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Relativistic Thermodynamics III:
Velocity of elastic waves and related problems

by E. C. G. Stueckelberg *)

Universities of Geneva and Lausanne

(10.IV. 62)

Abstract: The equations of motion and the principle of equilibrium determine the
signes of viscosity, heat conductivity, mass, elastic modulus and heat capacity in
terms of the sign of absolute temperature. Furthermore, these thermodynamic
conditions show that light velocity is the upper limit for the velocity of elastic
waves. The equations of motion contain the 2nd time derivative of the velocity of
substance, in perfect analogy to Dirac’s theory of the point election. The linear
approximation of the equations is discussed. The equilibrium for a rotating fluid
and for a fluid in a gravistatic field are given. In particular, a method is used (see
annex), which shows that the use of Lagrange Multipliers is valid not only for an
extvemum but also for a maximum (or minimum), if the functionals involved are of
the density type.

Introduction and Conclusion

In two previous articles?!) 2) (to be referred to as I and I, see also LEAF3))
we gave the equations of motion for a fluid in general and special rela-
tivity. The two laws of thermodynamics were stated as covarient equations
of continuity: homogeneous for the symmetric 4-tensor of momentum energy
density 0*F(x) and for the 4-vector of substance-density % (x), tnhomogene-
ous, with a positive definit source i(x), for the 4-vector of entropy-density
1%(x). It was shown that this set of 4 + 2 equations with a positive definit
entropy source #(x) was possible only in a manifold {x*}, where but one
coordinate was of time like character (thermodynamic signature). Fur-
thermore the fwo viscosities ny and &’ had to have the sign of absolute tem-
perature T, and the heat conductivity » had to be positive definit.

However, in the equations of motion additional state variables occur:
Mass-or enthalpy-density m, heat capacity per unit volume ¢ and the
elastic modulus a. Their signs and the numerical value of the velocity of
elastic waves ¢ (c* = a/m) are of importance. These questions could not

*) Supported by the Swiss National Research Fund.
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be discussed in I, because their answers follow only, if we add to the 442
continuity equations the condition of equilibrium: In a closed system, en-
tropy increases, if time goes on to the very far absolute future, up to a
maximum. We speak of absolute future, because the continuity equations
are covariant even with respect to fime reversal «T». The very far absolute
future at which equilibrium is reached, introduces a time-like 4-vector
into the theory, which we may call the arrow of time.

Fig.

Field lines of the entropy density 4-vector j%¢(¥), and values of the pseudochro-
nous entropy scalar é‘f‘r] for 2 hypersurfaces in an orthochronous frame {x®}

Thas arrow of time 1s essentially the 4-vector of entropydensity j*s(x) (more
exactly, its projection

?'as(O)(x) = (w* w, 7%s) (%) (0.1)

on the 4-velocity w*(x). Figure illustrates the problem: Consider an hyper-
surface 7(y) = 0 with a time like normal. Its hyper-surface element at an

event y, dG,,(y) is a pseudochronous vector®), defined by the scalar 4-volume
element

(d0)* V(y) = da(y) or*(y) > O (02)
where 6;;‘(3/) 1s a time-like pseudo-chronous vector
Sri(y) > 0 (0.3)

*) An v denotes pseudochvonous quantities. The exact - definition is given
in (1.10).
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pointing to the relative future (relative means with respect to the frame
{x*}). In the figure 7"(y) = 0 is later than 7’(y) = O in the frame {x*}.
The pseudochronous covariant surface elements dc,(y) have their (+)-

face oriented towards x* = £. The entropy S [7], for a given 7(y) =0, is
defined by the pseudochronous scalar

St = [ @8,%) ). (0.4)

2(y) =0

If we look at the same surface 't('y) = 7(y) = 0*) in a time-reversed frame
{'x*}

’

re=gln gt =t Plelle s gtes (0.5) %)

we find the entropy

'%ﬂmfma%HM=—§ﬂ (0.6)*)

‘T(’y) = 0

because the relative orientation of the (orthochromous) 4-vector j%(x)

and the pseudochronous 4-vector d;a(y) has changed. Thus we have In
our figure

§hﬂm§ﬁq:/ﬁwuwu):5u3z+z>o (0.7) **)

’

T

because t” is later than 7" in {¥*}, and
S[7] — ST = (—3) — (= 5) = +2>0 (0.8)

|
in {'x*}, because now t’ is later than 'z” in {'x*}. S[7] is an essentially
positive quantity in an orthochronous frame (j*s (%) = (esEy),
In an orthochronous local vest frame the state function of rest energy-
density 64 £ 4 ***) is given by

u=usn (0.9)

*) A prime to the left ’E'J, ‘dGy, ‘j*s denotes quantities in the transformed
frame {"¥*} (see § 1).
**) The integral is extended over the region of the world tube between the
2 surfaces 7”7 and 7’.
**¥) Equalities = and inequalities % hold only in a specified frame (ovthochro-
mous frame, local geodesic vest frame, ...).
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as a function of two state variables: rest entropy-density
e Eg (0.10)
and rest substance-density
Py En. (0.11)

Absolute temperature T and chemical potential p are defined by

Tlsul=wu(sn]; ulsn]=u,[sn]. (0.12) *)

