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Covalence et résonance paramagnétique

par R. Lacroix et G. Emch
(Institut de Physique théorique, Université de Genève)

(25. IV. 62)

Résumé. La théorie de l'hamiltonien de spin est généralisée de façon à permettre
d'y introduire les états de transfert de charge. Le résultat de cette introduction est
évalué numériquement dans le cas des ions de configuration 3 dA (Cr3 +, Mn4 +) et
3d* (Ni2+).

On montre que, dans le cas des ions Cr3+ etMn4+, le taux de covalence évalué
à partir des résultats de la résonance paramagnétique peut être surestimé d'un
facteur susceptible d'atteindre deux si on néglige le rôle des niveaux de transfert
de charge. Si on tient compte des intégrales de recouvrement, l'effet est encore
plus marqué.

Dans le cas de l'ion Ni2+, les niveaux de transfert de charge jouent un rôle
complètement négligeable.

Summary. The spin hamiltonian theory is generalized so as to allow to introduce
into it the charge transfer states. The contribution of these additional terms is

numerically estimated in the case of ions of 3 dz (Cr3 +, Mn4 +) and 3 d% (Ni2 +)

configurations.

In the case of the Cr3 + and Mn4 + ions, it is shown that, by neglecting the
influence of the charge transfer levels, the degree of covalency calculated from the
results of the paramagnetic resonance may be overestimated by a factor as high
as two. If one takes account of the overlap integrals, this effect is still more marked.

On the contrary, the charge transfer states contribute a completely negligible
part in the case of the Ni2+ ion.

I. Généralités

La résonance magnétique électronique d'un ion paramagnétique placé
dans un édifice cristallin est généralement décrite par un hamiltonien
fictif, appelé «hamiltonien de spin».

C'est cet hamiltonien que nous allons examiner dans le cas d'ions du

groupe du fer dont le niveau fondamental est en symétrie cubique un
singulet orbital (représentation F3). Plus particulièrement, nous considérerons

des ions de configuration d% ou dA au centre d'un octaèdre de li-
gandes.
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Appliquant à l'ion déjà placé dans le champ électrique cristallin la
partie de l'hamiltonien réel faisant intervenir le spin :

$> ßB-(LA-geS)A-XL.S (la)

on obtient au deuxième ordre de perturbation l'hamiltonien de spin

è ßZBi (ëeàik-2X Aik) Sk - X22JSt A, k Sk (2a)
i, k i, k

soit

^>=E(ßSikBiSkA-DikSiSk) (3)
i,h

où les indices i et k parcourent séparément x, y et z.
Le tenseur Aik est de la forme:

n n 0

où | 0> désigne l'état fondamental et où la sommation s'étend à tous
les états excités | n'y appartenant en symétrie cubique à un niveau 4F5.

De fait, il ne peut intervenir qu'un seul niveau de ce type.
Il résulte de cette théorie une relation de proportionnalité entre les

tenseurs Dik= - X2Aiketgik- geôik= - 2XAik, qui prend une forme
particulièrement frappante dans le cas où la symétrie cristalline est
axiale. Dans ce cas, on a:

$> ß fe|| X 5Z + g± (Bx Sx A- By S,)] A- DS2, (5)

gìì=ge-2XAv gL=ge-2XAL, D - X2 (^ - A±) (6a)

d'où il résulte la relation suivante entre le paramètre D, qui détermine
la séparation des niveaux en champ magnétique nul, et l'anisotropie du
facteur spectroscopique g.

2D X (g,, - g±) (7a)

Ce modèle, purement électrostatique, ignore les liaisons partiellement
covalentes qui existent entre l'ion paramagnétique et les ions voisins.
Owen1) a pallié à cette lacune en tenant compte des liaisons a par la
méthode des orbitales moléculaires. Il a introduit les fonctions d'onde à

un électron :

<>l «-(Pio-\'1 o2ipi

où cp j 0 est la fonction d'onde en absence de covalence et xpi la combinaison
des orbitales a des ligandes possédant les mêmes propriétés de symétrie
que cp{ 0. (1 — a2) est appelé le taux de covalence a.

38 H. P. A. 35, 7/8 (1962)
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Cette modification de la théorie conduit à remplacer le tenseur At k par
x2Aik. Si on tient également compte dans ce modèle de la covalence tc

avec un taux de covalence (1 — ß2), Aik devient cAß2 Aik. De toutes
manières, il est aisé de voir que dans l'un et l'autre cas la relation (7 a) est
conservée.

Comparons maintenant les résultats de cette théorie avec les faits
expérimentaux. Cette confrontation nous conduit aux conclusions
suivantes :

a) L'équation (3) ou (5) est en général vérifiée à la précision des

mesures.

b) g — ge est beaucoup plus petit que la valeur calculée à partir du
modèle ionique. Cette réduction peut être telle que même la théorie
d'Owen ne saurait en rendre compte avec une valeur raisonnable de la
covalence. Par exemple, on a un facteur de réduction de 0,19 pour l'ion
Mn4+ (configuration dB) dans SrTi032).

c) En général, la relation (7a) n'est pas vérifiée, (gy — g±) étant plus
faible que ne le laisserait prévoir la valeur mesurée de D.

d) Il peut même arriver que D ait le signe contraire de celui prédit
par (6 a).

En présence de ces désaccords, il serait intéressant de généraliser
l'hamiltonien précédent, tout en lui conservant la forme (3). Pour cela, il est
nécessaire de faire intervenir d'autres niveaux excités que ceux qui
apparaissent dans le calcul ci-dessus.

Si on s'en tient au modèle ionique, même tempéré de covalence, les

seuls niveaux supplémentaires entrant en ligne de compte ont une multiplicité

de spin différente de celle de l'état fondamental. D'après le
calcul de Bleaney et O'Brien3), leur contribution est insuffisante pour
expliquer le désaccord. Cependant un travail très fouillé de Sugano et
Peter4) sur le cas du chrome dans le rubis montre que l'intervention de

ces niveaux, conduisant, pour le paramètre D, à la valeur — 0,12 cm-1
au lieu de + 0,05 cm-1, comble une notable partie de l'écart entre
l'évaluation théorique et la valeur expérimentale D — 0,19 cm-1. D'autre
part, cette théorie donne le bon signe pour (g,, — g±), ce qui ne serait pas
le cas avec les équations (6 a) ; par contre, elle nécessite le même taux de
covalence étonnamment élevé que la théorie d'OwEN.

