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451

Uber eindimensionale
und quasieindimensionale Gasmodelle

von Martin Kummer
(Seminar fiir theoretische Physik der ETH, Ziirich)

(16. I11. 62)

Zusammenfassung: Diese Arbeit zerfillt in zwei Teile. Der erste Teil steht in
enger Verbindung mit einer Arbeit von van HovEe?), in der er zeigt, wie man grund-
sitzlich die Berechnung der Zustandssumme eines eindimensionalen Gasmodells
auf die Bestimmung des grossten Eigenwerts einer Integralgleichung zuriickfithren
kann. Diese Integralgleichung wird in der vorliegenden Arbeit auf eine andere
Weise hergeleitet und der zum grissten Eigenwert gehorige Eigenvektor in Zu-
sammenhang mit einer gewissen mittleren Wahrscheinlichkeitsdichte gebracht.
Die Methode wird dann noch vereinfacht und auf gewisse hoherdimensionale
(quasieindimensionale) Gase erweitert, auf welche auch der van Hovesche Beweis
der Nichtexistenz eines Umwandlungspunktes fiir eindimensionale Gase mit end-
licher Reichweite des Potentials ausgedehnt wird.

Im zweiten Teil werden einige konkrete Modelle exakt berechnet: Das zwei-
dimensionale (quasieindimensionale) Zylinder-Quadratgas mit und ohne seitliches
Potential, an dem die «free volume theory» gepriift wird, das eindimensionale Gas
mit Ubernichstnachbarnwechselwirkung und in einer summarischen Besprechung
das Streifen-Quadratgas. Schliesslich wird am eindimensionalen Gas mit y-fach
wechselwirkendem Potentialtopf gezeigt, dass sich die Methode auch im Sinne einer
Storungsrechnung etwa zur Gewinnung von Hoch- und Tieftemperaturentwick-
lungen ausbauen lisst.

Einleitung

Obwohl eindimensionale Gasmodelle in der Natur keine Entsprechung
besitzen, haben sie doch ein gewisses Interesse, das sich vor allem aus
zwel Eigenschaften dieser Modelle ergibt: Einmal zeigen sie, wie die sta-
tistische Mechanik funktioniert, wenn die Rechnungen exakt (im Sinne
threr Methoden) durchfithrbar sind, und zweitens liefern sie einen ge-
wissen Priifstein fiir Approximationsverfahren, wie sie fiir reale Gase ent-
wickelt worden sind.
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Seit Tonks!) im Jahre 1936 sein eindimensionales Kugelmodell (Stidb-
chenmodell) berechnet hat, sind mehrere Arbeiten auf diesem Gebiete
erschienen, so z. B. von TakaHAs1?) und von GURSEY?), welche den Fall
von Stdbchen mit Néchstnachbarnwechselwirkung untersucht und ge-
zeigt haben, dass ein solches Modell keinen Umwandlungspunkt besitzt.
Die bedeutendste Arbeit auf diesem Gebiete aber ist diejenige von VAN
Hove*4) vom Jahre 1950. VAN HovVE zeigt in dieser Arbeit, wie man grund-
sdtzlich die Berechnung der Zustandssumme eines eindimensionalen Gas-
modells auf die Bestimmung des grossten Eigenwerts einer Integral-
gleichung zuriickfiihren kann. Diese Methode steht in direkter Analogie
zur Matrixeigenwertmethode des Ising-Modells, wie sie unabhidngig von-
einander von KRAMERS und WANNIER®), MONTROLL®), LASSETTRE und
Howe?) vorgeschlagen wurde. Mit Hilfe dieser Methode konnte dann
vAN HovVE allgemein zeigen, dass ein eindimensionales Gas mit endlicher
Reichweite des Potentials keine Umwandlungen zeigt.

Wir wollen im ersten Teil dieser Arbeit eine etwas weniger formale
Herleitung der Integralgleichung von vaN HoOVE geben. Dabei wird es
sich herausstellen, dass die Bestimmung des grossten Eigenwerts auf ein
einfacheres Problem reduziert werden kann. Dann wollen wir eine Ver-
allgemeinerung dieser Berechnungsweise und ihrer Konsequenzen (Nicht-
existenz eines Umwandlungspunktes) auf gewisse hoherdimensionale Mo-
delle betrachten, die ich quasieindimensional nennen mdchte.

Diese Modelle sind durch drei Eigenschaften charakterisiert:

1. Thre Molekeln besitzen einen harten Kern.
2. Die Reichweite des Potentials ist endlich.

3. Das (mehrdimensionale) Volumen ist héchstens in einer Dimension
unendlich.

Der zweite Teil dieser Arbeit besteht in der expliziten Berechnung ei-
niger Modelle. Insbesondere werden zwei spezielle zweidimensionale
«Quadratgase» berechnet und die «free volume theory» an ihnen gepriift.

1. TEIL

I. Herleitung der Integralgleichung

Um die Herleitung moglichst einfach und iibersichtlich zu gestalten,
beschrinken wir uns zunichst auf ein eindimensionales Gas mit Doppel-
wechselwirkung (Ubernidchsnachtbarnwechselwirkung). Wir betrachten
auf einer Geraden drei Gruppen von je zwei Molekeln mit den Koordi-
naten x, (k= —1, 0, 1, 2, 3, 4) (vgl. Fig. 1).
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Den Sinn, die Numerierung mit —1 zu beginnen, werden wir spiter er-
kennen. Doppelwechselwirkung bedeutet nun, dass das Potential prinzi-
piell die in Figur 2 gezeichnete Gestalt besitzt:

Vix).
4

- == § ----p

e

Fig. 2

mit der Bedingung 2s <7 < 3.

Zur Abkiirzung wollen wir vom Ereignis I (Ereignis im Sinne der
Wahrscheinlichkeitstheorie) sprechen, wenn wir sagen, dass die Molekeln
der Gruppe I die Koordinaten (x_;, x,) besitzen. Entsprechend definieren
wir das Ereignis IT und III.

Die bedingte Wahrscheinlichkeitsdichte, dass aus dem Ereignis I das
Ereignis II folgt, bezeichnen wir mit:

(-1, xg I WI X1, %) -
Sie berechnet sich zu:

W (x_q. %¢: %1, %3) (1)
Wi(x_,, xy) .

(X_1, %9 |VT/| Xy, Xg) =
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Hierin bedeutet W(x_,, x, x,, x,) die Konfigurationswahrscheinlichkeits-
dichte der Molekeln (—1, 0, 1, 2) und W(x_,, %,) diejenige der Molekeln
(-1, 0).

Es gilt nun bekanntlich:

W (xq, xg) = g~V - RIRT = B (x1 — %) , (2)

wo V das Wechselwirkungspotential, £ die Boltzmannkonstante, 7 die
absolute Temperatur, 8(x_, — %,) also den Boltzmannfaktor bedeutet.
Entsprechend ist:

W(x_y, %g, %1, %5) =
= f (% — x1) B (%2 — %) B (%1 — %) B (% — %_1) B (% —x_4) - (3)
Aus (1) und (3) folgt:

(¥_1, %o ‘WI Xy, %) = B (%2 — %1) B (%2 — %) B (X1 — %) B (%1 — x_4) ,

das heisst die Wahrscheinlichkeitsdichte, dass aus dem Ereignis I das
Ereignis II folgt, ist gleich der Konfigurationswahrscheinlichkeitsdichte
der vier Molekeln (—1, 0, 1, 2) bei ausgeschalteter Wechselwirkung zwi-
schen (—1, 0).

Da nun das Ereignis IIT nur indirekt tiber das Ereignis II von I ab-
hdngt, gilt weiter:

(%_1, %o |W| X1, Xg, X3, Xg) = (%_q, %o l ﬁ/—‘ Xy, %a) (X1, Xy WT/I X3, %) - (4)

Die Wahrscheinlichkeitsdichte, dass aus dem Ereignis I das Ereignis 111
folgt bei beliebigem Ausgang des Ereignisses 11, ist also

j dxlfdxg(x_l, xy \W| ¥y oy Xy %) :/dxlfdxz(xd, B II/_V| Xy, Xy) X
X (%, %y lﬁ}l X3, %g) = (X_y, %g |ﬁ7(2)l X3, %) (3)

wo W@ der zweifach iterierte Kern W bedeutet. Allgemein ist also der
n-fach iterierte Kern W:

(x_1, % |V7V(")l X9n—1, ¥2,)
die Wahrscheinlichkeitsdichte, dass, wenn die Molekeln der Gruppe I die

Koordinaten x_,, x, besitzen, das 2» — 1-te und das 2#-te Molekiil an den
Stellen %x,,_, und x,, anzutreffen sind.
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Wir wollen nun noch eine Koordinatentransformation vornehmen:
w=Xy—X_3,
§ =%, — 2y,
£ =24 — %3
seien die relativen Koordinaten innerhalb der drei Gruppen,
LF = & —%5, L =%, — %,

seien die Gruppendistanzen zwischen I und II bzw. I und III. Wir defi-
nieren dann W durch:

(%1, %o | W | 20, %) = (0 |W(L') | &) = B(E) BLL') B (L' — &) B (L' — & + ).
Weiter ist: B
(21, %y |W‘ %y, %) = (& IW(L - L') | ).

(5) lautet jetzt:
(| W®|2) = [aL’ [ d& (@ |W(L)|&) ¢ WL~ L)]0),

stellt also beziiglich L eine Faltung dar.
Der Kern:

(o |[W™(L) | £)

ist also der beziiglich der griechischen Variabeln #n-fach iterierte und be-
ziiglich L n-fach gefaltete Kern W.

