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Über eindimensionale
und quasieindimensionale Gasmodelle

von Martin Kummer
(Seminar für theoretische Physik der ETH, Zürich)

(16. III. 62)

Zusammenfassung : Diese Arbeit zerfällt in zwei Teile. Der erste Teil steht in
enger Verbindung mit einer Arbeit von van Hove4), in der er zeigt, wie man
grundsätzlich die Berechnung der Zustandssumme eines eindimensionalen Gasmodells
auf die Bestimmung des grössten Eigenwerts einer Integralgleichung zurückführen
kann. Diese Integralgleichung wird in der vorliegenden Arbeit auf eine andere
Weise hergeleitet und der zum grössten Eigenwert gehörige Eigenvektor in
Zusammenhang mit einer gewissen mittleren Wahrscheinlichkeitsdichte gebracht.
Die Methode wird dann noch vereinfacht und auf gewisse höherdimensionale
(quasieindimensionale) Gase erweitert, auf welche auch der van Hovesche Beweis
der Nichtexistenz eines Umwandlungspunktes für eindimensionale Gase mit
endlicher Reichweite des Potentials ausgedehnt wird.

Im zweiten Teil werden einige konkrete Modelle exakt berechnet: Das
zweidimensionale (quasieindimensionale) Zylinder-Quadratgas mit und ohne seitliches
Potential, an dem die «free volume theory» geprüft wird, das eindimensionale Gas
mit Übernächstnachbarnwechselwirkung und in einer summarischen Besprechung
das Streifen-Quadratgas. Schliesslich wird am eindimensionalen Gas mit i>-fach
wechselwirkendem Potentialtopf gezeigt, dass sich die Methode auch im Sinne einer
Störungsrechnung etwa zur Gewinnung von Hoch- und Tieftemperaturentwicklungen

ausbauen lässt.

Einleitung
Obwohl eindimensionale Gasmodelle in der Natur keine Entsprechung

besitzen, haben sie doch ein gewisses Interesse, das sich vor allem aus
zwei Eigenschaften dieser Modelle ergibt : Einmal zeigen sie, wie die
statistische Mechanik funktioniert, wenn die Rechnungen exakt (im Sinne
ihrer Methoden) durchführbar sind, und zweitens hefern sie einen
gewissen Prüfstein für Approximationsverfahren, wie sie für reale Gase
entwickelt worden sind.
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Seit ToNKS1) im Jahre 1936 sein eindimensionales Kugelmodell
(Stäbchenmodell) berechnet hat, sind mehrere Arbeiten auf diesem Gebiete

erschienen, so z. B. von Takahasi2) und von Gürsey3), welche den Fall
von Stäbchen mit Nächstnachbarnwechselwirkung untersucht und
gezeigt haben, dass ein solches Modell keinen Umwandlungspunkt besitzt.
Die bedeutendste Arbeit auf diesem Gebiete aber ist diejenige von van
Hove4) vom Jahre 1950. Van Hove zeigt in dieser Arbeit, wie man
grundsätzlich die Berechnung der Zustandssumme eines eindimensionalen
Gasmodells auf die Bestimmung des grössten Eigenwerts einer
Integralgleichung zurückführen kann. Diese Methode steht in direkter Analogie
zur Matrixeigenwertmethode des Ising-Modells, wie sie unabhängig
voneinander von Kramers und Wannier6), Montroll6), Lassettre und

Howe') vorgeschlagen wurde. Mit Hilfe dieser Methode konnte dann
van Hove allgemein zeigen, dass ein eindimensionales Gas mit endlicher
Reichweite des Potentials keine Umwandlungen zeigt.

Wir wollen im ersten Teil dieser Arbeit eine etwas weniger formale
Herleitung der Integralgleichung von van Hove geben. Dabei wird es

sich herausstellen, dass die Bestimmung des grössten Eigenwerts auf ein
einfacheres Problem reduziert werden kann. Dann wollen wir eine

Verallgemeinerung dieser Berechnungsweise und ihrer Konsequenzen
(Nichtexistenz eines Umwandlungspunktes) auf gewisse höherdimensionale
Modelle betrachten, die ich quasieindimensional nennen möchte.

Diese Modelle sind durch drei Eigenschaften charakterisiert:

1. Ihre Molekeln besitzen einen harten Kern.

2. Die Reichweite des Potentials ist endlich.

3. Das (mehrdimensionale) Volumen ist höchstens in einer Dimension
unendlich.

Der zweite Teil dieser Arbeit besteht in der expliziten Berechnung
einiger Modelle. Insbesondere werden zwei spezielle zweidimensionale
«Quadratgase» berechnet und die «free volume theory» an ihnen geprüft.

l.TEIL

I. Herleitung der Integralgleichung

Um die Herleitung möglichst einfach und übersichtlich zu gestalten,
beschränken wir uns zunächst auf ein eindimensionales Gas mit
Doppelwechselwirkung (Übernächsnachtbarnwechselwirkung). Wir betrachten
auf einer Geraden drei Gruppen von je zwei Molekeln mit den Koordinaten

xk (k -1, 0, 1, 2, 3, 4) (vgl. Fig. 1).
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Den Sinn, die Numerierung mit —1 zu beginnen, werden wir später
erkennen. Doppelwechselwirkung bedeutet nun, dass das Potential prinzipiell

die in Figur 2 gezeichnete Gestalt besitzt :

VM

< 5

Fig. 2

mit der Bedingung 2 s < r < 3 s.

Zur Abkürzung wollen wir vom Ereignis I (Ereignis im Sinne der
Wahrscheinlichkeitstheorie) sprechen, wenn wir sagen, dass die Molekeln
der Gruppe I die Koordinaten (x_x, x0) besitzen. Entsprechend definieren
wir das Ereignis II und III.

Die bedingte Wahrscheinlichkeitsdichte, dass aus dem Ereignis I das

Ereignis II folgt, bezeichnen wir mit:

{x_ltx0 \W\ xx,x2)

Sie berechnet sich zu:

(*_!, x0 \W\xx, x2)
W(x_x, xa, xx, x2)

W(X_X, xa)
(1)
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Hierin bedeutet W(x_x, x0 xx, x2) die Konfigurationswahrscheinlichkeits-
dichte der Molekeln (—1, 0, 1, 2) und W(x_x, x0) diejenige der Molekeln
(-1,0).

Es gilt nun bekanntlich :

W(XX, X0) e-V<K-xMkT =ß(Xx- Xo) (2)

wo V das Wechselwirkungspotential, k die Boltzmannkonstante, T die
absolute Temperatur, ß(x_x — xü) also den Boltzmannfaktor bedeutet.

Entsprechend ist :

W(x_x, x0, xx, x2)

ß(x2- xx) ß (x2 - x0) ß (xx - x0) ß (xx - x_x) ß (x0 - x_x) (3)

Aus (1) und (3) folgt:

(x_x, x0\W\ xx, x2) ß (x2 - xx) ß (x2 - x0) ß (xx - x0) ß (xx - x_x)

das heisst die Wahrscheinlichkeitsdichte, dass aus dem Ereignis I das

Ereignis II folgt, ist gleich der Konfigurationswahrscheinlichkeitsdichte
der vier Molekeln (—1, 0, 1, 2) bei ausgeschalteter Wechselwirkung
zwischen (—1, 0).

Da nun das Ereignis III nur indirekt über das Ereignis II von I
abhängt, gilt weiter:

(x_i, x0 | W | xx, x2, x3, xA, (x_x, x0 | W | xx, x2) (xx, x2\W\ x3, #4). (4)

Die Wahrscheinlichkeitsdichte, dass aus dem Ereignis I das Ereignis III
folgt bei beliebigem Ausgang des Ereignisses II, ist also

/ dxx / dx2(x_x, x0 | W | xx, x2, x3, xA / dxx / dx2(x_x, x0\W\ xx, x2) x

x (xx, x2\W\ x3, xt) (x_x, x0 | W® | x3, xt) (5)

wo Wi2) der zweifach iterierte Kern W bedeutet. Allgemein ist also der

«-fach iterierte Kern W :

(x_x,x0 \WW\x2n_x,x2n)

die Wahrscheinlichkeitsdichte, dass, wenn die Molekeln der Gruppe I die
Koordinaten x_x, x0 besitzen, das 2« — 1-te und das 2w-te Molekül an den
Stellen x2n_x und x2n anzutreffen sind.
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Wir wollen nun noch eine Koordinatentransformation vornehmen :

cd x0 — x_x,

ç X2 Xx

Q —Xu, x3

seien die relativen Koordinaten innerhalb der drei Gruppen,

seien die Gruppendistanzen zwischen I und II bzw. I und III. Wir
definieren dann W durch :

(x_v x0\W\ xx, x2) (co | W(L') 11) ß($ ß(L') ß (L -$ß(L'-C + a>).

Weiter ist :

(xx,x2\W\x3,xi) (Ç\W(L-L')\Ç).
(5) lautet jetzt:

L oo

(co | W™\ C) fdL'fdi (co | W(L') 11) (|| W[L - L') \ Ç),
o o

stellt also bezüglich L eine Faltung dar.
Der Kern :

(co | W*{L) | C)

ist also der bezüglich der griechischen Variabein «-fach iterierte und
bezüglich L «-fach gefaltete Kern W.

Identifiziert man nun das 2« — 1-te und das 2«-te Molekül mit dem
minus ersten und dem nullten, so bedeutet :

e-FznikT q®«)(l, T) Sp W>{L) A~2n mit A _

h% hT\ß
\ A tri' 7Z Ft J- /

die kanonische Zustandssumme von 2« Molekeln auf einer geschlossenen
Linie (Kreis) der Länge L.