Heat capacity per unit volume ¢ and elastic modulus a are
clsml = (TT,7Y [sn] = (w, 7)) [s 7], (0.13)
alsn] = (s2u,,+2snu,,+ n*u,,) [sn]. (0.14)

Thus the signs of the state functions
T-'y=0;, T-'&=0; =0 (0.15)

(viscosities 7, &’ and heat conductivity x) follow from the continuity
equations, while those of rest mass-or enthalpy density m, elastic modulus
a and heat capacity per unit volume c

T-'mz=0;, T71laz0; ¢=0; T 'u, =0 (0.16)

are a consequence of the equilibrium condition.
This condition leads also to the interesting result

0= =mtaz1l (0.17)

showing that the velocity of elastic waves cy is smaller or at most equal to
the velocity of light (= 1). To our knowledge, this result is new: PAULI?)
criticizes the procedure of HERGLOTZ®) and LaMLA®) (who impose, from
the condition ‘maximum signal velocity = 1’, an upper limit upon the
elastic modulus a; see also LicHNEROwITZ?) with the words.

‘... the principle of relativity can not make any statements on the
magnitude of the cohesive forces.” He expects, that, at this upper limit
for a, ‘... the phenomenological equations become incorrect’. We werz
therefore rather surprised, that phenomenological thermodynamics lead s,
for stability reasons, to this upper limit (0.17) for a.

The new mathematical problem we were faced with, was the maximum
conditions for the functional

() o

S[...] =S = maximum (0.18)

*) Symbols like u,, are partial derivatives u, [s n] = Ou [s n][0On of state functions.
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when the functions to be varied were submitted to # functional constraints
G...]=6G% @ab..=12...n (0.19)

where G'* are n constants of integration of the equations of motion.
U
It is well known, that the extremum conditions for S[...] can be found

by the method of n Lagrange multipliers Ea: one defines a functional

)

VN :§[...]+§{, G[...] (0.20) *)

| &)
and looks for its extremum. We can show, that the maximum of ¥[...]is

v
also a sufficient condition for the maximum of S[...]. In the particular
case, where all functionals are simple volume integrals over densities the

maximum of YUJ[. ..] 15 a necessary and sufficient condition. The proof of
this theorem is given in an annex for the case, where but one function
1s varied and only one counstraint holds. Its generalisation to several
functions and several constraints is easy, but involves a very complicated
notation.

We recall in §1 the, slightly changed, notations of I. In §2 we restate
the 442 continuity equations of I: only 3+2 of them are inpendent.
They correspond to the equations of motion for the 3+ 2 state variables:
3-velocity v (x #) entropy density j%s (x ) and substance density 7%y (% ?).
They are essentially different from the n. r. (= non relativistic) case,
because 2nd time derivatives of state variables occur.

In § 3 the equilibrium condition is treated for the Lorentz case (see 3)
for a note on this subject): In equilibrium, the fluid rotates with constant
angular velocity. Due to the ‘inertia of heat’, the temperature distribution is

T(%) — Ty (1 — v3(%))~12. (0.21)

Thus, ‘heat is centrifugated’, if T > 0.

In § 4, the linear approximation of the equations of movement is given
and partially discussed. We add 2 remarks to these equations:

1. Not only the equation of heat flow, but also the damped elastic waves
and the flow of transverse momentum allow solutions only for the (absolute)
future. (This particularily holds naturally also in n. r. theory.) Thus, +f
the present is known, the (absolute) future can always be predicted. However
no inference can be drawn from the present to the history in the (absolute) past.
We believe that this particularity of the equations is closely related with

(&)
*) The Lagrange multipliers 4, are pseudochronous constants, if the constraints

v
refer to orthochronous quantities G* and orthochronous constants 4, if G is pseudo-
chronous.



Vol. 35, 1962 Relativistic Thermodynamics 111 573

the junctional character of the transporiation phenomena*). It is inter-
esting to note the analogy of this arrow of time in phenomenological ther-
modynamics to the question of time reversal in statistical mecanics (see
10-13))
2. In the linear equations of motion, the 2nd time derivative appears
in the form:
My 05 (X 1) > (— (x T)g 02 4 my 0,) T (% 1) . (0.22) #*)

Thus, if no forces act, an exponential increase (towards the absolute future)
of acceleration may occur, because, on account of (0.15) and (0.16) the
coefficients of 0 and 07» have opposit sign. This is a striking analogy
to DirAC’s!%) theory of the point electron, if the retarded self-force is
chosen.

Finally, § 5 gives the correct answer***) for the static equilibrium
m a gravitastatic field.

8y 5(%) = &, /3(35) . (0.23)

The relation

T T71F) = p@) p='F) = (— 8ua(P)/— gaa(®@) )2 (0.24)

holds in this case: In perfect analogy to the ‘centrifugation of heat’ (0.21),
we may say that ‘heat accumulates down-wards’ in a gravistatic field.
It is remarkable, that the ratios of absolute temperatures 7" in (0.21)
and (0.24) are identical with the ratios of periods of an atomic clocks:
T(x) in (0.21) is the period of an atomic clock moving with velocity v(x);
The ratio (0.24) corresponds to the red shift, if T (x) is the period of an
atomic clock at ¥ measured in coordinate time ¢ = x*.