Identifiziert man nun das 2# — 1-te und das 2xn-te Molekiil mit dem
minus ersten und dem nullten, so bedeutet:

e=Fanl*T — Q@n(L T) = Sp W®W(L) A-2 mit A= ( A2 )1/2

2makT

die kanonische Zustandssumme von 2# Molekeln auf einer geschlossenen
Linie (Kreis) der Léinge L.

Die n-fache Faltung legt es nahe, die Zustandssumme zu Laplace-
transformieren:

fQ‘z"’(L, T)e *tdL = Sp I/f/(n)(z) A-2n .
0

Dabei bedeutet W) (4) die beziiglich L Laplace-transformierte und beziig-
lich der griechischen Variabeln n-fach iterierte Wahrscheinlichkeits-
dichte: (w | W(L) | §).
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Nun gilt aber:

(o]

fe—(me-kTL)/kT AL = ¢~ %nltT — Sp W) A2 (6)

0

mit A = p/kT.
Hierin bedeutet p der Druck und ¢, ,(4) das Gibbssche Potential. Sind

(I')-* (=1, 2...) die Eigenwerte*) von W (1), so gilt allgemein:

(7)

~ o0 1
Sp W®n(4) =k; T
Weiter kénnen wir benutzen, dass unser Kern positiv ist. JENTzSCH?)
hat namlich in Anschluss an einen von FroBeEN1Us?) fiir Matrizen be-
wiesenen Satz gezeigt, dass ein positiver, stetiger Kern immer einen
reellen, positiven, nicht entarteten Eigenwert besitzt, der grosser ist als
der absolute Betrag aller andern Eigenwerte. Wir bezeichnen ihn mit
I
Aus (6) und (7) folgt dann asymptotisch fiir grosse »:

e*‘ﬁefn/kT = /—2n I‘l—” .

Logarithmierung ergibt:

Pan _
S =2nlnA 4+ nlnl},

oder wenn wir mit u das chemische Potential bezeichnen:

kMT = zizi:r =In{/})** +1n4,

woraus folgt, dass I'}/* mit der Aktivitit z identifiziert werden muss.

Die Verallgemeinerung liegt nun auf der Hand: Hat man ein Gas mit
v-facher Wechselwirkung (d. h. das Wechselwirkungspotential erstrecke
sich maximal tiber » Molekeln), so betrachte man zwei Gruppen von je
v Molekiilen. Man berechne mittels der kanonischen Gesamtheit die
Wahrscheinlichkeitsdichte, dass, wenn die erste Gruppe durch die konse-
kutiven Koordinatendifferenzen w, ... ,_,; charakterisiert wird, die
zweite sich in einer Distanz L von der ersten befindet und durch die
Koordinatendifferenzen &, ... §,_; gekennzeichnet ist, wobei als Distanz L
zwischen den Gruppen irgendeine Distanz zwischen in beiden Gruppen
gleich definierten Punkten gewihlt werden kann. Man Laplace-transfor-

*) I'; ist dann der i-te Eigenwert im Sinne der Integralgleichungstheorie.
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miere diese Wahrscheinlichkeitsdichte beziiglich L, fasse die neue Variable
als Quotient von Druck und Temperatur auf und bestimme den kleinsten
Eigenwert [} (im Sinne der Integralgleichungstheorie) des so entstehen-
den Kerns:

@100,y [WA)| &y by

Die »-te Wurzel aus diesem Eigenwert bedeutet dann thermodynamisch
die Aktivitdt, d. h. es gilt:

M _ ¢ufn o " - 1/v
kT—vnkT—lnz+lnA, CEEW e

Wir finden sofort die Zustandsgleichung:

V= (), ) e =y T

1 0 0
v=70—ilnfl(}i.): —7 Inz. (8)

Hierin bedeutet v das spezifische Volumen.

II1. Die Bedeutung des Eigenvektors

Bevor wir den allgemeinen Fall niher untersuchen, wollen wir noch
etwas iiber die Bedeutung des zum Eigenwert I, ' gehorigen Eigen-
vektors sagen. Zu diesem Zwecke beschrinken wir uns zunichst wieder
auf den Fall » = 2 und bilden den Ausdruck:

Iy [ ag g(e) € | W | 0) [ an@ | W] ) fl) -

Er ist offenbar der Wahrscheinlichkeitsdichte proportional in einem
Gasmodell von 2 (n + m + 1) Molekeln das 2 # + 1-te und das 2 (» + 1)-te
Molekiil in einem Abstand { anzutreffen, falls der Abstand der ersten
beiden & mit einer Funktion g(£) und derjenige der letzten zwei # mit
einer Funktion f(n) verteilt ist.

Da der grosste Eigenwert Fl‘l nicht entartet ist, gelten die Bezie-
hungen :

oo

Tim Iy [ dn ¢ || ) flo) = ey an(0),
0

Jim Tt [[ds g(e) (€ [70]2) = ¢y by 2)
0
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wobei ap ({) unser Eigenvektor zu [~! und by ({) derjenige des adjun-
gierten Kerns zum selben Eigenwert bedeuten.

Die Konstanten ¢; und ¢, hingen noch von f und g ab.

Somit folgt:

n, Mm—>00

lim T [ dk g(&) (& |W0|2) [ an ¢ |7 1) fn) = ear, ) br(©)-
0 0

Die Grosse

(£) b, ()
W() = 20l ! 9
& [ag ar,(€) br,(8) &

ist also die auf eins normierte mittlere Wahrscheinlichkeitsdichte in einer
unendlich langen Kette irgend zwei aufeinanderfolgende Molekeln in
einem Abstand ¢ anzutreffen.

III. Reduktion des Eigenwertproblems auf ein einfacheres fdquiva-
lentes Problem

Wir wenden uns nun wieder dem allgemeinen Fall zu unter Bezugnahme
auf die am Schluss von Abschnitt I angegebene allgemeine Regel.

Wenn wir die Koordinaten in der ersten Gruppe mit x_,_,... x,, die-
jenigen in der zweiten mit x,... x, bezeichnen, so folgt:

ez v i
(1o %o | W] Hp.9,) = Hﬁ(xk_xk—i) B (% — %5_)
1<i<k 1<k=i
oder nach der Substitution:
r—1 r—1
Xiv1— % =6, xi=_25t+xu:—251+L+xo:
I=i Dwit
rv—1
Xoiv1 X =Wy, X_;i=— Zwl+x0’
l=v—1
%, — % =1L, (z=1,2...v—1), %, =L+ %,

(.- @,y ‘W(L) | §1... 8291 =

v

— kﬁ(gﬂ);:&) ﬁﬁ( VZ—’ wl—l—L—ZE,) %) .

1=1< 1=k=1 l=v—i+4+k

q
*) Summen J’ mit p > ¢ sind gleich Null zu setzen.
p
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Dabei wurde als Distanz zwischen den beiden Gruppen (L) die Distanz
der beiden in jeder Gruppe am weitesten rechts liegenden Molekeln ge-
wahlt. Es ergibt sich:

(@1 0,_y |W@A) | £.vn&y_y) =

- T kﬁ(lféz)dee‘*"Hﬁ(Zwv o+ L- 25)

1Si<hk N\l=Fk-i 1<SE<i

E W
- I8 5 5)fdso 2 1 p( St X8). o
1=i<k =%k 1Zh<i
Die letzte Umformung ist die Folge der Einfithrung einer neuen Inte-
grationsvariabeln *) : o1
f=L— Y&
fe I
Mit der Bezeichnung: '
K(o, &1 ... &, 4) =
r—1 y—1 v—1 r—1 5
=Hﬁ< 25) (2 51) e *v-1 — Hﬁ (2 5;) e *Ev-1
i=1 =0 i—0  \i=q

l=v—1g

lasst sich der letzte Ausdruck schreiben:

(@1 y_q |WA) [ & .. &) fdg{, VK@, 1& .. £, 5) X

X Klw, 5,0, 1,& -..&,_3) ... Ky ... w,_1, &) -

Sei nun a(é, ... £,_,;) der Eigenvektor zu I !:

o0 o0

Jotoo [t i K. by ) K@, g E-ne i) ooes

¢ 0
Klwy ..oy, &) aléy ... &) =17 aloy ... 0, ). (12)

Wir multiplizieren nun beide Seiten mit K(w, w, ... ®,_,) und integrieren
iiber w, _4:
oo oo o
F f dw,,_lfdso f dE,  K(Ey.o b)) o K@y .. 0, 1, &),
0 0 0

K o ...0,_1) a(&; ... &,_1) = [dwu_l alw, ...w,_1) Kl ...0,_4) .
b

*) Beachte, dass: (&) = 0 fir & < 0.
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Der Ausdruck

f dw,_; a(wy ... w,_4) K(w, ;... w,_,)

ist also wieder ein Eigenvektor zum grossten Eigenwert: I''. Da nun
dieser nach dem Satz von JENTZSCH nicht entartet ist, folgt:

o0

z/ dE K@y .0, 1, &) alwg ... 0,_1, &) = aloy...0, 1) . (13)

0

Durch Einsetzen von (13) in (12) beweist man, dass, falls a(w, ... ®,_,)
der Eigenvektor zu I' ! ist, der Proportionalititsfaktor z in (13) nichts
anderes bedeutet als die Aktivitit. Unsere Integralgleichung wird somit
dquivalent damit, die Funktion a(w, ... ®,_;) so zu bestimmen, dass (13)
mit moglichst kleinem Proportionalititsfaktor z befriedigt wird. Die
Funktion, welche das leistet, wollen wir in Zukunft mit a,(w, ... w,_,)
bezeichnen *).

IV. Der Zusammenhang mit der Integralgleichung von vaN Hove

Wir wollen noch kurz den Zusammenhang mit der von vaN HovE auf-
gestellten Integralgleichung herstellen, welche ein wenig von der unse-
rigen (12) abweicht. Nach (12) und (13) folgt zunéchst:

[deo... [ 4, s Ko, 1&...& ) . Koy ..o,y &) afEy .- £,_a) =
0

0
=) Ma(wy...0,_)) = 27" Va,(w;...0,_;) .

