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On the Asymptotic Condition in Quantum Field Theory ¥)

von David Ruelle
Eidgenossische Technische Hochschule, Ziirich

(11. XII. 1961)

Abstract. A ’space-like asymptotic condition’ is proved which allows Haag’s
approach to the asymptotic condition to be carried out rigorously in the frame of
the WIGHTMAN axioms.

Introduction

Two main approaches exist to the asymptotic condition in ‘axiomatic’
quantum field theory. One is due to LEEMANN, SYMANZIK, and ZIMMER-
MANN1%) and postulates the convergence of field matrix elements to
matrix elements of free fields.

The extremely useful reduction formulae which follow yield ex-
pressions for the elements of the S-matrix, the analytic properties of
which may then be studied, and also systems of equations (r- or #-
equations) expressing essentially the unitarity of the S-matrix16)17),
A complete justification of the 1..S.Z. formalism involves however a
number of new requirements on domains of definition of field operators
and continuity of the boundary values of the Green function in p-space.
These requirements are not of fundamental physical significance and may
well not be independent since e.g. the use of the unitarity condition gives
information on the analytic behaviour of the boundary values of the
GREEN function?®)24). From the purely axiomatic point of view a deeper
investigation of the asymptotic condition is necessary and it is probably
reasonable to accept provisionally the fact that the L.S.Z. formalism
stands at a lower level of rigour than for example that of WicHTMAN21).

The other approach to the asymptotic condition is due to Haac?)19).
HAAG’s main idea is that it is possible to construct asymptotic ingoing
and outgoing states as strong limits in Hilbert space, if a certain ‘space-
like asymptotic condition’ is verified by the vacuum expectation values
of products of field operators. This construction is physically transparent
and although the results obtained are less powerful than those of L.S.Z.,

*) This paper was presented to the E.T.H. as Habilitationsschrift.
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they give a definition of the asymptotic fields and of the S-matrix of the
theory.

In what follows we will show that HAAG’s programme may be carried
through rigorously in the framework of the Garding-Wightman axioms if
one introduces as a new postulate the completeness of the asymptotic
states and spectral conditions connected to this.

‘The completeness of the asymptotic states is a physically reasonable
requirement and is independent of the other axioms as shown by counter-
examples (see e.g. ref. 22) p. 57).

In conclusion, we may introduce in the theory asymptotic states and
fields and an observable quantity, the S-matrix.

1. The axioms of a field theory

A field theory according to WIGHTMAN 21) 22) is defined by a finite (or at
most countable) family of fields A%(x), which are operator-valued
tempered distributions *). This means that to every % and ¢* € ., there
corresponds an operator

Ag) = [ ax X ¢"() A3(x) ()

on the Hilbert space $ of states. These operators, which are not bounded,
are assumed to be defined on a common linear manifold D dense in §
(for a discussion of these points see Appendix).

Furthermore, if @, Y e D, ¢ > (@, A(g) ¥) should be a continuous
linear functional on .. The following axioms are then introduced or
emphasized

1. The metric in §) is positive definite.

2. The theory is covariant, i.e. there exists a unitary representation U(a, 4)
of the covering group of the inhomogeneous proper Lorentz group in .
An energy-momentum operator P is then defined by

Ula, 1) = ¢*Pu 2)

The fields transform according to irreducible representations S7,(4)
of the covering group C, of the homogeneous proper Lorentz group:

Ula, 4) A%(x) Ua, 4)-1 =Z Si (AN A; (Ax+a). (3)
According.to whether S%, is a “single-’ or ‘double-valued representation

of the homogeneous proper Lorentz group, A%(x) is called a Bose field or
a Ferm field.

*) For the theory of distributions see ref. 20) §),
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3. There exists a unique state (the vacuum), corresponding to a vector 2
in § such that PQ = 0.

The vacuum is stable: the spectrum of P belongs*) to I_/+.