We add a word, concerning the sign of absolute temperature T (see 8)).
T has the sign of rest-mass-or enthalpy-density m. Thus, if we chose rest
mass to be positive, T is positive. If two systems, in our case two fluids,
are in contact, their 7”s must be equal. Thus, all possible systems must
have T > 0.

§ 1. Notations

If {#*}, «f ... =12 ... % is an n-dimensional differentiable manifold,
general relativity assumes a non singular metric
8.5(%) = g, plx); det(g)=+0. (1.1) %kxk)

*) i.e. We believe that this one-sidedness of the solution is also true for the
exact eqs. of motion. .
**) * means in an orthochronous vest frame. (...), are the values of the state
functions %, T" and m in equilibrium at rest.
**%*%) In I, a mistake has occurred.
*EXE) aapy...) i1s a totaly symmetric and by 5y.,] a totally antisymmetric
tensor.
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We have shown in II that only the dimensions # = 2 and 4 can occur
and that one of the two thermodynamic signatures

signat (g,,) = + (111 — 1) (1.2)

must hold: one signature may change into the other, if we cross a sur-
face*), where two spatial coordinates change simultaneously their sign.
If we do not discuss such transitions, we may restrict ourselves to the
particular thermodynamic signature (111 — 1). Covariant differentiation.
D, is defined in the usual way

Duaﬁ.“l...(x) = (OaaﬁmA. + Gaﬁﬁ' aﬁ’.“l... + ...

, (1.3)
—al vy Gl =),
Gl (%) = (7 Gy p,) ), (1.4)
2 G,p,(%) = (0,85, — 048, o T+ 0,8, ) (%) - (1.5)
As long as we are not including GODEL %) manifolds, we may assume
frames in which 3 coordinates are space-like ¥ = {x'}, 7%k... = 123 and

one coordinate time like x* = £. In this case, we may introduce at any
specified event x = x', local geodesic Lorentz frames

*

g:i:(x) = — gulx) = 1; 8a4 p¥) £0, (1.6)

Gupy®) 205 (Daf, ) (v) = (0,07, ) (). (1.7)

xfy

Frame transformations are written in_the form

= x); 0" () = A%, () (1.8)

o

and tensors transform according to

’

a%, (x)= (4" a* A%, ) (x). (1.9)

If our transformations do not permute space- and time coordinates we
may define pseudochronous tensorsi®)

@ (‘x) = sig (A%) (A, . @ L) (%), (1.10)

where sig ({) = 4+ 1 (or = 0) for £ 2 0 (or ¢ = 0).
We shall introduce a 4-velocity field w*(x) (time-like vector), normal-
ised to
(w, w*) (x) = — 1. (1.11)

*) This surface is rather to be called a line, on account of the space metric.
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In this case, we may introduce at any specified x', where w®*(x) is defined,
a local geodesic rest frame

Hx') ={wix)}Z0; wix)= £1. (1.12)

The two possibilities + 1 (— 1) are called orthochronous (pseudochronous)
rvest frames.

The general frames, whose space-like and time-like coordinates can
be separated, divide into two classes:

orthc- [

4x) =0 i
wix) 20 in a pan -]

chronous frame . (1.13)

In a Lorentz frame, 4-velocity and 3-velocity are related by
wx) = (wt?) (1), wix) =+ (1 —v%@x1))-12. (1.14)
The w*(x) — fields defines a family of world-lines x* = z2*(4)

o TR = B0 = v (=), (1.15)

where A is the proper time parameter.
Of any scalar or tensor, we may form the proper time derivative

a

A% (x) = (ﬁ a""”(z(l)))y — (w® D,a*) (). (1.16)
We shall be concerned with the symmetric 4-gradient of the 4-velocity.
2w, 4(x) = (Dws + Dgw,) (%) = 2w, 5(x) (1.17)
and its spatial projection (normal (| ) on w*(x))
2w, (%) = Quw, g+ w, s+ wyw,) (%) =2w,4  (%). (1.18)
Furthermore we need the spatial projection of the metric

The irreducible parts of w, ,, are the zero trace tensor

2
209 | (x) = (2 e — o Gupy wge) () (1.20)
and the scalar

w2 (¥) = wf(x) = (D,w?) (x). (1.21)

Q
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The symmetric 3-gradient of 3-velocity is defined by

2v; (x8) = (0,7, + 00;) (% 8) . (1.22)
In a local geodesic rest frame (1.12) we have the identities
wi(%) = 00, (%1); 420, (1.23)
2w () 2 (Wr2v;,) &), w41, (1.24)
2w, (k) £0. (1.25)

Further we need the spatial projection T, | of the 4-gradient of temperature
st

o

D,T(x) = 0,T(x) =T,(x); T, (x)=(T,+w,T)x. (1.26)

§ 2. The Equations of Motion (Continuity Equations)

From the field equations of gravitation follows the continuity equation
and symmetry

(D,O%) (x) = 0;  O*F(x) — OP(x). 2.1)

In n. r. theory, the conservation of inert mass follows from the continuity
equation for momentum as an additional continuity equation, if Galilei
covariance 1s required.