Umnumerierung der Koordinaten: & - &, ; (¢ =0, ... v — 2) ergibt:

i+1

./"dgl .../dEPlK(wy_l, E ok ) Ky o, 1, &) a(Ey .. ) =
0 0

270 Vg (0 ...0,_y).

Der Kern der Integralgleichung ist also:
(@ ...oop_y |LA) | &1 ... &,_1) =

v E-1 i1
LA B E A (F e b

*) Ihre eindeutige Existenz sowie die Existenz und Positivitit von z ist wegen
der Aquivalenz von (13) und (12) und nach dem Satz von JENTzscHB) gesichert.
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Im Hinblick auf die Iteration konnen wir diesen Kern in einem ge-
wissen Sinne symmetrisieren (was natiirlich in gleicher Weise auch mit
dem Kern (10) hétte geschehen konnen).

(@1 oo,y | L(A)| & .- &, 1) :lglzk]/;(:g&)]/‘;(,;w’)
k+1

6_1/2 [l”g ot 2 mz] ﬁ ﬁ(az w,_ l+2§) (15)

l1£ksd

Dies ist der Integralkern von van Hove. Er besitzt die Symmetrie-
eigenschaft:

(wl e Wy lLs(Z) | 51 51}—1) = (51)—1 51 |Ls(j') ‘ Wy_1--- wl) . (16)

Fiir die ersten drei Ausdriicke in (15) ist dies leicht zu verifizieren. Es
folgt aber auch fiir den letzten. Bei der Koordinatensubstitution, welche
die beiden Seiten von (16) miteinander vertauscht, erleidet er die Trans—
formation:

ﬁﬁ(iflw%ﬁi‘f,) f] (ti‘klgﬁzw ):

1=sk=14 =1 l= l=k=1 =1
i—Fk'+1
- I #3630,
1</ 4 i=1 I=1

Dabei wurde &' = 7 — k& ++ 1 substituiert und benutzt, dass aus 1 Sk =+
1 < B < i folgt. ' ‘

Der Zusammenhang zwischen der Eigenfunktion zu z a4 von L und
unserer Funktion a, ergibt sich durch Vergleich von (14) mit (15) zu:

a;(o; . f[ ﬁ( Zw) & oy o,y (1)

1<i<k le=f—1i

Weiter folgern wir aus der Symmetrieeigenschaft (16), dass der Eigen-
vektor der adjungierten Integralgleichung zum selben Eigenwert durch:

by ... w,_1) = & (®,_1 ... 0)
gegeben 1st. Aus (9) und (17) folgt dann:

Wiw,...0,_1) =c-a&(wy...0,_1) bilwy ... 0, ;) =
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Nach unseren Betrachtungen iiber den Eigenvektor, die sich ohne
weiteres auf den Fall »-facher Wechselwirkung verallgemeinern lassen,
gibt (18), nach Normierung auf eins, die mittlere Wahrscheinlichkeits-
dichte, » aufeinanderfolgende Molekeln in einer Konfiguration, charakte-
risiert durch die konsekutiven Koordinatendifferenzen w, ... w,_; anzu-
treffen. In der Invarianz von (18) gegeniiber der Inversion der Koordi-
naten w; ..., _; spiegelt sich die Symmetrie des Einflusses der linken und
der rechten Nachbarmolekeln auf unsere » herausgegriffenen wider.

V. Nichtexistenz eines Umwandlungspunktes

Wie vaNn Hove?) gezeigt hat, kann man leicht aus den Eigenschaften
des Integralkerns (10), (14) (oder (15)) folgern, dass ein eindimensionales
Gasmodell mit endlicher Reichweite des Potentials keine Umwandlungen
noch so hoher Ordnung zeigt.

Betrachten wir etwa den Integralkern (14)
(@1 0,y | L) | & ... £,3).

Als Laplace-Transformierte ist er holomorph in A fiir jedes komplexe A
mit ReA = e> 0.

Fithren wir die Variabelnsubstitution:

oQ oo

)= [e @ dE, L= [ pE) e

wy si

durch, so bleibt diese Eigenschaft erhalten, da sie die Substitution selbst
besitzt. Zudem wird aber durch diese Substitution der Grundbereich des
Kernes endlich gemacht. Daraus folgt dann sofort, dass die zum Integral-
kern gehorige Fredholmsche Funktion D(I7, ) in I” eine ganze Funktion
ist und dass sie holomorph ist fiir Re A = ¢ > 0.

Da nun weiter /] nach dem Jentzschen Satze nicht entartet ist, gilt:

(OD £0,

OF),A,FFI

so dass D(I'}, 2) = 0 iiberall nach ['}(A) auflosbar ist.

Aus den Regularititseigenschaften von D(I', 4) folgt dann, dass (1)
selbst eine in der rechten Halbebene (Re 4 = ¢ > 0) holomorphe Funk-
tion ist. Damit besitzt aber auch das Gibbssche Potential diese Eigen-
schaft, womit die Nichtexistenz eines Umwandlungspunktes bewiesen ist.
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VI. Ausdehnung der Methode auf quasieindimensionale Gase

Wir wollen nun die besprochenen Methoden auf gewisse eindimensio-
nale Modelle ausdehnen, die ich quasieindimensional nennen méchte und
unter welche im Prinzip auch alle héherdimensionalen Gasmodelle fal-
len, deren Molekeln einen harten Kern und ein Potential mit endlicher
Reichweite besitzen und die sich in einem Volumen befinden, das héch-
stens in einer Dimension unendlich ist. Am besten betrachten wir ein
Beispiel eines solchen Modells.

Gegeben sei ein Streifen der Liange L (L - o¢) und der Breite /, in dem
sich Quadratmolekiile der Seitenlinge 1 so bewegen konnen, dass ihre
Kanten immer parallel bzw. senkrecht zu den Réindern gerichtet sind.

yﬂ

< mm——m—m—m N - - -

| -

R e A I -

Denken wir uns nun die Molekeln so umnumeriert, dass ihre Koordi-
naten der Bedingung

Xy < Xy < X3 < ...

unterworfen sind, so kénnen wir jede beliebige Konfiguration der unge-
ordneten Molekeln aus einer entsprechenden Konfiguration der geordneten
Molekeln durch eine Permutation erzeugen mit Ausnahme derjenigen
Konfigurationen, bei denen irgend zwei Molekiile die gleichen x-Koordi-
naten besitzen. Die Menge dieser Zustinde im Konfigurationsraum hat
aber das Mass Null. Die Einfiihrung einer Ordnungsbeziehung in der
x-Richtung ist daher gleichbedeutend mit der Division des Zustands-
integrals durch N, fithrt also gerade zur richtig korrigierten Zustands-
summe ununterscheidbarer Teilchen. Die Ordnungsbeziehung ist in Fi-
gur 3 durch Geraden, welche durch die Mittelpunkte der Quadrate gehen,
angedeutet: Jede solche Gerade stellt fiir die Mittelpunkte der Nachbar-
molekeln eine Begrenzung dar.
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Wir denken uns ausserdem gegeniiberliegende Rédnder des Streifens
identifiziert, so dass eine Fliche entsteht, die dem Torus topologisch
dquivalent ist. Man erkennt dann, dass das Gas einem eindimensionalen
Gas entspricht, dessen Molekeln zusitzlich einen innern Freiheitsgrad
besitzen. Falls / der Ungleichung » </ < » + 1 geniigt, handelt es sich
um ein quasieindimensionales Gas mit »-facher Wechselwirkung.

Fir die Riickfiihrung dieses zweidimensionalen Modells auf ein quasi-
eindimensionales spielte die besondere Form des Potentials keine Rolle.
Wesentlich ist nur, dass es einen harten Kern beschreibt und dass seine
Reichweite endlich ist. Ausserdem stiitzt sich unsere Uberlegung we-
sentlich darauf, dass das Volumen héchstens in einer Dimension un-
endlich ist.

Bezeichnen wir die konsekutiven Koordinatendifferenzen*) in der
y-Richtung (vgl. Fig. 3) mit %, ... #,_, bzw. v; ... v,_,, so erhalten wir den
(14) entsprechenden Integralkern:

(0 %y, 0 Uy .0y _q %y _y | L(A) | &y vy, Eava e &y 10y y) (19)

einfach durch Ersetzung des Boltzmannfaktors (&) durch (&, v), wobei
der Ordnungsbeziehung dadurch Geniige getan wird, dass wir entweder
fir £ < 0 (& v) = 0 setzen oder die Integration iiber die &; bei Null
beginnen.

Die Variabeln #; und v; variieren im Intervall (0, /) mit / < oo. Das
Volumen der (verglichen mit dem eindimensionalen Modell) zusdtzlichen
Dimensionen des Konfigurationsraumes ist also endlich, so dass der Kern
(19) dieselben Eigenschaften besitzt wie der Kern (14) und die daraus
sich ergebende Folgerung iiber die Nichtexistenz eines Umwandlungs-
punktes sich auf unsere quasieindimensionalen Modelle iibertragen lésst.

Auch die Gleichung (13), welche eine 4quivalente, aber einfachere Form
des Eigenwertproblems (12) darstellt, und die Formel fiir die Wahrschein-
lichkeitsdichte (18) iibertragen sich auf unser Modell einfach durch die
Ersetzung (&) - (&, v). Zum Beispiel lautet jetzt (13):

o) [dv [ dE e BE D) B+, i+t )

BE+w, 1+ ... Fov+u,_1+ ... +uy) alwgttg, ...0,_1 %,_q, EV) =

— d(wl %1 PR wv_l MV—‘I) .

