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Zero-mass representations of the inhomogeneous
Lorentz group

by Derek W.Robinson
Institut für Theoretische Physik, ETH, Zürich

(1. XII. 1961)

Abstract. The zero-mass representations of the inhomogeneous Lorentz group are
considered as contractions of the representations for real and imaginary masses.
It is shown that all zero-mass representations may be obtained from contracting
either real mass or imaginary mass representations, but that it is more reasonable
to associate the representations describing zero-mass particles with infinite angular
momentum with contractions of the imaginary mass representations.

1. Introduction

A basic axiom of all present day relativistic quantum theories is the
invariance of the theory under transformations of the inhomogeneous
Lorentz group. Thus all physical systems are assumed to furnish a

representation of this group, and it is important to understand the nature
of these representations to realise the implications of relativistic invariance.

The irreducible representations have been often studied and classified

and the results of this classiti. ation are well known. The group has

two invariants and each irreducible representation may be classified by
the value of these invariants. This will be discussed further in the following

sections but we briefly note that the value of one of the invariants may
be interpreted as the mass of the physical system represented. Representations

have been found for real, imaginary, or zero mass. The purpose of
this paper is to examine the connection between zero-mass representations

and representations for non-zero mass.
In sections 2 and 3 a short summary is given of the theory of the

inhomogeneous Lorentz group and the classification of its representations.
Section 4 provides a précis of the theory of group contraction and section
5 summarises the representations of the Tittle groups'. In section 6 it is
shown how the various 'little groups' contract and in which way the
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representations of these groups may be contracted. Conclusions concerning

the contractions of the full group are given in Section 7.

2. Inhomogeneous Lorentz group

An inhomogeneous Lorentz transformation is defined as the product
operation of a translation by a real vector a and a homogeneous Lorentz
transformation with real coefficients A^. This may be written

x'„= (LX=/1Xx v
The translation is performed after the homogeneous transformation, and
with this understanding the formula for the product of two transformations

is given by
{ax, Ax) {a2, A2} {ax + Ax a2, AXA2)

The homogeneous transformations are restricted to the proper Lorentz
group by the following conditions :

1. The transformations leave the fundamental indefinite quadratic
foim gßv x11 xv invariant. (The metric g00 1 gxx - 1 gn - 1 g33 - 1

is used).
2. yl" > 0 i.e. the transformations do not interchange past and future.
3. Det | A^ | + 1 i.e. this and condition 2. ensure that transformations

preserve the distinction between right- and left-handed coordinate
axes.

In quantum theory it is required to find continuous unitary representations

(up to a factor), D(L) of the inhomogeneous group. The operator
multiplication rule is given by

V(LX) T>(L2) co(L±, L2) T>(LX, L2)

where co(Lx, Lx) is a number of modulus one. This relation may be simplified

by permissible phase changes of the representation, and the work of
Wigner and Bargmann has shown that all representations may be

converted into the representations having

co(Lx, L2) ± 1.

Transformations of particular importance are the infinitesimal Lorentz
transformations, which may be written as
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where e* and e„ are infinitesimally small. Condition (1) then leads to the
restriction

We now define the infinitesimal generators of the group P and M
through the representation of the infinitesimal transformation

V(L) iA-~iM^eßVA-iP>i£lt.
This equation defines ten operators PM and M"v (Mßv — MVI*). The
Hermitian operators P11 are the generators for infinitesimal translations
and represent the linear momentum of the system, whilst the Hermitian
operators M are the generators for infinitesimal 'rotations' in the
xß — x" plane. The commutation relations of these operators follow from
the theory of Lie groups and are given by the well known relations

[P", Pv] 0,

[M" ", PA] * (Pv g"x - P" g*K), (1)

[M*'v, Mea] i (g"a M"e — gßQ Mva A- gVQ Mßa — gva Mße).

It is worthwhile to comment that as the Lorentz group is a non-compact
Lie group the validity of using the classical methods of infinitesimal
generators is not at all obvious. The mathematical justification of such
methods has been given by Gârding2) although these techniques were
used much earlier by several workers.

