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Interaction nucléon-nucléon aux basses énergies

par A. Houriet et C.-A. Héritier
(Institut de Physique Théorique, Université Fribourg)

(8. III. 1962)

L'étude du système de deux nucléons aux basses énergies est effectuée en
reconsidérant l'influence de la première résonance pion-nucléon. Les constantes
caractéristiques calculées sont proches des valeurs expérimentales. La constante de
couplage renormalisée se situe dans le même domaine que celle que fournit la diffusion

pion-nucléon.

1. Introduction
Le calcul du potentiel entre nucléons paraît inextricable en raison du

nombre élevé de termes nécessaires à une approximation valable. Et
pourtant, une théorie satisfaisante de la diffusion P pion-nucléon et du
potentiel entre nucléons paraissait acquise il y a quelques années1). Mais
ce même potentiel donne une énergie fortement positive pour le noyau
A3 2). Cette situation décevante incite à rechercher une solution
d'ensemble qui ne se limite pas aux basses énergies. On peut aussi admettre
qu'une analyse constructive des difficultés soit utile. C'est ce que l'on a
tenté de faire ici.

Les travaux récents ont situé un des points critiques de l'interaction
nucléon-nucléon. Les états j t 3/2 du nucléon 4- champ mésonique,
bien connus par la diffusion des mésons n, ont une influence très importante

sur l'interaction3). Les corrections qui en résultent affectent
notablement les états singulets-pairs et triplets-impairs. Mais le calcul est

plus qualitatif que quantitatif.
Lorsqu'on introduit les potentiels calculés dans l'équation de

Schrödinger de deux nucléons, la caractéristique est une probabilité pD élevée -
elle se situe souvent entre 7 et 10%. Sans méconnaître les arguments
destinés à concilier ces chiffres avec la probabilité expérimentale fournie
par le moment magnétique du deuton, soit 4%, il nous semble que l'écart
est significatif. On sait qu'un potentiel à probabilité pD élevée dans le
deuton a pour conséquence un pourcentage de fonctions D élevé dans les

noyaux A 3.

Nous nous sommes demandé si, dans les calculs du potentiel, on pouvait

tenir compte différemment des états j t 3/2. Les théories à

couplage fort conduisent bien à des problèmes de ce type4). Mais les cons-



Vol. 35, 1962 Interaction nucleon-nucleon aux basses energies 415

tantes de couplage expérimentales ne sont ni faibles ni fortes, et il n'y
a pas d'isobares stables. On sait que la diffusion de résonance des mésons

n est représentable par la méthode de Tamm-Dancoff8), - et par toute
méthode qui limite le nombre des mésons du champ mésonique. Par
contre, le calcul de l'état fondamental du nucléon par Friedman, Lee et
Christian6) (travail désigné par F. L. C), montre que le couplage
intermédiaire de Tomonaga conduit à l'énergie la plus faible pour le nucléon7),

- ce qui ne légitime d'ailleurs pas cette approximation pour le calcul de
la diffusion méson nucléon. De plus, les valeurs numériques des matrices
calculées par F. L. C. sont voisines des valeurs fournies par un couplage
fort. Il est donc manifeste que dans ce cas le couplage intermédiaire peut
être utilisé. Or l'énergie d'interaction entre deux nucléons est directement

liée à l'énergie propre de leur système. On peut présumer que son
calcul relève d'un couplage intermédiaire, - qui s'avère d'ailleurs proche
d'un couplage fort.

Sans présenter ici les résultats numériques de cette étude, qui sont
réunis plus loin, disons que l'accord des valeurs théoriques et expérimentales

est bon. De plus, la constante de couplage renormalisée tirée du
système de deux nucléons est voisine de celle que fournit la diffusion
pion-nucléon.