Le problème se présenterait tout autrement si certain des niveaux
excités possédaient la même multiplicité de spin que le niveau fondamental.

Or, nous montrerons dans la section III que de tels niveaux
apparaissent effectivement si l'on tient compte de toutes les possibilités dont
est riche le modèle covalent.

Supposant dès l'abord l'existence de ces niveaux supplémentaires,
nous nous donnerons comme premier objectif la construction de Thamil-
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tonien de spin ainsi généralisé, en nous limitant aux contributions diagonales

dans le spin, les seules qui interviennent à notre ordre d'approximation.

II. Généralisation de l'hamiltonien fictif
Les états qui apparaissent dans une théorie covalente ne pouvant pas

être reliés, comme dans le modèle ionique, à des états de l'ion central de

symétrie sphérique, il convient d'examiner la forme de la contribution de
l'interaction spin-orbite à l'hamiltonien pour un système dont la symétrie
est celle d'un groupe ponctuel.

L'hamiltonien d'interaction spin-orbite h pour un électron étant, à un
facteur près, égal à * • (grad U x p)5), il peut s'écrire h= u • s, où u est
un opérateur qui agit sur la partie spatiale de la fonction d'onde et se

transforme comme un vecteur axial.
De là nous construisons l'hamiltonien d'interaction spin-orbite §>s " pour

l'ensemble des électrons. On aura §s ° 2J k{i), la sommation étant étendue

à tous les électrons, avec *

hd) „W sd) 2J uf sf 27 hf (r x, y, z).
r r

§s ° pourra de même s'écrire

r r \ i /

Ayant pour objet de traiter le cas d'un ion dont l'environnement
présente une symétrie assez peu éloignée de la symétrie cubique, nous
considérerons tout d'abord un système de symétrie cubique (groupe Oh). Le
mode de transformation de §s ° relativement à sa partie spatiale étant
celui de A, donc celui de u, ses trois parties §>SA se transforment alors
comme les composantes d'une représentation .T+. Il en résulte entre
autres la règle de sélection suivante: <F^ \§>so\a) 0, à moins que
| «> n'appartienne à une représentation ri~.

Comme nous avons l'intention de ne conduire notre calcul de perturbation

que jusqu'au deuxième ordre et qu'il porte sur l'état fondamental
r%, seuls interviendront des états F£.

Considérons donc une représentation F5 et choisissons ses états de

base, que nous noterons 11>, 12> et | 3>, de manière à ce qu'ils ne puissent

être liés à l'état fondamental F2 que par §>%", §>y° et %>sz°

respectivement. Comme nous choisissons évidemment les axes x y z de manière
à ce qu'ils coïncident avec les axes de la symétrie vraie du système
(plus basse que la symétrie cubique), les états 11>, 12> et 130 seront
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automatiquement états de base pour des représentations du groupe de

cette symétrie.
Tenant maintenant compte du spin, nous allons exprimer les éléments

de matrice de l'opérateur §s ° entre les états | F2 5 M} du niveau
fondamental et les états | a F5 n S MA d'une représentation FB de même
multiplicité et qu'on distingue d'autres F6 par l'indice a. L'indice n, prenant
les valeurs 1, 2 ou 3, désigne les trois fonctions spatiales précisées ci-
dessus.

Ecrivons tout d'abord l'élément de matrice correspondant de l'opérateur

uf sf.

(r2SM \ufsf\<x.r5nSM'y

2J(F2SM\ uf | a' rB n S Af><a' F6 n S M \ sf \ et. rh n S M'>
a'

où la sommation en A porte sur les états F5 de même configuration.
Nous traitons alors les éléments de matrice de s(l) selon la méthode

développée par Condon et Shortley6) (op. cit. §93) en posant:

r *('"> et J S=Zs{k)
h

On a alors (éq. 93 11), en tenant compte de ce que sM commute avec
les opérateurs du groupe cubique agissant sur les coordonnées spatiales :

(A rònSM \sf\«.rsnSM')= (a' r5Sjs»i <xF5S) <S M \Sr\ S MA

où (a' r& S i s'*' | aF5 S) est diagonal en F,- et indépendant de n, donc
invariant aux opérations du groupe cubique.

D'autre part, comme uw commute avec S, ses éléments de matrice
sont indépendants de M.

<[r2SM\ uf | A rb n S M> <F2 5 | uf | a' I\ n S>

d'où

Z <F2 S M | uf sf | a r5 w S M'>
i

ZZ<r* S I ur] I a' A« S> (*' A 5 I s<!)
i « F5 S) <S M j S, j 5 M'>

i a.'

Posons alors:

<F25 |LTr|aF5«S>

ZZ<r* S I uf \«'Fsn S> («' r5 5 | sW a A S).



Vol. 35, 1962 Covalence et résonance paramagnétique 597

Les facteurs (a' F5 S I s(,) j a F5 S) étant invariants aux opérations du

groupe cubique, <F2 S | Ur | a F5 n 5> est somme d'éléments se transformant

tous de la même manière, c'est-à-dire comme l'élément de matrice
de la composante r d'un vecteur axial, et il se transforme donc ainsi lui-
même.

Nous aurons en conséquence:

(rzS M \%s° \«. rbn S M'y Z <rzs \Ur\a.r5nSy{SM\Sr\ S MA
r

(r2SM\V-S\a.r5nSM'y-

Remarquons que la démonstration précédente n'est pas limitée au cas

particulier dans lequel nous l'avons établie. Fondée sur des propriétés de

commutation valables pour tous les groupes ponctuels, elle nous montre
que dans la quantification |<xFwSM>, la partie diagonale dans le spin
de l'interaction spin-orbite peut s'écrire

$>so US.

Il nous est encore possible de donner aux éléments de matrice de §s °

une forme plus particulière et mieux adaptée à notre propos. U et le
moment cinétique orbital L ayant le même caractère tensoriel,
puisqu'ils sont tous deux vecteurs axiaux, il est possible d'appliquer la théorie
de Koster7) à leurs éléments de matrice correspondants. Cette théorie,
généralisation du théorème de Wigner-Eckart, montre que les
matrices de deux opérateurs qui se transforment selon la même représentation

d'un groupe peuvent être développées en une somme de matrices
qui ne diffèrent que par un facteur numérique. Dans le cas présent, cette
somme se réduit à un seul terme, comme nous le montrent les tables
calculées par Koster et Statz8) pour un opérateur se transformant
comme un vecteur axial. En conséquence, les matrices de U et L entre
les représentations F2 et F5 sont proportionnelles.