4. The theory is local. Let o,, = — 1 if A*and A* are both Fermi ficlds,
0, = 1 otherwise, then

A%(x) AZ',(x’) =0, A3(x) A%(x) i (¥ —%)?2<0, (4)

The sign ¢, is determined by the theorem of ‘connection between spin
and statistics’5)2).

5. A%(¢) D = D, furthermore D may be taken as the linear manifold of
the vectors obtained by applying any polynomial in the operators
A*(g) to the vacuum.

That D is then dense in § is the axiom of completeness of the theory.
(See also Appendix.)

The vacuum expectation values
W(xg, X1, «.. , %,) = CAR(xg) AJ2(%y) ... AT (x,) >0 (5)

are (tensor) tempered distributions as a consequence of Schwartz’ kernel
theorem (see e.g. ref. &) p. 62).

Besides the above axioms, we should exclude the occurrence in § of
some unphysical irreducible representations corresponding to mass zero
of the covering group of the inhomogeneous proper Lorentz group (see
e.g. ref. 23)). We will however in what follows use the stronger requirement
that there exists a positive lowest mass y in the theory:

6. Apart from the eigenvalue 0 corresponding to the vacuum, the spec-
trum of P is contained in V%, u > 0.

Finally, the introduction of the axiom of completeness of the asymptotic
states and the discussion of the related spectral conditions will be possible
only later.

We will from now on drop the indices » and u of the fields 4 for nota-
tional convenience wherever this does not lead to ambiguity.

Consider now a vacuum expectation value like (5), the occurrence of
the vacuum as an intermediate state in this expression hides the existence
of the positive smallest mass u of the theory. To remedy this situation,
HAAG?) has shown that one may define ‘truncated’ vacuum expectation

*) We denote by V + the open forward cone and let
| VE ={p:pEV,, p?>p},

V, and Vf"_ are the closures of V. and V#.
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values where the contributions from the intermediate vacuum state are
subtracted in a manner which is symmetric with respect to the per-
mutations of the # + 1 field operators.

If g, is the family of all partitions of the set {0, 1, ..., n} into £+ 1
subsets: Xy, X;,..., X}, and W(x) 5, the vacuum expectation value of the
product of the fields A(x;), + € X, in natural order, the formula

n koL
W) = Yo [[Wlx)y, (6)

k=0 ¢ =0

may be used to define W recursively on the number of variables. ¢ is a
sign factor originating from axiom 4. Let ;w be the permutation from
0,1, ..., n) to (X,, X;, ..., X;) where the elements of each X are written
in natural order and let ' be the permutation induced by & on the indices
of the Fermi fields, then ¢ = + 1 according to whether z’ is even or odd.
We will also write

~

Wxy, 2, ..., %) = <Alxg) Alxy) ... Al (7)

for these truncated vacuum expectation values.
The translational invariance of the theory is expressed in terms of the
(possibly truncated) vacuum expectation values by the relation

W(wg +a, %+ a, ..., x, + a) = W(x,, %y, ..., ¥,) (8)

where & is any four-vector.

With the above axioms and the definition of truncation, we are in
position to study the behaviour at large space-like separations of certain
vacuum expectation values.

2. Space-like asymptotic condition*)

We start with a series of definitions.
Let #, denote the family x;,, %;;, - .., %;; of four-vector variables and

Ay(x) = A(x;p) A(xy) -0 Alxy,0)

1

A; (% +a;) =Ula;, 1) Ay(w;) Ula,, 1)1,

We call A, a Bose or Fermi operator **) according to whether it contains
an even or odd number of Fermi fields.

*) The asymptotic behaviour of the vacuum expectation values has been studied

in ref. 6)1)13) but the results obtained there are not adequate for our later purposes.

**) Instead of products of fields, one might take more generally ‘cycles’, i. e.
essentially products of T-products!?), if these are well-defined.
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If w e S,,, (symmetric group of degree » + 1) is the permutation such
that =(0, 1, ..., n) = (¢, 7, ..., %,), let ¢, = + 1 according to whether z,
restricted to the indices of the Fermi operators is even or odd.