Die «-fache Faltung legt es nahe, die Zustandssumme zu Laplace-
transformieren :

oo

f Qi2n)(L, T) e~lL dL Sp Wn\X) A~2n.
0

Dabei bedeutet W{n\X) die bezüglich L Laplace-transformierte und bezüglich

der griechischen Variabein «-fach iterierte Wahrscheinlichkeitsdichte:

(ct)| W(L) ||).
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Nun gilt aber :

oo

re-(F,n + XkTL)lhT dL e-ttnl*T gp ^(n) A~2n (6)

0

mit X =p\kT.
Hierin bedeutet p der Druck und cf>2n(X) das Gibbssche Potential. Sind

(r,)^1 (i 1, 2...) die Eigenwerte*) von W (X), so gilt allgemein:

1

SpWW(X) £A_ (7)

Weiter können wir benutzen, dass unser Kern positiv ist. Jentzsch8)
hat nämlich in Anschluss an einen von Frobenius9) für Matrizen
bewiesenen Satz gezeigt, dass ein positiver, stetiger Kern immer einen
reellen, positiven, nicht entarteten Eigenwert besitzt, der grösser ist als

der absolute Betrag aller andern Eigenwerte. Wir bezeichnen ihn mit

Aus (6) und (7) folgt dann asymptotisch für grosse «:

g-QinfiT _ y\-2n p-n _

Logarithmierung ergibt :

^f 2ninA+ ninTx,

oder wenn wir mit pi das chemische Potential bezeichnen :

V- <f>m

hT 2nkT WA)1'2 A-inA,

woraus folgt, dass T\12 mit der Aktivität z identifiziert werden muss.
Die Verallgemeinerung liegt nun auf der Hand : Hat man ein Gas mit

v-facher Wechselwirkung (d. h. das Wechselwirkungspotential erstrecke
sich maximal über v Molekeln), so betrachte man zwei Gruppen von je
v Molekülen. Man berechne mittels der kanonischen Gesamtheit die
Wahrscheinlichkeitsdichte, dass, wenn die erste Gruppe durch die
konsekutiven Koordinatendifferenzen cox...cov_x charakterisiert wird, die
zweite sich in einer Distanz L von der ersten befindet und durch die
Koordinatendifferenzen ijx... £v_x gekennzeichnet ist, wobei als Distanz L
zwischen den Gruppen irgendeine Distanz zwischen în beiden Gruppen
gleich definierten Punkten gewählt werden kann. Man Laplace-transfor-

rt ist dann der i-te Eigenwert im Sinne der Integralgleichungstheorie.
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miere diese Wahrscheinlichkeitsdichte bezüglich L, fasse die neue Variable
als Quotient von Druck und Temperatur auf und bestimme den kleinsten
Eigenwert Tx (im Sinne der Integralgleichungstheorie) des so entstehenden

Kerns:

(cox...cov_x \W(X)\ÇX...Ç„_X).

Die v-te Wurzel aus diesem Eigenwert bedeutet dann thermodynamisch
die Aktivität, d. h. es gilt :

fi lnz + ln/1 ; z r\'vkT vnkT

Wir finden sofort die Zustandsgieichung:

_ / d<pvn \ _ / d<pvn \ JL _ M X in rl dp )t~\ di ìrkT "n dk lnJl'

Hierin bedeutet v das spezifische Volumen.

II. Die Bedeutung des Eigenvektors

Bevor wir den allgemeinen Fall näher untersuchen, wollen wir noch
etwas über die Bedeutung des zum Eigenwert Fr1 gehörigen
Eigenvektors sagen. Zu diesem Zwecke beschränken wir uns zunächst wieder
auf den Fall v 2 und bilden den Ausdruck :

OO 00

rrmfds g(i) (f | w* | ofdr,(c | #<x n) tin) ¦

0 0

Er ist offenbar der Wahrscheinlichkeitsdichte proportional in einem
Gasmodell von 2 (« + m A-1) Molekeln das 2 « + 1-te und das 2 (« + l)-te
Molekül in einem Abstand f anzutreffen, falls der Abstand der ersten
beiden f mit einer Funktion g(£) und derjenige der letzten zwei rj mit
einer Funktion f(rj) verteilt ist.

Da der grösste Eigenwert rxx nicht entartet ist, gelten die
Beziehungen

lim r? dn(Ç\ W™ I rj) /(«) cx ar (C)

0

oo

lim r» (di g(i) (i | #W \A c2 br (C)
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wobei ar(C) unser Eigenvektor zu A""1 un(l ^r (0 derjenige des adjun-
gierten Kerns zum selben Eigenwert bedeuten.

Die Konstanten cx und c2 hängen noch von / und g ab.
Somit folgt :

oo oo

lim A*+w) fdS g(f) (I I WM | f) fdrj(C\ W**\ rj) f(rf) caFi (0 6r (0.
n,m-*oo J J

0 0

Die Grösse

W(C) /Afflato (9)
fdÇarA&brAS)

ist also die auf eins normierte mittlere Wahrscheinlichkeitsdichte in einer
unendlich langen Kette irgend zwei aufeinanderfolgende Molekeln in
einem Abstand f anzutreffen.

III. Reduktion des Eigenwertproblems auf ein einfacheres äquiva¬
lentes Problem

Wir wenden uns nun wieder dem allgemeinen Fall zu unter Bezugnahme
auf die am Schluss von Abschnitt I angegebene allgemeine Regel.

Wenn wir die Koordinaten in der ersten Gruppe mit x_v+x... x0, die-
j enigen in der zweiten mit xx... xv bezeichnen, so folgt :

V V

(x_„ + x...x0\W\xx...xv) fi ß(xk-xk-u Yl ß(xk-xk-i)
lSi<* lS*Si

oder nach der Substitution :

V — 1 v—1

xi+i-xi Çi> x, -E Çi + x» - E £i + L + x*'
l-i l i

v-1

X-i= - E wi + xo-
I v — i

xv — x0 L, (i 1,2... v — 1), xv= L + x0

K...«,,.! \W(L)\Çx...Çl,_x)

V / k—1 \ v /v—1 v—1

- n ß(Eti) nß( e »,+L-zt,ì *¦
iäi<* \i-k-i j is*äi \i-v-i + k ; *

9

*) Summen 2J mit P~> 1 sind gleich Null zu setzen.
P
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Dabei wurde als Distanz zwischen den beiden Gruppen (L) die Distanz
der beiden in jeder Gruppe am weitesten rechts liegenden Molekeln
gewählt. Es ergibt sich :

(cox...cov_x \W(X)\èx..Av_x)

v f k-l \ r v / i-k v-1

II ß( Eti) dLe-^YIß(E^-i + L-EilSi<* \l-h-i /J lS*Si \l-l l k

v / k-l \ ™ _,Vy\, v /'-k k-l \

Ilß (Eti) #.<»-•" Û ß (Zœ^+EtX (10)
1Sj<* \l-k-i /g lSSSi V-1 1 0 /

Die letzte Umformung ist die Folge der Einführung einer neuen Inte-
grationsvariabeln *) :

v _ x

I- 1

Mit der Bezeichnung :

v-l I v-1 \ I v-1 \ v-1 I v-1 \
TIß( E^ßlE^^^-nßiE^)^^-1
»-1 \l=v-i j \l 0 j »-0 \l-i j

lässt sich der letzte Ausdruck schreiben:

oo

{(Oi...cov_x\W(X)\ix..Av_x)= Jd^K(^...^_x)K(cov_xi0..Av_2) x
0

x K(mv_2, cov_x, i0 ...f„_3) ...K(cox ...«„_,., fo)-

Sei nun a(£x... £„_;,) der Eigenvektor zu J1"1:

oo oo

J a^... J aèv_1K(Ì0...Ìv_1)K(oìv_1,^.:.Ìv_ì)...,
0 0

K(cox ...«„_!, i0) a(ix ..•!„_!) Trl a(cox... cov_x). (12)

Wir multiplizieren nun beide Seiten mit K(co, cox... wv_x) und integrieren

A j dcov_x j dÇ0... I d£v_x K(Ç0 Ç„_x) K(cox cov_x, £0),

K(co,cox ...wv_x) a(Çx ...£„_!)= / dcav_xa(cox cov„x) K(a> ...co„_x)

*) Beachte, dass: ß(C0) 0 für (0 < 0.
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Der Ausdruck
oo
r
I dcov_xa(cox w„_i) K(co, cox cov_x)

o

ist also wieder ein Eigenvektor zum grössten Eigenwert: A-1, ^a nun
dieser nach dem Satz von Jentzsch nicht entartet ist, folgt:

oc

z / dÇ K(œx ...wv_x,Ç) a(œ2 ...0)v_x,£) a(cox ...cov_x) (13)

o

Durch Einsetzen von (13) in (12) beweist man, dass, falls a(cox co„-X)
der Eigenvektor zu Tf1 ist, der Proportionalitätsfaktor z in (13) nichts
anderes bedeutet als die Aktivität. Unsere Integralgleichung wird somit
äquivalent damit, die Funktion a(cox wv_x) so zu bestimmen, dass (13)
mit möglichst kleinem Proportionalitätsfaktor z befriedigt wird. Die
Funktion, welche das leistet, wollen wir in Zukunft mit az(cox ...cov_x)
bezeichnen*).

IV. Der Zusammenhang mit der Integralgleichung von V4N Hove

Wir wollen noch kurz den Zusammenhang mit der von van Hove
aufgestellten Integralgleichung herstellen, welche ein wenig von der unse-
rigen (12) abweicht. Nach (12) und (13) folgt zunächst:

00 oo

j dÇ0... j d$„_2K((ol,_1è0..,£v_2) ...K(cox ...a>v_x, |0) «z(lo •••fj.-a)
0 0

(ri)<-'-1)" «>!...(«,_!) =Z-"-1»«>1. ..COv_x).