*) Die Einfiihrung von Koordinatendifferenzen ist in unserem Beispiel deshalb
moglich, weil wir gegeniiberliegende Réinder des Streifens identifiziert haben. Wiir-
den wir die Rander y = 0 und ¥ = ! (vgl. Fig. 3) nicht identifizieren, so miissten
wir an der Stelle der #’s und v’s Differenzen von Absolutkoordinaten y einfiihren
(vgl. Teil 2, Abschnitt I1IDb).
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Ein kleiner Unterschied ergibt sich in der Interpretation von A.
Da in (6) fiir das Volumen L ! = V gesetzt werden muss

o0
f ¢~ (FanlV) + GRTVINRT g1/ _ o= $alk T,
0

wird nun die mittlere in der x-Richtung auf die Lingeneinheit der y-
Richtung wirkende Kraft (der Druck) mit A durch die Beziehung:

kT A
p=—

verkniipft. Die Zustandsgleichung erhilt deshalb ebenfalls noch einen
Faktor /
I 0lnTl, Oln z
i =

v 0A 0L

(20)

v ist nach wie vor das Volumen pro Molekiil (= spezifisches Volumen).

VII. Zusammenfassung

Bevor wir zur praktischen Berechnung von einzelnen Modellen iiber-
gehen, fassen wir unsere Uberlegungen zu einer Regel zusammen:

Um die thermodynamischen Eigenschaften eines eindimensionalen Ga-
ses mit y-facher Wechselwirkung zu studieren, betrachte man » + 1 Mole-
keln und bilde den Ausdruck:

K(w, «..0;_; &) =

= PO BE 0, ) BE+ 01+, ) BEF D1+t ),

welcher nichts anderes bedeutet als die mit e~*¢ multiplizierte bedingte
Wabhrscheinlichkeitsdichte, das ¥ + 1-te Molekiil im Abstand & vom y-ten
zu finden, falls die Konfiguration der ersten » durch die konsekutiven
Koordinatendifferenzen w, ... w,_, charakterisiert wird. Man suche nun

die kleinste Zahl 2(4), zu der eine Funktion @,(w, ... m,_,) derart existiert,
dass

z(4) f dE K(wy...w,_1, &) a(wy...0,_1, & =a,(w; ... v, _4) (13)
0

gilt.

z(A) ist dann die Aktivitit des Gases in Funktion des Quotienten aus
Druck und Temperatur: A = $/k T und mit Hilfe von a,(w, ...w,_,) kann
man nach (18) die mittlere Wahrscheinlichkeitsdichte berechnen, beliebig

30 H. P. A. 35, 6 (1962)



466 Martin Kummer H.P. A.

herausgegriffene » aufeinanderfolgende Molekeln in einer Konfiguration
(wy ... ®,_;) zu finden.

Im Falle der quasieindimensionalen Gase fithre man die den Koordi-
naten der x-Richtung entsprechenden Koordinaten der y-Richtung ein
(vgl. auch Anmerkung auf Seite 464) und integriere in (13) {iber die & ent-
sprechende Koordinate de:- y-Richtung, wobei man das Integral iiber
ihren totalen Variationsbereich zu erstrecken hat.

2. TEIL

1. Das Zylinder- Quadratgas

a) Ableitung der Zustandsgleichung

Im Falle des schon im 1. Teil beschriebenen Quadratgases auf einer
Zylinderoberfliche (= Streifen mit identifizierten gegeniiberliegenden
Rédndern) lautet der Boltzmannfaktor ohne Forderung f(£, v) = 0 fiir
£E<O

P& v)=0(E&—1)+ 1) 61—, (1)
wo (&) die Stufenfunktion mit den Eigenschaften
0E =1 £>0;  6E=0 £<0; 60 =

ist und //(u) diejenige mit / periodische Funktion bedeutet, welche im
Intervall (0, /) iiberall verschwindet, ausser fir 1 < # <7 — 1, wo sie
den Wert eins besitzt.

Fiir das Rechnen mit der f-Funktion schicken wir noch die Regel

0(£) B(n) =6 (§ — ) 6(n) + 6 (- &) O(§)
voraus.

Wir beschrianken uns auf den Fall 2 < [ < 3, also auf den Fall der
Doppelwechselwirkung. Die Gleichung (1.13), welche in diesem Fall mit
der unsymmetrisierten van Hoveschen Integralgleichung zusammen-
fillt, lautet also:

2 / dv./" dEBE D) BE+w v+ u)e™alEv)=awu (2

mit (&, v) aus (1).
Nun ist aber

OE—1)+001 -0 —E—w)Tv+u=0,
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und zwar ist
B(E—-1)60(1—-&—-w)=0,

weil wegen der Ordnungsbeziehung sicher @ > 0 und damit 1 —w <1

gilt und
01—-8601—¢—w)w)I(v+u)=0,

weil dieses Glied dem Fall entspricht, wo sowohl Molekiil 1 wie 2 neben
dem dritten liegen (vgl. Fig. 4), was wegen der Voraussetzung 2 </ < 3
ausgeschlossen ist.

3

7 !

x 2 v

AL ‘ I
R R R o

! | |

TRV .

Fig. 4

Die Integralgleichung lautet jetzt

zfdvfdﬂe(f_l)+9(1—§)n(v)]e-“e(5+w—1)a(§,«u)=

0
= a(w, u) .

Da die linke Seite nicht von # abhingt, gilt dies auch fiir die rechte:
a(&, v) = a(&) ist von v unabhingig, so dass wir iiber v integrieren kénnen.
Dieser Schluss bleibt richtig, wenn wir an die Stelle von //(v) eine be-
liebige mit / periodische Funktion /7(v)g(v) setzen, die nur von der Koor-
dinatendifferenz und nicht von den Absolutkoordinaten y, und y, einzeln
abhédngt. Dies bedeutet, dass wir den Fall eines an die Quadrate seitlich
angehingten Potentials miteinbeziehen kénnen. Setzen wir also

!
| @) g@) dv =g,
0
so lautet unsere Integralgleichung

z/dfe‘” D0E -1+ 0(1—8g0E+w—1) e al) =al). (3)
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Im Spezialfall g(v) = 1 ist g =/ — 2. Denken wir uns dagegen seitlich
etwa einen Potentialtopf der Breite 7, und der Tiefe 1 angehdngt, so
wird :

g=(10—-2)+27,B—-1) mit: g =T, (4)

Die linke Seite von (3) besitzt fiir > 1 denselben Wert wie fiir o = 1.
Dasselbe muss daher fiir die rechte Seite gelten.
Wir machen also den Ansatz:

a(w) =0 (0 — 1) a(l) + 6 (1 — o) a(w) (5)

und beschrinken uns auf das Intervall 0 < o < 1.
Die Integralgleichung erhilt damit die Gestalt:

fd&e"‘f[lﬂ(&wl)ﬁ(l) LA -0 +w—1)aE) g e =

1
=2 1a() + gfdéf e 2(E) = 21 a(w) - (6)
l-w
Sie ist offenbar dquivalent der Differenzendifferentialgleichung
_ _ 0
—A(l—w) _ T P 9
zge a(l —w)=a(w) = (7)

mit der Randbedingung:

‘9;‘ la(l) = 21 a(0). (8)
(7) erhalten wir aus (6) durch Differentiation nach o und (8), indem wir
in (6) speziell w = 0 setzen.

Nach (7) gilt auch

zge*alw) =a (1 —w),

wo der Strich einfach die Ableitung nach dem Argument bezeichnet.
Man erhélt somit

2w =zg[—a(l—w) +ia(l —w)]e =
=—2g%¢ " a(w) +Aa'(w). (9)

- Die Integralgleichung ist also dquivalent der Differentialgleichung (9)
mit den Randbedingungen (8) und (10):

zge*a(l) =a'(0), (10)

die sich aus (7) fiir & = 0 ergibt.
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Die allgemeine Lésung von (9) ist

a(w) = A e*® + B e*® (11)
mit
1 1
01=(2+t)2, Co = (7—5)/1
und
_1/1 g 2 -2
t—-I/T“er s (12)
also
1 A2
22 = (T = t2) Ez’ 61 . (13)

Befriedigt man die Randbedingungen (8) und (10), so erhdlt man ein
lineares homogenes Gleichungssystem fiir 4 und B. Es besitzt nicht-
triviale Losungen unter der Bedingung:

((1/2)=2) (v+8)> _ 22

wzro = = ° (14)
bzw.

22—y (1-—v) _ Tgit

2v—(1/2)2—(1/2) 2 ¢t )
mit
_ 1 g
V== 7.

(14) bzw. (15) ist, wenn wir fiir £ noch die rechte Seite von (12) substi-
tuiert denken, eine transzendente Gleichung in z, deren kleinste Losung
die gesuchte Aktivitit ist.

Einfacher ist aber das folgende Verfahren: Wir fassen (14) als eine
Gleichung in ¢ auf und bestimmen diejenige Lésung ¢ von (14), welche in
(13) substituiert z am kleinsten macht. Man, erkennt, dass dies fiir die
grosste reelle Losung £, bzw., falls keine reelle Losung existiert, fiir die
absolut kleinste rein imagindre Losung der Fall ist.

Wir beschrinken uns zunichst auf den Fall reiner Quadrate, das heisst
wir setzen g =/ — 2, also » = (2/]) — (1/2).

Die Voraussetzung 2 < I < 3 zieht 1/6 < » < 1/2nach sich. In diesem
Fall existiert genau eine reelle Losung ¢ zu jedem A mit 0 < A << oo,
Dies erkennen wir wie folgt. Aus (14) bzw. (15) entnimmt man:

L= fir A=o00,

t=)v (1 -9 fir A=0.