In order to find the invariants of the group in terms of the above

operators we define the new operator

«y=\eaflv,M^P* (2)

where eaftvi is an operator completely antisymmetric in its indices and
with the normalization property

e0123 1 •

The operator coa satisfies the relation

toftP" 0 (3)

and also the commutation relations

[«V MM J i (g„e ft>„ - gve coj (4)

[coll,cov-\=ieIÀVea(o<!Pa.
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It is easily proved that the scalar operators P and W, defined by

P p pf

W -copco", (5)

— M Wv P Pa — M M^pvp2 /tn <r -1 " /to ¦* v

commute with all the infinitesimal operators, M P of the group.
Therefore, for every irreducible representation of the group the operators
P and W are multiples of the identity. It now follows that the irreducible
representations of the group may be classified by the eigenvalues of P
and W and a complete set of commuting operators may be chosen from
the P and coß. Of course many different sets may be chosen, all of them
giving rise to equivalent representations, however in this work we choose
the set (P0 Px P2 P3 L0) where L0 is a certain linear combination of the
operators co^ which will be defined in the next section. The eigenvalue
spectrum of these operators then specifies the range of variables labeling
the basis vectors.

The physical interpretation of the invariant P is clearly the square
of the physical mass. The interpretation of W can be made as follows.
The operator M is decomposed into two parts

M,v X, + V (6)

where L is an operator acting in the space of the momentum variables
only and S acts in the space of the remaining variable. Then

EIIV= l [P^-Q^ - P„ Jpjl) (7)

and this satisfies the equation

2 ^eiivX ^ r — u

and hence

«V^l^S^X. (8)

Now in the rest frame of a particle of real mass m the operator W takes
the form

W m2 S{j S" i, j 1, 2, 3 (9)

i.e. W is the product of the square of the mass and the intrinsic angular
momentum of the particle.
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3. Classification of representations

In order to classify the irreducible unitary representations of the
inhomogeneous Lorentz group we consider more closely the operators ft>„.
These operators are the infinitesimal generators of the group which leaves
the linear momentum P invariant. It follows from the relation (2. 3)

that only three of the four operators co are independent. (We omit from
our considerations the case P 0) so that this group is a three parameter
group and W is the invariant of the group. This group is the 'little group'
of Wigner1). The representations of the inhomogeneous Lorentz group
are determined by the representations Le of the little group and a measure
on momentum space. The irreducible representations can now be divided
into four classes as follows

1. PttP" P> 0, a)P0>0, b)P0<0,
2. P/4P"=P<0, (1)

3. PflP"=P=0, P^O, a) P0>0, b)P0<0,
4. P„=0,

We consider the first three of these classes in which the variability
domain of P is three dimensional. As co is orthogonal to P we may
express it in the following manner :

a>„ =!,»', .- 0,1,2 (2)

where nß are a set of orthogonal vectors spanning the space orthogonal
to P The operators L{ are three independent generators of the 'little
group' and to complete their definition we must specify the character
and normalization of the vectors nlß. In all three classes two of the vectors

n'M must be space-like and the third vector is either space-like, timelike

or parallel to P corresponding respectiv ly to classes 1., 2. and 3.

Thus we choose
n° n°"= - P,

(3)

«»»'"=-1, i=l,2.fi

It now follows from the commutation relations of the co (2.4) and the
definition of W (2.5) that the operators Li satisfy the commutation
relations

[Li,Lj]=ieiJkg"Ll (4)
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and that
W g'J Li Lj (5)

In these formulae eijk is an operator completely antisymmetric in its
indices with the normalization property

and gij is the metric tensor defined by g00 P g11 1 g22 1 and with
all other components zero.

