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Zero-mass representations of the inhomogeneous
Lorentz group

by Derek W.Robinson
Institut fiir Theoretische Physik, ETH, Ziirich

(1. XII. 1961)

Abstract. The zero-mass representations of the inhomogeneous Lorentz group are
considered as contractions of the representations for real and imaginary masses.
It is shown that all zero-mass representations may be obtained from contracting
either real mass or imaginary mass representations, but that it is more reasonable
to associate the representations describing zero-mass particles with infinite angular
momentum with contractions of the imaginary mass representations.

1. Introduction

A basic axiom of all present day relativistic quantum theories is the
invariance of the theory under transformations of the inhomogeneous
Lorentz group. Thus all physical systems are assumed to furnish a re-
presentation of this group, and it is important to understand the nature
of these representations to realise the implications of relativistic invari-
ance. The irreducible representations have been often studied and classi-
fied and the results of this classifi ation are well known. The group has
two Invariants and each irreducible representation may be classified by
the value of these invariants. This will be discussed further in the follow-
ing sections but we briefly note that the value of one of the invariants may
be interpreted as the mass of the physical system represented. Represen-
tations have been found for real, imaginary, or zero mass. The purpose of
this paper i1s to examine the connection between zero-mass representa-
tions and representations for non-zero mass.

In sections 2 and 3 a short summary is given of the theory of the inho-
mogeneous Lorentz group and the classification of its representations.
Section 4 provides a précis of the theory of group contraction and section
5 summarises the representations of the ‘little groups’. In section 6 it is
shown how the various ‘little groups’ contract and in which way the
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representations of these groups may be contracted. Conclusions concern-
ing the contractions of the full group are given in Section 7.

2. Inhomogeneous Lorentz group

An inhomogeneous Lorentz transformation is defined as the product
operation of a translation by a real vector ¢, and a homogeneous Lorentz
transformation with real coefficients A7. This may be written

x;=(Lx)M:A;xv+aﬂ.

The translation is performed after the homogeneous transformation, and
with this understanding the formula for the product of two transforma-
~ tions is given by

{ay, Ay} {aq, Ao} = {a; + A, ay, A, Ay}

The homogeneous transformations are restricted to the proper Lorentz
group by the following conditions:

1. The transformations leave the fundamental indefinite quadratic
form g,, ¥ x” invariant. (The metric gy, = 1g;; = — 1gop = — 1 gg3 = — 1
1s used).

2. AJ > 0 1i.c. the transformations do not interchange past and future.

3. Det | A% | = + 1 i.e. this and condition 2. ensure that transforma-
tions preserve the distinction between right- and left-handed coordinate
axes.

In quantum theory it is required to find continuous unitary represen-
tations (up to a factor), (L) of the inhomogeneous group. The operator
multiplication rule is given by

D(L,y) :D(sz = w(Ly, Ly) D(Ly, Ly)

where w(L,, L,) is a number of modulus one. This relation may be simpli-
fied by permissible phase changes of the representation, and the work of
WIGNER and BARGMANN has shown that all representations may be
converted into the representations having

(Ll’ ) :|Z L.

Transformations of particular importance are the infinitesimal Lorentz
transformations, which may be written as

A =g, +e,

Ap =y
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where €, and €, are infinitesimally small. Condition (1) then leads to the
restriction '

By T+ B =10

We now define the infinitesimal generators of the group P, and M ,
through the representation of the infinitesimal transformation

| I .
D(L)=1+7zM” By 14 PP E,.

This equation defines ten operators P# and M** (M** = — M**). The
Hermitian operators P* are the generators for infinitesimal translations
and represent the linear momentum of the system, whilst the Hermitian
operators M ,, are the generators for infinitesimal ‘rotations’ in the
x#* — x” plane. The commutation relations of these operators follow from
the theory of Lie groups and are given by the well known relations

[P, P =0,
[M*?, P} =i (P"gt* — Prg™), (1)
[MH,?’, MQG':I e Z' (gﬂﬂ' MVQ . g.uQ M}'O’ _I_ gl’Q Mﬂ,o’ _ gVG' M,MQ) .