<r2 S | Ur | a rb n S> xa <F2 S | Lr | a F5 n S>

où la constante de proportionnalité xa dépend évidemment de a, c'est-à-
dire est différente suivant celle des représentations F*5 qui est prise en
considération.

Les éléments de matrice de l'interaction spin-orbite seront alors de

la forme:

<F2 S M 1 §so | a F5 n S M'y xa <F2 S M \L ¦ S | a F5 n S M'y (8)
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Il ne nous reste plus qu'à répéter les opérations développées dans la
section I en utilisant l'hamiltonien:

$ /?*.(L + g.S) + S". (lb)

Le calcul de perturbation mené jusqu'au deuxième ordre nous donne,
en tenant compte de la relation (8), l'hamiltonien de spin:

^> ßZBi(eeaik-2Mik)Sk-ZSiNlkSk (2b)
i k i k

Mik=Z*«At^ Nik=Z*lA** (4b)
a a

.a y, <F2S | L( | a F5 n S) <a F5 « S | Lk | F2 S>
'* r *«»-£„

L'hamiltonien de spin retrouve donc bien la forme (3), mais sans que
subsiste la relation de proportionnalité entre

ou on a

avec

Dik=-Nik et gik-geöik -2Mii k '

Si on considère maintenant le cas particulier d'une symétrie axiale,
l'hamiltonien de spin reprend évidemment la forme (5), mais avec les

relations particulières :

ë\l=ëe-2Z^AV g±=ëe~2Z*«Al>
a a

d -Z<(ai-aD-
(6b)

On voit immédiatement que les termes supplémentaires qui distinguent
(6 b) de (6 a) pourront modifier sensiblement les résultats, d'autant plus
que, comme il apparaîtra plus loin, certains des xa peuvent parfois être
négatifs.

Pour l'instant, il nous reste d'abord à établir qu'il existe effectivement
dans le modèle covalent plusieurs niveaux F6 de multiplicité maximum
et qu'ils ont des xa différents.

III. Les états du modèle covalent

Comme nous l'avons dit au début, nous considérons un ion de configuration

d3 ou d8 placé au centre d'un octaèdre de ligandes. La symétrie est
alors celle du groupe cubique holoédrique 0h.
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Les cinq fonctions d'ondes d de l'ion se subdivisent pour cette symétrie
en trois fonctions de qui sous-tendent une représentation F+ et deux
fonctions dy correspondant à une représentation F^.

Quant aux ligandes, dont nous ne ferons intervenir que les orbitales p
de la dernière couche électronique, nous pouvons également en regrouper
les orbitales pa et pn en fonctions formant base de représentations de

OA):

ZP a r+ + r+ a- rr Zï7l=r*+ + r*+ + X~ + X •

Nous aurons ainsi la possibilité de combinaisons invariantes à 0h
formant des liaisons a entre les orbitales dy et la représentation F^~ issue
des orbitales pa; de même des liaisons ti peuvent s'établir grâce aux
électrons de et à la représentation F^ construite à partir des orbitales p ti.

aj2l

Usa.

7Jfi

I S e«(6)
-X Ml

prrr:

yi ;/i /

par;
pnr;