In Lorenz covariant theory (and therefore also in general relativity), no
such continuity equation follows. In order to have the same number
of state variables, an additional continuity equation

(D,i*) (x) = 0 (2.2
has to be postulated. (2.2) expresses a conservation law for substance
U i o
Nz = [ (@7,i%) ) = N, 23)

T

where N’ is a constant of motion.
In special relativity, where D, = 0,, (2.1) leads to 10 conservation laws

Y
for momentum-ebergy {ﬁ f‘} = {H 5 b } and angular momentum-center of

energy {M # "} = {Zl}i ; ]\y[ }
117) = [ (@5, 6% () = 11, (2.410)

T

M#rr] — M) — [ (4%, (* @ — y 621)) (3) = M"* (24 M)

kv
T
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(2.1) and (2.2) state the 1st law in differential form. (2.3) and (2.4) state
the 1st law in integral form.
The 2nd law is the differential relation

(D% — i) (x) = 05 i(x) = 0 (2.5)

(to which we must add the condition of equilibrium, see § 3).
Having 4 + 2 equations of motion (2.1), (2.2) and (2.5), but only 342
independent state variables v, 7% and 7%, an identity of the type

(ws(D,0%%) + T (D,j* — i) + u(D,%)) (x) = 0 (2.6)

must exist.

w,(x) is a 4-vector field, T(x) and u(x) are scalar fields. (2.6) defines
these 6 space-time functions only up to a common, x-dependent factor.
This factor is determined, up to a sign, if we identify w*(x) with the
4-velocity field, normalised by (1.11).

T and p turn out to be absolute temperature and chemical potential
in an orthochronous rest frame.

We construct @*#(x) as a functional of w*(x), T'(x), u(x). The local term
represents a perfect fluid

O (%) = (mw* wf + g*P p) (%) (2.7)

It depends only on the local values of the 5 state variables. i.e. on w*
and on 2 scalars m and p. Additional terms

O (x) = (O%f + O + 0% + Of) (x) (2.8)

depend on the 1st derivatives, more exactly on the spatial projections of the
4-gradients defined in (1.20), (1.21) and (1.26) and imply transportation
phenomena.

Let us consider the perfect fluid term in more detail: We remark that
it 1s wnvariant under a reversal of proper time (1.15) (w* — — w®). This is
due to the fact that,if @*7 = @7/, the entropy source vanishes identically
because all phenomena are reversible. The equation of motion for w* is

(D G5 ) (%) = (mwy + 04p + wy D, (mw”) (x) =0. (2.9)
In a local geodesic rest frame (1.12) (1.23), the space part takes the form
(D,6%0)) () % (m 00, + 0,p) (R 8) = 0. (2.10)

Comparison with n.r. hydrodynamics induces us to consider m as rest
mass-density and p as pression. On the other hand we have in such a
frame the expression

O Em — p =usn] (2.11)

37 H. P. A. 35, 7/8 (1962)
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for the rest energy-density. We consider # as the density of interior energy,
function of rest entropy density s and rest substance density n. From this
consideration follows that

m=u+p=sT +nu (2.12)

is also the rest enthalpy density. Now we consider (2.6) for @?‘of and 7% g
with z(x) = 0. Using (2.11) we find

(wg D,O*F ) (x) = — ( + m D,w) (%) ]

| | (2.13)
= — (T D% + nDg%) (1. |

This identity is satisfied on account of (0.10) and the 2nd equation (2.12),
if we pose '

sy = (8@%) (1) *y(x) = (v w?) (x) . (2.14) )

Thus s and » are equal to the rest densities only in an orthochronous (1.13)
local rest frame. Therefore T and p have their true signification only in

()
orthochronous frames. This is not surprising, because energy H[7] = I1*[t]
is an (orthochronous) scalar with respect to time reversal, while entropy

(W)
S[t] is a pseudochronous scalar (see 1%)); Under time reversal, we have

W]

W— —4 'H—H; 'S——35. (2.15)
Thus T and g should be defined as pseudochronous scalars. We have not
used this way, because for general space-time continua (for ex. of the
GODEL ) type) the term pseudo-chronous has no meaning: In the purely
differential relations like (2.6) only orthochronous scalar and tensor fields
can occur.

We shall now give the transportation terms, depending on the two

viscosities &’ and # and on the heat conductivity » in terms of w, 53 | (1.18)
and 7, , (1.26):

0% (x) — — (& P w?) (x), (2.16)

*) jaN is the definitive form. jas(o) however is only the, time-like, projection of
7*s (see (2.19)) on w* (see (0. 1)).



Vol. 35, 1962 Relativistic Thermodynamics I11 579
g* is the 4-vector of heat flow
g (1) = — (% (T, | +w, 1)) (x) = ¢, (%) (2.17)
In a local geodesic rest frame, ¢g* vanishes and its space part is
GEHE — (x(grad T + T 09)) (7). (2.18)

We remark the term proportional to 0,7: It may be interpreted as an
‘inertia of heat’.
The 4-vector of entropy density is

I*s(x) = (jas(o) + fas(x)) (*) = (sw*+ T ¢ (x) (2.19)

and its source

i(x) = (T-1yuly, 020 + T-18(wp)? _ |

(2.20)
FT2x (T, +w,T) (T*, +w,T))(®x =0. |

The scalar products are positive definit, if only one coordinate is of time
like charakter. Positive definitness of ¢(x) requires therefore (0.15). We
shall not give the explicit form of the equations of motion, but only their
linear approximations in § 4.