The explicit values of the components of the metric tensor depend

upon the choice of the vectors n'ß. The magnitude of the components of
this tensor depends upon the magnitude of the normalization of the
vectors nß and the signs depend upon the nature of the vectors. The
nature of the vectors nß is completely determined by the nature of Pß,
and thus the signs of the metric tensor components are determined by the
nature of the linear momentum vector P and these signs in turn determine

the character of the 'little group' generated by Lt. The above choice
of normalization is chosen in order to simplify the algebra occurring in the
following sections. Any variation of the momentum vector P which
leads to a change in the value of P results in a change in the group
generated by the L{. If however P varies over any closed interval on the
real line which excludes the point zero the group only undergoes a series

of isomorphic transformations.
We wish to examine the limiting behaviour of the series of representations

of the group for non-vanishing P in the limit that P approaches
zero. It is in this limit that the nature of the vector nß changes and the
metric tensor g1' degenerates. This type of limit of a group has been first
studied in quite general mathematical form by Segel4) and later in less

generality by Wigner and Inönü5), and also Saletan6). These latter
authors consider some physical applications of the theory. As the theory
is not too well known we reproduce in the next section some of the
methods and results; we follow the appproach of Wigner and Inönü who
name the process group contraction.

4. Group Contraction

Contraction of a Lie group is defined by Wigner and Inönü in the
following sense. Consider an arbitrary Lie group G with n infinitesimal
operators I{ and structure constants Ch defined by

[It, /,] C% Ik (1)
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Let the infinitesimal generators It be subjected to a linear homogeneous
non-singular transformation denoted by

Jr=UrIi- (2)

This transformation is an isomorphism of the group upon itself and may
only lead to a new group if U is singular. We consider the possibility of
this happening by assuming U to have the form

U u + Pw (3)

where in terms of sub-matrices

10), w (V°
oo/' \oi

and P is a constant lying in some range 0 < P < P0 for which U is non-
singular. This transformation of the infinitesimal elements will also change
the structure constants of the group and we find that if

then (4)

CX=l^C*,(t7-i)<.

If q is the rank of u it is now easily shown from (4.3) and (4.4) that

Crs=[±:-r-0(P°)]CrsA-0(P), r.s^q, t>q,
CX =PCrs, r,s>q

and that all other structure constants C's are of order P° or higher power
in P. Hence, if in the limit P -> 0 the commutator of Jr and Js is to
converge to a linear combination of the /, then we must have

tX 0, r,s<q, t>q (5)

or alternatively, the operators Ir for r :£ q must span a subgroup S of G.

This operation is defined as the contraction of G with respect to S. Wigner

and Inönü also express this transition by stating that the infinitesimal

elements Jr for r < q are contracted. It follows from (4.5) that the
contracted infinitesimal elements form an Abelian invariant subgroup of
the contracted group.

If one applies the transformation (4.2) to the infinitesimal elements
of a representation D of the group to be contracted, and lets P tend to
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zero, the Jr (r > p) will also tend to zero. Thus the representation
obtained by this method is never faithful. Inönü and Wigner suggest two
ways in which faithful representations of the contracted group may be
obtained from the representations D of the group to be contracted. The
first method is to perform a P - dependent similarity transformation on
the representation D, the second is to consider a sequence of representations

which converges to a representation of the contracted group as P
tends to zero. The second method will be used in the following sections
and the definition of the type of convergence involved will be discussed
in relation to the contractions of interest. Further details of the general
theory of group contraction may be found in the references quoted above.
We now turn our attention to an examination of the 'little group', and its
representations, in the three classes of representations under consideration.

5. The little Groups

The characters of the little groups as defined in section 3 are easy to
analyse, and the unitary representations of these groups are all known.
We give in this section a brief discussion of each of the three little groups
and a summary of the unitary representations. The section is split into
three parts corresponding to the three classes of representations of the
complete group.

