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Untersuchungen zum statischen Modell der Mesontheorie

von Günther Rasche
Institut für Theoretische Physik, Universität Zürich

(25. XI. 1961)

Summary. A variational principle given by Schwinger is used for meson
processes treated by the static fixed source model. The nonrenormalized n-N coupling
constant /2 (/2 renormalized coupling constant) is calculated for the purpose of
ascertaining whether the theory is consistent and leads to a unitary S-matrix (which
is only the case when/2 è:/2,). The result is that for a cut-off eomax less than about
4,5 mn c2 and /2 0,08 /2 lies between 0.15 and 0.25 and the theory is consistent.
For higher values of comax the approximations are not reliable but the indications
are that the theory ceases to be consistent for a sufficiently high comax-

The variational principle is also applied to double meson production and the
results are similar to those derived with various approximations from the Chew-
Low equations.

Einleitung

Källen und Pauli1) haben gezeigt, dass selbst in einer verhältnismässig

einfachen Feldtheorie wie dem LEE-Modell2) Schwierigkeiten
prinzipieller Art entstehen können. In diesem exakt lösbaren Modell zeigt
es sich nämlich, dass bei gegebener renormalisierter Kopplungskonstante
ff > 0 und gegebenem Abschneideimpuls £max + i/co^ax "~ ¦"• die nicht-
renormalisierte Kopplungskonstante /2 < 0 wird, sobald comax > a)krlt,
wobei wkrit als Funktion von /2 durch Auswertung des Modells berechnet
werden kann.

Källen und Pauli (loc. cit.) zeigten, dass ein /2 < 0 zu sogenannten
Geisterzuständen und einer nichtunitären S-Matrix führt.

Chew und Low3) haben füi die kompliziertere (und im allgemeinen
nur mit beträchtlichem Rechenaufwand näherungsweise auswertbare)
statische pseudoskalare Mesontheorie (mit ladungssymmetrischer Pseudo-

vektorkopplung) gezeigt, dass unter Voraussetzung der Unitarität der
S-Matrix exakt /; < /2 gilt.

Auswertungen der statischen Mesontheorie sind mit den Parametern
/2 und comax gegeben worden und durch Anpassung an die Experimente
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folgt ff 0,08 und 4 ïS comax < 7. (Wir verwenden natürliche Einheiten,
das heisst % c », 1). Dabei wurde unseres Wissens nie nachgeprüft,

ob diese Werte auch zu einer unitären S-Matrix bzw. einem Wert
/2 > ff führen. Die Schwierigkeit liegt darin, dass die unrenormalisierte
Theorie bis jetzt nicht exakt genug ausgewertet wurde.

Wäre /2 < ff, so würde die Unitarität der S-Matrix verletzt und die
Theorie wäre nicht konsistent. Der Zweck dieser Arbeit besteht nun
darin, zu zeigen, dass für ff 0,08 und o)m^x ^ 4,5 die Theorie sicher noch
konsistent ist. Es ergibt sich ein vernünftiger Wert für /2, 0,25 > /2 >
0,15. Bei höherem a>m^x ist die Näherung schlecht, aber es zeigt sich, dass

es zumindest zweifelhaft ist, ob f2 > ff. Es gäbe dann also auch in der
statischen Mesontheorie eine obere Grenze für die Abschneideenergie.
Diese liegt aber über den in heutigen Rechnungen allgemein benutzten
Werten für wmax, obwohl wahrscheinlich nicht sehr viel höher.

Ferner berechnen wir ebenfalls mit Hilfe des Variationsprinzips den

Wirkungsquerschnitt für den Prozess n A- N -A>-2n A- N auf Grund der
statischen Mesontheorie; dieser wurde schon mit demselben Modell
ermittelt4-7). Es handelte sich dabei jedoch um Auswertungen von
Integralgleichungen, die nur mit Vernachlässigungen zu lösen waten und
in die ausserdem die dem Experiment entnommenen Streuphasen
eingingen. Da die Ergebnisse dieser Arbeiten zum Teil erhebliche Diskrepanzen

mit den Messungen aufweisen, ist cs wünschenswert, den Prozess
mit demselben Modell, aber durch eine vollkommen andere Näherungsmethode

zu ermitteln. In dieser Arbeit werden die benötigten
Matrixelemente für die Wirkungsquerschnitte direkt berechnet. Die Ergebnisse
bestätigen im Wesentlichen die Rechnungen der vorgehenden Arbeiten,
was zeigt, dass unser Variationsverfahren ungefähr so gut ist, wie die

genannten Näherungen der Chew-Low-Gleichungen. Für den Prozess

/ tz+ + n° A- p
7i+ A- p

x 7i+ A- 7i+ + n

findet man eine vernünftige Übereinstimmung mit den Messungen, während

der Prozess

/ 7t' A- 7i+ A- n

7i~ A- p c 7i~ A- ti0 + p

V -> n ° + n ° + n

durch die Theorie nicht befriedigend erklärt werden kann. Wir vermuten
deshalb, dass der Fehler am Modell und nicht am Näherungsverfahren
liegt.
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I. Das statische Modell

Das Nukleon wird als ruhend angesehen mit Spindrehimpuls f o und
Isobarenspin \ r als Freiheitsgraden. Seine Zustandsfunktion schreiben
wir j \a3 \A3y. Dabei bedeuten die Eigenwerte x'z 1, — 1 ein Proton
oder ein Neutron, und a'3 1, — 1, dass die z-Komponente des Spins
+ % bzw. — | ist. Die Ausdehnung des Nukleons wird durch eine
Quellenfunktion Q(x) bzw. ihre Fouriertransformation q(k) beschrieben. Die
Mesonen werden durch ein quantisiertes Pseudoskalarfeld mit 3

Komponenten im Isobarenspinraum (entsprechend den drei möglichen La-
dungszuständen) dargestellt. Einen Erzeugungsoperator für ein Meson
im Ladungszustand t3 mit dem Impuls k schreiben wir a+(k, t3). Dabei
entspricht t3= 1, — 1,0 den tc+, tv und tc".