§ 3. The Equilibrium Condition

As it has been stated in the introduction (0.20) (proof see annex), the

A\
maximum of S[...], submitted to the 7 constraints*)

(3.1)

is given by the maximum of

o

W[...]=SL.)+&H...] - CI...]) — (5 M[...J) —v N[...] (3.2)

*) M = M8} = M’ is not a constraint, because it depends explicitly on ¢.
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where ;}5}, 5: & and » are Lagrange multipliers. As ¢(x) = 0, we may use
the perfect fluid terms:

SLol= [ @V @ s = st = i, (3.39)
HL..]= [ @V (m @)= $) @), (3.3H)
)= [ @ mws) (), @310
J\H/}[...} =/(d3Vmw4Dc’ A B]) (), (3.352?)
B 1] = j @V 1) @) . (3.3N)

The extremum condition is 6‘1#’[...] = 0, where 8 is the 1st variation,
linear in the variation of the functions to be varied. Calculation is easiest,
if we chose w, j§ = &) and 7% as state variables.

The result is:

SOPE( ), (), 14y ()]
ﬁ./{d3V 1L9=} ~av2)w“%’—mw‘*?—ka(?’,ﬁ)%,éz@’)
. (3.4)
+ (14D (m,wh — (w91 p,) — my(T, B)) O
(B (m, 0t — ()1 p,) — my (T, @) — ) Oy} B)
where
@) =+ [ A 7] (3.5)
The coefficient of dw(x) vanishes, if
S9F) =@ =L+ [T (3.6)

A\
Thus the motion at equilibrium is a translation at constant velocity 41,

on which a rotation at constant angular velocity 916 is superposed.
Evidently, the fluid is supposed to be limited by a rigid container
x€C(y) = 0, whose velocity corresponds to the boundary velocity (v2(y) < 1),
which may, however, be as close to the velocity of light as we like

1—v3y) =62, e&— +0. (3.7)
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The coefficient of dj%g(x) vanishes (we have eliminated :’ by (3.6)), if
U
T(%) = u (%) = — 91 wh(x) = T, (1 — v*(®)) 12 (= Ty e~1%)), (3.8)
)
Ty = — & lsig(w?) . (3.9)

The formula (3.8) corresponds to the equation (368) of PAuLI?): PAULI
interprets his formula as a Lorentz transformation of temperature.
According to (3.8), T(x) takes (for T, > 0) arbitrarily high values at
the bounary. This is due to the ‘inertia of heat’: ‘heat is centrifugated in
a rotating fluid’.

The coefficient of djy vanishes, if
U
p(x) = u, (%) = -1y w(Z) = po (1 — v2(F)) 12 (< po e~ 1%%)), (3.10)
U
o = DLy sig(w?). (3.11)

At this stage, one has to verify, whether the equations of motion are
satisfied by (3.6), (3.8) and (3.10).

Calculation shows, that w, ,  (¥) and g,(x) = g, , (¥) vanish. Thus one
is left, as we have postulated, with the equations of motion of the perfect
fluid. These are satisfied by (3.6), (3.8), and (3.10).

|
Next, we calculate the 2nd variation 6 ¥7[...], bilinear in the func-

tions to be varied. The condition for a maximum is 6 ¥[...] < 0.

A somewhat lengthy calculation gives the following result. (We have
substituted, affer the variation was performed (3.6), (3.8) and (3.10) in
order to eliminate the multipliers):

SOP[..] = ... — — cig(wh f (@ T-1 (1 — v2)-1) (3))
s {(m (g% — v 09 — a (1 — 0¥) of o) b, o,
+ (1 — 0®) (u, (079 + 2, 075 Oy + ,,(07%)%)
() Ow, O 4 (L) dw, L) (R) < 0.

(3.12)

The variation changes its sign under time reversal, because !f’ is pseudo-
chronous. We have now to decide on the frame (ortho- or pseudo chron-
ous, w* > 0 or w* < 0) in which this maximum is reached. We decide,
arbitrarily, that

2, " *
[...] = maximum, if sig(w?) > 0. (3.13
(

)
Tkis defines the orthochronous frames. The contribution due to d7%5(x)
and dj4y(x) is negative definit if a has the sign of Tand if ¢ = u, u, ;1 =0

%) if Ty > 0.
*%) if yp > 0.
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(0.16). In order to evaluate the contribution due to dw(x), we introduce,
at x, a local frame v = (v, 0, 0). The condition takes the form

{T-1[(m— av?®) (1—v? (dwy)?®+ m ((0wy)? + (0ws)?)]} (%) = 0. (3.14)

Thus, for (dw,)? (x), the condition 7-1m =0 in (0.16) follows. For
(0w,)? (x) we find
T-'(m—av¥) =0. (3.15)

In the limit (3.7) we obtain (multiply (3.15) with the positive definit
factor Tm—-1v-2=0:

cﬁ:m‘lagv'2§1+e2; e—> 0 (3.16)

1.e. condition (0.17).
From (0.16) and (2.12) follows:

T im=s+Tnu=0. (3.17)

As s and » are independent variables, the condition follows:

SZ0;  fage() = (sw%) (1) =0, (3.18)

the 2nd inequality being valid in an orthochronous frame. Thus the 4-
vector 15.0y(%) 1s the arrow of time. (3.18) may be considered as a rudimen-
tary form of Nernst's 3rd law: Entropy is (in an orthochronous frame) a posi-
tive definit quantity.

