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On the Asymptotic Behaviour of Wightman Functions
in Space-Like Directions

by H.Araki*), K. Hepp and D. Ruelle
Eidgenossische Technische Hochschule, Ziirich

(1. II. 1962)

Abstract. The exponential decrease of the truncated vacuum expectation value
of a product of field operators (each field being smeared out over a compact set)
at large separation of their arguments along a fixed space-like hyperplane is proved
under the assumptions of translation invariance, stability of the vacuum, existence
of a lowest non-zero mass and local commutativity, but without assuming full
Lorentz invariance or temperedness of the fields. A result is also obtained for the
case of lowest mass zero.

1. Introduction and statement of the results

Since its introduction by HaaG?) the asymptotic condition in space-
like directions has been studied by several authors?-3). The problem is to
determine the asymptotic behaviour of the Wightman functions of the
basic fields A (x)

(2, A(xy) ... A(x,) £) (1.1)

or of the vacuum expectation values (VEV) of smeared out fields B(x)
(2, B(xy) ... B(x,) 2) (1.2)

for large space-like separation of some of the arguments x,.

The discussions by ARAKI®) and JosT and HEPP?) are mainly based on the
assumptions of Lorentz invariance and spectral conditions. They show
that, if the points x, are separated into two clusters, (1.2) approaches a
limit faster than any (negative) power of the separation distance between
the clusters, when this distance is space-like and tends to infinity.

*) On leave of absence from the Department of Nuclear Engineering, Kyoto
University, Kyoto, Japan.
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ARAKI further shows that, in the case of the dilatation of Jost points,
(1.1) converges exponentially towards its limit*). _
On the other hand the discussion of RUELLE?) is based on translation
invariance, spectral conditions and local commutativity but without
further use of Lorentz invariance or positiveness of the metric in Hilbert
space. He proves the vanishing of the truncated VEV corresponding to
(1.2) faster than any (negative) power of the diameter of the point set
{x;}, when the x; are in a space-like plane and the testing functions are

in ¢.

We present here a proof of the exponential approach of (1.2) to its
limit for testing functions in £ under the following assumptions**), which
are similar to those of RUELLE.

(T) There exists a unitary representation 7'(a) of the translation group
satisfying
T(a) A(x) T(—a) =4 (x+ a). (1.3)

(S) There exists a unique vacuum state {2 satisfying
T(a) 2 =0. | (1.4)

In Q4 the spectral measure E of the unitary representation 7'(a) defined
by

Tmyifwwde@y (L.5)
(P, a) = p* a® — 2 ptal (1.6)
has its support in
={p: (b, p) = M2, > > 0}, M>0, (1.7)
(€) [A(x), A(xx)] =0 if (% — x5, %7 — 2,) < 0. (1.8)

Our main idea is simple and may be sketched as follows for the case of
the separation into two clusters (the proofs of the different steps will be

*) Theorem I of ref. 3) is stated for points x; with the same time component and
assumes local commutativity, but the exponential vanishing of

(@2, A(%,) Eg- A(x,) ... Ef A(x,) 2)

can be proved in the same way without local commutativity, for »; — »,,; = &;+
A &/, where &+ A & should be a Jost point for sufficiently large 1 and 1> oo, &;,
&, fixed (with at least one &, + 0).

**) The operator valued distribution A4 (#) is not assumed to be tempered unless
explicitly stated. Apart from the Lorentz invariant support conditions implied by
the spectral condition and by locality, no use of invariance with respect to Lorentz
rotations is made.
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given in later sections). We investigate the behaviour for large space-like
- & = x; — x, of the function

h1a(&) = <By(x1) Ba(xs) > — <By(%1) do <Ba(*2) >o
= <(By(0) T(— &) Eg B,(0)>, (1.9)

where <. ..>, denotes the vacuum expectation value, Ej- is the orthogonal
projection on 21 and B,(x;) is defined by

7(%)
B(x,)zfdx;.. X i - X HA x+x),  (L10)

;€ Dariiy s 1=1,2.
Now, due to (C), the function

k(é) = h’12(§) - h2l(_ 5) — <[B1(xl): Bz(xz)] >0 (1-11)

vanishes for & € D(gp,, ¢,)’, where

D(ps, ;) = {x, — 2;: x; Esupp @;, © =1, 2} (1.12)

and D’ is the set of all points which are space-like to every point in D.