We write

T (x + a) = T”(x0+a0; %+ aq, ..., %, + an)%

=0, <A, (% +a,)A; (% +a)... A (% +a.)>, (1)
Fy(a) = [ dx 9(s) T* (x + a) @)

where ¢ is assumed to belong to the functional space . (see Appendix).

In general we will take the a; as purely space-like: a; = (0, Z{i) and
write in this case c;:- instead of a;. Consider a definite configuration of the
;i. The diameter A of the configuration is given by

2 = max (a, —a)*.
7,1
We assume that this maximum is obtained for 7 = 7, ' = §’ so that 2=
(a;, — a;)% Consider also the family of all partitions of the set {0, 1, ..., n}
into two subsets X, X’ such that j € X, j* € X’. The maximum y of the

distance of the configurations (a,);cx, (@;)ycx is given by

u2=max | min (a; — a,)?|.
X liex,iex’

We assume that this maximum is obtained for the partition X =Y,

X' =Y’ and that u? = (@, — a2, le Y, 'e Y.
We may now remark that » u = A.
The truncated vacuum expectation values obtained from (1) by sub-

tracting in a symmetric way the terms for which the vacuum appears as
intermediate state between the A; will be called 7™ and we write

o) = [as g T s+a). @)
Finally, if ¥V = {4, ¢}, ..., 4}, Y = {4y, 4, ..., 9}, B + k' = n — 1, where

the indices in each sequence are written in natural order, we define the
permutations I and J such that
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Lemma: For any positive integer N

lim 2Y [FL(a) — FJ(a)] = 0 3)

A—00

when the configuration of the a, a; remains such that the above defined 1,7’ Y,Y",
L, 1" stay the same.

Note first that 77 (%) — 77 (%) vanishes when all X;,, 1 €Y are space-like
to all x;,,, '€ Y’, because of locality. ¢p(») therefore does not contribute
to the integral

~ —

Fla f dx @(x) [T! (x+ a) — T7 (x + a)] (4)

when [(x;, — %;,) + (@, — a;)]? <0 forall e Y, " € Y'. Introducing a
positive distance by

Hxia - xi’a'”2 = (x?a - x?’a’)z .y (;ia - ;i’a’)z ’

we see that this is satisfied if

2
| %0 — %0 |2 < % ’

or Hxia—xi_,a,”2 53 Dbocause nu =i,
n (1)

or st =2 2 Imal* < (5)
i=0 a=

Inequality (5) defines in «-space the inside of a sphere, the radius of
which is proportional to A.

On the other hand, the transformation f”(x) 3 T= (¥ + a) is a trans-
lation in & for which we may disregard a common additive term o in all a;
because of the translational invariance of the theory. The vector of the

translation # - # + 4 has then a length | ;H smaller than A )/ in x-space
it L=n+2 ().
i=0

Consider now a family of non-negative functions §,(x) € &, » taking
any positive integral value, such that the §),(¥) and their derivatives are
bounded uniformly in », (&) = b, (| #||) =0if [ & | > v+ Lor|&| <»—1,
and 3’ b,(x) = 1. We may then write

~

FL{a) — F(a) = Z [F! (@) — F (a)] (6)
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Since T7 (%) — TI (%) is a tempered distribution, it may be written as
T/(x) — T/(x) = D g(%)

where D is a derivative monomial and g(#) is a continuous function with
at most polynomial increase. Thus

Fo (@)~ Fl (@)= [ds 9,(¥) Dg(s+a) = & [ds D p,(#] g (s+a). (]

The numbers max |D ¢, (¥)| are decreasing faster than any power of
X

»~1. On the other hand we may write |g(x)| << C (1 + |x||2)*? where C is
a positive constant. Thus