It is worthwhile to comment that as the Lorentz group is a non-compact
Lie group the validity of using the classical methods of infinitesimal
generators is not at all obvious. The mathematical justification of such
methods has been given by GArDING?) although these techniques were
used much earlier by several workers.

In order to find the invariants of the group in terms of the above
operators we define the new operator

1
Wy = 2 Eo,uvi.

M** P ()

where €,,,; 1s an operator completely antisymmetric in its indices and
with the normalization property

Epyay =2 L
The operator w,, satisfies the relation
w, PF=10 (3)
and also the commutation relations
[, B] =0,
(g M )] = 1 (8 0y — 8,0 94) » (4)

(W, 0] =1€,,,,0° P°.
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It is easily proved that the scalar operators P and W, defined by
P= Pﬂ pP*

W=—-w,0", (5)

1 v g v
= 5 M, M* P, P*— M, M P"P,

commute with all the infinitesimal operators, M ,,, P, of the group.
Therefore, for every irreducible representation of the group the operators
P and W are multiples of the identity. It now follows that the irreducible
representations of the group may be classified by the eigenvalues of P
and W and a complete set of commuting operators may be chosen from
the Pﬂ and w & Of course many different sets may be chosen, all of them
giving rise to equivalent representations, however in this work we choose
the set (P, P, P, Py L,) where L, is a certain linear combination of the
operators @, which will be defined in the next section. The eigenvalue
spectrum of these operators then specifies the range of variables labeling
the basis vectors.

The physical interpretation of the invariant P is clearly the square
of the physical mass. The interpretation of W can be made as follows.
The operator M ,, is decomposed into two parts

M,,=L,+S5S, (6)

where L ,, is an operator acting in the space of the momentum variables
only and S, acts in the space of the remaining variable. Then

L,,=i(Puags — B 5os) (7)

and this satisfies the equation

1 v
= Eongums, B P*=0
and hence
1 v
(UUZTEGH,,AS'“ Pl. (8)

Now in the rest frame of a particle of real mass m the operator W takes
the form

W=mS, SU, =123 (9)

i.e. W is the product of the square of the mass and the intrinsic angular
momentum of the particle.
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3. Classification of representations

In order to classify the irreducible unitary representations of the inho-
mogeneous Lorentz group we consider more closely the operators w,.
These operators are the infinitesimal generators of the group which leaves
the linear momentum P, invariant. It follows from the relation (2. 3)
that only three of the four operators w, are independent. (We omit from
our considerations the case P, = 0) so that this group is a three parameter
group and W is the invariant of the group. This group is the ’little group’
of WIGNER1). The representations of the inhomogeneous Lorentz group
are determined by the representations L, of the little group and a measure
on momentum space. The irreducible representations can now be divided
into four classes as follows

1. P,Pt=P>0, a) Py>0, b) Py< 0,

2. P,P*=P <0, (1)
3. P,PF=P =0, P,+0, a) P,>0, b) P, <0,

4. P,=0,

We consider the first three of these classes in which the variability
domain of P, is three dimensional. As w, is orthogonal to P, we may
express it in the following manner:

wﬂzLinL, 1=0,1,2 (2)
where 7!, are a set of orthogonal vectors spanning the space orthogonal
to P, . The operators L, are three independent generators of the ‘little
group’ and to complete their definition we must specify the character
and normalization of the vectors #},. In all three classes two of the vec-
tors n, must be space-like and the third vector is either space-like, time-
like or parallel to P, corresponding respectiv ly to classes 1., 2. and 3.
Thus we choose

no, ' =— P,

. (3)
n,on't=—1, = 1,2,
It now follows from the commutation relations of the w, (2.4) and the
definition of W (2.5) that the operators L, satisfy the commutation rela-
tions

[L;, Lil=1¢€;;,8" L, (4)
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and that
W=¢g L, L;, (5)

In these formulae €;;, is an operator completely antisymmetric in its

indices with the normalization property
Ep1a=1

and g/ is the metric tensor defined by g®=P gl'=1 g2=1 and with
all other components zero.