Einen Zustand mit einem Nukleon und einem Meson schreibt man

«+(fe. 's) !!Xtt3>
und entspiechend die Mehrmesonzustände.

Die Wechselwirkungsenergie ist bei symmetrischer Pseudovektorkopp-
lung8)9)

HT=2J Wfe- 's) V(k, t3) + a+(k, t3) V+(k, t3)]

mit
V(k,t3) if)/An-^Lrttq(k)

\2cok

Zerlegt man das Mesonfeld nach Drehimpulseigenfunktionen, so ergibt
sich

H, Z [«(»*• ;3- h) V(k, l3, t3) + «+K, h, t3) V+(k, l3, t3)]
mk ;3 (3

mit
V(k, l3, t3) f -^= a rtt q(k), (l3, t3 + 1, -1, 0)

(/3 coj.

(n. b. es wechselwirken nur />-Mesonen und es sei q(k) q(k)). Dabei ist
a+(ct»A, l3, t3) ein Erzeugungsoperator für ein Meson mit Drehimpuls / und
der ^-Komponente ls sowie der Energie cok und der Isobarenspinkompo-
nente t3.

Ferner gilt für
a+x a+= - -— (ax + i a2)

\2

o-_1 o-_= — (ax - i a2)

<T^3 \*A H> (-l)1/2 + 1/2o°X(ii 1; - a'3al ± 1) ||<r||,

<i°'z ks | \ol> (-l)1/2 + 1/2^X(i--|- 1; - a3 al 0) \\ct\\,
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wobei sich das reduzierte Matrixelement \\a\\ aus der Forderung ergibt,
dass die Eigenwerte von a3 + 1 bzw. — 1 sind.

Es ergibt sich

H=|/6
also

^o^aAiraly (-1Y'2^2< ^2 da,]a,±l.

Damit hat man als einzige nichtverschwindende Matrixelemente

<ïl'+|-ï>--/2. <-lk-ll>=}/2,
<±lk| ±l> ±i.

Es gelten folgende Hermitizitätseigenschaften der Operatoren :

at a3, X - o-_

Für die x±, r3 Operatoren gilt selbstverständlicn das Gleiche. Die
Konsequenzen der Vernachlässigung des Nukleonenrückstosses bei
Streuprozessen werden später behandelt.

II. Das Variationsprinzip
Lippmann und Schwinger10) haben verschiedene Vaiiationsprinzipien

für die Operatoren der Streu théorie angegeben. Die Auswertung
derselben ist aber, ausser für die elastische Streuung, sehr umständlich. Wir
benutzen deshalb in dieser Arbeit ein anderes Variationsprinzip, welches
eine direkte Berechnung der Matrixelemente der Streuoperatoren
gestattet. Es stammt ursprünglich auch von Schwinger und wurde von
Chew11) und Altshuler12) diskutiert. Die Theorie dieser Methode soll
kurz skizziert werden.

Hat man eine Integralgleichung der Art

Wa>=\<Pa>+GV\yJay (1)

und die «adjungierte»
l%>= Wa + g+v+W'a (2)

wobei | <pa i,y und G sowie V vorgegeben sind, so interessieren uns nach
der Lösung Ausdrücke der Form

Xba <<Pb \V\fa> ¦

Dabei ist die Bedeutung von X abhängig von G (s. u.). Wir definieren nun
nach Schwinger ein Funktional
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vM _ iW \v\<fa> <<Pb\v\vA /3\
ba <n'\v\v>a>-<v>b'\vGv\v>a> y>

irgendwelche! \ipay und \ip'by, sowie der gegebenen | q>ay, \cpby, von
welchem wir zeigen, dass es stationär ist, wenn | ip'by und | y>ay Lösungen

von (1) bzw. (2) sind. Den stationären Wert von Xbl nennen wir Xb? und
zeigen, dass er mit Xba übereinstimmt.

Variation von Xba nach | ipay und | y>'by gibt:

dxn <Vb'\V\<Pa><to\V\Va>
ba (Afi,'\V\y>ay-iy>b'\VGV\y,ay)* *

A[<Wivi%Av;ZGVlWay «P>\-<*\+<*\VG]v\*.>+

+ <*\v[^r]*£$£Gr]^ WA- Wa>+ GV\y,ay}}.

ôXbvl 0 erfordert wegen der Unabhängigkeit der Variationen

i*> ^1^1^;^!;;^^1^ -w'b>+G+v+wby=o, (4)

Diese beiden Gleichungen sind aber für Lösungen von (2) und (1) erfüllt,
da dann wegen der aus (1) und (2) folgenden Lösungseigenschaft,

<V>'b\V\ 9X Wb \V I Wa> - Wb \V G V I Va> >

die Faktoren von | cpay und j cpby in (4) bzw. (5) 1 werden. Damit ist
auch sofort gezeigt, dass

vi«) <v>b I v I ya> x =xba <n'\y\fa>-<v>b\vGv\y,ay *« *•¦

Um dieses Variationsprinzip praktisch anzuwenden, wählen wir folgenden
Weg:
Formal lassen sich die Lösungen von (1) und (2) unter Voraussetzung der
Konvergenz einer Potenzreihenentwicklung nach V schreiben :

oo

Wa>=Z(GVy\<pay,
1 0

CO

\%>=Z(G+VAi\<Pb>.
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Eine Lösung iV-ter Ordnung in V erhält man, wenn man nur bis N
summiert. Setzen wir diese in (3) ein, so erhält man

/iV+l \2U4X
(AT) v-(») ' ' '¦= J

ba N+l
£(^l-^a+N+1))

wobei Xbl das Glied /-ter Ordnung in V bei einer Entwicklung von Xba
nach V bedeutet :

xï\=<n\V{Gvr'\cpay.
Man sieht, dass für A7 -> oo die Potenzreihenentwicklung von Xba resultiert.