Class 1 : In this class P > 0 and the little group is isomorphic to the
three dimensional rotation group. As the group is compact the only
irreducible unitary representations are of finite dimension. These representations,

Dt, are of dimension 21 A-l, where I is either integer or half
integer, and the corresponding eigenvalues of are given by

w pi(iA-i), r=o,i-,i... (1)

From the discussion at the end of section (2) we see that I may be

interpreted physically as the spin of a particle of physical mass y P.
The only non-vanishing matrix elements of the operators Li in these

representations are given by

A m | L0\ I my m,
(2)

<lmA-l\L+\lmy= Am\L_\lmA-ly=[P(l-m) (/ + W+1)]1'2

where L± are defined by
L ± Lx±i L2.
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The dimensionality of the representation is evident from the observation
that

L+\l,ly 0= L_\l,-ly
and so in each representation the values of m occurring are

-I, -I A-l,.-., 1-1,1.
Class 2: In this class P < 0 which corresponds to space-like linear

momentum. The little group is isomorphic to the three-dimensional
homogeneous Lorentz group. The irreducible unitary representations of
this group*) have been given by Bargmann7), who showed that they
fall into two separate classes, the 'discrete class' and the 'continuous
class'. These names derive from the nature of the spectrum of the
operator W. We discuss first the 'discrete class' of representations.

If / is again a positive integer or half integer there is a unitary representation

for each I and the appropriate eigenvalue of W is given by

W =- Pl(l-l). (3)

The only non-vanishing matrix elements of the operators L{ in these

representations are given by

A m \L0\ I my m
(4)

A m A-l \L+\lmy <.lm\L_\lmA-ly [— P(lA-m) (m-l A-l)]1'2.

Observing that5 L+ \l, -ly 0 L_ \lly,
it is seen that the representation splits into two infinite dimensional
irreducible representations Dt and Dr. The representation D(+ contains
positive values of m i.e. m I, I A-l, I A-2 and the representation
Dr contains negative values of m i.e. m — I, — I — 1, — I — 2

The second class of unitary representations the 'continuous class' is
derived from the assumption that no state vector satisfies either of the
equations

L±\lmy 0.

Hence the representations are again infinite dimensional. The eigenvalue
spectrum of W is found to be continuous positive i.e.

W=-Pq (5)

where q is a positive constant.

*) We consider only the single-valued and double valued representations (see

Bargmann, refs. x) and ')).
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The only non-vanishing matrix elements of the operators L( in the
representation corresponding to a chosen eigenvalue of W are given by

(q m | L01 q m > m
(6)

(qm A-l |-XI ?w> Am \L_\qm+ly — [—P{q + m (mA-1)}]112

where all vectors are normalized to unity.
If m assumes integer values the representations (CJ) are unitary for

all values of q > 0. However, the representations C)j2 in which m assumes
half-integer are unitary only ii q A 1/4. In the interval 0 < q 5S 1/4
unitary representations may be constructed, but as the properties of this
exceptional interval are of no direct interest to us we omit details of these

representations.

Class 3: In this class P 0 and the little group is the two dimensional
Euclidean group. The operator W is positive semidefinite

W L\ + L\ L+ L_

and the unitary representations are determined by

W k2 (7)

and
(k m \L0\ k my m

(km A- 1 \L+\ k my (km \L_\ km A- 1> k
(8)

The nature of these representations depends radically on whether k is

zero or non zero.
a) If K 0 then W 0 and the operators Lx, and L2 also vanish.

Therefore the representations, E", are all one dimensional. This representation

is a non-faithful representation of the group.
b) If k =t> 0 then the representations are all infinite dimensional faithful

representations, Ek.
In order to establish the physical meaning of these representations we

consider the definition of the Li given by (3.2)

top X X + X nl + X n2ß

We now choose the vectors nß such that n\ 0 n\. This special choice
of nß and n2 is always possible. Then we have from (2.8) that

1

~2~ ^O/ifA 'cn — — t= SP" P*too— 0 e0H»A ° c

SP
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where S is the spin vector defined by

S, eiJkSlk, m, A 1,2, 3.
Therefore

T _ (°o _ sp
°~ Po

~ \P\ ¦

This operator is usually called the helicity operator and it represents the
component of spin of a particle along its direction of motion.