§ 4. The linear Approximation

We consider, in zeroth approximation, the fluid at rest
Le.: 9%, 8) =09 =0; w* (@) =whhy=+1; s(xt)=sy; n(E?)=ng.

All state functions in this static equilibrium will be marked by (...),.
Then, we allow an infinitesimal departure from equilibrium:

V() =D (Xt) —vy; sl —sg; n(xt)—my

are infinitesimal quantities. Taking but the first order of this approxima-
tion, the equation of motion for v(x #) is:

—_——

aa@ai(x) - (_ (w4 x T)(] ()Zﬁ), 4 "y Oﬁ; = (w4 %)0 grad 0£T

_——

+ grad p — (* 1), (— rot rot 9) (4.1)

U ——

— (wt (& + - 7)), grad divd) (1) = 0.
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We can separate the transversal (| ) and longitudinal (||) parts
— > — > N> =
9=71), + 7 =rota—grade. (4.2)
Then the two expression
(— (% T)y 0% + my 0, — (wn)od)?, () =0 (4.3)

and (we omit the g?a?l sign and explicit p and 7T in terms of s — s, and
n— M)

([ @ % D)o 02+ mg 0, — (wt (& + 50)),4] (- 9)

— (Wt )o 0, (s — so) — (w0 % u; )0 0, (1 — 1) (4-4)

+ (S U + nuns)() (S - SO) + (S U, + nunn) (ﬂ - %0)} (52 t) =0

have to vanish separatly.
The equation of motion for s — s, and » — n, involve only the longi-
tudinal part 9. They are, in terms of g:

{0, (s — 50) + (@ ) A0, — 50 Ap — (10t % ¢ 1)g A (5 — o) .
— (w0t T u, ) A (n—mp)} () = O, '
{0, (n — mg) —my A} () =0. (4.6)

As mentioned in the introduction (0.20), the 2nd time derivative of v
apears, if %2 > 0.
We discuss the following particular cases:

1. Heat Flow:

If we put oy =@ = 0; #n = n, (4.5) reduces to the n. r. equation of
heat flow

(0, — wg by A) (s —sg) ) =0; b=xnc'=0. (4.7
Its general solution is

(s=s0) (E8) = [ #VG) Koy (15— 7], whet) s =) GO) (48

whose the kernel K, (|z|, t) satisfies (4.7) (with w} = + 1) and

K|, 0) =8() . (4.9)
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The kernel is, as is well known:

= (4w byt) 32 exp (_ 4|§b'|)2t) . I (4.9)

As was mentioned in the introduction, only solutions for the absolute future
we!t = 0 exist. Equilibrium is asymptotically reached as wj ¢t - + oo.
This was to be expected on account of the condition (3.13). We remark
however, that ¢ = 0, #n = #n, does not satisfy (4.4). Thus, heat flow is
always connected?) with the

2. Elastic Waves:
We assume x, = 0. The wave equation is obtained if we operate with
0, on (4.4) and eliminate 0, (s — s,) and 0, (n — n,) from (4.5) and (4.6):
, 4 5
(m(, 02— agA — (w4 (g + 3‘1;))040,&) g FEH=0.  (410)

Thisis exactly the equation of n. r. theory: Undamped waves (£ = 5, = 0)
propagate with the velocity 0 =< ¢y = 1 (0.15).
In a viscous fluid, the general solution is

@ (El) = [ PVE) Dy (|7~ w% ) ¢ (G0) |

- (4.11)
+D(|55_5’,|’w04t)w400t(p6;0)] ‘
where the two kernels D, and D satisfy the wave equation and
Dy([%],0)=0(); 0.Dy(|%],0)=0; (4.12)
D(z,0) = 0; 0,D(|z|,0) =06() . (4.13)

We give the Fourrier representation of the kernels. They involve two
terms k2 << k2., and k2> k% ..
The representation follows from the wave equation in the form

(02 — cﬁ A — wyt cﬁ t40,) ¢ (21), (4.14)

with
cﬁ T = (m—l (f' i ‘3*77)) >0, (4.15)
B2 par = 4 (¢?72) 71 (4.16)
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in terms of the following functions of k2

1
<R, y(F?) = = cﬁ Tk =0,
(4.17)
w(k?) = (02“ B2 %%4 72 k4)1/2 =0,
+0 4.18
Al = () (15 (1~ K 5) > | WS
2 ' )T s loo,
kmax
Jt) = (2m)-3 lf PRI (FBA-20-7 (] 4y a4 b.c.)
’ (4.19)
+ f d*k (yy — Vl)_lem} B oy et — 53, 5]}21)] '
kmﬂx
Rz
D{|&]| 1) = @m) = [ / A3k (24 w)~1 (¢ B -20-vt _ ¢ ¢)
]
(4.20)

+f d3k (yy — y) 1 3i(]—:; (et — "'W‘)‘ .