Für einen bestimmten Erzeugungsprozess w-ter Ordnung (d.h. [ <pay

enthält 1 Meson, | cph > enthält m Mesonen) geben wir nun folgende
Näherungsvorschiift erster Ordnung zur Auswertung des Variationsprinzips:

Man setze in der Entwicklung der Versuchsfunktionen \ipay,
| rp'by des Variationsprinzips N m. Dann wird (Xb£ bedeutet i-te Näherung

im Variationsprinzip!)

(x{l) + x(-2A---xm + 1)2

^ba+^ba^y^ba ^ba ^ba *ba

Das erste nichtverschwindende Matrixelement bei einer Potenzreihenentwicklung

für einen Erzeugungsprozess m-tex Ordnung ist X[ma + \ Ferner

sind dann nur alle X(bma + 1+2l'#0 und man erhält

lx(m+1)\2
Y(»i) ' ba l (6)

ba y(m + l) v{m + i)_ _ F(2i»+2) V I

^ba ^ba "' ^ba

wobei im Nenner das letzte Glied Xf"+ 2) verschwindet, wenn m + 2

gerade ist.
Entwickelt man in (6) den Nenner nach den Xb\, l 2: m + 3, so sieht

man, dass

XtÛ Xt+1) + Xt + Ì) + • ' • + Xfam + 2) +

K:+xx:+x---+Af:>'+2))2
_

x(m + 1)
Aba

Der letzte aufgeschriebene Term enthält Beiträge m + 5 -ter und höherer
Ordnung; der entscheidende Unterschied zu den ersten Gliedern ist
jedoch, dass die eisten Glieder sich eindeutig Feynmandiagrammen zu-
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ordnen lassen. Der Rest der Glieder ist typisch für das Variationsprinzip
und lässt sich nicht in Form solcher Diagramme deuten, obwohl er natürlich

aus Produkten von Diagrammbeiträgen besteht.
Diese Auswertung des Variationsprinzips gibt also mehr Aussagen als

eine Entwicklung nach V bis zur 2 mA- 2-ten Ordnung. Dabei steht natürlich

a priori nicht fest, ob die Zusatzglieder eine erhebliche Verbesserung
oder sogar eine Verschlechterung des Ergebnisses bedeuten. Das kann
erst nach Angabe von G und insbesondere von V entschieden werden.

Will man im Variationsprinzip eine Ordnung höher gehen, so setze

man N m + 2. (Würde man N m -A- 1 setzen, so erhielte man zwar
Zusatzglieder im Nenner, nicht aber im Zählei ; das entspräche aber im
Nenner einer Entwicklung nach der Kopplungskonstanten.) Mit N m
4- 2 ergibt sich:

/ v(w + l) i v(»» + 3))2
v(»,) _ \ ba ^^ba 1

ba „(OT+1) (m + 3) „(m + 5) v(2m + 5)
"

^ba + ^ba Aba "" ^ba

Als Beispiel ermitteln wir für die Streuung :

XM 'XJ xiv*) - (Xba+ ba)
ba ¦

x{2)_x(i) ' y ba „(2) x(4) _ x(6) _ x(8)A*s Aba Aba+^ba ^ba ^ba

und für die Doppelerzeugung:

XM _
{ ba)

X»J _ \Xba + Xba)
ba ' iH3) v(5) ' ba

*ba Aba Aba + *ba Aba ^ba

Um einen Eindruck von der Wirksamkeit des Variationspiinzips zu
bekommen, könnte man die Konvergenz prüfen, d.h. XM mit X^ vergleichen.

Dies erfordert jedoch einen zu grossen Rechenaufwand, da die

Ermittlung von Matrixelementen mindestens 8-ter Ordnung notwendig
ist. Man kann andrerseits die Methode an einem exakt lösbaren Modell
prüfen. Dieses ist z.B. das LEE-Modell2). Seine Lösungen für die
Streumatrizen sind von der Form

Xba Y-

also ist

Xu -ÌH X[2) - p2 X2) F Aba 1_|_„2Z7 Aba 6 ^barbar

V(4) _ „2 V(2) p¦"-ba S Aba rba

und das Variationsprinzip liefert :

(xfl)2 xflV(vi) \ oa/ ba __ -y
ba ~ Af>-44>

~~
1 + fFba ba'

baba
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d.h. man hat die exakte Lösung in 2-ter Näherung gefunden. Die höheren

Näherungen, z.B. Xb£ liefern aber wiedei ein nichtexaktes Ergebnis und
erst für Ar -> oo erhält man wieder das richtige Resultat.

Für Anwendungen in der Feldtheorie ist V H, und entweder

G P -5—TT oder G -=— „- —

Im ersten Fall berechnet man mit X die Reaktionsmatrix K, im zweiten
Fall die Übergangsmatrix U, wie aus (1) hervorgeht, K und U hängen
zusammen nach der Heitlerschen Integralgleichung13) :

Uß(t Kßa-i7i^KßyQy(Ea) Uya (7)
7

während die übliche S-Matrix

Sßa=l-27iio(Eß-Ea)Ußa
ist.

Der gesamte hier entwickelte Formalismus ist natürlich nicht auf die
statische Mesontheorie oder nichtrelativistische Theorien beschränkt. Er
könnte z.B. auch auf die relativistische Meson-Nukleonkopplung
angewandt werden. Die Notwendigkeit der Ermittlung von reduziblen
Matrixelementen höherer als der ersten nichtverschwindenden Ordnung erfordert

aber die Renoimalisierbarkeit der Wechselwirkung oder ein
Abschneideverfahren für hohe virtuelle Impulse. Die Rechnungen werden
dann jedoch enorm kompliziert.

