X (20([3—RVli—QaéiVI;ﬁ)(20”3__]/1_0{2']/1_52)’
- A
R Y
x (281 —o® + Ra}/1— %) (28)1— e +a}1—p2),

%3/13:_ﬁaf_Edn(l__?)ﬁZ(l_ﬁa,

%4/14:—

R ;
g wi-A

ou R = {,,/(3, et ou 4, constante d’interaction spin-orbite pour le niveau
fondamental 4F, vaut 4 = (1/3) ;.
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2. Avec recouvrement.

#y A1 = _Elfjljo
x (A af+BYl-w2)1—p2—Ca)f1—p - DBY1—a2)
x(Aaf+BY1l—a 1 - Ca)1—-p - D)1 —0a2),
wdt= -l

x(Daf—CY1-w2)1 - Bafl—p+ 4 B)1—a?)
x (Dafp—CY1—w2 1 -2 —Ba)1 -+ 481 —w),

A

e (TR oo B (1)
< [BY1— €=+ & ], '
PR

A T \2
”4/14:_'15';;}5;) 2 (L‘/l—ﬁzf —)877) .

F. Etats de 3d3 ne contribuant pas a g;,.

Nous traiterons comme exemple une seule des trois configurations qui
contribuent 4 N;,, mais pas & M,,, la configuration &2 y3 6.
Configuration fondamentale &2y}

Uy: |0y=|dbtubuvy.

Configuration &2 93 &
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O || dgy = o [= L]y = < | 1] ),
1

V

Les contributions de | 4,> a M, , et a N, ,, respectivement proportion-
nelles & (0|L.| A5y (45| U.|0> et & (O]U.| 45> <Ay|U.| 0> sont

toutes deux nulles.

<O‘U2|A5>::—'3 2[<ﬂ|%z|2’>_<@2‘%zlz’>]:0

O L, | Agy = — [— it |1, 2> + <ot |1,

/30

A — — T/;_O i |u, | 25 + o |m, | 23]

#5]=0,

©|u.

La contribution a M.

. »» contenant (0 |L,| A¢)>, est nulle, alors que
celle & N, , ne 'est pas.

G. Contributions a I’ hamilionien de spin pour un ion 3 d8

Configuration 2
y: |0y =|ud).
Contiguration y, ¢,
iy Ay =|ua).
Configuration y, ¢,
UE: Ay =|ua’d.

Configuration y, 6
e | Agy= |DES.

1. Sans recouvrement.

= — L

<(2ap— RYT=a 1= ) (2np— = )T 7).
O

x (2af1— g+ RBY1—a2) (2a)1— 2 + Y1 —a2),
sy A9 — __Eszog‘?(luaz),



616 R. Lacroix et G. Emch H. P. A.

2. Avec recouvrement.

A= — 5 f]
x(4'ap+ BY1-a)i—p—Ca)fi-p-Dp)1-w)
x(Aap+ Byl —a? J1— B —Ca)l—p2 — DBY1—a),
sy A2 — — f:zfz
x (Cap—DY1—a?)f1— g+ A a)1—f2— B B)1—a2)
x(Cafp—DY1—a2)i -2 +Aa)i — - BEY1-),
2y A3 = — "EZ'%‘E;" Br=we—ay).

Le calcul amenant a ces résultats est en tout point semblable & celui
développé dans le cas de la configuration 343.
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