2. Le potentiel entre deux nucléons
Ce potentiel, calculé par la méthode de Tomonaga, est très proche de

celui que donne un couplage fort. Le calcul de l'énergie propre du nucléon
de F. L. C. sert de point de départ. Il permet de calculer l'énergie propre
d'un système de deux nucléons. Les traits essentiels en sont exposés,

joints à un examen de la précision obtenue.
Le nucléon situé à l'origine est représenté par une fonction de forme

normée U(r) et par ses matrices de spin ak et de spin isobarique ra. On
utilise l'hamiltonien de F. L. C, soit:

avec

H H0 A- Hm_ (2.1)

i •

H.ml )/4n±- X fdvU(r)akta dcPa

:,*-!
3

1^17 Z fdv~akxacpa (2.3)
«.»-i

dont on recherche l'état fondamental | E) d'énergie E.

H\E) E\E) (2.4)

E désigne ici le minimum de l'énergie, soit l'énergie propre du nucléon.
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L'interaction ne couple que les états mésoniques P avec le nucléon.
On développe cpa en ondes partielles S, P, D, etc. autour de l'origine.
H est alors séparé :

H HpA- £ HL (2.5)
L^S,D...

3

Hl=\Z [**Ki. +9*.l if* - A) <P«l) (2-6)
a= 1 "

HP=\E fdv{7Zl,P+(P*,p(f*2-A)<Pa,p}-
a-1 •>

-^jÊfdv^-^«<P«,P X7)

On ignore les états L S, D, etc., solutions de H0. Résoudre (2.4) revient
à calculer l'état fondamental | EP) de HP.

HP\EP) EP\Ep) (2.8)

Ep désigne dans ce qui suit l'énergie minimale de HP.
On développe les états P suivant les solutions P sans interaction de H0.

Chacune est désignée par k (module du vecteur d'onde) et sa polarisation
j 1, 2, 3. Les solutions exactes de (2.8) sont inconnues, et ne sont
accessibles qu'à l'aide d'approximations. Celle de Tomonaga suppose tous
les mésons virtuels dans le même état. Elle s'exprime mathématiquement
en remplaçant l'état exact \EP) par l'état approché de Tomonaga | Fj)
défini par:

oo

\ETP)= Z ßni,ns,nM*i)nA4)nA4r\0p) (2.9)

où | oP) désigne l'état standard des mésons P (aucun méson P), et

a* fd3kf(k)a*(k) (2.10)

af(k) étant l'opérateur de création d'un méson P d'état (k, i). Va fonction

f(k) représente l'état privilégié des mésons et est normée :

fd3k\f(k)\2=l (2.11)

Les coefficients ß comme la fonction f(k) sont déterminés par variation
de l'énergie EP.

L'étude critique de la méthode de Tomonaga8) a montré qu'à la limite
/ -> oo, on a:

lim \ETP)=\ EP) + ^^ | E'p) (2.12)



Vol. 35, 1962 Interaction nucleon-nucleon aux basses energies 417

[ E'p) désignant un état orthogonal à \EP). On doit aussi rappeler ici que
l'approximation de Tomonaga s'identifie au couplage fort pour / oo.

Enfin, on sait construire des solutions | E'P) approchées pour | Fp)8)9)
qui sont telles que :

TTA _ I r-Tv Constlim\EÏ)=\EÏ)A-A^\Ep) (2.13)

avec

(Ép\ETP)=0

Ces connaissances fournissent une assise solide pour l'étude de l'interaction

de deux nucléons, étude que nous développerons schématique-
ment ici.

Chacun des deux nucléons situés en xx et x2 sera décrit par la fonction
de forme U(r) avec les notations:

U(rt) U (\x-xt\) 1=1,2 (2.14)

°*'> r'a sPm> sPm isobarique du nucléon l.
L'hamiltonien du système vaut :

ff ffo + iï4^ Ê fdvU(ri)^^^ (2.15)
/- 1 "a, h-1 J k

On doit en déterminer l'état fondamental, noté | E(r)), d'énergie E(r) où

H \E(r)) ¦¦= E(r) \E(r)) (2.16)

L'énergie E (r) qui dépend de la distance entre les deux nucléons conduit
au potentiel V(r) :

V(r) E(r) -2 El (2.17)

La méthode de Tomonaga s'applique au calcul de E(r). On décompose
le champ mésonique en deux systèmes d'ondes partielles S, P, D, etc.,
centrées les unes sur le premier nucléon, les autres sur le second. Seuls les