Dabei ist wegen I > 2:
t(co) < ¢(0) . (16)
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Weiter erhdlt man durch Logarithmierung und Differentiation aus (14):

di 1 2y
ot [‘Jﬂfﬁ" N 7 (1/4 -z )‘] ( ) ' (17)
(dt/dA) verschwindet im Bereich 0 < 1 < oo nirgends ausser fiir A = oo

(t = ). Daraus und aus (16) folgt, dass #(4) monoton fallend ist, wie dies
Figur 5 zeigt.

A,:

Nl
T

" \

\

My

Fig. 5

Lasst man also ¢ die Werte zwischen » und ]/;)—(1 jv)mdurchlaufen, SO
durchlduft A die reelle positive Achse. Damit ist der Variationsbereich des
Parameters ¢ eindeutig auf das Intervall » < ¢ < |/» (1 —») festgelegt.
(Wegen der Invarianz von (14) und (15) gegeniiber einer Substitution
t - — ¢, kénnten wir natiirlich # auch auf das Intervall — }/» (1 — %) <
t < — » festlegen.)

Fiir das spezifische Volumen erhalten wir zunichst aus (1.20) und (13):

0 L1 (aydd

A 14—

und schliesslich unter Beriutzung von (17):

vﬂi—i—i—i— s — v<t<|/'u 1;7)
I (A+—2”) (1/4) = 12) +1/2
1‘2—1)2
_ 1 (2= ()2 _ 2 1 _ Pt
=Gy Y= 2 A=gr (18)
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Dies ist eine Parameterdarstellung der Zustandsgleichung mit einem
Parameter ¢, der in den angegebenen Grenzen variiert. Die zugehérigen
A — v-Kurven sind in der graphischen Darstellung I aufgezeichnet. Aus-
ser zur Festlegung der Variationsgrenzen fiir £ wird die spezielle Annahme
g = | — 21in der Herleitung von (18) und auch in derjenigen der folgenden
Formeln dieses Abschnitts nirgends benutzt, so dass sie mit anderem
Variationsbereich fiir £ auch ohne diese Voraussetzung richtig sind.

|
4 Graph Darst. I.
| PRI v-Kurven des Zy/inder- ’
Quadralgases fur vers- \
schredene Umfange (
1){=2 )-25
4 2)-202 Yi=286 (v-02)
| |
2

Fiir die mittlere Wahrscheinlichkeitsdichte, dass ein Molekiil die Koor-
dinaten (w, #) in bezug auf das ihm am néchsten links (bzw. rechts) lie-
gende besitzt, erhalten wir gemdss (1.18) und (5):

W(a),. u) = C [0 (w — 1) a®(1) + g(u) IT(u) 0 (1 — ) a¥(w)] e **, (19)

wo C ein Normierungsfaktor ist und a(w) sich aus (11) und aus der durch
Kombination von (8) und (10) folgenden Randbedingung

) @'(0) = ga(0)
zu

alw) ~[(v — 1) e — (v + #) e M) B (20)

ergibt. (Das Zeichen ~ bedeutet proportional.)
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Wie es sein muss, wird fiir A - 0:
Wiw, u) ~6(w—1) + 0 (1 — w) 11(x) g(u)
also proportional zum Boltzmannfaktor.
Normieren wir a(w) derart, dass in (20) das Gleichheitszeichen gilt, so
erhalten wir fiir die Konstante C in (19):
c=a)isl+

+g {Z—M (=2 @% — - tpe?) + 22 22— z2)} . (21)

Graph. Darst. II.
2T Wi a)fir das Zylinder-Quadralgas
(£-28) T<u<is

7 @

In der graphischen Darstellung II findet man einen Querschnitt durch
die W(w, u)-Flache im Falle g(u) =1 fir 1 < u <I— 1 bei zwel ver-
schiedenen Drucken.

b) Der Fall hoher Drucke (g =1 — 2)

Wir setzen £ = » (1 4 ¢) mit e <L 1.
Aus (14) folgt dann:
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das heisst ¢ o~ ¢—1 e—*? mit:

g K l/ﬂ!?w_v
T2 apzy-v -

Fiir das spezifische Volumen erhilt man somit in dieser Naherung:

~ l I 192 B
VR T T el - -2 vr 2
! l 2113 edv
=2 YT T e (22)

Mit Hilfe von (19), (20) und (21) berechnet man die normierte Wahr-
scheinlichkeitsdichte W (w, #) fiir hohe Drucke und g =/ — 2 (vgl. auch
graphische Darstellung II, 1 = 8,36):

1

+ 0y (1 — @) II(w) L (I = 2) + 21 dypa(e) TT(w)] - (23)

Darin ist 4, 5(w) eine uneigentliche Funktion, welche in folgender Weise
als Limes gewohnlicher Funktionen definiert werden kann:
6112(60) = lim a 0(6{)) eAaw. (24‘)

Uber dem Raum der stiickweise stetigen Funktionen besitzt sie die
folgende Eigenschaft:

+o0
[ dusle) f@) doo = f(+-0). (25)

Multipliziert man (23) noch mit du, so entsprechen die drei Terme den
Wahrscheinlichkeiten der drei Situationen, die wir bei iiber alle Grenzen
wachsendem A (das heisst T - 0 bzw. p - oo) antreffen. Der erste Term
gibt die mittlere Wahrscheinlichkeit, dass der rechte (linke) Nachbar
eines beliebig herausgegriffenen Molekiils von rechts (links) her in bezug
auf dieses in eine Position mit den Koordinaten zwischen (1, #) und
(1, # + du) gelangt, der zweite die mittlere Wahrscheinlichkeit, dass dies
von links (rechts) her geschieht, und schliesslich der dritte die mittlere
Wabhrscheinlichkeit, dass der rechte (linke) Nachbar im Abstand zwi-
schen # und # + du seitlich neben das betrachtete zu liegen kommt.

c¢) Der Ubergang zum eindimensionalen Gas

Wir setzen I = 2 (1 + ¢) mit ¢ € 1. Es wird
1

(2 Nl ~l 2~i
V—(T——7)___—2~—8, 'V(]-_'V)z'z &* = .
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Somit
1 1
? — &< ¢ = ‘2“ .
Wir setzen deshalb weiter
= — e mit 0<oa<l1.
Damit erhélt man aus (14)
o | e o
e A =T
und aus (18)
v 14+ % 4 -

? (A+ (1—1cx) 6)a8+ (1/2&)“

Wegen lim ¢ In ¢ = 0 kdnnen wir den Term A « ¢ gegeniiber den iibrigen

E—>0

Termen vernachlidssigen, so dass folgt

2 l—a

U'_\_'].—i- +m.

= N

Hieraus ergibt sich

1-— 1 /1
o~ °  bzw. se":J—g?(——l)

1+¢ = (1—o)? c®
mit :
c(v,l)=v—1—£
A
und schliesslich
SRR DN AT S (26)

A ]/Z—sel+1

Ist & noch so klein, aber verschieden von Null, so gilt doch asympto-
tisch fiir p > oo:

RT
~14+ —.
vzl 4 b
Fiir ¢ = 0 dagegen gilt:
kT
. R X.
v + 5

Der Ubergang vom zwei zum eindimensionalen Gas ist somit fiir grosse
Drucke unstetig, was anschaulich aus der Betrachtung der dichtesten
Packungen sofort klar wird.
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d) Diskussion des Quadratgases mat seitlichen Potentialtopfen

Wir wollen nun den Fall betrachten, wo die Quadrate noch seitlich an-
gebrachte Potentialtopfe der Breite 7, und der Tiefe 1 besitzen. Nach
(4) ist dann:

g=1—-2+27(f—1),  mit =",

und die Grésse v = (1/2) — (g/l) nimmt fiir geniigend tiefe Temperaturen
negative Werte an. Das ohne Potential gefundene asymptotische Verhal-
ten fiir grosse Drucke gemiss (22) kann fiir negative Werte von » nicht
mehr richtig sein.

Tatsdchlich ist » = 0 daskleinste, fiir welches (14) noch reelle Lésungen
in ¢ besitzt, und zwar ist diese Losung £(A) = 0, so dass in diesem Fall, dem
die Temperatur 7; aus

eVﬂ/le:l(l —l)—l— 1

Ty 4
entspricht, die Zustandsgleichung

l l l

| B R TR,
lautet.

Oberhalb der Temperatur 7; verhilt sich das Gas wie das Quadratgas
ohne seitliches Potential: Einer Erniedrigung der Temperatur T (> T;)
im ersten Modell entspricht eine Verbreiterung des Streifens im zweiten.

Unterhalb der Temperatur 7}, wo keine re lle Lésung in £ von (14) bzw.
(15) mehr existiert, treten, wie wir sehen werden, im Vergleich zum Mo-
dell ohne Potential prinzipiell neue Ziige im Verhalten des betrachteten
Modells auf.

In diesem Fall (v negativ) miissen wir also die absolut kleinste rein
imaginidre Lésung von (14) bzw. (15) in ¢ suchen. Setzen wir ¢ = ¢ 7 (r ist
nicht zu verwechseln mit der Breite des Potentialtopfes 7,), so lautet (15):

=+Tv(l—12) — ()

tgrld= T2 v—(1/2)] 22+ (1/2) »*

Wir haben also das kleinste 7 zu bestimmen, zu dem ein Schnittpunkt
der beiden Kurven y = tgtA und v = f(r) gehort. Dies geschieht in
Figur 6.

Zu beachten ist, dass die Kurve y = f(r) Pole an den Stellen

»
o __
Tio =

Vidv
und Nullstellen 7§, = 4 |/— » (1 — %) mit der Eigenschaft | v | <|1°|
besitzt.
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Wahrend diese Kurve von A unabhingig ist, werden die tg Ar-Kurven
steil oder flach, je nachdem A gross oder klein ist. Durchlduft A die posi-
tive relle Achse von 0 bis oo, so wandert der kleinste Schnittpunkt 7 mo-
noton von 7 = }/— » (1 — ») nach 0. Dabei wechselt dieser Schnittpunkt
bei 1 = 7/2 77° vom ersten zum zweiten Ast des Tangens (vgl. Fig. 6).