III. Streuung

Die Streuung lässt sich in dem behandelten Modell bekanntlich auf die

Ermittlung der drei Phasendifferenzen ô2T 2/ o33, <531 ôi3, ôlx zurückführen,

wobei T und / die Gesamtquantenzahlen des Isobarenspins und
des Drehimpulses des ein-Meson-ein-Nukleon-Systems sind. Dabei sind
diese Phasendifferenzen definiert durch

K=- — tar.ô oder U - — X sino
71 71

Wendet man das Variationsprinzip in erster Näherung in der angegebenen
Form für die Streuung an, so erhält man

M (*<*>)»
_ uM _JA*)2 _

Dieselben Formeln erhielten Cini und Fubini14) bei Auswertung eines
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anderen Variationsprinzips und Satorin und Wataghin15) berechneten
daraus unter Benutzung der if-Matrix

tan ô3

tanó31 T-^X^T- 'A)

tan ô

2y
'33 1-2A_-AA+

-y'ai 1+A_-AA+ '

— Ay
11 1 + AA_A-2A+

OO

^K)^/>?P/^^|#)|^,.
i

Dazu ist zu bemerken, dass man dieselben Phasendifferenzen unter
Benutzung der C-Matrix erhalten hätte; das bedeutet, dass die aus (8)

berechneten Matrizen K(Vl) und U{Vl) die Integralgleichung (7) für mq < 2

exakt erfüllen. In einer exakten Lösung würde ô für coq > 2 komplex.
Beschränkt man sich jedoch auf 1-Meson-l-Nukleon-Konfigurationen, so

bleibt ô auch für coq > 2 reell und if(t,l) und U^Vl> genügen der
Integralgleichung auch für mq 2g 2. Das Ganze ist analog der Einmesonnäherung
der CHEW-Low-Gleichung für Streuung3). In der Tat ist (9) identisch mit
den Lösungen dieser Gleichung, wenn man die «crossingmatrix» des

CHEW-Low-Formalismus' leicht verändert, um die Gleichungen separieren

zu können8), was keine w sentliche Änderung des Resultats bedingt.
Dieser Umstand bildet eine Rechtfertigung für die Anwendbarkeit des

Variationsprinzips in der statischen Mesontheorie.

IV. Die nichtrenormalisierte Kopplungskonstante

Um die Konsistenz des Modells zu prüfen, berechnen wir in diesem
Abschnitt die nichtrenormalisierte Kopplungskonstante /2. Sie wird
abhängen von der renormalisierten Kopplungskonstanten ff und q(k). Wir
verwenden ein scharfes Abschneiden, d.h.

q(k) 1

0

für

für

(o(k)

CO(k) :

p2A-l^ «max

q(k). )/k2 + 1 ^ «max

Man kann im allgemeinen fr nach /2 entwickeln :

oo oo

/2=2x2x2i /22>2!x-2. a«)
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Es ist bei der Renormalisation für ein Matrixelement elastischer Streuung

lim £»*W_f (11)

wobei (,)ÜLt2f)(co4) das renormalisierte Matrixelement 2i-ter Ordnung
dividiert durch /2! ist.

In allen bisherigen vertrauenswürdigen Auswertungen des statischen
Modells ging ebenso wie in die Dispersionsrelationen nur ff ein. Dieses
wird aus verschiedenen Prozessen (ti-N-Streuung, Photoproduktion) zu
ff 0,08 angenommen.

Mit Hilfe des Variationsprinzips ist es nun möglich, die if-Matrix auch
in der nichtrenormalisierten Theorie zu berechnen. Dann eihält man durch
Vergleich der Resultate einen Wert für /2, der natürlich von a>max und
ff abhängt.

In der nichtrenormalisierten Theorie ist

00 u(2i)i,, \ f2i °°

mQ-*° t_X K (ûty i-1
wobei K2t)(coq) das nichtrenormalisierte Matrixelement 2 «'-ter Ordnung
dividiert durch f2i ist.

Da in einer konvergenten Theorie die Ergebnisse der renormalisierten
und der nichtrenormalisierten Auswertung gleich sein müssen16), gilt

00 00

£ <*&*>(<»,) fi* Z&*>(*>,) f» (12)
i-1 i-i

und da ferner stets

«X>?)=X2>K)
folgt durch Gleichsetzen von (10) und (11) unter Beiücksichtigung von
(12) :

c2!-= lim
(2

Q (13)
œQ^o if(2)(co3)

In erster Näherung des Variationsprinzips für Streuung gilt :

1 "' i2A^2\coQ)-i^K^q) '

wobei {r)KM(mq) (KM(co)) das in erster Variationsnäherung in der
renormalisierten (nichtrenormalisierten) Theorie berechnete Matrixelement ist.
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Beide Matrixelemente sollen übereinstimmen, sofern die Variationsmethode

gut ist. Für kleine coq ist sie sicher verlässlich. Wir gehen deshalb
über zum Grenzfall a>q -> 0. Durch Gleichsetzen in diesem Grenzfall von
^K^(mq) und K^(coq) folgt

lim —X lim '

W*(2,K) h
KS2\co9)

'
oder

,2 /a - /P
lr t-ci+ß • ' ' 1 + cJl ¦

Das ist eine ähnliche Formel wie sie Källen und Pauli bei der Auswertung

des LEE-Modells2) erhielten.
Für c4 erhält man ohne grössere Rechnung aus Selbstenergie- und

Vertexmodifikationen :

(ümax
16 r k3

Ci=~AAj Aïdœ«-
i

Wir gehen nun im Variationsprinzip eine Ordnung weiter und erhalten

xw,,, /*(^(2)K)+/2-K(4)K))2
1 «' /2KX»a)+/4*Xco9)-/6XV9)-/8Ä(8)K) '

wobei wüC("»'(<o (i?(t,2>(cü?)) das in zweiter Variationsnäherung in der
renormalisierten (nichtrenormalisierten) Theorie berechnete Matrixelement
ist.