-x
~~~~--_

S (6) /if

X

7A»

î 'f
f I
I fl

e,(6)

par;

v a/12)

Position vraisemblable des niveaux d'énergie correspondant aux orbitales paires.
Entre parenthèses le nombre d'occupation maximum de chaque niveau

Les électrons d de l'ion central seront donc impliqués dans des orbitales
liantes et antiliantes y(a,T£) et e(n,r£). Si on tient compte du spin,
nous aurons quatre orbitales liantes yl et quatre antiliantes ya de même

que six orbitales liantes et et six antiliantes ea. Nous avons représenté sur
la figure toutes les orbitales paires provenant des électrons p des ligandes
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et des électrons d ou s de l'ion central. La position relative des niveaux
d'énergie est celle qui nous a paru vraisemblable dans le cas de l'ion Cr3 +

dans le rubis [cf. McClure9), p. 445 et 488].
Remarquons que les états du modèle ionique correspondent dans le

modèle covalent aux configurations pour lesquelles les orbitales liantes
sont toutes occupées. Les configurations qui nous apporteront quelque
chose de nouveau seront donc celles où subsistent des places libres dans
ces orbitales, c'est-à-dire les niveaux de transfert de charge.

A. Ions de configuration d3

Le niveau fondamental 4F.+ appartient à la configuration e3 dont il est
le seul quadruplet. Ce niveau n'est lié par un élément de matrice de§so
qu'à des niveaux 7^+ appartenant à une configuration ne différant de e3

que par un seul électron. Comme nous l'avons dit dans la section II, nous
ne nous intéresserons qu'aux quadruplets.

Tableau 1

Configurations pour un ion d3. Entre parenthèses, nombre de «trous»

Nombre d'électrons Nombre de
niveaux 4F5

Ordre de grandeur
de l'énergieH Vi Ò £a Va aa

6 A 6 3 0 0 0

6 A 6 2 1 0 1 E(ya)-EK)
6 A 5(1) 4(2) 0 0 1 E(ea)-E(ô)
6 3(1) 6 4(2) 0 0 1 E(ea)-E(Vl)

5(1) A 6 4(2) 0 0 1 E(ea)-E(ei)
6 A 5(1) 3(3) 1(3) 0 8 E(ya)-E(ô)
6 3(1) 6 3(3) 1(3) 0 4 E(ya)-E(yl)

5(1) A 6 3(3) 1(3) 0 8 E(ya)-E(sl)
6 A 5(1) 3(3) 0 1(1) 5 EK)-E(Ô)
6 3(1) 6 3(3) 0 1(1) 2 E{cca) - E(yt)

5(1) A 6 3(3) 0 1(1) 3 EK)-E{A

Nous allons établir le tableau des configurations donnant lieu à de tels
niveaux 4F^" (tableau 1). Nous n'y ferons pas figurer les électrons oc,, car
ils n'ont aucune part à ces configurations.

Le tableau 1 pourrait nous donner à penser que le nombre de niveaux
4F5 supplémentaires intervenant dans le problème est de 33. Une analyse
plus approfondie va nous montrer qu'en réalité il n'en est rien. En effet,
la configuration sf y] <56s3 ya diffère de la configuration fondamentale
el yt ô6el par le passage d'un électron de la couche yt à la couche ya. Si
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on veut avoir entre deux de leurs fonctions d'onde respectives un élément
de matrice de §s °, opérateur à un électron, il faut qu'elles ne diffèrent que
par ce seul électron; en conséquence, les trois électrons ea doivent être
dans le même état pour les deux fonctions. Il en résulte pour les
représentations 4F5 la condition d'être le produit 4F2(e3) x F4 (yf ya). Or, la
configuration yf ya ne comporte pas de représentation F4. Aucun des quatre
états 4F6 de ef yf ò%Aa ya n'intervient donc dans le problème. Pour la
même raison, les niveaux 4F5 des configurations ef yf óc£3 <xa et ef yf (56e3 aa
seront également hors de jeu.

De manière toute semblable, nous aurons pour la configuration
efyf òbe\ya la relation nécessaire 4FB 4F2(e3) x rt{ô5ya). Dans ce cas, il
existe les deux représentations 1F4(<56y(J) et 3F4(<55ya) qui y satisfont.
Nous montrerons en appendice que le premier cas conduit à des éléments
de matrice <4F5 | §>s ° j 4F2> nuls et le second à des éléments <4F51 L | 4F2>

nuls. Le premier des4F5ne joue donc aucun rôle, alors que le deuxième ne
contribue qu'au tenseur Nik de l'équation (2b), mais pas à Mik et, par
conséquent, n'exerce aucune influence sur le tenseur gik. L'examen des

configurations ef yf <56£3 ya et ef yf ô5el <x„ conduit à une conclusion en
tout point semblable.

En résumé, nous aurons, dans le calcul du tenseur g{ k, intervention de
trois niveaux 4F6 supplémentaires, alors que trois autres s'y adjoindront
pour contribuer au tenseur N( k.

Les trois configurations ef yf <56e*, ef yf <56 e4 et ef yf c56e* dont le

niveau 4F6 contribue au facteur g ont ceci en commun qu'elles sont formées
de couches plus qu'à demi-pleines et qu'on peut donc les considérer

comme des configurations formées de trous, soit respectivement èe2, yt el
et e, e2. Il va en résulter que, pour les trois représentations 4F5 correspondantes,

le facteur xx introduit dans l'équation (8) sera négatif, alors qu'il
est positif (x 2 X) pour le niveau 4F6 habituel, appartenant à la configuration

e2a ya.
On voit donc que la contribution à Ag (ge — g) due aux niveaux de

transfert de charge est de signe opposé à celle dont on tient compte
habituellement. Il en résulte, pour des taux de covalence a et ti fixés, une
réduction considérable de zig par rapport à la valeur calculée à partir de
la théorie d'Owen.

En d'autres termes, les taux de covalence qu'il convient d'introduire
pour rendre compte du Zig expérimental seront fortement réduits par
rapport à ceux qu'exige la théorie d'Owen.

Utilisant des formules que nous établirons en appendice, nous avons
calculé les taux de covalence a et ti dans le cas de l'ion Cr3+ dans le rubis,

pour lequel on a10) g 1,986, soit Agcxp 0,4 Agim, où Agim est le Ag
théorique calculé avec l'équation (6 a).