The one-dimensional representations of the group are therefore
representations of a particle with zero mass and with one value of the
helicity e.g. the neutrino. If in the physical theory a parity operation is
defined then a particle should have two directions of helicity Az A,

because P is a pseudoscalar, e.g. a photon. The infinite dimensional
representations would however describe a completely different situation.
The possible values of the helicity of the particle are again given by m,
but each representation allows all integer, or half-integer, values for m
as opposed to the one-dimensional representations which allow only a

unique values. Thus the physical situation described by these representations

would be a zero-mass particle with an infinite number of helicity
states and infinite angular momentum.

The purpose of the following section is to show in which manner the
representations of class 3 are contractions of representations of class 1

and class 2.

6. Contractions of the little Groups

The little group of class I, as defined in sections 3 and 5, is isomorphic
to the three-dimensional rotation group so long as P > 0. The limit
P -> 0 contracts the group with respect to rotations about the #0-axis
and the resultant contracted group is the two-dimensional Euclidean

group i.e. the little group of class 3.

Simple contraction of the representations of the group i.e. the simple
limit P -> 0, splits the representation into 2 / + 1 one-dimensional
unfaithful representations of the two-dimensional Euclidean group E™, as

can be easily verified from (5.2) and (5.8). In order to obtain faithful
representations of the contracted group we must use the method mentioned

in section 4 of considering a sequence of representations which
converges to a representation of the contracted group as P tends to zero.
The convergence that we are interested in is the convergence of the
infinitesimal operators Lit whose matrix elements in the representation Dl
are given by (5.2). We write, with an obvious notation, Dlm(Lt(P)) for
these matrix elements and Ekm(Lj) for the matrix elements of the con-
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tracted group given by (5.8). Now for any integer (half integer) m there
exists an integer (half integer) value of I, which we call L such that

P,g>0; \Dlm(Lt(P))-Ekm(Li)\<e.

It is clearly seen that for small P the value of L is bounded below by a
number inversely proportional to the square root of P. Thus

l{rL )™XXX^)) Xm(X

if the limits are understood in the sense that the limit on P is continuous
whilst the limit on L is stepwise and taken in such a way that

lim lim L2 P k2.

In this sense the sequence of representations

D, ,D, ,D, ,„...
converge to the representations Ek. The alternative method of obtaining
faithful representations i.e. applying a P-dependent similarity
transformation, has no application here as the method preserves the
dimensionality of the representation whilst in this contraction it is essential to
form the transition from finite dimensional representations to infinite
dimensional representations. The method would only have application
if the infinitesimal generators are not bounded operators, which means
for irreducible representations that the group is not compact. In order to
obtain faithful representations of the contracted group, which is necessarily

non-compact, when the original group is compact the rather
artificial limiting process of a sequence of finite dimensional representations,
as illustrated above, must be used. This contraction has been considered
more fully by Wigner and Inönü6) and the significance of the contraction

in the context of the present work has been noted by V. I. Ritus8).
We now turn our attention to the little group of class 2. This group as

defined previously is isomorphic to the three-dimensional homogeneous
Lorentz group as long as P < 0. The limit P -> 0 contracts the group with
respect to rotations about the #0-axis i.e. rotations in the two space
dimensions. It can now be shown that all representations for which
W < 0 cannot be contracted into faithful representations of the
contracted group. The argument is as follows. We have

W P Ll + L\ + L\ - k <0
therefore
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As the operator contained in the square root on the right hand side of
this formula is positive definite

p||l0/||X!X/||
where / is a vector in Hilbert space in the common domain of the operators

L0 and Lx. However, if in the limit P -> 0 the norm of Lx, is finite
non-zero, this equation shows that the norm of L0 must diverge. Thus
the operators L0 and Lx, have no common domain of definition in Hilbert
space. A similar argument also excludes a common domain for the operators

L0 and L2. This argument is not valid however in the case that Lx and
L2 are of zero norm, but this leads naturally to the unfaithful representations

of the contracted group.
In the previous section we have shown that a negative eigenvalue of W

is associated with the 'discrete class' of representations Df of the three
dimensional homogeneous Lorentz group with the exception of the
representations D* However these two latter representations are easily
seen to be reducible components of the 'continuous' representation C1/2

and the ensuing discussion of the contraction of the representations Cq

contains a discussion of these representations as a special case.