On account of (4.18), both kernels exist but for ¢ = 0. Therefore, in
perfect analogy to the general solution of heat flow, damped waves can
only be predicted for the absolute future wgt = 0. (If there is no damping,

D(|z], ¢ is the ‘DO%function’ of electrodynamics with ¢ instead of 1, and
the relation Dy, (|2], ¢) = 0,D(| 2], #) holds).

3. Flow of Transverse momentum.:

Equation (4.3), to which of course div v, = 0 must be added, can be
discussed without approximation. We consider first the 3 limiting cases.
a) #y = 0: This leads to the equation of heat-flow (4.8), with

b=ym1=0. (4.21)

The general solution exists only for the absolute future wytt = 0.
b) 74 = 0: The solution for the acceleration is

05, (Bt) — e BLOB (%0), (4.22)
B=(mx—1T-1,=0. (4.23)
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Unless the initial acceleration vanishes, the accelaration increases indefinitly
towards the absolute future wyt = 0 (f~1 ~ 10~ — 10~% cm).

This feature is perfectly analogous to the ‘run away’ solution of
Dirac’s!) theory of the point electron (f-! ~ 1012 cm).

c) my = 0: This case is of purely theoretical interest, the rest mass of
a fluid being always finite.

Two kernels for

i, G0 = [ EVE KD (|5-F],wfn5, G0 (424
exist. They are, in terms of
2= (e 1T Y)=0, a«a=0, (4.25)
KS)(|2], ) = (2n)—3fal’3k A T
(4.26)
=n-2(2+ 2D 2 (L a?),
K1) exists only for ¢ = 0 and K~ only for ¢t < 0.
We have of course
K& (2], +£0) =6(3) . (4.27)

Thus a solution, which exists only in the absolute past wiyt =< 0 is equally
possible. The apparance of this non thermodynamic solution is the gener-
alization of the ‘run away’ solution (4.22).

d) General case: In terms of « and f the two kernels are

KE([2],4) = @)@ [ aspe®A-rim, (4.28)

i) = LB 4 (LB a@B) > bak > £oo. (429

We have again the thermodynamic solution and the, unphysical, ‘run
away’ solution existing only in the absolute past w?;¢# < 0. It is inter-

esting to write down the equations for small wave vectors 1E| A

B LRy, = (e T) . (4.30)
The two kernels are
kmax
K®(|3], 9 = (5.) @) f dte k.3 F bo ke (4.31)

0

where b, is given by (4.21). Thus, the physical solution K'*), valid only for
t = 0 reduces to the heat flow kernel as in the n. r. case: The upper limit
Rpax 8OS tO R, >+ 00, if 2 T - 0.
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The unphysical solution K(~), valid only for £ < 0, is the ‘run away’
factor exp (f¢) multiplied with the heat flow kernel, in which the sub-
stitution £ - — ¢ has been made.

§ 5. Equilibrium in a Gravistatic Field*)

We consider a field g, 4(x) = g, 4(%) independent of ¢, and we look for
a stationary solution 0,(...) = 0 with wi(x) = 0. Thus we have

(w, ©7%) (%) = (gaa(?)?) (%) = — 1. (5.1)

Equilibrium requires a vanishing ¢(x). This implies w, z (¥) = 0 and
(T, + w, T) () = 0. Calculation shows, that w*(x) = {0, w*(x)} satisfies
the 1st condition. The 2nd condition gives us the temperature distribu-
tion T(x). The space. part of the 2nd condition leads to T; | (¥) = 0,T(%),

because T (x) = 0. Further we have (cf. (1.4) and (1.5))
(@) = (w* Daw,) (2) = — (@, G,%) () = — (@) Oigas) B). (52
Thus, on account of (5.1),

(T +1; T) (8) = (0,7 + (5 (ea) " 0iga) T) B =0 (5:3)

The solution is (0.24). In order to find u(¥), we use the equation of motion
(space part for @;, remembering m = s T + n u and (from (2.12) 0,p(2) =
(s0;T + n0,;u) (%)) (¢(x) = 0 has again reduced the problem to the perfect
fluid case). We find, from (2.12) and (5.2):

(mw; + 0;p) (%) = [3 (; (8aa) ' (0i8ad) T + oiT)
(5.5)

+n (; (€aa) " (0i84) 1 + Oil“)] (%) =0. )

From (5.3) and (5.5), (0.24) follows for u. The equations of motion for
s and # are easily verified, if we write them in the form

S+sDw*)=m+nDw)=s=n=0, (5.7)

because D,w* = w,* — w, ¢ vanishes and because the substantial deriva-

tives of scalars T, u, #, s, ... vanish in the static case.