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Ce calcul fait intervenir en paramètres les constantes d'interaction
spin-orbite J3d de Cr3+ et i~2p de O2-, les intégrales de recouvrement des

orbitales dy et p a, et de et pn, ainsi que la position des quatre niveaux
4F5. Nous avons tiré des tables Atomic energy levels11) les valeurs
C3d 275 cm^1 et t,2p 85 cm-1. Cette dernière estimation a été obtenue

par une extrapolation à partir des spectres de Ol et OUI et des atomes
et ions isoélectroniques de Ne, Na, Mg et Al.

Quant aux intégrales de recouvrement, nous les avons évaluées au
moyen des tables calculées par Jaffé et Doak12)13) pour des fonctions
de Slater, ce qui nous a donné les valeurs

S (dy, pa) 0,22 et S (de, p A) 0,16

Nous avons d'autre part représenté sur la figure les énergies des
différentes orbitales, qui ont été estimées à :

E(ya) - E(ea) 18.000 cm^1, E(ea) - E(ô) 45.000 cm"1,

XÜ - E(Yi) 60-000 cm^1, E(ea) - E(et) 70.000 cm"1.

Seules les deux premières différences d'énergie correspondent à des

transitions observées [McClure9), p. 488]. Négligeant la répulsion
interélectronique, nous avons pris ces valeurs pour l'énergie des niveaux 4F5

correspondants.
Enfin, comme nous n'avons qu'une donnée expérimentale, Zig, pour

déterminer les paramètres a et ß qui caractérisent la covalence a et n,
nous avons, après examen des intégrales de recouvrement et des niveaux
introduit la relation |/(1 — oc2)7(l — ß2) 1,5. Cette relation est, à vrai dire,
assez arbitraire, mais permet de fixer les idées et n'influe guère sur les

conclusions que nous tirerons des résultats numériques.
Nous avons rassemblé dans le tableau 2 les valeurs de a et ß, des taux

de covalence Ta 1 — a2 et Tn 1 — ß2, ainsi que de Pa et Pn,
probabilités de présence sur les ligandes des électrons ya et ea. Ces données

ont été calculées dans quatre cas:

0: Théorie d'OwEN.

I : Présente théorie, mais en négligeant, comme l'a fait Owen, la con¬

tribution des ligandes aux matrices de L et §s ", ainsi que le recouvrement

des fonctions d'onde de l'ion central avec celles des ligandes.

II: Présente théorie, en ne négligeant que le recouvrement.

III: Présente théorie, en ne négligeant ni l'une, ni l'autre.

Remarque. On a négligé dans tous les cas le recouvrement mutuel des

fonctions d'onde des ligandes.
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Comme on peut le remarquer, dans le cas III F et F sont différents,
car, même s'il n'y a pas de covalence, les fonctions d'onde sont une
combinaison d'orbitales de l'ion central et des ligandes. Cette distinction
serait particulièrement importante si, au lieu d'ions oxygène, on avait
des ligandes possédant un moment nucléaire, car ce serait alors F qui
interviendrait dans le calcul de la structure super-hyperfine.

Tableau 2

a ß X X ft X
0 0,715 0,885 0,49 0,22
I 0,78 0,91 0,39 0,17

II 0,84 0,93 0,29 0,13
III 0,89 0,955 0,21 1 0,30 0,09 1 0,17

Comme second exemple, nous avons traité de la même manière le cas

encore plus remarquable de l'ion Mn4+ dans SrTi03, pour lequel2)
Agexp 0.19ZlgiOT!. Dans ce cas, les paramètres ont été estimés à:

C3 400 cnr S (dy, pa) 0,18 S (de, pn) 0,10

E(ya) - E(ea) 24.000 cm^1, E(ea) - E(ô) 30.000 cm^1,

E(ea) - E(y,) 45.000 cm-1, E(ea) - E(et) 50.000 cm-1.

La première de ces différences d'énergie est connue expérimentalement2)

et la deuxième a été estimée à partir du cas de Cr3+ en comparant
avec le spectre de transfert de charge d'ions isoélectroniques de configuration

4 ïi". En particulier, on trouve14) le rapport 1,5 pour la fréquence
de la première raie des complexes 'Ad3 M0CL73 e^ TcClg"2*).

Nous avons de plus posé |/(1 — oc2)/(l — ß2) 1,8.

Tableau 3

a ß X X ft X
0 0,50 0,875 0,75 0,23
I 0,71 0,92 0,50 0,15

II 0,78 0,94 0,39 0,12
III 0,815 0,945 0,33 1 0,38 0,10 1 0,15

*) Après rédaction de cet article, nous avons reçu communication par M. S.

Geschwind1') d'un prétirage sur la résonance magnétique et le spectre optique
de l'ion Mn4+ dans le corindon. Il résulte en particulier de ce travail que le spectre
de transfert de charge de Mn4+ est situé 15000 cm-1 plus basque celui deCr3 + dans
le corindon également, ce qui confirme notre estimation.
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Les résultats des tableaux 2 et 3, fondés sur des données dont certaines
sont approximatives, voire hypothétiques, n'ont pas la prétention d'être
une évaluation absolument exacte de la covalence. Néanmoins la
confrontation des lignes 0 et III de l'un et l'autre tableau montre avec
évidence que le taux de covalence tel qu'on l'évalue habituellement est
fortement surestimé, parfois même de plus du double.

L'importance des niveaux de transfert de charge apparaît clairement
si on examine en détail la contribution de chacun d'eux à Zig. Faisons-
le dans un cas particulier, la ligne III du tableau 3. Le cristal est cubique
et le tenseur Alk n'a qu'une composante indépendante, A.

Les valeurs précises utilisées pour le calcul sont : a 0,816, ß 0,947,

4rb(e\ya) 2xA 0,416 Agim,

4rb(ôè2a) 2x A=-0,004 Agion,

4rb(y,ll) 2xA -0,213Agim,

4F5(£-X) 2*Zl -0,009Zlgio„,

Ag 2Z**A«= 0,190 Agim.

On voit que l'intervention des trois états de transfert de charge réduit
Ag par un facteur 0,190/0,416 1/2,2.

S'il est relativement aisé d'évaluer la partie isotrope du tenseur zig, il
est par contre beaucoup plus compliqué de calculer l'ordre de grandeur
de la contribution des niveaux de transfert de charge à l'anisotropie de g,