Wieder folgt mit den selben Argumenten wie vorher durch Gleichsetzen

von ir)K^(wq) und K^(mq)

hm —
»«->" fl "W«.) fi (f)g(6)K) '^K)h

^K<-2\œq)
Jr

<"X«K) r Wiv(2)(aja)

Ä<4)K)
/21+/2

V #X
hm

K<2W) -K(2)K) i^(2)(û
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f f LXaX2 (14)

Um nun c6 und cs zu bekommen, gehen wir folgendermassen vor: Es ist

j2 _ Atl. 12 7
1

Ir — 72 / • Ä:Z\ ' ' 2 tdZ(E)
\ dE /£ _ o

Dabei ist E(E) die Summe allei Selbstenergiemodifikationen. Man erhält
S(E) aus der Chewschen Arbeit17)18) mit dessen Bezeichnungsweise wie

folgt:
E' E — Es ist die renormalisierte Energie, Es die Selbstenergie. Der
exakte Nukleonenpiopagator ist

S(£') (£'-i (£'))-»
oder

S(E) {E- 27(f))-1
wobei

S(E') S(E(E')),
E'

(S(E'))-1 E'-Z(E') - 27(0) fr0(X) dX

also °"

Z(E') Z(E>) - 27(0).
Es ist

dË(E') dS(E')
dE' dE'

und damit erhält man sofort

lim E' S(E') lim - XE'^0 E'^.0 E'-S(E')
1

1 (dZ(E')\ 1_(AzAEL\
\ dE' )e'.ü \ dE 'E~°

Zx braucht man nicht zu berücksichtigen; es kommt von den Vertex-
modifikationen ; diese betragen höchstens 1/9 der Selbstenergiemodifikationen18)

und treten additiv auf. Würde man sie in ci vernachlässigen, so
ergäbe sich z.B.

¦"mas
is r k3

-=— / —_- dmk
3 JT I cot K
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anstatt
"max

16 r ka

C*=-AAJ AAkd^-
i

Wir entwickeln nun

AAAArS',,1".
_ id^2i\E)\

"»' I \ dE ÌE-0-
Es ergibt sich für a2

/i 3/2 rL I^) Ayj _ dcok,
-(Ou k'

'"max

71 J CO

1
k

Für «4 ergibt sich

27<*>(X

f /¦' " "** \ "'max "'max

U Li. ië I AË-^r (E-cox-cokTd^d^ +
1 1

"'max fflmax

l- jA X_ AA J J Aß-coA (E-cok) (£-».-«») ^0* *"* •

1 1

"'max "'max

a =— f f k»x»( 18
|

9
I

; r^ cia>.. dCDy
cxikcox(cokA-a>x)2

ml (cok + cox)
'

col A>k + (°x)2 mx mk (<°k + ">x)
1 1

Für a6 hat man 2~AB)(E) zu ermitteln. Dazu tragen 10 Diagramme bei, so
dass man schreiben kann

10

Z»(E)=2JL,(E)
mit

"m« »nui »rr"max "'max wmax

y J Ni(0)k,a>x,cov,E) Ä 1

l l i
6 H. P. A. 35, 2 (1962)



82 Günther Rasche H. P. A.

Die Diagramme und die entsprechenden Funktionen N{(cok, cox, mp, E)
sind nachstehend angegeben. Die nach der Differentiation beitragenden
24 dreifachen Integrale sind langwierig und mussten numerisch ermittelt
werden.

x-::x
t f ry \ \

Nx —A- (E - wp)2 (E-cop- cok)2 (E - cop - cok - cox),

X rX
27 ti3

N2 "92— (E - Mp)3 (E - <°k - top) (E - Mx - mp

/ //X\\/ I L ì i_l_
27 ti3

N3 ——- (E - mp)2 (E - o)p - cok) (E -cop-wk- cox) (E - cop - cox)

X / \ L X-
27 ti3

N* "92— (E - Mp) (E - «>p - mk) (E - W/fc)2 (E - (Ok - Ox

ft \ ' \' \ ^_
27 tv3

Ns -92- (E - mp)3 (E - mk - dp) (E-cop- cox) (E - cox)

' y N ^

J. L-l LJ, \_
27 ti3

N« —§2- (E - wp) iE -top- cok)2 (E - cop - wk - cox) (E - co*

/'77\ \ \/ 1 1 \ 1 :

27 n3
N7 —— (E - cop) (E -cop- cok) (E -cop-cok- cox) (E -cok- co,) x

x (E - cok)
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_i i i i \.
27 ti3

Na —g— (E - cop) (E-cüp- cok) (E-(üp-cok- cox) (E -mp- cox) x

x (E - cox),

^A
27 jr3

N9 ——- (E - a)p) (E -cop- mk) (E - mk) (E -cok- mx) (E - cox)

j. c t s

27 jr3
^io —g~ (E - tok) (E -cok- cop) (E -cx>k-cx>p- cox) (E -cop- cox) x

x (E - cox).

Es ist also

Zl=(l + a2f2A-aiAA-asn-2

und daraus folgt durch Entwicklung nach /2

c2= 1,

^4 :~- « a2

c8 6 a2 «4 — 2 (Ze — 4 «j •

Die Gleichung (14) wird dann

/6 (cl + cafi) A- f (2 c4 + cjf) + f2 (1 - c4/2) - /2 0

Eine Lösung ist

)ei
M-wxxi-x"* -1« (1

2c*+ceß R 1-cJl
cl + Csft • P 4 + csß ' v 'r

7 <=l-rC8/2

s X_a3__La/? + r) t ß-\«?, s2 *3
D T + ^7--
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Aus der Form der vorkommenden Integrale ist ersichtlich, dass c8 und c6

mit a>max schneller verschwinden als c4, so dass für 1 < comax < 2 nur noch

c4 in die Lösung wesentlich eingeht :

r, _^ /? ^ * ~ c4 /r fra^ —. P^ Ta 7-+--X-t/£ o^ 05

Damit erhält man für kleine ojmlix, d.h. kleine c4 aus (15)

/2 /2-c4/4 + 0(C2).