Umnumerierung der Koordinaten : f,- -> |; + x (i 0, v — 2) ergibt :

:xj oo

d£x... jd£v,x K(cov_x, Si-..Jv-i) ¦¦¦ K(cox... ojv_x, |J aj£x... Çv_x)

0 Ò

z-t'-V a2(cox ...cov_x).

Der Kern der Integralgleichung ist also :

K ...mv_x \L(X) \£x ...!„_!)
v-1

V I k-l \ j y f v-1 /i-k+1 k \Tlß(E^)' ,?1 II ß[E »,-« + 27ft ¦ <14)

lij<* \l-k-i 1 ls*Si \l-l 1-1 I

*) Ihre eindeutige Existenz sowie die Existenz und Positivität von z ist wegen
der Äquivalenz von (13) und (12) und nach dem Satz von Jentzsch8) gesichert.
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Im Hinblick auf die Iteration können wir diesen Kern in einem
gewissen Sinne symmetrisieren (was natürlich in gleicher Weise auch mit
dem Kern (10) hätte geschehen können).

K-.-^-ilAWifi.-X-iX YI Vß\ E^)Vß\ E
lSi<* I \l k-i j I \l~k-

k-1
CO

v-1 v-1 v-1 /i-k + 1[v-1
v- 1 I

S h + S «ni-i i-i i1 J 77 ß [E <»,-,+E s,)- (is)
liKi \l-l / - 1

Dies ist der Integralkern von van Hove. Er besitzt die Symmetrieeigenschaft

:

K ...cov_x \LS(X) |li ...!„_!) (!„_! ...li IXW |«>,-i ¦••&>!)• (16)

Für die ersten drei Ausdrücke in (15) ist dies leicht zu verifizieren. Es

folgt aber auch für den letzten. Bei der Kooidinatensubstitution, welche
die beiden Seiten von (16) miteinander vertauscht, erleidet er die
Transformation :

v-1 /i-k + 1 k \ v-1 fi-k + 1

U ßiE »,-,+Es) - n ß E £<+E
lS*Si \l-l 1=1 / Iä*S> \'-l l-1

CO v-l

v-1 I k' i-k'+l-n ßlEti+E^
ig*'Si y-i 1=1

Dabei wurde k' i — k + 1 substituiert und benutzt, dass aus 1 gl k ;g i
lgA'g» folgt.

Der Zusammenhang zwischen der Eigenfunktion zu z asz von Z.^ und
unserer Funktion az ergibt sich durch Vergleich von (14) mit (15) zu :

v-1

ß( Em) e~Xß^mi az(cox ...cov_x). (17)
V-A-»' /

Weiter folgern wir aus der Symmetrieeigenschaft (16), dass der
Eigenvektor der adjungierten Integralgleichung zum selben Eigenwert durch:

bl(mx ...«»„_!) asz(cov_1 ...cox)

gegeben ist. Aus (9) und (17) folgt dann:

W(cox ...wv_x) c ¦ al(mx ...wv_x) bss(cox ...cu„_i)

v-1

C II ß\ Eml)e ''* a^Wl ¦¦¦0Jv-l) «:K-l-ffll)' (18)
1 S » < k \l-K-i j
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Nach unseren Betrachtungen über den Eigenvektor, die sich ohne
weiteres auf den Fall jj-facher Wechselwirkung verallgemeinern lassen,

gibt (18), nach Normierung auf eins, die mittlere Wahrscheinlichkeitsdichte,

v aufeinanderfolgende Molekeln in einer Konfiguration, charakterisiert

durch die konsekutiven Koordinatendifferenzen cox... wv_x
anzutreffen. In der Invarianz von (18) gegenüber der Inversion der Koordinaten

cox... cov _ x spiegelt sich die Symmetrie des Einflusses der linken und
der rechten Nachbarmolekeln auf unsere v herausgegriffenen wider.

V. Nichtexistenz eines Umwandlungspunktes

Wie van Hove4) gezeigt hat, kann man leicht aus den Eigenschaften
des Integralkerns (10), (14) (oder (15)) folgern, dass ein eindimensionales
Gasmodell mit endlicher Reichweite des Potentials keine Umwandlungen
noch so hoher Ordnung zeigt.

Betrachten wir etwa den Integralkern (14)

(cox ...cov_x \L(X) | £x ...f„X

Als Laplace-Transformierte ist er holomorph in X für jedes komplexe X

mit Re X ^ £ > 0.

Führen wir die Variabeinsubstitution :

m(X) j X* ß® d£, CM) j *-" ß(£) d£

<»i h

durch, so bleibt diese Eigenschaft erhalten, da sie die Substitution selbst
besitzt. Zudem wird aber durch diese Substitution der Grundbereich des

Kernes endlich gemacht. Daraus folgt dann sofort, dass die zum Integralkern

gehörige Fredholmsche Funktion D(T, X) in .Teine ganze Funktion
ist und dass sie holomorph ist für Re X ^ e > 0.

Da nun weiter Fx nach dem Jentzschen Satze nicht entartet ist, gilt :

/ dD\ n

so dass D(rx, X) 0 überall nach AW auflösbar ist.

Aus den Regularitätseigenschaften von D(r, X) folgt dann, dass rx(X)
selbst eine in der rechten Halbebene (Re X Ss e > 0) holomorphe Funktion

ist. Damit besitzt aber auch das Gibbssche Potential diese
Eigenschaft, womit die Nichtexistenz eines Umwandlungspunktes bewiesen ist.
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VI. Ausdehnung der Methode auf quasieindimensionale Gase

Wir wollen nun die besprochenen Methoden auf gewisse eindimensionale

Modelle ausdehnen, die ich quasieindimensional nennen möchte und
unter welche im Prinzip auch alle höherdimensionalen Gasmodelle
fallen, deren Molekeln einen harten Kern und ein Potential mit endlicher
Reichweite besitzen und die sich in einem Volumen befinden, das höchstens

in einer Dimension unendlich ist. Am besten betrachten wir ein
Beispiel eines solchen Modells.

Gegeben sei ein Streifen der Länge L (L -> oo) und der Breite /, in dem
sich Quadratmoleküle der Seitenlänge 1 so bewegen können, dass ihre
Kanten immer parallel bzw. senkrecht zu den Rändern gerichtet sind.

Fig. 3

Denken wir uns nun die Molekeln so umnumeriert, dass ihre Koordinaten

der Bedingung

xx <r\ x2 <r. x3 <c • • •

unterworfen sind, so können wir jede beliebige Konfiguration der
ungeordneten Molekeln aus einer entsprechenden Konfiguration der geordneten
Molekeln durch eine Permutation erzeugen mit Ausnahme derjenigen
Konfigurationen, bei denen irgend zwei Moleküle die gleichen «-Koordinaten

besitzen. Die Menge dieser Zustände im Konfigurationsraum hat
aber das Mass Null. Die Einführung einer Ordnungsbeziehung in der
x-Richtung ist daher gleichbedeutend mit der Division des Zustands-
integrals durch /V!, führt also gerade zur richtig korrigierten Zustandssumme

ununterscheidbarer Teilchen. Die Ordnungsbeziehung ist in
Figur 3 durch Geraden, welche durch die Mittelpunkte der Quadrate gehen,
angedeutet : Jede solche Gerade stellt für die Mittelpunkte der Nachbarmolekeln

eine Begrenzung dar.
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Wir denken uns ausserdem gegenüberliegende Ränder des Streifens
identifiziert, so dass eine Fläche entsteht, die dem Torus topologisch
äquivalent ist. Man erkennt dann, dass das Gas einem eindimensionalen
Gas entspricht, dessen Molekeln zusätzlich einen innern Freiheitsgrad
besitzen. Falls l der Ungleichung v A l A v + 1 genügt, handelt es sich

um ein quasieindimensionales Gas mit jj-facher Wechselwirkung.
Für die Rückführung dieses zweidimensionalen Modells auf ein

quasieindimensionales spielte die besondere Form des Potentials keine Rolle.
Wesentlich ist nur, dass es einen harten Kern beschreibt und dass seine

Reichweite endlich ist. Ausserdem stützt sich unsere Überlegung
wesentlich darauf, dass das Volumen höchstens in einer Dimension
unendlich ist.

Bezeichnen wir die konsekutiven Koordinatendifferenzen*) in der

y-Richtung (vgl. Fig. 3) mit ux... u„_x bzw. v1...vv_1,so erhalten wir den

(14) entsprechenden Integralkern:

(cox ux,w2u2...cov_xuv_x\ L(X) | ix vx, i2v2... i„_x v„_x) (19)

einfach durch Ersetzung des Boltzmannfaktors ß(i) durch ß(i, v), wobei
der Ordnungsbeziehung dadurch Genüge getan wird, dass wir entweder
für | < 0 ß(i, v) 0 setzen oder die Integration über die f, bei Null
beginnen.

Die Variabein ut und vt variieren im Intervall (0, l) mit / < oo. Das
Volumen der (verglichen mit dem eindimensionalen Modell) zusätzlichen
Dimensionen des Konfigurationsraumes ist also endlich, so dass der Kern
(19) dieselben Eigenschaften besitzt wie der Kern (14) und die daraus
sich ergebende Folgerung über die Nichtexistenz eines Umwandlungspunktes

sich auf unsere quasieindimensionalen Modelle übertragen lässt.
Auch die Gleichung (13), welche eine äquivalente, aber einfachere Form

des Eigenwertproblems (12) darstellt, und die Formel für die
Wahrscheinlichkeitsdichte (18) übertragen sich auf unser Modell einfach durch die

Ersetzung ß(i) -> ß(i, v). Zum Beispiel lautet jetzt (13) :

l 00

z(X) J dv J di e-xs ß(i, v) ß (i + cov_x; v + uv_x)...
0 0

ß(i A- ft>„-i + ¦¦¦ A- cox; vA-uv_x A- + ux) a(co2u2, ...cov_xuv_x, iv)
a((oxux mv_xuv_x).