*) The relations in I are not quite correct: They assume a point ¥, where
L) = 1.
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Annex: 2nd Order Variation of Functionals

If F = F[&( )] is a functional of the function &(x), x = {xi}*), the func-
tional devivative at x F , = F ,[£ ()] is defined by

SVFT...] zf(deSé) () F [...]. (A. 1)

|4

In thermodynamics, we deal with fonctionals of the density type:

FL..] = [ V() fix £ = [ aVi) 1) (A2
V 12

V is the region of integration and symbolises also the volume
v — / 4V (x)
.

of the region. f(x) = f[x, &(x)] is the demsity of F. With f[...]=
0f[x, £1/0&, 1" = ..., the functional derivative is

Fl.]=1). (A. 3)
If we look for the maximum of F[...], submitted to a constraint
GE()] =G, (A. 4)
we introduce the particular variation
06(x) = 06 = const, if xe 17, (A. 5)

where V] 1s a small region of V. According to

SUG[...1 =T, G,x][...mgwf(dvag) () G [...1=0, (A.6)
g

o0&l = 6&1&( )] is a functional of &(x) in V' =V — V. We write

SE[...] = — (G 4[....]) / (@dV 68) (¥) G [...] 1
il . (A.7)

= [@von e L], j

V}

introducing the functional derivative &' , of &L G y[...] =V, G ,[...]1s
the partial derivative 0G[...][0E. x; is a point inside I} (€ ;) (mean
value theorem of integration).

*) We omit the ~ in ¥ = v = {x}.
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The 1st variation of F[...] is now

SVF[...] = F, agwf @V 68) (x) F

(A. 8)%)
0.

—f @AV 68) ( +(—G1,F)G,)

It has to vanish for an extremum. Thus
Fl.0l=(F,+(G2,F)G)[...]1=0; zeV' (A9

is the functional derivative of Fin V' =T — 1].
The method of Lagrange multipliers introduces the functional

Y. = (F+26)[...] | (A. 10)

and looks for the extremum of ¥ with unrestricted variations. Or, for
our particular variation (A. 5), we have

SVPL...] = (F 4+ 4G ,) o8 + / @V 68 ()W ,=0. (A 11)
P

The variation being arbitrary, the value of the multiplier is:

A=— (G, F)[..]. (A. 12)

Thus, for the 1st variation, the multiplier method is equivalent to the elimina-

tron method.
We show now, that the condition ¥ < 0 is sufficient for §*F < 0,

if the constraint holds: We form the 2nd functional derivative of F [ ..
(A. 9), considered as functional of &(x) in V",

ny[]kyj +1Px1§1 ( ,IG,IyEI—G,—II}F,Iy)
X Gx“{“ (G— 1G11F1* G_1,1F,11) G,xfl,y

(A. 13)
_“]:p +T }_51 G’lx'l"g],llsl,xfl,y;

xyeV’,

where (A.12) and the definition of & , in (A.7) have been used. The
2nd variation is therefore

, . are in general different,
1

'*) The points #) in FF ; =V, F’ LandinG ,=V;G
but are both inside V; (€ V,).
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OOF = [ (dV 68) (x) | (dV 0F) (y) F,
jewef y

= f (@V 0&) (%) f @V 8&) (y) ¥ ., + 2 f (V" 98) (x)

v v’ 3 (A. 14)

X W0 08 + ¥ (08— [ @V 08

v

x [ V8 0) ¥ L] = 8] S 0.

V

The third equality is only ralid for the particalar variation (A.5) (A.7).
However, if 8®¥[...] < 0 for an arbitrary variation, ®F[...] < 0 results.
Thus §®W[...] < 0 is a sufficient condition for 8®F[...] < 0.

In the particular case, where F[...] and G[...] (with the density
g(x) = g[x, &(x)]) are of the form (A.2), we have

PL.)= [ @) ) v@ =0+ 2gl), (A4
W,xy = 1)",M(x) d (x# y)
¥, =0 xyeV’. (A. 15)
IP, n = Vi (%) l

Therefore

OOF[...]= [ (V" (082) () + Viy"(w) (B£)2 0. (A.16)
P

Now, we take the particular variation

0
0&(x) = ] l for x Vo, VoeV’ (A. 17)
l Pt 617] €
from which
1 _ -1 (&)
S = — T (g,(xl) ) o (A. 18)

follows, (x, is a point inside V).
For this variation, we have

4

SOF[...] = (Vo‘l P (%) + Vi1 (%) (%%)2) on)* =0, } (A. 19)

X% EV .
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The volumes 1, and V] are arbitrary and independent of each other. x,
and x,, are therefore two (arbitrary) points € V. Therefore

p'(x) £0; xelV (A. 20)

is a mecessary condition. Thus 6WY¥[...] =0, 6P ¥P[...] <0 are neces-
sary and sufficient conditions for dMNF[...] =0 and §PF[...] £0, if
F[...] and G[...] are of the form (A.2). |

The method can easily be generalized to the case, where several (n)
constaints (0.18) are imposed, and if several (w) functions &*(x) (« f... =
12 ... w) are to be varied. Higher order variations can also be formed in
the same way. We conclude therefore:

The maximum condition for density functionals with constraints, which
are also density functionals, can be computed by the method of Lagrange
multipliers.
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