Furthermore, due to (S), the Fourier transform l;(;b) of A(£) vanishes for
(p, p) < M?2. Therefore, (&) has the JosT-LEEMANN-DYSON®) represen-
tation

ME) = [ae) [ dE (4,6~ ) 01§ ) + 5w 4, E—§) & ) (113)
D,

M2

where the three-dimensional region D, is compact.

The function %,4(£), being the positive frequency part of 4(§), is ob-
tained if 4, is replaced by A" in (1.13).

The exponential vanishing of %,,(§) at large space-like distances is
finally derived from the following asymptotic formulae valid for (£, §) <

0, |&] = [— (& &)]1* > oo:

AP0 = — i () T 10 (Gh)] . )

and

650 A(E) = — 4 g0 (mﬂfm_s_)uz _x|55[1+0( IEI)]’ (1.15)

The result is the following
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Theorem 1. (T), (S) and (C) imply that

|ua(@) | < CIEI73 e (14 1)
if E€ Dy and [E] = 6 > 0, where hyy(&) 1s defined by (1.9), C is a constant
independent of &, [&] is the shortest space-like distance between & and a
compact set Dy and D, is the convex closure of the complement, in the plane
{£: £9 = 0}, of the intersection D' 0 {£° = 0}, where D is defined by (1.11).

In short, if the fields in B;(x,) and B,(x,) are mutually separated by a
large space-like distance R, ,,(£) tends to zero at least as fast as R—32x

e~MR_ The weight functions p, and g, are simply related to i;(p) and

0 }:(p), which are bounded complex measures and, from this, C can be
explicitly expressed by certain VEV’s.
As a consequence of theorem 1 one has the following

Theorem 2. (T), (S) and (C) imply that the truncated VEV of the product
of the fields B,(x;) (¢=1,...n) tends to zero at least as fast as R32 e~ M Kl(n=1),
when the diameter R of the point set {xz} goes lo infinity and x = ... = x3.

Our method also yields a result for the case M = 0:

Theorem 3. (T), (S) with M = 0 and (C) imply that

(gL 1€
huale) | < Clg1-2 (14 151)

if & € D, where hy,(&) is defined by (1.9), C is a constant independent of &
and [&] is again the shortest space-like distance between & and D;.

Remark: The formulation of the above theorems is not optimal because
of the special rdle played by the space-like hyperplane {E &Y = O} in the
definition of D, and in theorem 2. More adequate results can be easily
obtained in partlcular cases.

2. The case of two clusters (proof of theorem 1)

First, we note that, due to (7), the Fourier transform 7;12(;5) of hy5(8)
exists and is given by

~

hya(p) dp = (27)~2d <B,(0) E(p) By(0)> - (2.1)
According to JosT and Hepp#)
o (11 )

is a bounded complex measure for arbitrary positive integers / and m;.
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In particular, for any bounded continuous function y(p) one has

| [ap 2(®) (8 hlp) | <
= [[(P0)F By(0) 2| - [ By(0)* [ 2m)=*  sup  [z(A)], (2.2)

(7, P) = M%p° >0

where P° is the energy operator and (P! B,(x) £ is obtained from
By(x) 2 if @, (], ... %) is replaced in (1.10) by

. a l ! !
(z W) @2 (%, + %, .. %yg) + %) |0~

Correspondingly we obtain from (1,11):

| [ap 28) @ i) | <€, sup |x(p)], 23

(b,2) = M?
C, = (27)=2{[ (P! By(0) 2] - | B,(0)* 2] +
+ (P2 By(0) Q| - [ Ba(0)* 2]} - (2.4)