The explicit values of the components of the metric tensor depend
upon the choice of the vectors #,. The magnitude of the components of
this tensor depends upon the magnitude of the normalization of the
vectors n;, and the signs depend upon the nature of the vectors. The
nature of the vectors #}, is completely determined by the nature of P,
and thus the signs of the metric tensor components are determined by the
nature of the linear momentum vector P,, and these signs in turn deter-
mine the character of the ’little group’ generated by L,. The above choice
of normalization is chosen in order to simplify the algebra occurring in the
following sections. Any variation of the momentum vector P, which
leads to a change in the value of P results in a change in the group
generated by the L,. If however P varies over any closed interval on the
real line which excludes the point zero the group only undergoes a series
of isomorphic transformations.

We wish to examine the limiting behaviour of the series of representa-
tions of the group for non-vanishing P in the limit that P approaches
zero. It is in this limit that the nature of the vector #), changes and the
metric tensor gi/ degenerates. This type of limit of a group has been first
studied in quite general mathematical form by SEGEL%) and later in less
generality by WIGNER and INONU?), and also SALETAN®). These latter
authors consider some physical applications of the theory. As the theory
is not too well known we reproduce in the next section some of the me-
thods and results; we follow the appproach of WIGNER and INONU who
name the process group contraction.

4. Group Contraction

Contraction of a Lie group is defined by WIGNER and INONU in the
following sense. Consider an arbitrary Lie group G with # infinitesimal
operators I; and structure constants C¥; defined by

£, Ij] :C?y' Ik' (1)



104 D. W. Robinson H. P. A.

Let the infinitesimal generators 7, be subjected to a linear homogeneous
non-singular transformation denoted by

J.-U L. @

This transformation is an isomorphism of the group upon itself and may
only lead to a new group if U is singular. We consider the possibility of
this happening by assuming U to have the form

U=u+ Puw (3)

where in terms of sub-matrices

35 o 10 L 0
—\0o0/’ S \01
and P is a constant lying in some range 0 < P < P, for which U is non-

singular. This transformation of the infinitesimal elements will also change
the structure constants of the group and we find that if

U J1=C., T,
then 4)

G, = U} UL CY (U-Y;.
If ¢ is the rank of # it is now easily shown from (4.3) and (4.4) that
G=[p+o@)]c+0P), rs=<q, t>g,

C.=PC

rs

r,s>¢q

and that all other structure constants Eﬁs are of order P°or higher power
in P. Hence, if in the limit P -> 0 the commutator of J, and ], is to con-
verge to a linear combination of the J, then we must have

Ct.=0, rs=<gq, t>gq (5)

or alternatively, the operators I, for » = ¢ must span a subgroup S of G.
This operation is defined as the contraction of G with respect to S. WiG-
NER and INONU also express this transition by stating that the infinitesi-
mal elements J, for » << g are contracted. It follows from (4.5) that the
contracted infinitesimal elements form an Abelian invariant subgroup of
the contracted group.

If one applies the transformation (4.2) to the infinitesimal elements
of a representation D of the group to be contracted, and lets P tend to
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zero, the [, (r > #) will also tend to zero. Thus the representation ob-
tained by this method is never faithful. INONU and WIGNER suggest two
ways in which faithful representations of the contracted group may be
obtained from the representations D of the group to be contracted. The
first method is to perform a P — dependent similarity transformation on
the representation D, the second is to consider a sequence of representa-
tions which converges to a representation of the contracted group as P
tends to zero. The second method will be used in the following sections
and the definition of the type of convergence involved will be discussed
in relation to the contractions of interest. Further details of the general
theory of group contraction may be found in the references quoted above.
We now turn our attention to an examination of the ‘little group’, and its
representations, in the three classes of representations under consider-
ation.

5. The little Groups

The characters of the little groups as defined in section 3 are easy to
analyse, and the unitary representations of these groups are all known.
We give in this section a brief discussion of each of the three little groups
and a summary of the unitary representations. The section is split into
three parts corresponding to the three classes of representations of the
complete group.