*) Die Einführung von Koordinatendifferenzen ist in unserem Beispiel deshalb
möglich, weil wir gegenüberliegende Ränder des Streifens identifiziert haben. Würden

wir die Ränder y 0 und y l (vgl. Fig. 3) nicht identifizieren, so mussten
wir an der Stelle der «'s und zj's Differenzen von Absolutkoordinaten y einführen
(vgl. Teil 2, Abschnitt IIIb).
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Ein kleiner Unterschied ergibt sich in der Interpretation von X.

Da in (6) für das Volumen LI V gesetzt werden muss

i

e- {Fln(V) + (XhTV)ß)lk T dy_ e-<t>inßT,

wird nun die mittlere in der «-Richtung auf die Längeneinheit der y-
Richtung wirkende Kraft (der Druck) mit X durch die Beziehung:

kT X
P —r~

verknüpft. Die Zustandsgieichung erhält deshalb ebenfalls noch einen
Faktor l

V OA OA

v ist nach wie vor das Volumen pro Molekül spezifisches Volumen).

VII. Zusammenfassung

Bevor wir zur praktischen Berechnung von einzelnen Modellen
übergehen, fassen wir unsere Überlegungen zu einer Regel zusammen :

Um die thermodynamischen Eigenschaften eines eindimensionalen Gases

mit jj-facher Wechselwirkung zu studieren, betrachte man v + 1 Molekeln

und bilde den Ausdruck :

K(a>x ...mv_xi)

e~ie ß(i) ß(iA- cov_x) ß(iA- cov_x + cov_2) ...ß(iA- cov_x A-...+wx),

welcher nichts anderes bedeutet als die mit e~Xî multiplizierte bedingte
Wahrscheinlichkeitsdichte, das v + 1-te Molekül im Abstand | vom j»-ten

zu finden, falls die Konfiguration der ersten v durch die konsekutiven
Koordinatendifferenzencox... cov_xcharakterisiert wird. Man suche nun
die kleinste Zahl z(X), zu der eine Funktion az(cox ...cov_x) derart existiert,
dass

oo

z(X) I di K(cox ...cov_x,i) az(cx>2 cop_x, Ì) az(cox cov_x) (13)
o

gilt.
z(X) ist dann die Aktivität des Gases in Funktion des Quotienten aus

Druck und Temperatur : X p\k T und mit Hilfe von az(cox ...cov_x) kann
man nach (18) die mittlere Wahrscheinlichkeitsdichte berechnen, beliebig
30 H. P. A. 35, 6 (1962)
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herausgegriffene v aufeinanderfolgende Molekeln in einer Konfiguration
(cox cov_x) zu finden.

Im Falle der quasieindimensionalen Gase führe man die den Koordinaten

der «-Richtung entsprechenden Koordinaten der y-Richtung ein
(vgl. auch Anmerkung auf Seite 464) und integriere in (13) über die f
entsprechende Koordinate de- y-Richtung, wobei man das Integral über
ihren totalen Variationsbereich zu erstrecken hat.

2. TEIL

I. Das Zylinder- Quadratgas

a) A bleitung der Zustandsgieichung

Im Falle des schon im 1. Teil beschriebenen Quadratgases auf einer
Zylinderoberfläche Streifen mit identifizierten gegenüberliegenden
Rändern) lautet der Boltzmannfaktor ohne Forderung ß(i, v) 0 für
l<0

ß(i, v) 6(i-l)A- ü(v) B(l-i), (1)

wo 6(i) die Stufenfunktion mit den Eigenschaften

0(f) 1 f>0; 0(f) =0 f<0; 0(0) ]-

ist und TI(u) diejenige mit l periodische Funktion bedeutet, welche im
Intervall (0, /) überall verschwindet, ausser für 1 < u < / — 1, wo sie

den Wert eins besitzt.
Für das Rechnen mit der 0-Funktion schicken wir noch die Regel

0(f) B(rj) 0 (f - rj) B(rj) + 0 (rj - f) 0(f)
voraus.

Wir beschränken uns auf den Fall 2 < l < 3, also auf den Fall der

Doppelwechselwirkung. Die Gleichung (1.13), welche in diesem Fall mit
der unsymmetrisierten van Hoveschen Integralgleichung zusammenfällt,

lautet also:

/ oo

z I dv I di ß(i, v) ß (f + co,v A- u) e"xs a(i, v) a(co, u) (2)
ó ó

mit ß(i, v) aus (1).
Nun ist aber

[0 (f - 1) + 6 (1 - i) I7(v)] 6(l-i-co)n(v + u) 0,
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und zwar ist

467

0 (f - 1) 0 (1 - f - co) 0

weil wegen der Ordnungsbeziehung sicher co > 0 und damit 1 — a» < 1

gilt und

6(1-i) 6(1-i-co) n(v)II(v + u) 0

weil dieses Glied dem Fall entspricht, wo sowohl Molekül 1 wie 2 neben
dem dritten liegen (vgl. Fig. 4), was wegen der Voraussetzung 2 < l < 3

ausgeschlossen ist.

/*

ua ß/ *

Fig. 4

Die Integralgleichung lautet jetzt

; oo

z f dv f di [0 (i - 1) + 0 (1 - f) 77(t>)] «"** 0 (f + co - 1) a(f, »)

o o

=-¦ a(co, u)

Da die linke Seite nicht von u abhängt, gilt dies auch für die rechte:
a(i, v) a(i) ist von v unabhängig, so dass wir über v integrieren können.
Dieser Schluss bleibt richtig, wenn wir an die Stelle von TI(v) eine
beliebige mit l periodische Funktion I7(v)g(v) setzen, die nur von der
Koordinatendifferenz und nicht von den Absolutkoordinaten y2 und y3 einzeln

abhängt. Dies bedeutet, dass wir den Fall eines an die Quadrate seitlich
angehängten Potentials miteinbeziehen können. Setzen wir also

i

j IJ(v) g(v) dv g,
0

so lautet unsere Integralgleichung

z J di «"*« [l 6(i - 1) + 6 (1 - f) g] 0 (f + co - 1) X-' a(i) a(co) (3)

o
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Im Spezialfall g(v) 1 ist g l — 2. Denken wir uns dagegen seitlich
etwa einen Potentialtopf der Breite r0 und der Tiefe V0 angehängt, so

wird:
g (1-2) A-2r0(ß-l) mit: ß ev°'kT. (4)

Die linke Seite von (3) besitzt für co > 1 denselben Wert wie für co 1.

Dasselbe muss daher für die rechte Seite gelten.
Wir machen also den Ansatz :

a(co) 6(co-l) a(l) + 0 (1 - co) a(co) (5)

und beschränken uns auf das Intervall 0 < co < 1.

Die Integralgleichung erhält damit die Gestalt:

oo

f di «"" [ld(i- 1) 5(1) + 0 (1 - f) 0 (f + œ - 1) «(f) g] e-Xi
o

i
AA i à(l) A-gfdi er1* a(i) z'1 a(co). (6)

l-w
Sie ist offenbar äquivalent der Differenzendifferentialgleichung

zge-^-^ä(l-co) ä'(co) ' -A- (7)

mit der Randbedingung:

AÄia(i) z-ia(o). (8)

(7) erhalten wir aus (6) durch Differentiation nach co und (8), indem wir
in (6) speziell co 0 setzen.

Nach (7) gilt auch

zge~Xma(cA) a' (1 — co),

wo der Strich einfach die Ableitung nach dem Argument bezeichnet.
Man erhält somit

a"(co) zg [- a' (1 - co) + X a (1 - co)] e~X{1-m)

- z2g2e~'-ä(co) +Xä'(co). (9)

Die Integralgleichung ist also äquivalent der Differentialgleichung (9)

mit den Randbedingungen (8) und (10) :

2 g e~x ä(l) a'(0) (10)

die sich aus (7) für co 0 ergibt.
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Die allgemeine Lösung von (9) ist

a(w) A ec^ A-B ec*m (11)

mit

(\+t)x, c2=(\-t)X

* (t -t2) | •* • <13>

Befriedigt man die Randbedingungen (8) und (10), so erhält man ein
lineares homogenes Gleichungssystem für A und B. Es besitzt
nichttriviale Lösungen unter der Bedingung:

((1/2)-*) (»H-*)2 _jtJL (14)

und

also

t=\ A

((l/2)A-t)(v-t)2
bzw.

t2-v(l-v) _ Tg A

(2 v-(1/2)) fi-(112) v2 ~ t
mit

„ -L-X
2 l

(15)

(14) bzw. (15) ist, wenn wir für t noch die rechte Seite von (12) substituiert

denken, eine transzendente Gleichung in z, deren kleinste Lösung
die g-suchte Aktivität ist.

Einfacher ist aber das folgende Verfahren: Wir fassen (14) als eine

Gleichung in l ani und bestimmen diejenige Lösung t von (14), welche in
(13) substituiert z am kleinsten macht. Man, erkennt, dass dies für die

grösste reelle Lösung t, bzw., falls keine reelle Lösung existiert, für die
absolut kleinste rein imaginäre Lösung der Fall ist.

Wir beschränken uns zunächst auf den Fall reiner Quadrate, das heisst
wir setzen g 1 — 2, also v (2\l) - (1/2).

Die Voraussetzung 2 < l < 3 zieht 1/6 < v < 1/2 nach sich. In diesem
Fall existiert genau eine reelle Lösung t zu jedem X mit 0 < X < oo.
Dies erkennen wir wie folgt. Aus (14) bzw. (15) entnimmt man :

t v für X oo

t jX(l - v) für X 0

Dabei ist wegen l > 2 :

t(oc) < t(0) (16)
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Weiter erhält man durch Logarithmierung und Differentiation aus (14) :

dX 1 f 2 vK- ,2-/2
1 1

A TX) - *]-&)""¦ >">

(dtjdX) verschwindet im Bereich 0 < 2 < oo nirgends ausser für 1 oo
(£ v). Daraus und aus (16) folgt, dass t(X) monoton fallend ist, wie dies

Figur 5 zeigt.