ainsi qu'à la constante D de l'hamiltonien de spin. Il n'est, en effet, guère
possible de connaître expérimentalement la séparation des niveaux pairs
de transfert de charge due à la symétrie axiale et une évaluation
théorique nous paraît, pour l'instant, assez hasardeuse. C'est pourquoi nous
laisserons de côté cet aspect du problème.

B. Ions de configuration ds

Le niveau fondamental 3F^ appartient à la configuration yl et il ne

peut être lié par l'interaction spin-orbite §so qu'à des niveaux F^ dont
la configuration ne diffère de yl que par un électron. Ne nous intéressant
qu'aux triplets 3F6, nous allons établir le tableau des configurations dont
ils peuvent provenir. Les électrons a, et yl n'y figurent pas, car ils n'y
jouent aucun rôle.

Des considérations analogues à celles que nous avons faites dans le cas

d'un ion d3 impliquent que les niveaux 3F6 des configurations ef ô6 e\ yl aa

et ef (5e el yl oc„ n'interviennent pas dans le problème. Quant aux trois



Vol. 35, 1962 Covalence et résonance paramagnétique 605

représentations 3F5 de ef ô& eüa yl cr.a, aucune n'a d'influence sur le tenseur
Mi k, donc sur gt k et une seule contribue à Nt k.

Nous aurons donc trois niveaux 3F5 jouant un rôle dans l'établissement
du facteur g, tous trois appartenant à des configurations pouvant être

considérées comme formées de trous: ya ea, ya d et ya £,. Seul le premier
est pris en considération dans la théorie habituelle.

Tableau 4

Configurations pour un ion ds. Entre parenthèses, nombre des «trous»

Nombre d'électrons Nombre de
niveaux 3F5

Ordre de grandeur
de l'énergieEl Ó ea Va aa

6 6 6 2(2) 0

6 6 5(1) 3(1) 0 1 E (Va) ~E(ea)
6 5(1) 6 3(1) 0 1 E(Ya)-E(ô)

5(1) 6 6 3(1) 0 1 E(ya)-E(el)
6 6 5(1) 2(2) 1(1) 2 E(a.a)-E(ea)
6 5(1) 6 2(2) 1(1) 3 E(oca)-E(ô)

5(1) 6 6 2(2) 1(1) 2 E(aa)-E(El)

Contrairement au cas d3, les contributions des deux niveaux
supplémentaires au tenseur g présentent un facteur xa de même signe (négatif)
que celui dont on tient compte habituellement, ce qui tend à augmenter
l'écart zig g — ge. On peut donc s'attendre, ici, à ce que l'introduction
des niveaux de transfert de charge augmente la covalence évaluée à

partir de la valeur expérimentale de zig. C'est bien ce qui se passe, mais,
comme le montre le tableau 5, cette contribution est si faible qu'elle est

plus que compensée par la participation des ligandes aux matrices de L
et §so et par l'intervention du recouvrement des fonctions d'onde.

Tableau 5

a ß X X X Pft

0 0,89 0,975 0,21 0,05
I 0,885 0,975 0,22 0,05

II 0,905 0,98 0,18 0,04

III 0,915 0,98 0,16 0,21 0,04 1 0,06

Nous avons pris comme exemple numérique le cas de l'ion Ni2+ dans

MgO. Les mesures tant magnétiques qu'optiques effectuées par Low15)
donnent le rapport Agexp 0,75 Agion.
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Les paramètres nécessaires à une comparaison avec la théorie ont été
estimés à:

C3d=645cm-1, S (dy, p a) 0,085 S (de, p n) 0,042

F(7a)-F(£a) 9600cm-\

E(ya) - E(ô) 50.000 cm-1,

E(ya) - E(e,) 70.000 cm-1.

Nous avons encore posé )/(l — oc2)/(l — ß2) 2.

Alors que E(y^ — E(ea) est connu expérimentalement15), les deux
autres différences d'énergie ont été estimées, faute d'éléments solides,
d'une manière toute intuitive. Cela n'a néanmoins que peu d'importance,
car une variation du simple au double de ces derniers paramètres
n'influerait que d'environ 1% sur Zig.

Nous avons fait figurer les résultats de notre calcul dans le tableau 5

selon la même disposition que pour les cas précédents.
La comparaison entre les lignes 0 et III du tableau 5 nous indique

qu'ici aussi le taux de covalence est surestimé, mais seulement d'environ
20%.

IV. Conclusions

Les évaluations numériques dont nous avons donné les résultats dans
les pages qui précèdent montrent avec évidence qu'on peut être conduit
à une estimation manifestement exagérée du taux de covalence si on
tient compte de celle-ci selon un modèle trop simplifié, par exemple en
se contentant d'un facteur de réduction orbitale. Il nous est apparu qu'il
convenait de ne pas négliger le rôle de la partie de la fonction d'onde
attachée aux ligandes, ni celui des intégrales de recouvrement. Cependant,
dans le cas des ions de configuration 3 d3, une erreur encore plus importante
s'introduit si on néglige les états de transfert de charge.

Il est intéressant de remarquer que, si les corrections que nous avons
introduites sont essentielles pour l'évaluation de la covalence, celles qui
interviennent dans le travail déjà cité4) de Sugano et Peter jouent un
rôle tout aussi important sur l'anisotropie du tenseur g et sur le paramètre
D du champ cristallin. Aussi est-il permis de penser qu'un accord encore
plus serré entre théorie et expérience résulterait d'une analyse où seraient
combinées les deux méthodes.

L'effet considérable de la covalence, et de la manière dont on en tient
compte, sur le facteur g des ions 3 d3 et, à un degré moindre, sur celui des

ions 3 ds nous permet d'inférer qu'il convient d'être très prudent lorsqu'on
évalue la covalence d'un complexe paramagnétique à partir du facteur g
de sa résonance électronique. C'est pourquoi il est certainement d'un
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égal intérêt d'appliquer les méthodes que nous venons d'exposer aux
ions des autres configurations 3 d". Pour notre part, nous avons d'ores
et déjà entrepris une telle étude sur la configuration 3 d5.