Fig. 6

Die Monotonie der t(4)-Kurven erkennt man wiederum aus der Tatsache,
dass dt/dA nach (17) (wenn wir dort £ = ¢ 7 setzen) im Bereich 0 < 1 < o0
nirgends verschwindet als fiir 4 - oo. Wir haben also in diesem Fall
(v = negativ) die folgende Parameterdarstellung der Zustandsgleichung

Btz (l-—19)

[2v—(1/2)] 224+ (1/2) »? "’ 0=7i<m,

1
A= —arg tg

I 2 T

(4= 25) (G 7) L1 0ET= y—v(—2). (@)
2+02 ) \ 4 2

Auf der graphischen Darstellung III findet man die zugehorigen Kur-
ven aufgezeichnet, und zwar mit folgender Wahl der Gréssen /, 7, und
1ot 1 =3, 19y=1/2 und V, = 3[log e. (Bei dieser Wahl des Potentials
wird ndmlich einfach p = 4/log §.)

Fiir sehr grosse A kénnen wir zur Ermittlung des Schnittpunktes der
beiden Kurven y = f(r) und y = tg A7 die erste durch ihre Tangente im
Ursprung, die zweite durch ihre Tangente an der Stelle At = 7 ersetzen.

2T
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Die Koordinate des Schnittpunktes ergibt sich also aus:

2(1—1)‘(:}.1’—%
Zu
T
W) = En oA

Graph. Darst 7
Zustandsdiagramm daes
Quadratgases mit
settlichem Potentiallonf

/=3

A’Jagﬂ

‘
L 7

Damit wird
4] n2

{(A+2 11— (1/n)]P

oder fiir sehr tiefe Temperaturen (» > — o0):

vV

I

l l
2t

l ! 4] n?

e T iy

477

(28)

Die letzten beiden Formeln beschreiben also die asymptotische Form
der Zustandsgleichung fiir A - co im Falle 7 < 7;. Die entsprechende

Formel fiir T > T, ist natiirlich (22) mit » = (1/2) — (g/)).

Fiir sehr tiefe Temperaturen erhebt sich die Frage ob es zu einer Paar-
bildung der Molekeln komme oder ob sich alle Molekeln untereinander

verketten.
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Die Berechnung der Wahrscheinlichkeitsdichte entscheidet fiir die
zweite Alternative. Fiir / = 77 und grosse negative » geht namlich (19)
iber in
6 (w—1)sin® A7 =940 (1— w) I(u) g(u) sin? A7 o

W(w, u) = - (¢/2) sin* A7+ (g/4) [2—(sin 2 A7/ 7)]

Fiir T - 0 geht ausserdem 4 > o0 (A7 = ).

Somit erhalten wir fiir die Wahrscheinlichkeitsdichte, dass das rechte
bzw. linke Nachbarmolekiil relativ zu einem beliebig herausgegriffenen
die Koordinaten (w, #) besitzt, am absoluten Nullpunkt den Ausdruck

W(w, u) = 01— ) L) sinz o,

0

lﬂngmlﬁmf@w (29)

eine mit / periodische Funktion bedeutet, welche im Intervall (0, ) iiber-
all verschwindet ausser fir 1 < u <147,/ —1—7,<u<Il—1, wo
sie den Wert eins annimmt.

(29) zeigt, dass eine Paarbildung ausgeschlossen ist:

W0, u) = W(L, u) =

Es kommt also zu einer Verkettung der Molekeln, und zwar am wahr-
scheinlichsten zu einer solchen, in der die x-Koordinaten der Quadrat-
mittelpunkte der einen Reihe bis auf einen Spielraum dw mit denjenigen
der Quadratkanten der andern Reihe zusammenfallen (0w = 1/2).

e) Vergleich mit der «free volume theory»

Wir wollen in diesem Abschnitt anhand der besprochenen Modelle die
«free volume theory» in ihrer einfachsten Form priifen. Diese Theorie ist
eine Ndherungstheorie zur Berechnung von Zustandssummen von rea-
len Gasen bei sehr hohen Drucken. Sie griindet im wesentlichen auf drei
Annahmen (wobei die dritte manchmal durch schwichere als die hier
angefiihrte ersetzt wird):

1. Man teilt das Gesamtvolumen in soviel zueinander kongruente Zel-
len, wie Molekeln vorhanden sind, weist jedem Molekiil eine solche Zelle
zu und zdhlt nur Zustdnde, bei denen jedes Molekiil in der ihm zugewie-
senen Zelle sitzt.

2. Sei P(x, ... &) die Wahrscheinlichkeitsdichte, das z-te Molekiil am
Orte x; zu finden, wobei also x; auf die i-te Zelle beschrinkt ist. Man
macht dann den Ansatz

Pm“mgagwm,



Vol. 35, 1962 Eindimensionale und quasieindimensionale Gasmodelle 479

welcher in einer gewissen Analogie zum Hartree-Ansatz zur Lésung der
Schrédinger-Gleichung eines Vielteilchenproblems steht. ¢(x) ist die Ver-
teilungsfunktion des Ortes irgendeines Molekiils in seiner Zelle. Die Nor-

mierung verlangt:
f (%) d% — 1,
A

wo A das Zellvolumen bedeutet.

3. Man wihlt als Verteilungsfunktion ¢(x,) diejenige, welche sich ergibt,
wenn alle Molekeln ausser dem ersten (dem Wanderer) in den Mittel-
punkten ihrer Zellen festgehalten werde, d. h. man setzt

p(x) = S PE()—EO)]RT (30)

Uy
mit
N
ZV R+«

7

wo R, ; der Vektor bedeutet, der vom Mittelpunkt der Zelle ¢+ zu demjeni-
gen der Zelle 7 weist.

Die Energie in (30) ist so normiert, dass dem Zustand, bei dem alle
Molekeln in den Mittelpunkten ihrer Zellen sitzen, die Energie Null ent-
spricht. Der in (30) auftretende Normierungsfaktor v,

Ufzfg—[E(r)AEwn/desx, (31)

heisst das freie Volumen. Es ist also die Zus tandsumme iiber alle Zu-
stdnde eines Molekiils in seiner Zelle, wenn alle andern in ihren Zellmittel-
punkten festgehalten werden.

Fir die Zustandssumme aller in dieser Ndherung zugelassenen Zu-
stinde des Gases erhdlt man also:

N ~FafkT
mithin
v _ _n . p _ (O0Fy\ 1  (0lnvw
ar =~ Nings ir =~ (99 )ewr = (%00 )

-

wo v das spezifische Volumen bedeutet.

Im Falle, wo das Potential einen geometrischen Korper beschreibt
(also nur die Werte 0 und oo annimmt), bedeutet gemdss (31) das freie
Volumen nichts anderes als das Volumen desjenigen Teils der Zelle, in
dem sich das zugehéorige Molekiil frei bewegen kann, ohne an die in ihren
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Zellmittelpunkten festgehaltenen Nachbarmolekeln anzustossen. Unter
den Bedingungen:

¥x<<2(x—1) d.h. x<2,
%<z—2 d.h I<4,

von denen die erste bei geniigend hohen Dichten, die zweite immer er-
fiillt ist, erhalten wir also fiir unser Quadratmodell (vgl. Fig. 7)

vf=2(x-—1)(l—2)=(2—;-)——1)(l—2). (32)
AR !
i
Fig. 7
Somit
p 0 20 1 1 RT
ﬁ—o—vm(”r—l)—v—_(i/z—)’ v=gt 5 (33)

Dies ist auch die aus der «free volume theory» folgende Zustandsgleichung
im Falle seitlich wirkender Kréfte, da in diesem Fall / — 2 in (32) durch
g zu ersetzen ist, was aber auf die Zustandsgleichung wie der Ubergang
von (32) zu (33) zeigt, keinen Einfluss hat.

Durch Vergleich von (33) mit (22) und (28) stellen wir fest, dass die
«free volume theory» fiir beide Modelle gute Resultate liefert, da beim
ersten Modell der zum «free volume»-Wert hinzukommende Term fiir
hohe Drucke exponentiell, beim zweiten wie die dritte Potenz verschwin-
det (T < T). '

II. Das eindimensionale Gas mit Doppelwechselwirkung

a) Ableitung der Zustandsgleichung
Die Gleichung (1.13) lautet im Falle der Doppelwechselwirkung

[ a8 8E+w) e a) =27R) afw). (34)

0
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Wir machen die Voraussetzung:

1. B&) =0 fiur £&<s
2. BE =1 fur &E=vr

mit: 2s<<r<3s.

Weiter definieren wir:
T=%¥—§, H=T—5S5=7r—28,
Es gelten die Grossenbeziehungen:
O yLsrL s r= 33,

Unter Beriicksichtigung der ersten Voraussetzung lautet (34):

2 [ 4B BE+w) e ald) = alw).