X

vWA)

Fig. 5

Lässt man also t die Werte zwischen v und j/i> (1 — v) durchlaufen, so
durchläuft X die reelle positive Achse. Damit ist der Variationsbereich des

Parameters t eindeutig auf das Intervall v < t g ]/v (1 — v) festgelegt.
(Wegen der Invarianz von (14) und (15) gegenüber einer Substitution
t -> — t, könnten wir natürlich t auch auf das Intervall
t < — v festlegen.)

)/v (1 - v) S

Für das spezifische Volumen erhalten wir zunächst aus (1.20) und (13) :

v l -j-r ln z ¦¦

dl
11 (dt/dX)
(1/4) -fi

und schliesslich unter Benutzung von (17) :

(t + l^-y) (a/4)-^)+ 1/2
|t<Kt/v(l-v),

J_, ((lj2)-t)(t + v)2

2 t ((l/2)-t)(t-v)2
iL
k T" (18)
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Dies ist eine Parameterdarstellung der Zustandsgieichung mit einem
Parameter t, der in den angegebenen Grenzen variiert. Die zugehörigen
X — i>-Kurven sind in der graphischen Darstellung I aufgezeichnet. Ausser

zur Festlegung der Variationsgrenzen für t wird die spezielle Annahme
g l — 2 in der Herleitung von (18) und auch in derjenigen der folgenden
Formeln dieses Abschnitts nirgends benutzt, so dass sie mit anderem
Variationsbereich für t auch ohne diese Voraussetzung richtig sind.

2-J \f Srapn. Darst. I.
XI p/kf-v-KurvendesZi/linder-

Quadratgases für
verschiedene Umfange l

3)1-2,5

ti1-2,16 (y-0.21

3-V

1)1-2

2)1-2,02

Für die mittlere Wahrscheinlichkeitsdichte, dass ein Molekül die
Koordinaten (co, u) in bezug auf das ihm am nächsten links (bzw. rechts)
liegende besitzt, erhalten wir gemäss (1.18) und (5):

W(co, u) C[6(co- 1) a2(l) + g(u) IJ{u) 6 (1 - co) a2(co)] e~ (19)

wo C ein Normierungsfaktor ist und a(co) sich aus (11) und aus der durch
Kombination von (8) und (10) folgenden Randbedingung

«'(0) g a(0)

zu

a(co) ~ [(v - t) eUm - (v + t) e~

ergibt. (Das Zeichen ~ bedeutet proportional.'

(20)
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Wie es sein muss, wird für X -> 0 :

w(co, u) ~ e (w -1) 4- e (i - co) n(u) g(u)

also proportional zum Boltzmannfaktor.
Normieren wir ä(co) derart, dass in (20) das Gleichheitszeichen gilt, so

erhalten wir für die Konstante C in (19) :

C -a2(l)lAl +

+ g {lT7 [(" - W *** - (" + ^ 6~2U1 + AT ~2{y%- *2)} ¦ (21)

JL

2

\x-8,36

SrapA Oarst. E.
Wo), u)fùrdas Zylinder-Quadra/gas

(1-2,5) 1<u<!,5

1

1.-XA

In der graphischen Darstellung II findet man einen Querschnitt durch
die W(co, w)-Fläche im Falle g(u) 1 für 1 < u < l — 1 bei zwei
verschiedenen Drucken.

b) Der Fall hoher Drucke (g l — 2)

Wir setzen t v (1 A- e) mit s <^ 1.

Aus (14) folgt dann:

,-u, „ (1/2)4-» e2

_ 2e Am^ A-~ce'
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1 1/(1/2) + »

2 y (1/2) -v '

Für das spezifische Volumen erhält man somit in dieser Näherung :

W T + T + [A+(l/ve)][(l/4) - v2] - 2 v+ (1/2)

~ A _i + 2lv*e-l*
2 T A T [(1/2) 4-v]"2 [(1/2)-v]1'* " v '

Mit Hilfe von (19), (20) und (21) berechnet man die normierte
Wahrscheinlichkeitsdichte W(co, u) für hohe Drucke und g l — 2 (vgl. auch
graphische Darstellung II, X 8,36) :

W{-m' M)
477/T2)- &» (w - 1) (4 - z) (^ - 2) +

+ <5i,2 (1 - ») #(«) ï (* - 2) + 2 / <51/2H /7(«)] (23)

Darin ist òxj2(m) eine uneigentliche Funktion, welche in folgender Weise
als Limes gewöhnlicher Funktionen definiert werden kann :

ôxJco)= lim a6(co)e-am. (24)

Über dem Raum der stückweise stetigen Funktionen besitzt sie die

folgende Eigenschaft :

+„°°"
ôxl2(cA) f(co) dco f(+0) (25)

Multipliziert man (23) noch mit du, so entsprechen die drei Terme den
Wahrscheinlichkeiten der drei Situationen, die wir bei über alle Grenzen
wachsendem X (das heisst T -> 0 bzw. p -> oo) antreffen. Der erste Term
gibt die mittlere Wahrscheinlichkeit, dass der rechte (linke) Nachbar
eines beliebig herausgegriffenen Moleküls von rechts (links) her in bezug
auf dieses in eine Position mit den Koordinaten zwischen (1, u) und
(1, u A- du) gelangt, der zweite die mittlere Wahrscheinlichkeit, dass dies

von links (rechts) her geschieht, und schliesslich der dritte die mittlere
Wahrscheinlichkeit, dass der rechte (linke) Nachbar im Abstand
zwischen u und u A- du seitlich neben das betrachtete zu liegen kommt.

c) Der Übergang zum eindimensionalen Gas

Wir setzen l 2 (1 + e) mit e <^j 1. Es wird

l2 1\ 1
/1 \ 2 ~ lv=\A-A) A-e' "(l-") T-e2 T-
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Somit

x«<x-
Wir setzen deshalb weiter

t y - a s mit 0 g a ^ 1.

Damit erhält man aus (14)

; ~ rn «
P ~ _Xa

(l-a)2£ ' (1-a)2

und aus (18)

,21 1
V 1 + A + A- -

("+Ar-AAA)as+{ll2)

Wegen lim e In e 0 können wir den Term X a e gegenüber den übrigen
£->0

Termen vernachlässigen, so dass folgt

A 1 + a

Hieraus ergibt sich

bzw. »^(T^-SjIx1)- 1 + c

mit:
2

C(ZJ, X) V — 1
y-

und schliesslich

v=l + ~ + -FyL ¦ (26)

Ist e noch so klein, aber verschieden von Null, so gilt doch asymptotisch

für p -> oo :

v S 1 + ——

Für e 0 dagegen gilt :

z; 2 + —-.P

Der Übergang vom zwei zum eindimensionalen Gas ist somit für grosse
Drucke unstetig, was anschaulich aus der Betrachtung der dichtesten
Packungen sofort klar wird.
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d) Diskussion des Quadratgases mit seitlichen Potentialtöpfen

Wir wollen nun den Fall betrachten, wo die Quadrate noch seitlich
angebrachte Potentialtöpfe der Breite t0 und der Tiefe V0 besitzen. Nach
(4) ist dann:

g l - 2 + 2 t0 (ß - 1) mit ß ev°'kT

und die Grösse v — (1/2) — (gß) nimmt für genügend tiefe Temperaturen
negative Werte an. Das ohne Potential gefundene asymptotische Verhalten

für grosse Drucke gemäss (22) kann für negative Werte von v nicht
mehr richtig sein.

Tatsächlich ist v 0 das kleinste v, für welches (14) noch reelle Lösungen
in t besitzt, und zwar ist diese Lösung t(X) 0, so dass in diesem Fall, dem
die Temperatur Tx aus

eVJkTl=J_t1_l\+1
r0\ 4/

entspricht, die Zustandsgieichung

11 plv a + A' x -yT-
lautet.

Oberhalb der Temperatur Tx verhält sich das Gas wie das Quadratgas
ohne seitliches Potential: Einer Erniedrigung der Temperatur T (> Tx)

im ersten Modell entspricht eine Verbreiterung des Streifens im zweiten.
Unterhalb der Temperatur Tx, wo keine re lie Lösung in t von (14) bzw.

(15) mehr existiert, treten, wie wir sehen werden, im Vergleich zum Modell

ohne Potential prinzipiell neue Züge im Verhalten des betrachteten
Modells auf.

In diesem Fall (v negativ) müssen wir also die absolut kleinste rein
imaginäre Lösung von (14) bzw. (15) in t suchen. Setzen wir t ir (x ist
nicht zu verwechseln mit der Breite des Potentialtopfes t0), so lautet (15) :

_ rsA-r v (1- v) _g T \2v-(l\2\Ac2+(l\2)v2 ~ '{t> '

Wir haben also das kleinste t zu bestimmen, zu dem ein Schnittpunkt
der beiden Kurven y tg r X und y f(r) gehört. Dies geschieht in
Figur 6.