Nous tenons à exprimer nos remerciements au Prof. M. Peter, au Dr
C. K. J0RGENSEN et au Dr K. A. Müller, qui nous ont communiqué
leurs travaux avant publication et avec qui nous avons eu d'utiles
discussions.

Cette étude a été réalisée dans le cadre d'une recherche appuyée par le
Fonds national suisse de la recherche scientifique, que nous remercions ici.

Appendice

A. Fonctions d'onde

Nous allons, dans cet appendice, indiquer les méthodes utilisées dans
les calculs numériques dont les résultats précèdent.

Il convient tout d'abord d'établir la forme des fonctions d'onde dont
nous aurons besoin. Nous employerons des combinaisons linéaires d'orbitales

atomiques (méthode LCAO). En particulier, les combinaisons des

orbitales p des ligandes présentant les propriétés de symétrie requises
pour servir de bases aux représentations Ff, F^ (orbitales a) et Tf,
r; (orbitales n) sont les suivantes :

F+: \paYy =JL{_ \pxVyA- \px4y~ \py2yA- \py5y
V6

- \pz3yA- \pz6y},

r+: \pauy -~ {- 2 | p z 3> + 2 | p z 6> + | p x 1>

- | p x 4> + | p y 2> - | p y 5»
| p a vy — {- j p x 1> + j p x 4> + | p y 2> - | p y 5»,

r+: \pnzy j{\py iy - \py 4y - \px2y + \px5y),

\Ptiyy ±- {\p x 3y - \p x6y - \ p z ly + \p z4y},

| p n xy -i- {j p z 2> - | p z 5> - | p y 3> + j p y 6»

r+: \pnay= L {\p y 1> - \p y 4> + \p x2y - \p x5>},

\pnby i- {| p x 3> - | p x 6> + \pzVy- | p z 4>}

| p n c> ~ {| p z 2> - | p z 5> + | p y 3> - ] p y 6»
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où nous avons noté | w> et [ vy les fonctions qui se transforment comme

l/j/3 (3z2^r2)et (x2 — y2). Les états \xy, | y> et | z> se transforment
comme les variables correspondantes, alors que les états | «>, [ by et

| c> se transforment respectivement comme x y, z x et y z. Les notations
pour les états p des ligandes sont celles utilisées par Stevens16). Le
nombre en troisième place indique la position du ligande, qui a pour
coordonnées le vecteur aw.

aW (a, 0, 0) a'2' (0, a, 0) a<3> (0, 0, a)

a<4> (_ a, 0, 0) a<5> (0, - a, 0) a<8> (0, 0, - a

Passons maintenant aux combinaisons liantes et antiliantes des fonctions

d'onde de l'ion central avec celles des ligandes.

1. Sans recouvrement.
Nous n'écrirons qu'une fonction d'onde par représentation.

Va- \uy a.\ duy — |/l — oc2 \p a uy

y, : | u'y 1/1 — oc2 | duy A- et \pau)

ea- \a/ ß I day — J/1 — ß2 j pn ay

e,: \a'y =fl - ß2 \day Ar ß\pnay.

2. Avec recouvrement.
Nous notons A,^ 2 S (dy, p a) et En 2 S (de, pn), les intégrales de

recouvrement de groupe.
Avant de faire intervenir la covalence, il faut orthonormaliser nos

fonctions de départ. Nous aurons pour la représentation F^ :

| u0y i | duy a- ì'i\p a uy,

I uo) V j duy + f \p a uy
ou

f-if-^-f-^et, '' '

2 y i/i-x i/i+x/ 2 v yi-Za i/xx
Les fonctions de F^ sont de la même forme, en remplaçant E^ par Zn.

| «o) i I ^a) + *?' I P n a/ '

I a'A *?' I day A- i' \pnay
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En présence de covalence, les combinaisons adéquates seront alors:

Va- | «> « I «X — )/l — oc2 | u'oy Ea: | a> ß j a0> - |/l - ß2 \ «i>

y«: K> =/XX2^ | w0> + a |<> £(: | a'> /f^S« | «0> + /î | ^>

B. Eléments de matrice entre états atomiques

Le calcul de la partie isotrope du tenseur gik ne fait intervenir que
l'approximation cubique de l'environnement cristallin. A cette approximation,

le tenseur Zlu est sphérique et ne possède qu'une composante
indépendante, A AH. Il nous suffit donc de calculer Azz. Les seuls
opérateurs à un électron dont les éléments de matrice nous intéressent sont
alors lz et uz.

Nous donnons ci-dessous quelques exemples de l'action des opérateurs
lz et uz sur les fonctions atomiques.

lz | dby i | dey lz | dvy 2 i | day

Si on fait agir lz sur les états des ligandes, il faut tenir compte du
déplacement de l'origine des fonctions d'onde [cf. Stevens16)]. Si on agit
sur le veme ligande, on a :

/ (r x p) (r'") x p) + (a"» x p) 1{V) + (aw x p)

où fw est le rayon vecteur à partir du noyau du ligande.

L | p x 3> i | p y 3>

lz\p xiy X \pxiy A- a py\px Yy i\p y ly A- apy\px ly,
lz\p x4y lf] \p x4y — a py\p x4y i\p y 4y — a py\p x4y

Quant aux éléments de matrice mixtes, ils sont de la forme :

(db | lz | p z 2> - (p z 2 | lz | dby - i <[p z 2 | dey - i S (de, p n)

(dv \lz\p y ly — (p y 1 \lz\ dvy — 2 i (p y 1 \ day — — 2 i S (de, p n),

(da \lz\p x ly — (p x 1 \lz\ day 2 i (p x 1 | dvy — 2 i S (dy, p a).

Les éléments de uz peuvent être approximés de la façon suivante :

u=C (grad Uxp) C f(grad U0 x p) + Z ferad Uv x P)\

i(r) (r x p) + ZW) ('W x p)
v

39 H. P. A. 35, 7/8 (1962)
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où on considère le potentiel électrostatique comme la superposition de

potentiels sphériques dus à l'ion central (U0) et aux ligandes (£/„).

uz i(r)lz+ZUr{v))li;)-
V

Les fonctions |(r) sont approximativement proportionnelles à Ijr3 et
ne sont ainsi importantes qu'au voisinage de l'origine, ce qui fait que les

intégrales à deux centres où elles interviennent sont négligeables.
Pratiquement, il n'y aura donc pas de matrice mixte pour uz.

Quant aux autres éléments, nous aurons, par exemple, pour un ion 3 d"
entouré de ligandes 2 ps.

(de | uz | dby (de | i(r) lz | dby Ç3d(dc | lz | dby it,%d,

(pyi\uz\pxiy (pyi\ ^(X) <X | p x i> cip<py | h\ P%> »C»,

où f3d et t,2p sont respectivement les constantes d'interaction spin-orbite
pour un électron 3 d de l'ion central et pour un électron 2 p des ligandes.