The 'continuous class' of representations can be contracted to either
faithful representations or non-faithful representations. In the form that
the representation has been given in section 5 the simple limit, P
converges to zero, leads to unfaithful representations. To obtain faithful
representations of the contracted group we must consider the continuous

sequence of representations Cq as q diverges. If the limit is chosen such
that qP ->— k2 when q diverges and P simultaneously goes to zero we see

from (5.6) that the representations do indeed converge to the faithful
representations Ek of the two dimensional Euclidean group given by (5.8).

Thus we have shown that the representations Ek may be obtained
either from the representations of the rotation group or from the
'continuous' representations of the homogeneous Lorentz group, if the
representations are contracted in the appropriate manner. The method of
contraction of the representations is basically the same in both cases,
a sequence of non-equivalent representations must be considered which
converges to the appropriate contracted representation. There is however
a basic difference between the two limits which is essentially connected
to the fact that the transition from the compact group is necessarily a

limit through a discrete sequence of finite dimensional representations
to an infinite dimensional representation whilst the transition from the
non-compact group is a limit through a continuous sequence of infinite
dimensional representations.
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To illustrate this difference we consider a group G which has a single
invariant W and irreducible unitary representations Dw. If we now apply
a linear homogeneous non-singular transformation U(P) to the infinitesimal

generators of G we obtain an isomorphic group G with irreducible

unitary representations D^(P) defined by

DW{F) U(P) Dw

The spectrum of W for which these representations are defined is dependent

both on P and the spectrum of W for which the representations Dw
are defined. In both the case of the three dimensional rotation group and
the case of the three dimensional homogeneous Lorentz group

W \P\W.
The spectrum of W for the rotation group is discrete i.e. it equals

I (I + 1) where I is integer or half-integer, so that the spectrum of W,
obtained by multiplying by the scale factor modulus P, is disjoint from
the spectrum of W. However, for the 'continuous' class of representations
of the three dimensional homogeneous Lorentz group Cq the spectra of

W and W are the same, because the spectrum of W is all positive real
numbers q. Hence for these latter representations we may write

Cq(P) U(P)Cqm

and both sides of this equation are defined. Thus we have representations
of all the isomorphic groups, corresponding to different values of P, each
of which has the same value for the group invariant. It follows from the
above that the representations Ek of the contracted group are given by

Ek=i}mCk(P)=iimU(P)ChnPV

7. Conclusion

It has been shown in the foregoing sections the representations of the
inhomogeneous Lorentz group may be classified by two invariants P and
W. The invariant P represents the square of the physical mass M of the
system represented and when this mass is real non-zero W is connected
to the total spin S of the system by

W M2 s (s A- 1)

If the mass is zero there are representations which describe the known
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transformation properties of the neutrino and photon, and these
representations have W equal to zero. There are also zero mass representations
with W real and positive and these representations interpreted physically
would describe particles with infinite angular momentum and an infinite
number of helicity states.

If the representation of the infinitesimal elements of the inhomogeneous

Lorentz group are now written as %)(M, W) it follows that the
representations 35(0, k) may be obtained as limits of the non-zero mass
representations in two ways:

either 1) lim £>(«' e, k) 35(0, k)

or 2) lim lim £(e, e2 s (s A- 1)) 35(0, k)

where the limit on S is stepwise such that

lim lim e2 s2 k
e—*0 5—»-oo

Therefore, although it is not possible to dissociate the 'strange'
representations of zero-mass from a limited form of the representations for
real mass, it does seem moie reasonable to associate these representations
with the limit of representations describing particles with imaginary mass.
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