Zu beachten ist, dass die Kurve y /(t) Pole an den Stellen

rT.2 A
yi-A v

und Nullstellen t?>2 ± |X v (1 - v) mit der Eigenschaft | t°° | < | t°
besitzt.
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Während diese Kurve von X unabhängig ist, werden die tg Ar-Kurven
steil oder flach, je nachdem X gross oder klein ist. Durchläuft X die positive

relie Achse von 0 bis oo, so wandert der kleinste Schnittpunkt x
monoton von t ]/— v (1 — v) nach 0. Dabei wechselt dieser Schnittpunkt
bei X tt/2 tJ° vom ersten zum zweiten Ast des Tangens (vgl. Fig. 6).

yf(r)

yfgAT

f y

w

Fig. 6

Die Monotonie der r(A)-Kurven erkennt man wiederum aus der Tatsache,
dass dtjdX nach (17) (wenn wir dort t ix setzen) im Bereich 0 < X < oo

nirgends verschwindet als für X -> oo. Wir haben also in diesem Fall
(v negativ) die folgende Parameterdarstellung der Zustandsgieichung

1

arg tg
T3+T V (1-v)

T P »-(1/2)] TT2+(1/2) V2

Ir2 n

0 ^ xX< 71,

AtAMAA
0 ^ T â )/- V (1 (27)

Auf der graphischen Darstellung III findet man die zugehörigen Kurven

aufgezeichnet, und zwar mit folgender Wahl der Grössen /, x0 und
V0 : l 3, t0 1/2 und V0 3/log e. (Bei dieser Wahl des Potentials
wird nämlich einfach p Xßog ß.)

Für sehr grosse X können wir zur Ermittlung des Schnittpunktes der
beiden Kurven y f(x) und y tg X x die erste durch ihre Tangente im
Ursprung, die zweite durch ihre Tangente an der Stelle X x n ersetzen.
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Die Koordinate des Schnittpunktes ergibt sich also aus:

2 1 l\x Xx — n

477

x(X)
X + 2[l-(llv)\

Haff
Graph. Darsi M

i Zustandsdiagramm des

\ Quadratgases mit
\ seitlichem Po/en/io/topf

\l-3 %¦{

¦ \ \ß-'A

XJ
\ \'£

\j'/e,s

Damit wird
l

v y + l
T - 4/jr2

{XA- 2[l-(l/u)]}3
oder für sehr tiefe Temperatureri (v -> -- oo) :

v s 2 +
/
T ~

4Zji2
X3

" (28)

Die letzten beiden Formeln beschreiben also die asymptotische Form
der Zustandsgieichung für X -> oo im Falle T < Tx. Die entsprechende
Formel für T > Tx ist natürlich (22) mit v (1/2) - (gß).

Für sehr tiefe Temperaturen erhebt sich die Frage ob es zu einer
Paarbildung der Molekeln komme oder ob sich alle Molekeln untereinander
verketten.
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Die Berechnung der Wahrscheinlichkeitsdichte entscheidet für die
zweite Alternative. Für t ix und grosse negative v geht nämlich (19)
über in

W( 0_(_eo-l)sin2 XTef-{-l-mAQ(l-m)II{u)g(u) sin2 Xt w
(l/X) sin2 X r+ {g/A) [2 - (sin 2 X r/X t)]

Für T -> 0 geht ausserdem X -> oo (A t tt).
Somit erhalten wir für die Wahrscheinlichkeitsdichte, dass das rechte

bzw. linke Nachbarmolekül relativ zu einem beliebig herausgegriffenen
die Koordinaten (co, u) besitzt, am absoluten Nullpunkt den Ausdruck

W(co, u) — 0 (1 — co) II(u) sin2 n co

U(u) lim S{u)n(u) (29)

eine mit l periodische Funktion bedeutet, welche im Intervall (0, /) überall

verschwindet ausser für 1<m< 1 + t0, l — 1 — x0 A u A l — 1, wo
sie den Wert eins annimmt.

(29) zeigt, dass eine Paarbildung ausgeschlossen ist:

W(0, u) W(l, u) 0.

Es kommt also zu einer Verkettung der Molekeln, und zwar am
wahrscheinlichsten zu einer solchen, in der die «-Koordinaten der
Quadratmittelpunkte der einen Reihe bis auf einen Spielraum dco mit denjenigen
der Quadratkanten der andern Reihe zusammenfallen (co 1/2).

e) Vergleich mit der «free volume theory»

Wir wollen in diesem Abschnitt anhand der besprochenen Modelle die
«free volume theory» in ihrer einfachsten Form prüfen. Diese Theorie ist
eine Näherungstheorie zur Berechnung von Zustandssummen von realen

Gasen bei sehr hohen Drucken. Sie gründet im wesentlichen auf drei
Annahmen (wobei die dritte manchmal durch schwächere als die hier
angeführte ersetzt wird) :

1. Man teilt das Gesamtvolumen in soviel zueinander kongruente Zellen,

wie Molekeln vorhanden sind, weist jedem Molekül eine solche Zelle
zu und zählt nur Zustände, bei denen jedes Molekül in der ihm zugewiesenen

Zelle sitzt.
2. Sei P(xx xN) die Wahrscheinlichkeitsdichte, das i-te Molekül am

Orte xt zu finden, wobei also xt auf die i-te Zelle beschränkt ist. Man
macht dann den Ansatz

jV

P(xx xN) YJ 9?(*J
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welcher in einer gewissen Analogie zum Hartree-Ansatz zur Lösung der
Schrödinger-Gleichung eines Vielteilchenproblems steht. cp(x) ist die
Verteilungsfunktion des Ortes irgendeines Moleküls in seiner Zelle. Die
Normierung verlangt :

/ cp(x) d%x 1,

wo A das Zellvolumen bedeutet.
3. Man wählt als Verteilungsfunktion cp(xx) diejenige, welche sich ergibt,

wenn alle Molekeln ausser dem ersten (dem Wanderer) in den
Mittelpunkten ihrer Zellen festgehalten werde, d. h. man setzt

p(*)=-L«[*(«)-*0»]/*r (30)

mit

E(x) £ V(RXj + x),
j-2

wo RtJ der Vektor bedeutet, der vom Mittelpunkt der Zelle i zu demjenigen

der Zelle / weist.
Die Energie in (30) ist so normiert, dass dem Zustand, bei dem alle

Molekeln in den Mittelpunkten ihrer Zellen sitzen, die Energie Null
entspricht. Der in (30) auftretende Normierungsfaktor vf,

vf= f e-[E^-E^VkTd3x, (31)
À

heisst das freie Volumen. Es ist also die Zus tandsumme über alle
Zustände eines Moleküls in seiner Zelle, wenn alle andern in ihren Zellmittelpunkten

festgehalten werden.
Für die Zustandssumme aller in dieser Näherung zugelassenen

Zustände des Gases erhält man also :

mithin
ZN v? e-FNl»T

Ninv ¦ X _ / ÖFX i_ _ /diu:_vAiviniy, hT - \dv)ThT\ dv )T>

wo v das spezifische Volumen bedeutet.
Im Falle, wo das Potential einen geometrischen Körper beschreibt

(also nur die Werte 0 und oo annimmt), bedeutet gemäss (31) das freie
Volumen nichts anderes als das Volumen desjenigen Teils der Zelle, in
dem sich das zugehörige Molekül frei bewegen kann, ohne an die in ihren
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Zellmittelpunkten festgehaltenen Nachbarmolekeln anzustossen. Unter
den Bedingungen:

*<2(*-l) d.h. x<2,
^<l-2 d.h. l<4,

von denen die erste bei genügend hohen Dichten, die zweite immer
erfüllt ist, erhalten wir also für unser Quadratmodell (vgl. Fig. 7)

2(x-l) (1-2) [2-} -l)(l-2). (32)

-- x- -

I

4
1

I

Somit

JAr dAln(

Fig. 7

2_v_

A~ ¦ C/2)

kT
(33)

Dies ist auch die aus der «free volume theory » folgende Zustandsgieichung
im Falle seitlich wirkender Kräfte, da in diesem Fall / — 2 in (32) durch
g zu ersetzen ist, was aber auf die Zustandsgieichung wie der Übergang
von (32) zu (33) zeigt, keinen Einfluss hat.

Durch Vergleich von (33) mit (22) und (28) stellen wir fest, dass die
«free volume theory» für beide Modelle gute Resultate liefert, da beim
ersten Modell der zum «free volume »-Wert hinzukommende Term für
hohe Drucke exponentiell, beim zweiten wie die dritte Potenz verschwindet

(T < Tx).

II. Das eindimensionale Gas mit Doppelwechselwirkung

a) A bleitung der Zustandsgieichung

Die Gleichung (1.13) lautet im Falle der Doppelwechselwirkung
00

f diß(i) ß(i+co)e-xt «(f) z-\X) a(co). (34)
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Wir machen die Voraussetzung:

1. /3(f) 0 für i<s
mit : 2 s < r < 3 s

2. ß(i) 1 für i^r
Weiter definieren wir:

x r — s Tj r — s r — 2s.

Es gelten die Grössenbeziehungen :

0<rj<s<x<2s<r<3s.
Unter Berücksichtigung der ersten Voraussetzung lautet (34) :

oo

z f di ß(i) ß(i + co) e'xi «(f) a(co)

Wegen der zweiten Voraussetzung hat in dieser Gleichung die linke Seite
für co > x den gleichen Wert wie für co x. Dasselbe gilt also auch für
die rechte, so dass der Ansatz:

a(co) a(x) 6 (co — x) A- «(cy) 0 (t — a»)

gerechtfertigt ist. Die Integralgleichung geht damit bei der Beschränkung
co < t über in :

a(x) J di ß(i) e~Xi A- J di ß(i) ß(i + co) e~Xi «(f) z~l «(co)

T S

Wir wählen nun speziell einen Potentialtopf der Breite t0 und der
Tiefe V0 (vgl. Fig. 8), d. h. wir setzen:

ß(i)=6(i-r) + ß6(r-i), ß=ev»lkT.