]ﬁf%(a) — I?év(a)| <Sw+1) max D o, (%)]|C "xr”njil 1+ ||& + a2
< [S(+ 1) max |D @, (x)| C(1+ 2 (v + 1)2)k2] (1 + 2 L A2)*2

where S(v + 1) is the volume of the sphere with radius » + 1 and we have
used the inequality 1+ & + a2 << (1 +2|#]?) (1 + 2 ||2|?).
Obviously the numbers ¢, = max |D ¢, (x)| [CS (v + 1) (1 + 2 (v 4 1)2)*2]

decrease faster than any power of »~1. Therefore, in the right-hand side
of the inequality

| FLia) — Fi(a)| < ( Z; c,,) (1 -+ 2 L A2)ki2
r>——— -1

an/i

the first factor decreases faster than any power of A-1. Obviously then

lim AY [FL(a) — F/(a)] = 0

A—>00

for any N, which was what we had set out to prove.
We introduce now in ¥-space the new variables

. ot
= Hpo— %00 (' * 1),
Eva =%, — X (= 0), Ep o = Kpr— Xpg () E10)

where 4, 4,€ Y; 4/, 4,€ Y’, and we denote by § the family of all §;, &,
;g & Then ~
T = T, &), ¢ =9xE8§).

Fourier transforms are defined by

§ T(P, P) = (2 n)"zﬂfdg dE ¢ {PETPY Tr(g £)



154 David Ruelle H. P. A

fﬁ(ﬁ, P, p) - (2 3:)‘2(L+1)fdx dé d§ plbx +PELPE) go(x, £, g)

and we have
F;(u) = (2 33)2fdP dP (}6(0, P, P)§ TP, P) x

ir iV gr
X expi {P (ai,,' - “io) + Z P; (a; — ai,,) +Z P.(a;—a;)|. (8)

# =iy i =ty

This equation shows in particular that F (a), f*‘;(a) belong to the func-
tional space Oy of the infinitely continuously differentiable functions
with slow increase.

Let now K€ ©,,,; be the permutation such that K (0,1,..., #n)
= (g, Bys +++» Bas Bgp Oy» - -+, ) then § TJ (P, P) vanishes unless P € 175‘_ and
& TX(P, P) vanishes unless P € VV*. This results from axiom 6 and from

the truncation of vacuum expectation values.
If we define

~

¥(p, P, P) = h(P)$(p, P, P)e Y

where s € O, 1s equal to 1 in 175: and vanishes out of V,, we have ob-

viously - - ~
Fy(a) = Fi(a), Fia) =0, (9)

Now, in exactly the same way as we proved (6) and under the same con-
ditions we obtain

. Nzl (2 K[\
11_13;1() AV [F,(a) — Fy(a)]=0 (10)
which implies P
Alim A F.(a) =0 {(11)

where we have written Iz"q,(a) instead of I:"{p(a).

Equation (11) obviously holds for all the possible choices of 7,7’
Y, Y’, I, I’ introduced at the beginning of this section, and since there is
only a finite number of such choices, it holds when A% = max (a; — a;)?

goes to infinity without any further restriction on the configuration of
the a,.
According to (7), taking any partial derivative D with respect to the
a; of F(a) simply amounts to modifying ¢, so that
lim AV D F(a) = 0. (12)

A—00

Therefore, considering F »(@) as a function of the differences between the
a;, we have:
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Theorem 1: F q) (c—{) as well as D, F o (c;j , where Dy 1s any derivative
monomial with respect to the a?, are functions in Sy, .
Let us now introduce the regularized local fields

fn¢@m@mm:Umnfmwmu@U@n4
and more general operators
Bj(a;) = Ua;, 1) Ay(e;) Ula;, )71 (9 e Y) (13)

of a type considered by HaAG.
We call x; the former variables a;, x¥ denoting the family x,, %y, ..., ¥
of four-vector variables, and write

F(x) = < By(xg) By(%y1) ... B,(%,)>.