Man kann ferner den Grenzfall kleiner ff betrachten und erhält :

/2 fi + 0(/4)

Damit ist gezeigt, dass die oben angegebene Lösung (15) für /2 die richtige
ist, da sie für kleine ff oder kleine ojm!ix in die Ergebnisse der Störungstheorie

übergeht.
Die numerischen Resultate für die verschiedenen Näherungen für /2

sind in Tabelle I zusammengestellt.
Die erste Näherung des Variationspiinzips gibt ein Ergebnis, welches

für comax > 4,5 zu einem negativen /2 führen würde. Die zweite Näherung
des Variationsprinzips zeigt zwar, dass dies nicht der Fall ist, dass aber
für a>milx > 5 ff > /2. Das widerspricht der Unitarität der S-Matrix, da

man unter Voraussetzung der Unitarität ff A f2 ableiten kann. Wie
Chew und Low3) und Cini und Fubini19) gezeigt haben, ist dann nämlich

exakt :

max

/2 /2 + -^| }(*+K)+«r-K))«fa>,
1

wobei a+ und o*~ die totalen Wirkungsquerschnitte für die Prozesse
7i+ A- p bzw. 7t~ + p sind. Man kann diese Formel numerisch auswerten,
wenn man die Messergebnisse für a+ und a~ einsetzt. Man erhält auf
diese Weise mit ff 0,08 und u>m&x x 5

f2 x 0,18

in guter Übereinstimmung mit den aus dieser Arbeit folgenden Ergebnissen.

Es ist möglich, dass die nächste Näherung im Variationsprinzip den
kritischen Wert für comax noch erhöht. Dieser hängt auch wesentlich von
ff ab und erhöht sich für kleinere ff. Wir können also sagen, dass das

übliche Abschneiden bei a>max a 5 und ff 0,08 durchaus noch vertretbar
ist, während ein wesentlich höherer Abschneideimpuls eventuell zu
prinzipiellen Schwierigkeiten führen könnte. Man bekommt dann nämlich
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voraussichtlich Werte für f2, die mit der Unitarität der S-Matrix nicht
verträglich sind.

Tabelle I

zweite
erste Variationsnäherung

^max
Störungstheorie Variationsnäherung

/2 Ir X-i+X"+
+(-yv*r-AI + C4/?

1,5 0,08 0,08 0,09
2,0 0,09 0,09 0,10
2,5 0,10 0,10 0,16
3,0 0,11 0,12 0,26
4,0 0,14 0,33 0,15
5,0 0,19 negativ 0,07

V. Die Doppelerzeugung

Wir berechnen nun mit dei Variationsmethode in erster Näherung den
totalen Wirkungsquerschnitt für Doppelerzeugung. Dieser soll dann mit
den aus CHEW-Low-Integralgleichungen4^7) ermittelten Wirkungsquerschnitten

und den Experimenten verglichen werden. Dabei gilt für das
Matrixelement der Übergangsamplitude in erster Vaiiationsnäherung

Uba
Ki)2

im-1**)ba ba

X3> 1 -
r/W

Aba
0 a

(16)

Damit die Erhaltungssätze und die Symmetrien des Modells ausgenutzt
werden können, berechnen wir die Matrixelemente zwischen Eigenzuständen

des Drehimpulses / und des Isotopenspins T sowie ihrer diagonalen

Komponenten /3 und T3. Für die numerischen Rechnungen
verwenden wir die gebräuchlichen Parameter ff 0,08 und oja 6.

a) Zerlegung des WirkungsqueiSchnittes nach diagonalen Matrixelementen

von /, /3, T, T3.

Der totale Wirkungsquerschnitt für den in leicht verständlicher Weise

geschriebenen Prozess

7l(k, t3) + N (i-Tj -> 7l(t'3) A- 7l(t'3 N(H)
wird
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0JJ.-1

a ~ / dcop g(mp) q (œk - cop)jj dûp dQq x
"i

X E E <P> k 1' %' 1CT3- 1T3 XI k, t3;Ìa3' ÏT3>

Man macht mit Vorteil von der aus der symmetrischen Kopplung
folgenden Erhaltung aller drei Gesamtisobarenspinkomponenten und de :

Gesamtdrehimpulserhaltung Gebrauch sowie von der wegen der alleinigen

Wechselwirkung von /»-Mesonen folgenden Symmetrie zwischen den

Isobarenspin- und Drehimpulsquantenzahlen. Die in der Streutheorie
vorkommenden Matrizen sind also diagonal in den Gesamtdrehimpuls-
und Gesamtisobarenspinquantenzahlen und ändern sich nicht bei
Vertauschung von Drehimpuls und Isobarenspin untereinandei. Sie sind
ferner unabhängig von der zusätzlichen diagonalen Komponente der
Gesamtvariablen. Wie bezeichnen mit / J3, T T3 den Gesamtdrehimpuls
bzw. Isobarenspin eines Zustandes und seine ^-Komponente, und mit
/ /3, $ #3 den Betrag des jeweiligen Mesonanteils an den Gesamtquantenzahlen

bei zwei-Meson-ein-Nukleon-Zuständen. Es wird dann:

i k, t3; Xg, \r3> a+(k, t3) | \a3, |t3>

i2j2AL y Y*™{k)(\\l3\o3\l\JJ3)x
'3 / A T T„

x(i\t3\r3\i\TT3)\cokJJ3TT3),

\p, t'3; q, t'3;±a3, \x'3y a+(p, t'3) a+(q, t3) \ \a3, |t3>

- 4£ E y*(V,(p) Yï'>"}(q) (n k i; 1 n 1 h) x
vq Kh'iuJ'J*'

» », V T3'

x (1 1 \a'3 /311 y /'/;) (11 t's tl I H **.) (1 $H ïïslrïïT' X) x

x \topcoqJ'/3/ T' T'3§y.