Class 7. In this class P > 0 and the little group is isomorphic to the
three dimensional rotation group. As the group is compact the only irre-
ducible unitary representations are of finite dimension. These represen-
tations, D,, are of dimension 27+ 1, where / is either integer or half
integer, and the corresponding eigenvalues of are given by

W=Pl@+1), 1=0,5,1.. (1)
From the discussion at the end of section (2) we see that / may be inter-
preted physically as the spin of a particle of physical mass ]/P.

The only non-vanishing matrix elements of the operators L; in these

representations are given by

Adm |Ly|lm)=m,

(2)
Am+1|L |Imd=<Im|L_|Im+1>=[P(I—m) (+m+ 1)

where L, are defined by
L4+ =L,+1iL,.
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The dimensionality of the representation is evident from the observation

that
L |LIy=0=L_|l,—10>

and so in each representation the values of m occurring are
-, -1+1,..., I—1,1.

Class 2: In this class P < 0 which corresponds to space-like linear
momentum. The little group is isomorphic to the three-dimensional
homogeneous Lorentz group. The irreducible unitary representations of
this group*) have been given by BARGMANNT), who showed that they
fall into two separate classes, the ‘discrete class’ and the ‘continuous
class’. These names derive from the nature of the spectrum of the ope-
rator W. We discuss first the ‘discrete class’ of representations.

If / is again a positive integer or half integer there is a unitary represen-
tation for each / and the appropriate eigenvalue of W is given by

W= PI{1—]. (3)

The only non-vanishing matrix elements of the operators L, in these
representations are given by

dm|Lg|lmy=m,

Am+1|L|imd=<Am|L_|Im+1>=[—P(l+m)(m—1+1)]12

Observing that
serving tha L. |l,=l>=0=1L_|il,

it is seen that the representation splits into two infinite dimensional
irreducible representations D;" and D; . The representation D,’ contains
positive values of m ie. m=1[, 1+ 1,14 2... and the representation
D[ contains negative valuesof mie.m=—1[, —1—1, —1—2....
The second class of unitary representations the ‘continuous class’ is
derived from the assumption that no state vector satisfies either of the

equations

Hence the representations are again infinite dimensional. The eigenvalue
spectrum of I is found to be continuous positive i.e.

W=—Pgq (3)
where ¢ is a positive constant.

*) We consider only the single-valued and double valued representations (see
BargMaNN, refs. 1) and 7)).
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The only non-vanishing matrix elements of the operators L; in the
representation corresponding to a chosen eigenvalue of W are given by

gm|Ly|gmy=m,

Gm+1|Lgmd>=<gm|L_|gm+1>=[—P{g+m (m+ 1)}

where all vectors are normalized to unity.

If m assumes integer values the representations (C}) are unitary for
all values of ¢ > 0. However, the representations C}* in which m assumes
half-integer are unitary only if ¢ = 1/4. In the interval 0 < g =<1/4
unitary representations may be constructed, but as the properties of this
exceptional interval are of no direct interest to us we omit details of these
representations.

Class 3: In this class P = 0 and the little group is the two dimensional
Euclidean group. The operator W is positive semidefinite

W=L+I1:=L,L_,
and the unitary representations are determined by

W — k2 (7)
and
<km |Ly|kmy=m,

(8)
Ckm+1|Ly |\ kmy=<km|L_|km+1>=k.

The nature of these representations depends radically on whether % is
Zero or non Zzero.

a) If K =0 then W = 0 and the operators L,, and L, also vanish.
Therefore the representations, £, are all one dimensional. This represen-
tation is a non-faithful representation of the group.

b) If % =+ 0 then the representations are all infinite dimensional faith-
ful representations, E,.

In order to establish the physical meaning of these representations we
consider the definition of the L, given by (3.2)

We now choose the vectors #, such that n§ = 0 = n¢. This special choice

of n), and 7, is always possible. Then we have from (2.8) that

L 2
OJOZ _2_ EO,L/HJA S‘uv P

N
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where § is the spin vector defined by

S;= €y SF, .1, k=123,
Therefore
Wy S.-P
LO——'P;— = —Pi a

This operator is usually called the helicity operator and it represents the
component of spin of a particle along its direction of motion.