états P sont retenus (par analogie avec F. L. C). On conserve aussi la
distribution f(k). Comparé à F. L. C, le nombre des variables du champ
mésdhique passe de 9 à 18 ; il s'ensuit un calcul numérique laborieux dont
nous donnons les résultats. Comme dans F. L. C, il s'agit d'un couplage
intermédiaire voisin du couplage fort. Tous les éléments de matrices
nécessaires à la détermination du potentiel entre nucléons sont numériquement

voisins de ceux que donne le couplage fort. Les états de diffusion,
distribués de façon continue dans la solution exacte du problème, sont
remplacés par un état virtuel t j 3/2. L'énergie de cet état correspond
à la première énergie de résonance des pions, soit ~ 320 MeV.

27 H. P. A. 35, 6 (1962)
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Il convient de se reporter ici à (2.12). L'approximation de Tomonaga
n'est pas une solution exacte. Comme dans d'autres cas de la physique
actuelle, la valeur de cette approximation n'est pas connue exactement.
Elle ne peut l'être qu'en fonction des résultats numériques précis qu'elle
permet de calculer. Nous avons choisi comme test le calcul des

caractéristiques du système nucléon - nucléon aux basses énergies. Ce test a été
conduit avec le potentiel du couplage fort, de manière à simplifier les
calculs.

En accord avec les idées actuelles, nous admettrons que le potentiel n'a
pas de valeur significative à l'intérieur d'un cœur nucléonique de dimension

voisine de 0,5 /. Il y sera remplacé par un potentiel répulsif infini.
Avec les notations de Pauli 10) on aura :

v(r)- (Mï27«1,-rm)<«?)-rw> ?; si
" a 1 " r>rc

V(r) co si r < rc (2.18)

Ce potentiel est décomposé en potentiel 3 central et tensoriel

z pir z pi (x2 — xx)

V(z)=pi^{3Qf(z) + 90g(z)} (2.19)

avec

a=l
(2.20)

;fr11 *a 3 f
(2.21)

/«--r *«--Ç(1 + A + i-)- (2.22)

Dans les notations de Fierz11), on a:

ea,k xa,k et e=T--- (2.23)

Rappelons enfin que la constante renormalisée d'un couplage fort f2

vaut:

/; -C (2-24)

3. Le deuton et l'état triplet
Le potentiel V(r) (2.19) et les états excités j t — 3/2 des nucléons de

masse M conduisent à l'équation de Schrödinger suivante :
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JcoW + «(a) -~A + F(r)| |V) s i» (3.1)

les opérateurs cX étant définis par :

co™ |..., /«> 3/2,...) Fr |..., /«> 3/2,

a>W |..., /W 1/2,...) 0 / 1, 2 (3.2)

avec Fr énergie de résonance des pions.
Cette équation a été étudiée par Villars12) pour des potentiels carrés.

Ici, les ft>w remplacent l'opérateur usuel des isobares. On ajuste la
constante de couplage /2 de manière à ce que l'énergie de l'état fondamental
de (3.1) soit égale à l'énergie de liaison expérimentale du deuton,
soit 2,23 MeV. On traite le rayon du cœur nucléonique rc et l'énergie Er
comme des paramètres auxquels on donne successivement différentes
valeurs.

La nomenclature du système de deux nucléons est ainsi choisie : chaque
nucléon possède 4 états / t — 1/2 et 16 états j — t= 3/2, dont l'énergie
d'excitation vaut Er. On désigne S jxA- H et T tx A- t2. L est le
moment orbital des nucléons relativement au centre de gravité, J L + S
le moment cinétique total du système.

La composition des états triplet et singulet de (3.1) est connue11)12).
L'état triplet correspond à / 1, T 0, jt /2. On a:

W)=Z-F-'Jf(±\S,L,jl=J2) (3.3)
SI;,

j xp) possède cinq composantes significatives qui sont :

Fi Xo,i/2W «W -^ Fi,2,ii2(r) w(r)

¦*3 M.E.a/îW P* P3,2,3l2[r) ^5 ^l.O.^W (3-4)

Les deux premières u(r) et w(r) sont les composantes habituelles du deuton.