Es ist

<topCoq ]' J'3j T T'3V\U\o>k J J3TT3y

U(J jTêcok<opcoq) dj.r/a-T/,jTJzTa

unabhängig von T3 und J3. Wir legen fe in die z-Achse, also
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integiieien über die Kugelfunktionen und summieren über die magnetischen

Quantenzahlen20). Dann führt man die Winkelintegrationen und
Spinsummationen aus. Der Wirkungsquerschnitt wird damit:

alk-l
o =-J~ [ A*AA dc0q £ (2J+i)U(JjTêojkojpa)g)x

TT,T&
»3ûjj

x U*(J jTïïmkmpmq) x

x (111'3 t's' 111 0 03) (| 0 |t3 031| 0 T T3) (1\13 |r311-f- T T3) x

x (111'3 *s' 1110 03) (1 è \x3 0311 ë f T3) (1i1, |t, I 11 f T3) +

+ £<-><• (17)

Wir nennen fftotal den Wirkungsquerschnitt bei Summation über alle

zwei-Mesonen-Endzustände, d. h. alle t'3, tl, x'.3:

<"k -1
2 C (ö»0)« dm„x

"k ji pq - 1

x 27 (2 / +.1) (11 *3 ir, | 1 \ Tt3 + \r3)21 U(Jj T&cokcop<üq)
Ji
TU

b) Zerlegung der diagonalen Matrixelemente.

Zerlegt man die Eigenzustände von Gesamtdrehimpuls und
Gesamtisobarenspin in bekannter Weise nach Nukleonen und jr-Mesonen
bestimmter Ladung und bestimmten Diehimpulses, so erhält man für das
in / /3 und T T3 diagonale Doppelerzeugungsmatrixelement der höchsten

z-Komponente der Gesamtvariablen allgemein :

«opa>qJjTê\U\JTcoky= 27 PÌ^a-/-4H'.r-tf-^
hkh'i/

x(\lT-t3t3\\iTT)(\êT-t'3-f3t'3 + tl\\ûTT)x
X (11 t'3 tl | 11 0 t3 Ar t"3) X

X(\lJ-l3l3\\lJJ)(\jJ-l'3-lll'3Arl"3\\jJJ)x
x(lll'3l!'3\njl'3A-l"2). (18)
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c) Berechnung der diagonalen Matrixelemente.

Aus (18) sieht man, dass wir zuerst die

Tja>k,I»U: J-h, T-t,
m3>. Vi '«'.' <»q, /„", t,"; J-l%-13", T-t,'-1,"

berechnen müssen. Dazu definieren wir entsprechend den folgenden diei
Graphen die drei Funktionen Af\cok; wq, wp) und sechs Operatoren

Üf\lk;lqAP), r?\tk;tq,tp).

\ A /p
n{3) - "t «/, «,.lv lk lQ

\ / ^ <%.</ ^(3) _
x

X /* /*
^ 43)

ßf ^XX-
X \ * **»« rf T. T+T+,

\A / 7 /\ / //»

\ / / i ß33> of of <v
\ / / ^3 —¦

/ "fc K-">9) ' r(3) _ T+ _+ __j! ¦* 3 — Ti~ T«„ Tip lq lk '

Die Matiixelemente 3. Ordnung zwischen den Zuständen

| \as, \x3; (ok, lk, tky und | \a3, \x3; wq, lq, tq, cop, lp, tpy

kann man dann schreiben :

^&5.£5ifo.«»V" MEAf[tok; »„ «>,) x
f 1

x <|o-; | Qf\lk; lq, lp) | \a3y <|r31 Tf'fe; *,, y | |r3> + /> «-* q,

k2 *2 (72 /2
M N3 — £— X iV2 X

j/oJ^ |/cUj, |/a>3 3

Die Renoimalisation wird durchgeführt nach Chew17)18) ; nur die
Selbstenergiemodifikationen werden berücksichtigt, da die Vertexanteile um
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einen Faktor 1/9 kleiner sind und additiv auftreten18). Entsprechend den
obigen drei Diagrammen definieren wir :

Sx(cok; coq, cop) - fi [A(-(oq) A-A(cak- coq)],

S2(cok; mq, cop) - fi [A(-coq) + A{-œk)],

S3{tok; toq, cap) -fi [A(œk) A- A(cok- mq)],
6

A(m\ A [AA ^_ deok

Die renormalisierten Matrixelemente schreiben wir dann :

™&ZX%XZ#&*'.M M27X3)K; toq, cop) S.-K; COq, COp) X
1 1

x <\a3 \ Qf\lk ; *,, lp) | \a3y <|r3 \ if'fe ; tq, tp) \ \x3y + p^q.
Entsprechend den weiteren 9 Graphen definieren wir die 9 Funktionen

Af(mk;coq,(op) =^/'
i1

und die 18 Operatoren

Üf\lkAqAt), rp(tk;tq,tp).

x3 dtor

X '/1 /p

Bi (tok - toq) (mx + coq) wx K -mq-mxA-ie),

If> T+ T„ T„ X+ X+

M .4X 'fV
^ «£ « r. i

B2 -toq (cox A- wq) cox (cak -mq-mxA-i e)

* 2 =tß % \ Tf, \ •
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X A\ r 'V 'x-'~-—- /
B3 — ft>2 (ft)x + coq) (wk — co, — ojq A- i s)

rf»