Damit erhalten wir die Integralgleichung:

a{A± [e-*' + ß (e->-r -e-!A] +
T

+ ß J di [0 (i + co - r) + ß 6 (r - f - co)] e~u «(f) z~' a(co)

S

31 H. P. A. 35, 6 (1962)
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v(X) a(x) + ß / di X' «(f) + ß2 di e~u «(f) z-1 a(co) (35)

r-o) s

v(X) (l-ß) Xs + ß (36)

v(S)
4

r -

- T-

S. >.

Fig. 8

Wiederum erhält man durch Differentieren nach co eine Differenzen-
di fferentialgleichung

zß(l-ß)a(r- co) g-;e-<u> «'(co) (37)

und durch Einsetzen eines speziellen Wertes für co, z. B. co x in (35) die
zugehörige Randbedingung :

-X a(x)v + ß I die-xsä(i)=af (38)

Aus (37) folgt sofort durch einmalige Iteration eine gewöhnliche
Differentialgleichung :

[a'(co) X«7 zß(l-ß) e~'r^m~a(r - o>)

bzw.
-z2ß2{l - ß)2 e~Xr a(co) e~Xa

a"(co) - X «'(co) + z2 ß2 (1 - ß)2 e~Xr a(co) 0 (39)



Vol. 35, 1962 Eindimensionale und quasieindimensionale Gasmodelle 483

Weiter ergibt sich aus (37) :

ßä(i)e-x^--^ß)^a(r-i).
Diese Beziehung in (38) eingeführt, ergibt

z ß (1 - ß) v —. - «(t) + ß2 a(x) - ß ä(s) 0 (40)
à

bzw.

v ä'(s) A-Xß2 a(x) -Xß a(s) 0 (41)

Die letzte Beziehung folgt aus (40) unter Benutzung von (37) für co s

zß(l- ß)e-Xra(x) =a'(s). (42)

Für co x lautet (37) :

z ß (1 - ß) Xs a(s) a'(x) (43)

Durch Multiplikation von (41) mit z (1 — ß) e~Xr und Verwendung der

Beziehungen (42) und (43) erhalten wir eine weitere Randbedingung zur
Differentialgleichung (39)

z2 (1 - ß)2 ß v-A-XI_ä(T) + ße-Xsa'(s) - e~Xr a'(x) =0. (44)

Die Wahl von (41) und (44) als Randbedingungen zu (39) unter den
vielen von diesen linear abhängigen Möglichkeiten erweist sich deshalb
als günstig, weil nun sowohl in der Differentialgleichung als auch in den

Randbedingungen z nurmehr im Quadrat auftritt.
Die Lösung von (39) ist

a(co) A ec>m + B é-m (45)

mit

cx (± + t)X; c2 (\-t)x
und

t= + |/|--^^VX (46)

Die Umkehrung von (46) lautet

2 _JAe*
/?2(l-/>)2

*eXr £-«•). (47)
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Unter Verwendung der Lösung (45) führen die Randbedingungen auf
das Gleichungsssystem

A{[(}2- + t)v(X)-ß]e^ + ß2e^A-

A- B IU-- - t) v(X) - ß\ <XS + ß2 <XT1 0,

A Cl{[(y - t)v{X) - ß] e~c>XT + ß2 *-<•**} +

+ b{[(~ + ij v(X) - ß\ e^Xt + ß2 e~c'Xs} c2=0,

welches genau dann eine nichttriviale Lösung besitzt, falls

(I " *) {[(t + ') "(A) " ß] X(1/2)+<](A"/2) + ß2 e^l2i+'^H2

(A + t) j[(i - t) v(X) - ß\ e-t(i/2!-fl<;.,/2) + ß2 eaim-wnm\~

bzw.

2 {[(i- - t2\ v2 - ß2] XA"/2) - ß* X/21 cosh tX rj -
- {[(¦! - <2) (v2 - 4 /3 u) + 0»] XA"'2> - ß* X'2} x

sinh t X rj
A- 4 p13 0 (48)

gilt, wo »7 T — s.

ftö-ifo'{t-ß)*-i"

Fig. 9

tM-i
1 + 1/3"

tfiHH'o-t)* t(°°)°i

«
1 + 1/3"

Wiederum müssen wir im Hinblick auf (47) das grösste reelle, oder falls
ein solches nicht existiert, das absolut kleinste rein imaginäre t(X)
bestimmen, das dieser transzendenten Gleichung genügt. Wie man sich
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vergewissert, ist der Variationsbereich von t(X) der in Figur 9 in der
i^-Ebene gezeichnete.

Dabei ist speziell der zu t 0 gehörige Wert von \:XX die Lösung der
transzendenten Gleichung

v\h) ,-favm
4 * P] f1 - ¥)

ß[ß + ß A
-v(Xx)Xx r\e ¦Äiffl 2ß3

Mit Hilfe einer elektronischen Rechenmaschine wurden für rj 1 s

einige t2(X)-Kmven berechnet. Beispiele (ß 1,4; ß 2,0; ß 25,0) findet

man auf der graphischen Darstellung IV.

OA

t'
Grapi.ûarsI.M tosi/ngskurven der transzendenten

6/eichuna(tl)

^-~ ,-—¦" - 3"

>tß y~i r^2 s

ß~2 /ß-25

-1 l 1

-2 / /
-3 \

Die Berechnung des spezifischen Volumens geschieht dann nach der
aus (1.8) und (47) folgenden Vorschrift:

dX
ln z s A-

1 dt2/dX

T (1/4) -t2 (49)

erfordert also noch eine Differentiation der £2(A)-Kurven, welche mit der
Maschine nicht ausgeführt werden konnte. Es mussten daher graphische
Methoden benutzt werden, was eine erhebliche Einbusse an Genauigkeit
bedeutet. Aus diesem Grunde und auch weil die Kurven (49) gegenüber
den von Gürsey3) berechneten prinzipiell keinen Unterschied zeigen,
sind sie hier nicht wiedergegeben. Für Interessenten liegt das
Zahlenmaterial vor.
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b) Asymptotische Entwicklung für hohe Drucke

Wir setzen

t(X) =\-- e(X) mit e < 1.

Unter Berücksichtigung von v(oo) ß lautet die transzendente Gleichung
(48):

e(X) ß2ex" e-E<;)x" A- ß2 e'[X)x" - 2 ß (50)

Machen wir den Ansatz :

e(X) ^«X" + &XX
so folgt durch Vergleich der konstanten bzw. der e~'n proportionalen
Terme auf der linken und rechten Seite von (50)

a [l - A b
1Xr,

a ',(i- ßA'

Damit erhält man:

t(X) rsj i
2

~~ a e -Ai) -be~2> ¦ 1

t2(X)
1

4
a e -Ar,' + («2 ~ b2)e- 2>.ri

und daraus

v ~ s + n
2

1

+ X
¦ - V

2

1-2 [(a2--b)/a] e-'-n

l-[(«2- b)/a] e-Ir,

^s+\A-l\(l-^-Xrj{i-^)\e->y (51)

Das Zusatzglied zur Zustandsgieichung des Stäbchengases verschwindet
exponentiell für X -> oo.

e) Der Fall ß -> oo

Der Fall ß -> oo kann entweder als Fall unendlich tiefen Potentials bei
endlicher absoluter Temperatur oder als Fall endlichen Potentialtopfs
und verschwindender absoluter Temperatur interpretiert werden, wobei
man bei der zweiten Interpretation die Konsequenz X -> oo nur dann
nicht zu ziehen braucht, wenn man gleichzeitig p -> 0 gehen lässt bei
konstant gehaltenem X pjk T. Es ist auch möglich, den Fall ß -> oo als
nullte Näherung einer Tieftemperaturentwicklung aufzufassen (vgl.
Abschnitt lila). Aus (48) und (49) folgt sofort, dass in diesem Fall die Zu-
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Standsgleichung in einer Parameterdarstellung angeschrieben werden
kann:

1
a ^-ArTg2*, v sA-A^- -?)?f

un-m
x-2, o < t < 4-,- r, 2

i 2 V l
A - X Ctg X V s '

r, »*' "--T" y t - 2*2
A —

^[l-U^/2)!

A<—, 0<*^^-. (52)
jj 2

Insbesondere erhält man zu A 0 das Volumen

S + ,(i--i-). - (53)

Die A(z;)-Kurve ist also eine steil abfallende Kurve mit der Asymptote
v s und der Nullstelle (53).

III. Summarische Besprechung weiterer Modelle

a) Hoch- und Tieftemperaturentwicklung für ein Gas mit v-fach wechsel¬

wirkendem Potentialtopf

Wir gehen aus von der Gleichung (1.13), die wir durch die Koordinatensubstitution

xv_x cav_x, cx>v_x xv-X,

Xv-2 CA>v-i + <H„-2 cav_2 xv_2 — xv_x

xx=co„_xA- co„_2A- + cox, cox xx — x2,

auf die einfachere Form

OO j
f di e-x*JJß (i + xk) fz(x2 + i...x0A-i,i)= C(A) fz (xx...x„)

J k i

bringen. Dabei wurde

AX) z~i(X), q=v-1, xe+l=xv 0
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az(cox...cov_x) az(xx-x2...xv_2-xv_x,xv_x) fz(xx... xv_x)

gesetzt. Wir nehmen dann an, dass das Potential die in Figur 8 angegebene

Gestalt besitzt, wo aber r jetzt der Ungleichung v s A r A (v + 1) s

genügt.
Die Gleichung für die Bestimmung der Aktivität lautet somit in diesem

Falle

s+i
L
k 1

di e-"'YI [l+ed(r-i- xk)] f, (x2 + f xg + f, f)

C(A) />!-. xe) (54)

mit e ev°lkT - 1.

Für k T > F0 ist e eine kleine Grösse, bezüglich der wir Störungsrechnung

treiben können.
Wir setzen also :

/Xi • • • xe) AXi • • • xe) + fi /i(% ¦ • • xe)>

£(A) S Co + e f i
und finden nach einiger Rechnung

/o(*i •¦•*„) =c;

/i(% - • • *«,)=c X" xô (t* - *<

Co —;r- j Ci er Co

1 — ^ TT vl* — *i)
1 0

k l

X1

1-27 TT^^
mit

Daraus
xk r — ks.