n

This means essentially that we have taken @ = @, ® @, ® ..+ ® @,.
We say that B; is a Bose or a Fermi field according to whether A;is a
Bose o1 a Fermi operator. The definition of the truncated vacuum ex-

pectation values F (x) is then obvious and theorem 1 insures that F (97),
D, F(x) where D, is any time derivative monomial, belong to .Y, as

functions of the differences between the ;,-.
The physical meaning of the theorem appears if we take for instance
D(x) = B(x) 2 with | @] = 1, then

lim  (D(x), B'(0) D(x)) = <B'(0)>

—_—
2 =0, 7] >0

1.e. the state @(x) is asymptotically localizable in the sense of KN1GHT14),

3. Asymptotic behaviour of the solutions of the Klein-Gordon equation

Lak J(%): %= 08, ;), be a positive-frequency solution of the Klein-
Gordon equation:

(O — m?) f(x) =0, m> 0, fe V. (1)

If we write -
fe) = @)= [ ap e=s2= fip) @

we have - S
@) = 08°) 6 (p* — m?) f(p) . (3)
We assume that f(;) 1s infinitely continuously differentiable with compact

support *) : .

[(p) € Ds. (4)

*) This assumption might be weakened but it is easy to see that the lemma below
does not hold for arbitrary normalizable solutions of (1).
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Let now # be a vector such that (%2 + w=1 (# is on the euclidean unit
sphere) and let

lt) = fltw) = @)% [ dp e 9" [(p). ©)
We may then write

full) = (2 m)-12 /'ds e-ist E(s)

S~

Efs) = @m) [dpd(s —pw fip). ©)

From (3), (4), (6) one sees easily that if the line ¢ # intersects with the
forward sheet of the hyperboloid 2 = m?2 at a point outside of the support

N

of f(p), F,(s) is an infinitely differentiable function of s with compact
support.

This 1s always the case if # is sufficiently close to the light-cone or
space-like.

In order to treat the case where ¢ % intersects with the forward sheet

~

of the hyperboloid 4% = m?2 inside of the support of f(p) we put » along the
time axis by a Lorentz transformation. Then

—

E(p%) = (@)~ [ ap 0(47) & (4> — m) }(5) -
— 5 @)= 0p0) [ 5] dfY 87— (62 — m¥) [ aQ () =

= 0.(6° — m) ) () — m? g((p0)* — m?) @
where . L -~ —
8y = 5 (2m) " [ a2 [ (p)

g is infinitely continuously differentiable on the closed positive semi-axis.
We may also write

E(p%) =)p° —m g (p° —m),

where

~

g (p0—m) = 0 (p° — m) | p° + m g (P92 — m?).
Then

i) = (2 n)ﬁlfzfds e-ist)fs +m g (s — m) —

= {2 n)*lfzeimtfds g—isk l/; g,;(s) : (8)

We may write

~

sgls) =1s g0) e~ + J/'s (gls) — g(0) &)
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where the Fourier transform of the first term decreases like |#|~%2 in view
of the formula
1

(2 n)—wfds emist =i = XLy (9)
0

The second derivative of the second term is absolutely integrable, so that
the Fourier transform of this term is bounded by a(%) |£|~2.
Allowing again # to move, we have shown that

| ult) | << A(u) [£]-%2 (10)

where A (u) is continuous.
Furthermore, when # is outside of a certain cone, contained in the

S~

future light cone and determined by the support of f(p), f,(f) decreases
faster in |£| than any inverse polynomial, uniformly in # on the compacts
of the unit euclidean sphere. From this we may now conclude

Lemma:

—_

1. max |f(¢, x) | decreases like 17312 when t > 4 oo,
X

2. [ dx |£(2, ;) | does not increase faster than 3% when t > + oc.

The second statement comes from the fact that the region in which

—

f(t, x) does not decrease faster than any inverse polynomial has a volume
which increases like 2.
These results obviously extend to negative-frequency solutions of (1).