C. Eléments de matrice entre états d'un électron

Ici encore, nous donnerons seulement quelques exemples des éléments
de matrice intervenant dans le calcul de l'hamiltonien de spin.

1. Sans recouvrement.

(a | lz | vy =i(2xß- i/X-X2 j/l - /S2

(a \uz\vy =i(2aßAd- (/F-c? /X^Ç2p)

(a\lz\ v'y =i(2ßj/l-a2 + oc i/I"/?2

(a\uz\ v'y i(2ß |/XX2 £3 ä + * /l" P^ C.J -

<c|/,|6'> =-2^(/X:^2,

<c|Mz|è'> ^/r^/?2(c3,- jc>),

<^ IX i y'> =- 2-l/iri>'

<* !«,!/> - Ij/X-X^.
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2. Avec recouvrement.
Posons:

A 2 H' - rj rf + 2ErTri f + 2£„Ç rf,
B =2Vri'-ii' +2Z(rirl' A-2E„r/i',
C =2in' -r)? +2Earìrì' + 2EnÌÌ',
D =2r)ï -ir/' +2EŒU' +2EnVV',

A' 21 i' - Rrjrj',
B' 2 r] rj' - R i i
C' 2 i r{ -Rrji',
D' 2r]i' - Ri rf

où

7? __ ?2îJ

Cad

On aura alors:

(a | lz | i>>

i [A a /3 + B j/lXX2" j/l-,52 - C a )/X-X^ - Dß fl - a? ],
(a\uz\ vy

iAd[A'oLß+ B' i/l-X2" |/XX2 - C oc j/lX"^2 - D'ß )/l - a2 ]

<* I *, I «O

i[Dcr.ß-C i/l-a2 |/l — /S2 -Baj/l ~~> + J /3 i/XX2 ]

iÇsd [D'à ß-C' ^tA-oA i/r-^ - B' oc j/l - /S2 + 4' /3 j/XXc2" ]

A\h\ bA 11>il-P ^ - X) + r »y'],

(c\uz\ b'y iÇ3d [ß|/ÏX ^ (ft _ r/2) f\ _ 1 a) - r r/' (l +1 F)]

<XXX =-2 (/X'-/iz»).
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D. Eléments de matrice de L, et Uz pour un ion 3 d3

Les éléments de matrice de Lz et Uz étant indépendants du nombre
quantique M, nous les calculerons entre des états de M maximum, soit
M 3/2. De plus, pour chaque représentation 4F5 nous n'écrirons que
l'état se transformant comme x y, car c'est le seul qui intervient dans le

calcul de Azz.
Les fonctions sont des produits antisymétrisés de fonctions à un

électron. Les symboles pour un électron représentent un électron ou un trou
suivant que la configuration est formée des uns ou des autres.

Configuration e\ ou £3

4F2 : j 0) 1 a b cy état fondamental

Configuration el ya

4X: \Axy=\bcvy.

Configuration el yt

4X: \A2y=\ÎAcv'y.

Configuration el et

4ïA X3> X {\àbb'y-\câc'y}.ft

Configuration el ô

4r4: \Aty
1

{\âby'}+ \cax'y},
\/2

(0\Lz\Axy=/abc\ZliJt>cv\ (a\lz\vy,

<0 | UZSZ | A{) la bc i £uiz s(2 bcv\ (a \ uz sz | v}

\(o\Uz\Axy= l9(â\uz\vy.

(0\Uz\Axy \(a\uz\vy,
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<0 j Lz | A2y (a | lz | v'y,

(0 \uz\A2y=-\ (a\uz\v'y.

Le signe (—), à la dernière ligne, provient de ce qu'on a affaire à une
configuration formée de trous.

(o\Lz\A3y ^[(c\iz\b'y-(b\iz\c'y],
|/2

<0 | Uz | A3y - —L [<c ] «z | 6'> - <6 | uz | c'>],

<0 \LZ | /14> X [<c | ^ | yy + (b | /x | x'y],
|/2

<0 | Uz | Zl4> - -L [<c | ^ j y'> + <& j M, | *'>]

E. Contributions à l'hamiltonien de spin

Il nous est maintenant loisible de calculer les constantes xœ et Afz Aa

qui contribuent au facteur g.

g ge-2Z^Ay
a

1. Sans recouvrement.

*lA1 A-E
x (2a/î- F|/X^a2^/ï-72)(2oc/3-~i/XXc2|/r-7^),

-.2 /r- =--__--y^A2-

x (2/3|/l-a2 + Ra.fl ~--~ß2) (2ß)/T-AA + tx]/ï~- ß2),

-sA3 -1^o(l-R2)ß2(l-ß2),

où R t,2p\t,3d et où X, constante d'interaction spin-orbite pour le niveau
fondamental 4F, vaut X (1/3) i~3d.
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2. Avec recouvrement.

«lA1 AÀ-e
r-i r-o

X (A' a. ß + B' )/l - a2 j/l - ß2- C af - ß2 - D'ß j/l - a2)

(^ « ß + F |/ï X^ j/i 17,32 _ c a j/fX^2 _ £>£ |/i_a2

X (D'à /î - C'i/l - oc2 i/l - ß2 - B' a i/l - ß2 A-A'ßf- a2

x(Dxß-C i/X- a2 j/f- /?2 - B ai/I-^ + zl ß fl -Ax?

»3A3=- _i_ [/J /rX^ (f. _ r/2) (1 _ * _ f ,< + I )]

x Ls/i~/?*(f2-V8) + f'V].

yi-pr-ßn')*.A X/,/i
'4 ^0

F. Ftefc eie J^3 we contribuant pas à gik

Nous traiterons comme exemple une seule des trois configurations qui
contribuent à Nik, mais pas à Mik, la configuration £3 yl ô.

Configuration fondamentale e3 yf,

+ + + +
4F2 : \0y — \ a b c u v u vy

Configuration £3 yl ô

4/| provient de 4r2(^) X 1Ti (y\ ô)

i a \ ^ rl + t + + 1\ I + 1 + + — - +i\ 1zi->= -<\aocuvvzyA-\abcvuvzy\.I 5/ |/2 il / ^ I "
4X provient de 4F2(^) x 31\ (y3aò)

^4B> —p ..- {3 [I a b c u vv z'y — \abcvuv z'y]
|/30

'

r, ri + r - + + — +/v 1 + T + + + — +,. 1 — î" + + + — +/, -, -,
— 2 l\a 0 c u v v z y + \abcuvvzy A- \ab cuv v zy\)
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<o | lz | Aby -X [_ (ü\iz\ z'y - (Û |iz| z'y],

(0\uz\ Aby - -L [(û j uz j z'y -(Ù\uz\ z'y] o.

Les contributions de | Aby à Mzz et à iV^, respectivement proportionnelles

à <0 | L,\ Aby (Ab \Uz\0y et à <0 | Uz zl5> <zl61 Uz | 0> sont
toutes deux nulles.

(o\Lz\Aiy ^-[-(u\iz\z'yA-(ü\iz\z'y] o,

(0\UZ\ A6y - -~ [<W j uz | F> + <M | uz | z'>]

La contribution à Mzz, contenant (0 \LZ\ A6y, est nulle, alors que
celle à Nzz ne l'est pas.

G. Contributions à l'hamiltonien de spin pour un ion 3 d%

Configuration yl
41\: |0>=|«w>.

Configuration ya ea

ir1-. \Axy \ûây.
Configuration ya el

4X : \A2y \uà'y.
Configuration ya ô

4F53: \A3y=\vz'y.
1. Sans recouvrement.

*iAl--rr^jr

x,A2 -

x. (2 a. ß - Rfl - <x2 f - ß2) (2 <x ß - f - a2 f
1

(2 a )/l - ß2 + R ß fl - a2 (2 a |/l - ß2 + ß i/l - a2
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2. Avec recouvrement.

xx A1 --
}

x

F — Fci -Hj

(A' a ß + B'fl - a.2 )/yAfA -CA j/ï^-JÏ2- D'ßf - <

(AocßA- ß/lXT^s ^fX^a- Ca/X^-^j/l-a2),
x2/l2

ilo Xl,

x (C a ß - D'i/l - a2 (/l - /?2 + A' olf - ß2 - B' ßf - a2)

x (C a /9 - D f - a2 f ^J2 A-A«. |/XX2 - B ß j/ÏX a2 j

x3 A3 =---*_- ^{f-~~Ai-^y.
Le calcul amenant à ces résultats est en tout point semblable à celui

développé dans le cas de la configuration 3<i3.
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