The one-dimensional representations of the group are therefore re-
presentations of a particle with zero mass and with one value of the
helicity e.g. the neutrino. If in the physical theory a parity operation is
defined then a particle should have two directions of helicity -- 2,
because P is a pseudoscalar, e.g. a photon. The infinite dimensional
representations would however describe a completely different situation.
The possible values of the helicity of the particle are again given by m,
but each representation allows all integer, or half-integer, values for m
as opposed to the one-dimensional representations which allow only a
unique values. Thus the physical situation described by these represen-
tations would be a zero-mass particle with an infinite number of helicity
states and infinite angular momentum.

The purpose of the following section is to show in which manner the
representations of class 3 are contractions of representations of class 1
and class 2.

6. Contractions of the little Groups

The little group of class I, as defined in sections 3 and 5, is isomorphic
to the three-dimensional rotation group so long as P > 0. The limit
P — 0 contracts the group with respect to rotations about the xj-axis
and the resultant contracted group is the two-dimensional Euclidean
group i.e. the little group of class 3.

Simple contraction of the representations of the group i.e. the simple
Iimit P - 0, splits the representation into 2/ + 1 one-dimensional un-
faithful representations of the two-dimensional Euclidean group E}', as
can be easily verified from (5.2) and (5.8). In order to obtain faithful
representations of the contracted group we must use the method mentio-
ned in section 4 of considering a sequence of representations which con-
verges to a representation of the contracted group as P tends to zero.
The convergence that we are interested in is the convergence of the in-
finitesimal operators L;, whose matrix elements in the representation D,
are given by (5.2). We write, with an obvious notation, D, (L;(P)) for
these matrix elements and E,, (L;) for the matrix elements of the con-
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tracted group given by (5.8). Now for any integer (half integer) m there
exists an integer (half integer) value of /, which we call L such that

P, e > 0; |Dy (Li(P)) — Ey (L)| < €.

It is clearly seen that for small P the value of L is bounded below by a
number inversely proportional to the square root of P. Thus
Ll_lfie ;i_r&) Dy (Li(P)) = E;n(Ly)
if the limits are understood in the sense that the limit on P is continuous
whilst the limit on L is stepwise and taken in such a way that
lim hin L2 P=k2,

L—s0c0 P—0

In this sense the sequence of representations

D, D D

lo_l_l,-.-, l“_l_n.ao

converge to the representations E,. The alternative method of obtaining
faithful representations i.e. applying a P-dependent similarity trans-
formation, has no application here as the method preserves the dimen-
sionality of the representation whilst in this contraction it is essential to
form the transition from finite dimensional representations to infinite
dimensional representations. The method would only have application
if the infinitesimal generators are not bounded operators, which means
for irreducible representations that the group is not compact. In order to
obtain faithful representations of the contracted group, which is necess-
arily non-compact, when the original group is compact the rather arti-
ficial limiting process of a sequence of finite dimensional representations,
as 1llustrated above, must be used. This contraction has been considered
more fully by WIGNER and INONU®) and the significance of the contrac-
tion in the context of the present work has been noted by V. I. Ritus?).

We now turn our attention to the little group of class 2. This group as
defined previously is isomorphic to the three-dimensional homogeneous
Lorentz group as long as P << 0. The limit 2 - 0 contracts the group with
respect to rotations about the x,-axis i.e. rotations in the two space
dimensions. It can now be shown that all representations for which
W < 0 cannot be contracted into faithful representations of the con-
tracted group. The argument is as follows. We have

W=PLE+ L+ =—-%k<0
therefore

V=P Ly= (& + L2 + L2,
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As the operator contained in the square root on the right hand side of
this formula is positive definite

Pl Lof| >[I L. /]

where f is a vector in Hilbert space in the common domain of the opera-
tors L, and L,. However, if in the limit P - 0 the norm of L, is finite
non-zero, this equation shows that the norm of L, must diverge. Thus
the operators L, and L,, have no common domain of definition in Hilbert
space. A similar argument also excludes a common domain for the opera-
tors L, and L,. This argument is not valid however in the case that L, and
L, are of zero norm, but this leads naturally to the unfaithful represen-
tations of the contracted group.