Le calcul numérique montre que la probabilité de F1>0j3/2 est
inférieure à 0,005%; cette fonction sera ignorée. Si l'on encadre l'équation
(3.1) par les quatre fonctions Fv F2, F3, F4, on peut lui donner la forme
matricielle suivante :

Fi

(3.5)

K F X W F (3.6)



420 A. Houriet et C.-A. Héritier H. P. A.

ou:

_
d*

4.
6

~AA», i x*>r

K
6

72

(3.7)

rf A- k

dz2 T jj2 4- >e2

Avec les abréviations

et

¦fir, rj

2 E, M

2 M | eD \l%2 fi2, ed énergie du deuton

2m„c
H2 ft' •¦fi2/M rfr

1/5 0

W fz)
P

-21/2

F-5-2V2 35
g{*

34

25

n n 432

35 25 175

(3.8)

Les éléments de la matrice W (respectivement de Q et 0) relativement
aux états | S, L, /x) se trouvent dans Fierz11), et conduisent directement

à (3.8).
Dans la perspective adoptée il s'agit de résoudre (3.6) pour un cœur

rc et une énergie Er préalablement choisis. Cela revient à trouver la
valeur de 2 et les quatre fonctions Fk correspondant à sD — 2,23 MeV.

Remarquons que les conditions aux limites des quatre composantes de

F sont homogènes :

F(oo) F(rc) 0 (3.9)

Cela permet de construire l'opérateur K'1 tel que K"1. K 1. On a:
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dz' Gx(z, z')
0

dz' G2(z, z')
K-!= | J | (3.10)

— / dz' G3(z, z')
o J r

— / dz' GAz, z')

où les G(z, z') sont les fonctions de Green des différents éléments de K:
d2 „ / 6

dz* Gk+ \A
Ces fonctions sont :

Gi + rl2G1 ô(z, z') - A- G2 A- (J- + rf) G2 à(z, z')

Gk + (J + ri2) Gk + x2Gk ô(z, z') k 3, 4 (3.11)

Gx(z, z') — sinh r] (z< - zc) g-"<2>-^

G,{z, *') ~ [{sinh r] Z< (l + X^-) _ _2_ Cosh t] z<} +

l rjz< rf-z\)i W rjz> n zl) i

Gk(z, z') ~ [{sinh a zK (l + -X) - -L- cos' a z^ +

+ C (l + — + -2-24 «-"<] [Il + X- + -4-À e-°°>] k 3,4

(3.12)

où : a2 x2 A- rj2 et z< la plus petite des deux variables z et z' ;

z> la plus grande des deux variables z et z' ;

C et C sont des constantes telles que G(zc, z') 0

oùzc n rc

Avec K'1 on transforme le système d'équations différentielles (3.6) en

un système d'équations intégrales homogènes :

F XK~1WF (3.13)

Ce système d'équations intégrales permet d'appliquer la méthode très
efficace de l'itération pour le calcul de X et des FK. On peut ainsi

programmer une calculatrice électronique, en l'occurence le calculateur
IBM 709 du CERN. On a ainsi pu confirmer la validité des résultats
obtenus préalablement par des méthodes moins raffinées. Les autres
grandeurs caractéristiques du triplet et du deuton, soient la portée effective

et le moment quadrupolaire11) sont accessibles par des sous-programmes.
On trouvera l'ensemble des résultats et leur critique au § 5.
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4. L'état singulet

L'état singulet correspond a J 0, T 1, L S pairs et comporte
deux composantes principales caractérisées, la première par L S 0

et ]\ j2 1/2, la seconde par L S 2 (et symétrique en j1 1/2,
j2 3/2 et /j 3/2, /g 1/2). Ces deux états seront notés:

0,0,^) et !2'2's) (4ll)

Pour le singulet, la solution de l'équation (3.1) s'écrit:

1 y,) Dt±l'lAL |

0, 0, --) A- ^XL j 2, 2, s) (4.2)

L'état excité | 2, 2, s) a une énergie égale à Er. On choisit les solutions
correspondant à e 0 pour aboutir aux calculs classiques de la longueur
de diffusion et de la portée effective r0s.