4. HAAG’s strong convergence asymptotic condition and the
construction of asymptotic fields

Using the space-like asymptotic condition (theorem 1) and the asymp-
totic behaviour of the solutions of the Klein-Gordon equation (lemma),
HAAG has shown that one may construct asymptotic states as strong
limits in Hilbert space. '

Let f;(x) be positive frequency solutions of the Klein-Gordon equation

~

Li(p) = 6% 0(p® — md) ,(B) . Ji€ Dy
and let

BYs) = 23 [ dx, [fi(v)* 3o Bilw) — 5 x)* Biw)]. ()

Then, HAAG’s result is the following



158 David Ruelle H. P. A.

Theorem 2: We assume that the state B ,(x;)* 22 belongs to a discrete trre-
ducible representation I'; with mass m; of the covering group of the inhomo-
geneous proper Lorentz group, and that B;(x;) 2 = 0. Let D(t) be a vector
obtained by applying to the vacuum a product of n operators Bi(f)* or BL(t).
Then

lim @) =D,
1—+ o0 t—>—00

and  lim () = P,

im

exist in the norm and define asymptotic states.

We will also use the symbol @,, where ex may be replaced consistently
by in or out. For a discussion of the physical reasons which justify the
interpretation of the @, as asymptotic states, we refer the reader to
HAAG’s papers?®)10)4),

The necessity of finding suitable fields B; brings limitations to the
construction of these asymptotic states.

We know that there may exist in §), apart from the vacuum, discrete
irreducible representations of the covering group of the inhomogeneous
proper Lorentz group corresponding to positive masses and different spin
values?3). These representations generate a subspace §, of .

Our formulation, stated below, of the axiom of completeness of the
asymptotic states implies that there exist fields B} such that, applied to
the vacuum, they yield vectors belonging to representations of a family
which already generates §,.

In a physically reasonable theory this should follow from spectial
properties connected with the stability condition and selection rules.

In order to prove theorem 2, we consider the expression

(00| 5 o0),

perform the derivations and expand into a sum of products of truncated
vacuum expectation values. These are of the form

—_— — ~ = — b s

1(?) =/dx0 dxy ... dxy f(l)(xo: ) ]’1(%1, £) ... ff,c(xk’ t) F'(x;— %g, - v, % — %4a)

where F’ € Ao It follows then from the lemma of section 3 that I(f)
behaves like |£|-32%-D at infinity. Because of our assumptions, factors
with 2 = 0 do not appear. On the other hand, terms containing only fac-
tors with £ = 1 vanish because of the identity d/d¢ B/(f)* £ = 0. Finally
we see that || d/d¢ D(f) | decreases at infinity like |#|-%2 so that this
expression is integrable and @(¢) has strong limits as ¢ > 4- oc.

We supplement this argument of HAAG by a series of remarks.

1. @, 1s independent of the particular Loientz frame used to define it.
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To see this take an infinitesimally different Lorentz frame, @(f) becomes

D(t) + dD(f) but an argument similar to the above one shows that
t liin | aD(t)|| = .

2. The scalar product of two ingoing or of two outgoing asymptotic state
vectors @, is a sum of products of factors of the form <B'/(f) B/(¢)*>,
which are independent of ¢. These products are preceeded by a 4- sign
as required by the definition of truncated vacuum expectation values
when Fermi fields are present.

We introduce now the following new assumption in the theory:

Axiom of completeness of the asymptotic states

The finite linear combinations of ingoing state vectors @;, defined by
(2) form a dense subspace D, in Hilbett space.

Because of the TCP theorem?!?), a similar statement holds for the out-
going states.

3. Linear operators B/ ,, (Bfmt)*, Bl,, (B, )* are defined on D,,,, D;, by

Bl @, = lim B() D), (BL)* D, = lim (BO)DY. (2

ex
t—>+ 00 y t—+ 00

I

All we have to check is that if ¥() = 3 ®,() and D, = 0 then
i=0

lim B/(¢) ¥() =0, but since the vectors ¥(t), B/(t)* B/(¢) ¥(¢) both have

t—+ 00
a limit, that of ¥(f) being zero, we have indeed lim (¥(t), B/(t)* B(f)
'/ ( t) ) = {; t—> 400

Obviously (B.,)* is the hermitean conjugate of B.,. Let

Fa ) = @202 [ dp e=i05 0 852 — 1) ], B,
3)

Barr ) = @) [ dp =it 0p0) 6 (12 — %) g, ., ().