In the previous section we have shown that a negative eigenvalue of W
is associated with the ‘discrete class’ of representations Dif of the three
dimensional homogeneous Lorentz group with the exception of the re-
presentations Df;,. However these two latter representations are easily
seen to be reducible components of the ‘continuous’ representation C,
and the ensuing discussion of the contraction of the representations C,
contains a discussion of these representations as a special case.

The ‘continuous class’ of representations can be contracted to either
faithful representations or non-faithful representations. In the form that
the representation has been given in section 5 the simple limit, P con-
verges to zero, leads to unfaithful representations. To obtain faithful
representations of the contracted group we must consider the continuous
sequence of representations C, as ¢ diverges. If the limit is chosen such
that ¢ P > — k2 when ¢ diverges and P simultaneously goes to zero we see
from (5.6) that the representations do indeed converge to the faithful
representations E, of the two dimensional Euclidean group given by (5.8).

Thus we have shown that the representations £, may be obtained
either from the representations of the rotation group or from the ‘con-
tinuous’ representations of the homogeneous Lorentz group, if the re-
presentations are contracted in the appropriatz manner. The method of
contraction of the representations is basically the same in both cases,
a sequence of non-equivalent representations must be considered which
converges to the appropriate contracted representation. There is however
a basic difference between the two limits which is essentially connected
to the fact that the transition from the compact group is necessarily a
limit through a discrete sequence of finite dimensional representations
to an infinite dimensional representation whilst the transition from the
non-compact group is a limit through a continuous sequence of infinite
dimensional representations.
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To illustrate this difference we consider a group G which has a single
invariant W and irreducible unitary representations Dy,. If we now apply
a linear homogeneous non-singular transformation U(P) to the infinitesi-

mal generators of G we obtain an isomorphic group G with irreducible
unitary representations Dy (P) defined by

Dy (P) = U(P) D,, .

The spectrum of W for which these representations are defined is depen-
dent both on P and the spectrum of W for which the representations Dy,
are defined. In both the case of the three dimensional rotation group and
the case of the three dimensional homogeneous Lorentz group

W= |P|W.

The spectrum of W for the rotation group is discrete 1.e. it equals

I (I + 1) where / is integer or half-integer, so that the spectrum of W,
obtained by multiplying by the scale factor modulus P, is disjoint from

the spectrum of W. However, for the ‘continuous’ class of representations
of the three dimensional homogeneous Lorentz group C, the spectra of

W and W are the same, because the spectrum of W is all positive real
numbers ¢. Hence for these latter representations we may write

Cq(P) = U{L) qulPl

and both sides of this equation are defined. Thus we have representations
of all the isomorphic groups, corresponding to different values of P, each
of which has the same value for the group invariant. It follows from the
above that the representations E, of the contracted group are given by

E, = lim C(P) = lim U(P) Cyp.

7. Conclusion

It has been shown in the foregoing sections the representations of the
inhomogeneous Lorentz group may be classified by two invariants P and
W. The invariant P represents the square of the physical mass M of the
system represented and when this mass is real non-zero W is connected
to the total spin S of the system by

W=M%s(s+1).

If the mass is zero there are representations which describe the known
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transformation properties of the neutrino and photon, and these repre-
sentations have W equal to zero. There are also zero mass representations
with W real and positive and these representations interpreted physically
would describe particles with infinite angular momentum and an infinite
number of helicity states.

If the representation of the infinitesimal elements of the inhomogene-
ous Lorentz group are now written as D(M, W) it follows that the repre-
sentations D (0, £) may be obtained as limits of the non-zero mass repre-
sentations in two ways:

either 1) lirr%] D e k) =D, k)
or 2) lim lim (g, €%s (s + 1)) = D(0, &)

e—>0 s—o0

where the limit on S is stepwise such that

lm Iim e2s2=%Fk,

€—0 s—o0

Therefore, although it is not possible to dissociate the ‘strange’ repre-
sentations of zero-mass from a limited form of the representations for
real mass, it does seem more reasonable to associate these representations
with the limit of representations describing particles with imaginary mass.
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