On procède alors comme pour le triplet en introduisant :

/F0,o,l/2W\
Fs (4-3)

qui satisfait à l'équation:
A2,X)

K'FS XW'FS (4.4)

*'=( dZ*
d2

°6 J I«)
0 -^+>+^

ou
2 £rAf

h2 u2

1 0 0 4

IF' f(z) g(z (4.6)

On pourrait calculer la longueur de diffusion a s et la portée effective qui
correspondent à la valeur de X obtenue par le triplet. On préfère ajuster
une nouvelle fois X, mais de manière à ce que la longueur de diffusion
théorique as soit égale à la valeur expérimentale «^xp — 23,7 /; puis
on détermine la portée effective théorique r0 s.

Du point de vue technique on obtient la solution de (4.4) par une
méthode analogue à celle déjà exposée pour le triplet. On transforme (4.4)
en une équation intégrale, ce qui permet l'usage de la calculatrice
électronique. Les résultats sont reportés dans le paragraphe suivant.
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5. Résultats et conclusions

423

Les calculs ont été faits pour trois valeurs de rc, soient 0,4 /, 0,5 / et
0,6 /, et deux valeurs de Er: 300 et 330 MeV. Les résultats sont reportés
dans deux tableaux relatifs aux états triplet et singulet. C'est la valeur
de la constante de couplage renormalisée (2.24) qui est indiquée.

Triplet
La constante f2 est ajustée de manière à donner l'énergie de liaison

correcte du deuton.

re Er 1 r
0

(10"27cm2) rt Pw pFt PF3

0,4/
300 MeV 0,0499 1,65 1,43/ 4,48 % 0,70 % 0,017 %

330 MeV 0,0503 1,66 1,38/ 4,53 % 0,65 % 0,016 %

0,5/
300 MeV 0,0680 2,39 1,66/ 5,43 % 0,63 % 0,016 %

330 MeV 0,0686 2,40 1,64/ 5,50 % 0,58 % 0,015 %

0,6/
300 MeV 0,0888 2,94 1,84/ 6,28 % 0,56 % 0,015 %

330 MeV 0,0895 2,95 1,84/ 6,37 % 0,52 % 0,014 %

Les valeurs expérimentales de Q et rt sont Q (2,738 Az 0,016) • 10~27cm2

et rt (1,704 ± 0,030) /.

Singulet

Va constante de couplage renormalisée est ajustée de manière à

reproduire correctement la longueur expérimentale de diffusion as.

(f)
X

(MeV)
/2Ir

Y
OS

(/)

0,4
300 0,052 2,58

330 0,053 2,12

0,5
300 0,0715 2,62

330 0,073 2,49

0,6
300 0,095 2,52

330 0,0975 2,36

La valeur expérimentale de r0s est r0s (2,5 Az 0,2) /.
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Ces résultats ont les caractéristiques suivantes :

1° l'écart entre la constante de couplage du triplet et celle du singulet
est d'environ 10%, ce qui est comparable avec les résultats de Gartenhaus

x) ;

2° la probabilité pD est fortement réduite ;

3° malgré une probabilité inférieure à 1%, dans le triplet, les états
excités du nucléon modifient très profondément la structure des états
triplet et singulet;

4° pour des cœurs rc compris entre 0,5 et 0,6 /, (et qui correspondent
aux coupures usuelles faites aux environs de 6/«1)), les constantes de

couplage renormalisées se situent entre 0,07 et 0,09. Il est intéressant de

noter que ce domaine recouvre les valeurs trouvées par Chew et Low13),
soit 0,07 à 0,08, à partir de la diffusion méson-nucléon et de la production
photomésonique aux basses énergies ;

5° pour rc compris entre 0,5 et 0,6 /, toutes les caractéristiques
calculées du système nucléon-nucléon sont voisines des valeurs expérimentales.

Il serait souhaitable de calculer les noyaux A 3 à l'aide de l'interaction

choisie dans ce travail. La forte réduction que subit pD permet
d'espérer des résultats favorables.

Le Fonds National Suisse, Commission Atomique, a accordé son appui
à ce travail. Nous l'en remercions et exprimons aussi notre vive
reconnaissance à IBM Extension Suisse qui a mis à notre disposition le
calculateur IBM 709 du CERN.
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