Now, the boundedness and support properties of ;z(gb) imply that the
function

H(E S) = @)= [ dp @9 cos(s)/ (. p) bp)  (2.5)

is infinitely continuously differentiable and satisfies

(%)~ G - )] e =o. @5

fedl
' 0 for odd #,

(2.7)
] C2* h(E)  for  even m.

or
o H(E0) =

Due to (C), A(§) vanishes for & in D(py, @,)'. H(&, s) and all its derivatives
therefore vanish along the time-like segment defined for fixed § by

=0, |&|<pin |5 8] 2.9

where D, is the complement in the plane {&: & = 0} of the intersection
D(py, @5)’ N {£: & = 0} and is compact.

The uniqueness theorem for the solutions of (2.6) (see e.g. WIGHTMAN 7))
states that if H(, s) vanishes of infinite order along a time-like segment,
it also vanishes in the double-cone spanned by this segment.
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If we let § go to infinity in (2.8) and apply this theorem, we see that

() HE 5) loo=0 if E¢D,, I=01, (29

where D, is the convex closure of D, and is compact.
H(&, s) may be expressed in terms of its Cauchy data in the plane

{( 5) : &= 0}:
S, §) = —fdg'fds' [0‘;0 AO (& — &, s — §') HE, 5") oo +

FAO(E—E s —5) % H(, ) |yaoo] (2.10)

where, due to (2,9), the §’-integration may be restricted to D, and
A® (£, ) = — i(27)- f Ap dw e~ 1EO ~5] g(p0) §(p2 — 52) .  (2.11)

Setting s = 0 in (2.10) and taking the $° > 0 part of (2.11), we obtain

+ oo + o0

_ - ’ , i i—A,(f) £ g
hya(8) = — (2) 11)[ d§_ o[ a l d e |35 A (€ — &) x

=0 + AL+} (E - 5’) azm H(E', S') ]E"’-O] 3 (2.12)

x H(&, s")

where we have

APE) = — i) [ dp e @9 0(p0) 6 (5* — ) (213)

= —i@2m) 2% K () (£8) /)-8 for (5£<0. (214)
We may thus write (see (2.5))

hald) = — (2) [ dE 16,), (215)

(6.8) = [ap Latp, & §) h(p) — i 1 (. 6.§) $2Bp))  (216)

where¥*)

*) Note that, in proceeding from (2.12) to (2.16), the exchange of the s’- and
p-integration is allowed because

I = [cos(xs’) ASP(E) dre = — i(8 7))~ (— (&, &) + 5'3)-%2
0

and I~]s|-3 ~|s’|=% for |s'|>o0,

L3
H aEO

so that the convergence of the s’-integration is uniform in p in (2.17) and (2.18).
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+00 -
n & 85)=n" 6ipe'fds' cos (s’ ]/W)fd% cos (% ') *3%- 2

' iptr O AR
X A (E— ) |go_o = €'P* 58 VT@ 55 (E— &) lgoos (2.17)

+ o0 1)
X290, &, §) = a1 e"Pe'f ds’ cos (s’ ]/(p, $)) | dax cos(xs') x
- 00 0

X A (E— &) [pog= e P¥ AZ (E— ) [gay.  (218)

Applying (2.3) to (2.15), (2.16) we obtain the majorization

|715(8) | = 27)-2V(Dy) [Cosup | 1a(p, & §) | + Cysup | xa(8, & §) ],
(2.19)

where V' (D,) denotes the volume of D, and the supremum is taken over
all p, §’ such that (p, p) = M?, §' € D;,.
On the other hand, from (1.14), (1.15) and (2.14) we get

|&

8| <4y,

HGIEr e

for » = M and space-like & such that |&] = [— (£, &)]¥2 =6 > 0.
These majorizations finally yield the formula

A(+)(E)l < A2 .

|s(®)| < @) 2 V(D)) [ =™ [Co 4, + €, 4, 15|, (220

where [£] is the shortest space-like distance between & and D;.