Insbesondere gilt für hohe Drucke in dieser Hochtemperaturnäherung

W s + T-Tf X^i)! ^ -Ar,

mit rj r — vs. Dies ist für j> 2 tatsächlich dasselbe, was man erhält,
wenn man in (51) ev°lk T-ls V0fk T e setzt und nur lineare Glieder in
e berücksicht.
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Sucht man mit unserer Methode die Aktivität im Rahmen einer
Tieftemperaturentwicklung, d. h. durch Störungsrechnung bezüglich 1/e, zu
bestimmen, so erkennt man, dass die nullte Näherung der Gleichung (54)

äquivalent ist der partiellen Differenzendifferentialgleichung

- e~x{r-x') /0 (x2 A- r - xx, x3 + r - xx... xg + r - xx, r - xx)

^° öx ^°(% •••*«)

mit der Randbedingung /0(t1 x2 x3) 0. Für v 2 führt dieses

Randwertproblem tatsächlich wieder auf die Zustandsgieichung (52).
Wahrscheinlich wäre es möglich, unter einigem Rechenaufwand obiges
Randwertproblem allgemein zu lösen, doch lohnt sich dieser Aufwand,
gemessen am Interesse für die Lösung, nicht. Für r vs muss ja (in nullter
Näherung) die A(w)-Kurve eine Senkrechte bei v s werden, während sie

sonst eine steil abfallende Kurve sein muss, welche für X -> oo besagte
Senkrechte als Asymptote besitzt und auch für alle andern Werte von X

(insbesondere X 0) den Wert v rjv nicht überschreitet.
Immerhin zeigt die Betrachtung, wie kompliziert es ist, nur schon die

nullte Näherung der Aktivität im Rahmen einer Tieftemperaturentwicklung
exakt zu bestimmen.

b) Das Streifen-Quadratgas

Das Zylinder-Quadratgas, mit dem wir uns weiter oben beschäftigten,
ist als zweidimensionales (quasieindimensionales) Gas insofern weit
einfacher zu behandeln als alle übrigen Modelle von analoger Art, weil in der
ihm entsprechenden Integralgleichung die Koordinate, welche den zweiten

Freiheitsgrad beschreibt, nicht explizit auftritt. (Es kann wegen der
Periodizitätseigenschaft von II(v) über v integriert werden.)

Um zu zeigen, dass die Methode auch funktioniert, falls diese
Vereinfachung nicht möglich ist und um ein Modell zu betrachten, das in der

Kompliziertheit eine Zwischenstellung zwischen dem Zylinder-Quadratgas
mit der Bedingung 2 < l < 3 und demjenigen mit der Bedingung

3 < l < 4 einnimmt, geben wir noch die Resultate des Streifen-Quadratgases,

das sich vom Zylinder-Quadratgas nur dadurch unterscheidet, dass

die Ränder des Streifens (y 0 und y l) bei ihm nicht mehr identifiziert

werden (vgl. Fig, 3). Die Anwendung unserer Methode führt zu
folgendem Resultat: Die Aktivität ist mit der kleinsten Lösung yx der
transzendenten Gleichung in y :

J- [y2M(X,y)A-y L(X, y)] - 1 + -^ X'2 ny 0 (55)



490 Martin Kummer H. P. A.

durch die Beziehung

**-%S£m (56>

verknüpft. In (55) bedeuten M(X, y) und L(X, y) die Ausdrücke:

M(X,y) £ yt)msmh Xtm(y) 1

m 0
sinh yUm(y) + 2/m(y) cosh ;Um(y) [w+(l/2)]3

t ix vi y — m™'

m~o sinhA<m(y) + 2«m(y)coshA«m(y) f«+(l/2)]2

^ A\*.&) "' y
r«+(i/2)]2 '

Nach (1.20) gewinnt man aus (56) das spezifische Volumen gemäss der
Vorschrift

X ;Aln, 4 + -[ + /^lnyl(A). (57)

Studiert man nun wiederum das asymptotische Verhalten für hohe
Drucke, so ist es auch in diesem Fall möglich zu zeigen, dass der zur
Zustandsgieichung der «free volume theory» hinzukommende Term
l (d/dX) inyx(X) von (57) asymptotisch für sehr hohe Drucke exponentiell
verschwindet, und zwar für alle / (1 < / < 2) gleich stark.

Weiter kann man nach der Streifenbreite entwickeln und findet für das

spezifische Volumen

' C-l)2 „Ah /2 A (l-l) + ]XXXXXM (2-1)

Diese Entwicklung ist natürlich nur für genügend kleine Drucke richtig,
da die beiden Grenzwerte (1. Summierung der Reihe und 2. X -> oo) nicht
miteinander vertauschbar sind. Dies ist ja auch für das Zylinder-Quadratgas

der Fall, wo die entsprechende Entwicklung gemäss (26)

v l + -I - (/ - 2) A A- (1x2)
lautet.

IV. Zusammenfassung und Ausblick

Durch einen Ausbau der van Hoveschen Methode zur Berechnung der
Zustandsgieichung eindimensionaler Gasmodelle war es uns möglich, auch
einfache zweidimensionale (quasieindimensionale) Gasmodelle exakt zu
berechnen. Obwohl solche Modelle, wie wir gezeigt haben, nicht zum
Studium von Umwandlungen herangezogen werden können, so haben sie
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doch wenigstens den einen Sinn, dass sie die Prüfung von Näherungstheorien

realer Gase erlauben. Davon haben wir in dieser Arbeit Gebrauch

gemacht, indem wir die «free volume theory» an drei verschiedenen
Modellen geprüft haben (am Zylinder-Quadratgas mit und ohne seitlichen

Potentialtöpfen und am Streifen-Quadratgas) und gefunden haben, dass

alle drei die Richtigkeit der Grundannahmen der «free volume theory»
bestätigen. Dies bedeutet, dass bei hohen Drucken sich die Molekeln
tatsächlich vorwiegend in einem durch die übrigen Molekeln abgegrenzten
Gebiete (einer Zelle) aufhalten und Wanderungen von Molekeln über

grosse Distanzen sehr unwahrscheinlich sind. Es fragt sich, inwieweit die
behandelten, vom physikalischen Standpunkt aus sehr einfachen Modelle
in dieser Hinsicht repräsentativ sind für kompliziertere Modelle ; doch ist
es wohl nicht übertrieben, sie als repräsentativ für alle quasieindimensionalen

Modelle zu betrachten.
Die in dieser Arbeit berechneten Modelle, insbesondere das Zylinder-

Quadratgas, könnten vielleicht auch zur Prüfung von Grundannahmen
anderer Näherungstheorien, zum Beispiel des Kirkwoodschen
Superpositionsprinzips herangezogen werden. Dass dieses Prinzip in einem

(quasi)-eindimensionalen Gas mit UbernächstnachbarnWechselwirkung
sicher nicht mehr in der üblichen Form

(x0 | W | xx, x2) (x0\W \ xx) (xx | W | x2)

exakt erfüllt ist, wie dies beim eindimensionalen Gas mit Nächstnachbarnwechselwirkung

der Fall ist [vgl. die Arbeit von Salsburg, Zwanzig und
Kirkwood10)] zeigt die Beziehung (1.4).

Was die Berechnung von (quasi-) eindimensionalen Gasmodellen mit
mehr als Doppelwechselwirkung anbetrifft, so ist unsere Methode natürlich

prinzipiell anwendbar und läuft beispielsweise im Falle des Zylinder-
Quadratgases mit der Bedingung 3 < / < 4 auf die Lösung einer
partiellen Differentialgleichung (mit drei Variabein) mit komplizierten
Randbedingungen hinaus, und es ist eine analoge Berechnungsweise wie im
Falle des Streifen-Quadratmodells möglich. Doch steigt der Rechenaufwand

mit dem Zylinderumfang (bzw. der Reichweite des Potentials im
FaUe eindimensionaler Gase) sehr rasch an, und es wird fraglich, ob er sich,

gemessen am Interesse für die Lösung, lohnt.
Die einzige in dieser Arbeit besprochene Rechnung, die sich auf ein Gas

mit mehr als Doppelwechselwirkung bezieht, ist die Berechnung der
nullten und ersten Näherung der Hochtemperaturentwicklung eines Gases

mit v-fach wechselwirkendem Potentialtopf. Sie zeigt, dass sich die
Methode, im Sinne einer Störungsrechnung angewandt, auch für
Näherungsrechnungen gebrauchen lässt.
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Es wäre vielleicht auch möglich, mit Hilfe einer auf unserer Methode
beruhenden Störungsrechnung ein Zylinder-Rechteckgas näherungsweise
zu berechnen, wobei die in Richtung des Zylinderumfangs weisende Seite
des Rechteckmoleküls als kleine Grösse zu betrachten ist.

Zum Schlüsse möchte ich meinem Lehrer, Herrn Prof. Jost für die

Ermöglichung dieser Arbeit, für seine vielen Anregungen und für das ständige

Interesse, das er meiner Arbeit entgegengebracht hat, bestens danken.
Auch Herrn Prof. Fierz bin ich für seine anregenden Diskussionen zu
Dank verpflichtet. Herzlicher Dank gebührt weiter meinem Freund,
Herrn dipi. phys. K. Zumbrunn, der mit Hilfe einer elektronischen
Rechenmaschine die transzendente Gleichung (48) gelöst hat (vgl. graph.
Darst. IV). Alle andern Kurven wurden mit dem Rechenschieber berechnet,

da es uns nur auf ihren prinzipiellen Verlauf, nicht aber auf hohe

Genauigkeit ankam.
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