Wegen der zweiten Voraussetzung hat in dieser Gleichung die linke Seite
fiir @ > 7 den gleichen Wert wie fiir w = 7. Dasselbe gilt also auch fiir
die rechte, so dass der Ansatz:

a(w) = a(r) 0 (w — 1) + a(w) 0 (t — )

gerechtfertigt ist. Die Integralgleichung geht damit bei der Beschrankung
w < 7 iber in:

) [ de e e+ [ dE p@) BIE+ ) e all) =51 dle)

* Wir wihlen nun speziell einen Potentialtopf der Breite 7, und der
Tiefe 17, (vgl. Fig. 8), d. h. wir setzen:

BE =0E—r) +p0(r—10), B =T

Damit erhalten wir die Integralgleichung:

‘_1(;')__ [e—lr £ ﬁ(e—).r . ewﬁ.r)] e

+ﬁ/ﬁﬂma+w—n+5e@_§—wnr“aa=qu@

31 H.P. A. 35, 6 (1962)
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SN al) B [ dEeEaE) [ g aE) — 2 aw)  (39)

mit
A =1 —=ple*+p. (36)

V)
A
- —— § —-—p
| T?
el E o e = %

.- - - - - — 70'———— -~ B :

v
Fig. 8

Wiederum erhdlt man durch Differentieren nach w ecine Differenzen-
differentialgleichung

Bl —Palr—o) e = (w) (37)

und durch Einsetzen eines speziellen Wertes fiir w, z. B. @ = 7 in (35) die
zugehorige Randbedingung:

B-At

v+ B [ dEerag = 20 (38)

Aus (37) folgt sofort durch einmalige Iteration eine gewoéhnliche Diffe-
rentialgleichung:

@) e =z (1~ e L alr—o) =

— 2 (1 e afo) o
bzw.

a’(w) —Aa'(w)+ 22621 — B)2e " alw)=0. (39)
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Weiter ergibt sich aus (37):
_ 1 J —

Bay et =~ Ly ppat =8
Diese Beziehung in (38) eingefiihrt, ergibt
2B(1— B v, al) + pafr) — fals) = O (40)
bzw. ' ' ; - : ;
s) +ApB%a(r) —ABa(s)=0. (41)

Die letzte Beziehuhg folgt aus (40) unter B-enutzung von (37) firm =s

Zf(1—p) e al) =als). (42)

Fir o = 7 lautet (37)
zf(1—p) e als) =a'(x). (43)

Durch Multiplikation von (41) mit z (1 — ) e~*” und Verwendung der
Beziehungen (42) und (43) erhalten wir eine weitere Randbedingung zur
Differentialgleichung (39)

—A(t+7)

— B)?

a(%) +BRe ™ a(s)—e " a(t)=0. (44)

Die Wahl von (41) und (44) als Randbedingungen zu (39) unter den
vielen von diesen linear abhingigen Méglichkeiten erweist sich deshalb
als giinstig, weil nun sowohl in der Differentialgleichung als auch in den
Randbedingungen z nurmehr im Quadrat auftritt.

Die Losung von (39) ist

a(w) = A é1° + B ¢e-°, (45)
mit
lcl=(—l——|—t)ﬂ; c2=(1—t)l

und

t—+l/ LEC oiv,  (46)

Die Umkehrung von (46) lautet

‘ A2 gtr 1 2
2= FA—p (:( — fz)- . e (A7)
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Unter Verwendung der Losung (45) fithren die Randbedingungen auf
das Gleichungsssystem

4 {(_; T t) v(4) — /3] gt 4 g2 ec‘“} +

+ B {:(_1_ — t)v(a) — B] & + 2 efe“} -0,

[/ 1
e R | Cat e B
4o B{[(; 1 t) y(A) — ﬁ] g 4 8““‘“} =0,
welches genau dann eine nichttriviale Lésung besitzt, falls

(212 _ t) {[(% n t) »(A) — 5] o~ (R +AGNID) | g /2141 (An/2)}2 -

- (% n t) {[(_;_ _ t) »(A) — 5] o~ 1AR=00212) | g2 8[(1/2)—t1<zn/2)}2

bzw.

2 {[(71,‘ — t2) »? — 62] g~ Anf?) _ ga e"”z} coshtAn—

— {[(.1 = 52) (12 — 4 Bv) + ﬁ2] e~ ni2) _ pa ezn/z} »

5 Em;ttin L 4p=0 (48)

gilt, won =1 —s.

© ©

He) - VB8 1

tfeo) =4 tHo)=Yi-8°(1-8)F  lfoa) -4
Fig. 9 B & 1+2V3 B < 1+2V3 .,

Wiederum miissen wir im Hinblick auf (47) das grosste reelle, oder falls
ein solches nicht existiert, das absolut kleinste rein imaginidre #(4) be-
stimmen, das dieser transzendenten Gleichung geniigt. Wie man sich
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vergewissert, ist der Variationsbereich von #(4) der in Figur 9 in der
t-Ebene gezeichnete.

Dabei ist speziell der zu ¢ = 0 gehorige Wert von A:4, die Lésung der
transzendenten Gleichung

[_vz.gj}l_ e~ Rm2) _ ﬁ“] (1 _ _11277) _

—B[B+ 65 — 59 dym] e n — 23

Mit Hilfe einer elektronischen Rechenmaschine wurden fiir y =1=s
einige t*(1)-Kurven berechnet. Beispiele (8 = 1,4; 8 = 2,0; f = 25,0) fin-
det man auf der graphischen Darstellung IV.

2 B
¢ Graph Darst IV [osungskurven der transzendenten

05 Glerchung (45)
e 2
faid ! 2 J
b -25

Die Berechnung des spezifischen Volumens geschieht dann nach der
aus (1.8) und (47) folgenden Vorschrift:

11 dtd (49)

_ 0 _ U
v=grnz=st o+ -5 am-e

B &
erfordert also noch eine Differentiation der #2(1)-Kurven, welche mit der
Maschine nicht ausgefithrt werden konnte. Es mussten daher graphische
Methoden benutzt werden, was eine erhebliche Einbusse an Genauigkeit
bedeutet. Aus diesem Grunde und auch weil die Kurven (49) gegeniiber
den von GURSEY?) berechneten prinzipiell keinen Unterschied zeigen,

sind sie hier nicht wiedergegeben. Fiir Interessenten liegt das Zahlen-
material vor.
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b) Asymptotische Entwicklung fiir hohe Drucke

Wir setzen

) =, —e(d) mit e<1.

Unter Beriicksichtigung von »(cc) = f lautet die transzendente Gleichung
(48):

8(/1) 62 6?.7; = 6—5().)).:7 + ﬁz 65(}')}"? L 25 ; (50)
Machen wir den Ansatz:
) @ ae 4 be AN,

so folgt durch Vergleich der konstanten bzw. der e~*" proportionalen
Terme auf der linken und rechten Seite von (50)

)

Damit erhilt man:

und daraus

i 1 n 1-2[(a®—b)/a] e=4n
A 2 71—[(0:2—13)/@] e—An

~ A
v=3—+—2

S ] (LB RE MR PR

Das Zusatzglied zur Zustandsgleichung des Stidbchengases verschwindet
exponentiell fiir A - oco.

c) Der Fall § - oo

Der Fall § - co kann entweder als Fall unendlich tiefen Potentials bei
endlicher absoluter Temperatur oder als Fall endlichen Potentialtopfs
und verschwindender absoluter Temperatur interpretiert werden, wobei
man bel der zweiten Interpretation die Konsequenz- A - co nur dann
nicht zu ziehen braucht, wenn man gleichzeitig p — 0 gehen ldsst bei
 konstant gehaltenem A = p/& T. Es ist auch moglich; den Fall f > oo als
nullte Naherung einer Tieftemperaturentwicklung aufzufassen (vgl. Ab-
schnitt ITTa). Aus (48) und (49) folgt sofort, dass in diesem Fall die Zu-
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standsgleichung in einer Parameterdarstellung angeschrieben werden
kann:

1 ¥ 1
A= i ArTg 2¢ : v.::: S + 2’ + — BT
1/n— A2
/'L_Z_%, 0 <t << —,
2 o . i 1
/'Lm—nxctbx, v—s+w2-+ri-‘uié-;2 —
n[1- (4 n/2)
2 7T E
1s2, o<xs7. (52)
Insbesondere erhalt man zu A = 0 das Volumen
1 2
vmseq(to 2 53)

Die A(v)-Kurve ist also eine steil abfallende Kurve mit der Asymptote
v = s und der Nullstelle (53).

III. Summarische Besprechung weiterer Modelle

a) Hoch- und Tieftemperaturentwicklung fiir esn Gas mit v-fach wechsel-
wirkendem Potentialtopf

Wir gehen aus von der Glelchung (1.13), die wir durch die Koordinaten-
substitution

Xy—1 =W, 1, Wy 1= Xy_1,
xv—2_wy~1+wv~2J Wy_9=%X, 90— X,_1,
X1 =0, 1+ 0, s+ ...+, = =% — X,

auf die einfachere Form
o+1
/dfe-ﬂ Hﬁ EHa e lEon 6,8 = LD Lol )
k=1
bringen. Dabei wurde
1 =x,=0.

‘C(Z)=Z‘1(ﬂ.), o=v—1, &

o+
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und
a(wy. ooy, q) =a, (% — Xy X, o — %, 1, %, q) =[.(% ... %, _4)

gesetzt. Wir nehmen dann an, dass das Potential die in Figur 8 angege-
bene Gestalt besitzt, wo aber 7 jetzt der Ungleichung v s <7 << (v + 1) s
genugt.

Die Gleichung fiir die Bestimmung der Aktivitit lautet somit in diesem
Falle

oo ol
fdé'e"/lsﬂ[l +e0(r—E—x)]f (-t &.ox,+68)=
4 k=1

= C(Z) fz(xl xg) (54)

mit ¢ = VT _ 1,

Fir 2T > V, ist ¢ eine kleine Grosse, beziiglich der wir Stoérungs-
rechnung treiben kénnen. '
Wir setzen also:

f.(%1 ... %) = fol®g .. %) + & fu(#y ... %),
CA) = &o+ &y

und finden nach einiger Rechnung

mit

Daraus

~ 1 Vo v M-1 k —A(r—ks)
U=S+7“"‘ﬁkﬂ1'(k“_"1)|- (T—kS) e .