3. The case of zero mass (proof of theorem 3)

We assume that £2 is the only eigenstate belonging to the eigenvalue 0
of P*. Thus its positive frequency part hm(p) may again be uniquely ob-

tained from h(p) since h(p) has zero measure for the point {p = O}, and
every step in the previous section up to equation (2.8) is valid with M
replaced by zero.

Furthermore, since

AFP(E) = —i(2m)-2 (8,61 for (5,8 <0 (3.1)
and since % K, () and %30/0% [ K,(x)[x] are both bounded for » = 0, we get
[457@) | < 4, [€]-2, (3.2)
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‘a—god” (S)I < 4|8 |&] (3.3)

for # = 0 and space-like &. Therefore

|ma®) | < V(D)) [E1-2[Co 41 + €y 45 +21] 3.4

4. The case of many clusters (proof of theorem 2)

We investigate now the behaviour of the truncated VEV
<‘Bl('%l) e Bn(xn) >l{ (4'1)

for large separation of the x;, assuming x? = ... = xj.
The main idea is the following. If R(x ) max |x %; |, there exists a
Wi

partition of the point set {x }mto two families such that the distance of
their convex hulls is at least R(x)/(n — 1)*).

Theorem 1 may then be applied, the constants C, still depending on
the configuration of points in each family. However, apart from the vo-
lume factor V(D,), C, may be proved to be uniformly bounded, due to
the following lemma, which is a direct consequence of the Schwarz
Inequality:

Lemma: For x} = ... = x° the VEV

(By(xy) ... B,(%,) % (4.2)
s a bounded function of its arguments.

Proof of the lemma.

a) Since (4.2) is a continuous function of the difference vanables
X; — %X;41, 1t 1s bounded in any region of the type max |2, — x; | =
(n—1) L. *

b) If maz | x; — x;| > (n — 1) L, there exists a partition of the point

set {xz} mto two families F,, F,, such that x,€ F, and x; € F, 1mp1y
| x; — x; | > L. Furthermore, since D(gp;, ¢;) is compact for all 1,7, it is
possible to choose L such that [B,(x;), B;(x;)] = 0 whenever | x; — x; | >
L. We may therefore rewrite (4.2) in the form

(Bi(x}) ... Bylp) By ... Bo_yxs )0, (+.3)

*) Let e |#; — #;| be obtained for ¢ = k, j =/ and consider the plane ortho-
Y]

gonal to #;, — x; through each x,. Then there always exist two neighbouring planes
with a distance not smaller than R(x)[(» — 1), and these planes divide the point
set {#,} into two families F,, F, with the required properties.
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where
x;eF,, 1<i<k; «eF, 1=j=n—k.

The absolute value of (4.3) is bounded by
| Bulw)* ... Byw)* 2| - [ By®) - B,y (%, ) 2. (44)

c) Each factor of (4.4) is the square root of a VEV of type (4.2) which
can be majorized again as above. This process has only to be repeated a
finite number of times since (b) eventually leads to constant bounds with
factors of the type <(B;(x,) B;(x;)*)!>. The lemma is thus proved.

We present now the details of the proof of theorem 2.

If max |x; — x;| = R(x), there exists a partition of the x; into two fami-
%,

lies F 1’and F, such that their convex hulls C(F,) and C(F,) have a dis-
tance not smaller than R(x)/(n — 1).
Let R(x) = (»n — 1) L, then using the locality of the truncated VEV

one may rearrange the B,(x;) in (4.1) in the form
(Bi(x;) ... By(x) By(6y) .. By_y (W >0 (4.5)
similar to (4.3). (4.5) may be written as a sum of products of ordinary VEV
<B;l(x;1) B;T(xl.r) B (%) ... B (x;.'s) Ty (4.6)

s

This sum does not change if each factor (4.6) is replaced by
(B, (%) ... B; (%;) Eg Bj(]) ... B (%;)>0 (4.7)

7

when 7 -s=+0, if it is left unchanged when 7-s =0 and if the terms
which contain only factors with 7 - s = 0 are crossed out*).