?al___azs,g:al-__ g € ¥, be positive frequency solutions of the Klein-
Gordon equation, symmetric with respect to the undotted spinor in-

dices oy, ..., &y, -
Let
I=(,, o =", o= (; 7%, o3 = (' ) (4)
and : e

. 3 . 3 _
[0°A1 =T 0o+ ) o7 0, PP =T1p0— Dol p, (5
g=1 1=1

where ¢ is the transposed of o;.
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If the following expression

(f, 8) = 29”'/4; fr ) d (— %m 0&"3’) (“‘ zlm Odzsﬁ”) i

X gﬁl...ﬁzs(x) (6)

makes sense, it defines a Lorentz invariant scalar product of f and g.
We may then write

(t.6) =2 [ dx [ dpy 00) 3(5} — m) [ dps 64 d (B} — m?) x

X (—0) (B0 + g9 ePremihr jE L () PR PRshe o (B =
OB S — m) [ g B T B, ) (0

With the help of a function ¢ € &/, we have defined an operator B(x),
and we assume that the vector B(x)* {2 belongs to the representation I’
with mass m and spin s.

Every vector @ in I' may be represented uniquely by a family 4, . .
of positive-frequency solutions of the Klein-Gordon equation normalizable
in the sense of equation (6)*). We introduce only undotted spinor indices
in order to avoid the introduction of subsidiary conditions on the free
fields?).

Because of 1emark 1 and the completeness of asymptotic states, it is
obvious that B, is completely determined by (B/)* 2 and therefore by
the corresponding %, ., . It is furthermore an anti-linear functional of

S .. o). We will now show that

Bex(ﬁal_“a”) is defined for all ﬁal_“ .- 9D.
First, one checks easily that if g, ,  1s associated with the vector
(2 7)2 B(0)* Q, then

Bl =B, (I, . 4) =Bl &y a0, (8)

, and we may write Bl, = By (h,

(e 7

Let now
B'(0) =fdM(A) p(d) U(4, 0) B(0) U(4, 0)-*

where @ € 20 and has its support in a sufficiently small neighbourhood
of unity in C, (covering group of the homogeneous proper Lorentz group).
This transformation B - B’ corresponds to a simple change ¢ > ¢’,

+ ha,...a, 1S completely determined by (@, U(a, A) @) i. e. in our case by the
WicHTMAN functions.
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but has the effect that éa,‘ becomes éf;l .0 Which is infinitely con-

tinuously differentiable. Therefore };;1 s = 7 gv;l_,_a” e D.

The tensor formed by the 2s + 1 numbers grc’xl._.azs(O) may be assumed
to be different from zero, and because of the irreducibility of the co-
responding representation of the covering group of the three dimensional
rotation group, one may by applying elements of this group obtain 2s + 1
linearly independent tenso1s é&l”f._a”(O), 1=m<2s+ 1. The corre-
sponding functions 5;;4?”“3(1;) are then linearly independent in a neigh-
bourhood of the origin, and it is thus possible to find a linear combination

- Rag

23+1~ — o~

B i) = 3 i & oB), e (9)

which has only one non-vanishing component, this component being
different from zero at the origin.

By multiplying ﬁ;} o, (p) with functions in &, acting with C, and
taking linear combinations it is then easy to obtain any ;lal...as e .
We may now define asymptotic fields corresponding to the represen-
tation I for negative as well as positive-frequency solutions of the
Klein-Gordon equation by

~ ~

Agx(h) = By () , AL (R*) = (=)2+1 (B (B))* (10)

where % is a positive frequency solution of the Klein-Gordon equation.
Since the vacuum expectation values of products of A, are those of free
fields, the 4, are free fields.