Insbesondere gilt fiir hohe Drucke in dieser Hochtemperaturniherung

o~ L Vo *70 o, -an

VEST T =T o 1°

mit # = 7 — »s. Dies ist fiir » = 2 tatsdchlich dasselbe, was man erhilt,
wenn man in (51) e"* T — 1 ~ V,/k T = ¢ setzt und nur lineare Glieder in
¢ beriicksicht.
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Sucht man mit unserer Methode die Aktivitdt im Rahmen einer Tief-
temperaturentwicklung, d. h. durch Stérungsrechnung beziiglich 1/, zu
bestimmen, so erkennt man, dass die nullte Niherung der Gleichung (54)
dquivalent ist der partiellen Differenzendifferentialgleichung

— e AR f(xg + 7 — %y, %5 + T Xy By T = X, 7)) =
0
= %o rs Folwg o5, xg)

mit der Randbedingung f,(7; #5 ... #3) = 0. Fiir v = 2 fithrt dieses Rand-
wertproblem tatsdchlich wieder auf die Zustandsgleichung (52). Wahr-
scheinlich wire es moglich, unter einigem Rechenaufwand obiges Rand-
wertproblem allgemein zu lgsen, doch lohnt sich dieser Aufwand, ge-
messen am Interesse fiir die Losung, nicht. Fiir » = » s muss ja (in nullter
Nidherung) die A(v)-Kurve eine Senkrechte bei v = s werden, wiahrend sie
sonst eine steil abfallende Kurve sein muss, welche fiir 2 - oo besagte
Senkrechte als Asymptote besitzt und auch fiir alle andern Werte von 4
(insbesondere 4 = 0) den Wert v = 7/v nicht tiberschreitet.

Immerhin zeigt die Betrachtung, wie kompliziert es ist, nur schon die
nullte Naherung der Aktivitit im Rahmen einer Tieftemperaturentwick-
lung exakt zu bestimmen.

b) Das Streifen-Quadratgas

Das Zylinder-Quadratgas, mit dem wir uns weiter oben beschiftigten,
ist als zweidimensionales (quasieindimensionales) Gas insofern weit ein-
facher zu behandeln als alle tibrigen Modelle von analoger Art, weil in der
ihm entsprechenden Integralgleichung die Koordinate, welche den zwei-
ten Freiheitsgrad beschreibt, nicht explizit auftritt. (Es kann wegen der
Periodizititseigenschaft von I1(v) tiber v integriert werden.)

Um zu zeigen, dass die Methode auch funktioniert, falls diese Verein-
fachung nicht moglich ist und um ein Modell zu betrachten, das in der
Kompliziertheit eine Zwischenstellung zwischen dem Zylinder-Quadrat-
gas mit der Bedingung 2 </ < 3 und demjenigen mit der Bedingung
3 <1 < 4 einnimmt, geben wir noch die Resultate des Streifen-Quadrat-
gases, das sich vom Zylinder-Quadratgas nur dadurch unterscheidet, dass
die Rinder des Streifens (y = 0 und y = /) bei ihm nicht mehr identi-
fiziert werden (vgl. Fig, 3). Die Anwendung unserer Methode fiithrt zu
folgendem Resultat: Die Aktivitit ist mit der kleinsten Lésung y, der
transzendenten Gleichung in y:

S M@ +y LAy — 1+ e May=0  (59)
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durch die Beziehung
7 A2 eh 9

22 = U-E vid) (56)

verkniipft. In (55) bedeuten M (4, ) und L(4, v) die Ausdriicke:

| 3 (—1)msinh A ¢, (y) 1
iW(;L ’Y) —mz; sinh A zfm('}’) + 2 tm(y) cosh A tm(y) [m+ (1/2)]3 J

0

-y L (7) I N
L2, ) ~m§) sinh A2, (y)+2¢,(y) cosh At (y) [m+(1/2)}2

mit

Nach (1.20) gewinnt man aus (56) das spezifische Volumen geméss der
Vorschrift ' - '

N ! 0
+ ot lT}, In y,(4) . (57)

' 0

U = ) _0-}»— Inz= ?

Studiert man nun wiederum das asymptotische Verhalten fiir hohe
Drucke, so ist es auch in diesem Fall moglich zu zeigen, dass der zur
Zustandsgleichung der «free volume theory» hinzukommende Term
! (0/04) In y,(4) von (57) asymptotisch fiir sehr hohe Drucke exponentiell
verschwindet, und zwar fiir alle / (1 < [ < 2) gleich stark.

Weiter kann man nach der Streifenbreite entwickeln und findet fiir das
spezifische Volumen

B ! -1z , 2 (1-1)

Diese Entwicklung ist natiirlich nur fiir geniigend kleine Drucke richtig,
da die beiden Grenzwerte (1. Summierung der Reihe und 2. 4 - co) nicht
miteinander vertauschbar sind. Dies ist ja auch fiir das Zylinder-Quadrat-
gas der Fall, wo die entsprechende Entwicklung gemaéss (26)

v=lt o — (=2 ... (=~ 2)

lautet.

IV. Zusammenfassung und Ausblick

Durch einen Ausbau der van Hoveschen Methode zur Berechnung der
Zustandsgleichung eindimensionaler Gasmodelle war es uns méglich, auch
einfache zweidimensionale (quasieindimensionale) Gasmodelle exakt zu
berechnen. Obwohl solche Modelle, wie wir gezeigt haben, nicht zum Stu-
dium von Umwandlungen herangezogen werden koénnen, so haben sie
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doch wenigstens den einen Sinn, dass sie die Priiffung von Néherungs-
theorien realer Gase erlauben. Davon haben wir in dieser Arbeit Gebrauch
gemacht, indem wir die «free volume theory» an drei verschiedenen Mo-
dellen gepriift haben (am Zylinder-Quadratgas mit und ohne seitlichen
Potentialtdpfen und am Streifen-Quadratgas) und gefunden haben, dass
alle drei die Richtigkeit der Grundannahmen der «free volume theory»
bestitigen. Dies bedeutet, dass bei hohen Drucken sich die Molekeln tat-
sdchlich vorwiegend in einem durch die iibrigen Molekeln abgegrenzten
Gebiete (einer Zelle) aufhalten und Wanderungen von Molekeln iiber
grosse Distanzen sehr unwahrscheinlich sind. Es fragt sich, inwieweit die
behandelten, vom physikalischen Standpunkt aus sehr einfachen Modelle
in dieser Hinsicht reprisentativ sind fiir kompliziertere Modelle; doch ist
es wohl nicht {ibertrieben, sie als reprisentativ fiir alle quasieindimensio-
nalen Modelle zu betrachten.

Die in dieser Arbeit berechneten Modelle, insbesondere das Zylinder-
Quadratgas, konnten vielleicht auch zur Priifung von Grundannahmen
anderer Naherungstheorien, zum Beispiel des Kirkwoodschen Super-
positionsprinzips herangezogen werden. Dass dieses Prinzip in einem
(quasi)-eindimensionalen Gas mit Ubernichstnachbarnwechselwirkung
sicher nicht mehr in der iiblichen Form

exakt erfiillt ist, wie dies beim eindimensionalen Gas mit Nichstnachbarn-
wechselwirkung der Fall ist [vgl. die Arbeit von SALSBURG, ZWANZzIG und
KIrRkwooD19)] zeigt die Beziehung (1.4).

Was die Berechnung von (quasi-)eindimensionalen Gasmodellen mit
mehr als Doppelwechselwirkung anbetrifft, so ist unsere Methode natiir-
lich prinzipiell anwendbar und lduft beispielsweise im Falle des Zylinder-
Quadratgases mit der Bedingung 3 <! < 4 auf die Losung einer par-
tiellen Differentialgleichung (mit drei Variabeln) mit komplizierten Rand-
bedingungen hinaus, und es ist eine analoge Berechnungsweise wie im
Falle des Streifen-Quadratmodells méglich. Doch steigt der Rechenaui-
wand mit dem Zylinderumfang (bzw. der Reichweite des Potentials im
Falle eindimensionaler Gase) sehr rasch an, und es wird fraglich, ob er sich,
gemessen am Interesse fiir die Losung, lohnt.

Die einzige in dieser Arbeit besprochene Rechnung, die sich auf ein Gas
mit mehr als Doppelwechselwirkung bezieht, ist die Berechnung der
nullten und ersten Niherung der Hochtemperaturentwicklung eines Gases
mit »-fach wechselwirkendem Potentialtopf. Sie zeigt, dass sich die Me-
thode, im Sinne einer Stérungsrechnung angewandt, auch fiir Ndherungs-
rechnungen gebrauchen ldsst.
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Es wire vielleicht auch moéglich, mit Hilfe einer auf unserer Methode
beruhenden Stérungsrechnung ein Zylinder-Rechteckgas ndherungsweise
zu berechnen, wobei die in Richtung des Zylinderumfangs weisende Seite
des Rechteckmolekiils als kleine Grésse zu betrachten ist.

Zum Schlusse mochte ich meinem Lehrer, Herrn Prof. Jost fiir die Er-
moglichung dieser Arbeit, fiir seine vielen Anregungen und fiir das stidn-
dige Interesse, das er meiner Arbeit entgegengebracht hat, bestens danken.
Auch Herrn Prof. FIERZ bin ich fiir seine anregenden Diskussionen zu
Dank verpflichtet. Herzlicher Dank gebiihrt weiter meinem Freund,
Herrn dipl. phys. K. ZuMBRUNN, der mit Hilfe einer elektronischen
Rechenmaschine die transzendente Gleichung (48) gelost hat (vgl. graph.
Darst. IV). Alle andern Kurven wurden mit dem Rechenschieber berech-
net, da es uns nur auf ihren prinzipiellen Verlauf, nicht aber auf hohe
Genauigkeit ankam.
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