We remain thus with terms containing at least one factor of the type
(4.7). According to the above lemma the other factors are majorized
by constants. The VEV (4.7) may be majorized according to (2.20),
where £ =0 and [£] + L is not smaller than the distance of C(F,),
C(F,), which is at least R/(n — 1). In the expression (2.4) for the con-
stant C;, B,(0) and B,(0) are to be replaced by B;(x;) ... B; (x;) and

*) To see this, write the definition formula (see ref. 1) for the truncated VEV):

(oo df =K Dp=Z I3, ()
where the summation extends over all partitions of {#,, ... #,} into several sets.
From this follows immediately

Eon g =2l By s w0 T ey 5 (B)

where the summation extends over the partitions which are not finer than (F,, F,).
The property stated follows by iteration of (f).
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Bj(x;) ... B{(x;). Because of the lemma, C, has again a bound inde-
pendent of the x;, x/. On the other hand, the volume factor V(D,) is
smaller than (2 R + L)3. This completes the proof of theorem 2.

5. The case of testing functions in F

In this section we generalize theorem 1 and theorem 3 to the case
where @, € ¢ in (1.10) using the additional assumption of the tempered-
ness of the field 4(x) (yet still without using Lorentz invariance). For
each ¢ = 1 we introduce a partition of unity o}(x) + o3(x) =1 in R*"®
such that o}(x) vanishes outside of the region m?x (7] + |%;]] =< pand

m2

2(¥) vanishes in the region max [| 47| + |#;|] < ¢ — 1/2. The derivatives
i

of all order of a!, a2 are assumed to exist and to be bounded uniformly
in p. Introducing the functions

P, =% €D,  ¢h=0wp€S

instead of ¢, in equation (1.10) we obtain fields B;,, B}, such that

1 2
B,— B! + B,.
Since ¢}, € £, we may apply formula (2.20) to Bj, with the result
0
|<Bly(w) Ed Bh (x| < Bl e (14 15]) (5.1

for 0 < 6 < [£].

The factor g% comes from V(D,) and E is a constant which may be
chosen independent of g because of the boundeness*) of norms like
|| B1,(0) || with respect to .

In the right-hand side of the relation

Ras(§) = <Big(x1) Eg B;Q(xz) 2o+ <B}g(xl) Ey ng(xz) >0t
+ <Bie(x1) Ey Bég(xz) 20 T <B§g(x1) Ef ng(xz) 20 (5.2)

the first term is majorized by (5.1), the other terms tend to zero faster
than any power of p~! when p - oo because of the temperedness of
Wightman functions.

If we restrict £ by [£°] < 1]§], 0 <1< 1, and take

20=151(1- ((35)") (5.3)

*) (p}e belongs to a bounded set of (& when 1 < 0 < o0.
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we find

[5]—[|§|“29 ‘50\ 1{22|§I(1+A __lg)ll2>|§](

)”2. (5.4)

Introducing (5.3) and (5.4) in (5.1), we see that all terms in (5.2) decrease
faster than any power of || when [§| > oo, M > 0.

Theorem 1'. (T), (S), (C) and the temperedness of the field imply that the
function hyy(E) defined by (1.9), where @y, p.€ &, tends to zero faster than any
power of |&|~1= (— (&,&))12 when |&| > oo with the restriction |5 < 4 |§],
0<i<1.

In the case M = 0, (5.1) is replaced by

| (B1,(*1) Eq- Bg,(%2) | < E % [£]-2 (1 - Ié]%l) (5.5)

(5.4) remains valid if 2 g is replaced by a quantity smaller than (5.3),

for instance N——
ferf- (597" o=u=s,

1> (1 (S

when

and we have

Theorem 3'. (T), (S) with M = 0, (C) and the temperedness of the field
imply that the function hyo(E) defined by (1.9) where @y, p,€ 7, tends to zero
as fast as |&|72F" for any positive n when |&| - oo with the restriction

|8 < A|E,0<A<1,
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