The above considerations show furthermore that any vector obtained
by applying a polynomial in the A (%), he D, to the vacuum may be
obtained directly by Haac’s limiting procedure. The S-matrix may thus
be constructed from our knowledge of the Wightman functions, it is
obviously unitary and TCP invariant12).

In conclusion I wish to thank both Professor R. Jost and Professor
M. FiErz for interesting discussions and very helpful criticisms.

Appendix

In this appendix, some facts about the Hilbert space $) of a field theory
have been collected for the convenience of the reader.

First, we want to point out that it is equivalent to introduce the fields
as ‘operator-valued tempered distributions’ or as ‘operator-valued dis-
tributions’ and to assume that the vacuum expectation values are tem-
pered distributions as is done by WIGHTMAN 21).

11 H. P.A. 35, 3 (1962)
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Let thus D, be the linear manifold obtained by applying polynomials
in the A*(p), g€ &, to L. Since also A*(p)* is considered as field
operator and is defined on D,, which is assumed to be dense in §, it
follows that the operator 4*(p) has a closed extension. The intersection
H, of the domains of the smallest closed extensions of all 4*(¢) may thus
be strictly bigger than D,. That this is the case is seen as follows.

The vector

A*(py) A% (gpy) ... A™{gp,) 2, @ € LD

is a continuous function of gy ® ¢; ® *++ ® ¢, considered as an element
of Y4 (u41)- Extension by continuity allows then to define vectors

A(p) Q =j A%y A%y 555 8%, Pz Bys v 0, %) A% o) A% my) 5 - A% x ) £

@ E L%;(nﬂ)

and the linear manifold D, spanned by them is contained in H,,.

It is also obvious that one may define operators A(¢) on D, by
A(p,) A(p,) 2 = A(p; ® ,) 2 and that if e D,, A(p) P is a con-
tinuous function S - §. This settles our first point.

We remark now that § is necessarily separable. This follows imme-
diately from the density of D; in §), the continuity of 4 () 2 and the
fact that & is a separable space *).

We conclude with a remark on the completeness axiom.

We will say that a bounded operator C commutes (weakly) with an
operator A(p), p € D if

(C*®, A(g) P) = (A(g)* B, C ) (1)

for all @, ¥ in the dense domain of definition of all A(g). This definition
has the advantage that no assumption has to be made about the density
of D, or the range of C.

Then HaAaG formulates the completeness axiom (irreducibility) as
follows11)3) (H): if a bounded operator C commutes with all 4(p), then
C is a multiple of the identity.

We will now show that (H) is a theorem in the frame of the Wightman
axioms including completeness and the existence of a positive smallest
mass in the theory. Consider any operator C satisfying (1) for all A(g).

It then also satisfies (1) when 4 (g) is replaced by A(g) and @, ¥ € D,.
We may suppose C 2= 0, since if CQ2 =0, C® =0 for any @ € D, and
therefore C = 0.

*) Both &) and & are separable as one may check directly. For (&, this follows
also (see ref. 1%), p. 373) from the fact that it is a Fréchet space and a Montel
space?9),
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We have thus [C 2| =0 >0, <Co=a, || = p.

Let L (¢4, ..., ®,) be a linear combination of the A(g) such that
[(C— L(gp)) 2| < e thenge> |(2,c*c Q) — (2, L(p)* CQ)|.

But we may, by multiplying the ¢, by suitable functions in p-space
obtain a new operator L(3)) such that

Liy) 2= L(g) 2, QL(y)=(2 L) 2) 2.
Then

pe> 42— (R L¥)*C Q)| =|p* — (2,C L(¥)* Q)| =
— £ — (2, L(w)* Q)|

and finally since
lim (2, L(y) 2) = «

e—0

o a* = $?, CO=unll.

we have

From this it follows immediately that C @ = o @ for any @ in D, and
C is therefore a multiple of the identity.
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