M /* .x

* î Xp Xtv rtk \ T.u

/¦ s X s- g ^ i
B,

* 4 T*fc rA T^ \ T/, »

s

B5 caq co, (co, A- coq) (m, + a>„)

^ % % < < < •

X rß Ttk rtv rß rtq >

\ y°s ypy
-' >

£6 w2 (co, + w,) K + cok)

-'6 — T(< T*j. % \ T/J
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\ /<r /p
\ / /
\ / /t

X~- _ ' /
y X /

/ \ / \/ \ / \ /
B7 K ~ tok) to, (cok - co, + te) K - ft), - ft), + t J?),

X — T*„ Tj, \ T(j,T,/

\
\
\
\
\
\
\ //

/ /
/<r /p

/
/ /

-7 >(
Ba= - (ok co, (o)k - co.

ß85> <rXX<<V
X TM % \ ^ \.

\k
\\
\
\

X'

/f /p

—U // V // \ // A

* e) K - tox -co A-i rj) •

Bs œ2, (cok -cox + i e) (cok - cox - coqA- i rj)

y pi p lq lk n >

¦* 9 T„ T<j, T(„ T(fc Tj, •

Die irreduziblen Matrixelemente 5. Ordnung kann man dann schreiben:

9

77(5) co?., ;fo ik; 1/2 <7S, 1/2 t3 _ Tir r< /1(5)/ f.\ yUmqlQtq;mplptp; 1/2 o,', 1/2 t,' ~~ J" zL "» \W* ' W«' WjW X

t= 1

X <|o-; | ßf'fe; /,, y | j<73> <|r3 | X5)(X tq, tp) | \x3y +p^q.
Wir sind somit vom weiteren Gebrauch der Graphen unabhängig und
können alle Matiixelemente zwischen den Zuständen

I tok, lk, tk ; iffg, |t3> und |

coq, lq, tq ; mp, lp, tp ; \a3, \x'3y
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schematisch ermitteln. Es ist notwendig, 50 derartige Matrixelemente
in 3. und 5. Ordnung zu berechnen, um die diagonalen Matrixelemente
zwischen den Zuständen

\tokJ J3TT3y und \(oq(opJ J3jTT3êy

ermitteln zu können. Diese ergeben sich dann aus (16) und (18) in der
Form

U^(JjTVcokcopcoq) WViT*^»».)"Pf 1 - a (/ j T ê cok coj, coq) - i ß(J i T & cok cov coq)

j/(5)
xA-iß r/O) '

(a, ß reelle Funktionen).

Während die a-Beiträge virtuelle Zustände beschreiben, die nicht auf
der Energieschale liegen, entsprechen die ß virtuellen Zuständen auf der
Energieschale; sie sind somit ein Ausdruck für die Heitlerschen Dämp-
fungsterme13), die hier automatisch ohne Lösung einer Integralgleichung
auftreten.

d) Berechnung der Wirkungsquerschnitte und Vergleich mit
Experimenten.

Die numerische Ermittlung der a und ß zeigt, dass sie im wesentlichen
unabhängig von cop, coq sind und sehr stark von cok abhängen. Die
Matrixelemente in Bornscher Näherung C/(3)(/ j T 0 wk ojp coq) werden dann
durch einen Faktor

[1 - a (/ / T 0 cok cop (oq) - i ß(J j Têcok cop co,)]"1.

korrigiert.
Auf Grund elementarer Überlegungen sieht man, dass

U (| 2 11 cok (op coq), U (| 2 Ì 1 co, wp coq),

U (| 1 ì 0 mk cop mq) U (\ 1 -|- 0 cok mp coq)

antisymmetrisch sind in cop und wq und die restlichen symmetrisch. Man
überlegt sich leicht, dass der Beitrag der antisymmetrischen Matrixelemente

bei Berechnung des totalen Wirkungsquerschnittes vernachlässigt
werden kann gegenüber dem Beitrag der symmetrischen. Es zeigt sich,
dass die a und ß von der Grössenordnung 1 sind und somit eine beträchtliche

Korrektion der Bornschen Näherung ergeben.
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Der grösste Fehler bei der Vernachlässigung des Nukleonenrückstosses
kommt durch die Energiebilanz, die im statischen Modell im
Laboratoriumssystem lautet

tok top + coq

Man kann dem Rückstoss des Nukleons Rechnung tragen durch die
Annahme, dass die gesamte Energie im Schwerpunktsystem abzüglich
der Nukleoneniuhenergie für die Endmesonen verfügbar ist5) ^). Diese ist

]JM2A- 1 2Mcok-M (M Nukleonmasse).

Mit dieser Modifikation wird der Veigleich mit dem Experiment
durchgeführt. Berechnet werden nui totale Wirkungsquerschnitte nach Formel
(17). Infolge der grossen Vernachlässigungen bei Anwendung des
statischen Modells in diesen Energiebereichen kann man auch nur eine

grössenordnungsgemässe Übereinstimmung mit dem Experiment
erwarten. Besonders im Gebiet 3 mn c2 < cok < 5 mn c2 sollte sich eine

Übereinstimmung mit den Messungen ergeben, da die Energie zu hoch
für s-Mesonerzeugung und zu niedrig für d-Mesonerzeugung ist7).

1. Tabelle II zeigt die berechneten Wirkungsquerschnitte für den
Prozess n+ + p -> 2 n + N. Experimentelle Angaben in dem Energiebereich

von 3.2 mn c2 bis 5.1 m^ c2 wuiden von Willis und Blevins
gemacht21-23). Bei a>,_ 4.7 mnc2 misst Willis für den gesamten
Wirkungsquerschnitt für Doppelerzeugung o"total (2,85 Az 0,5) mb gegenüber

einem gerechneten Wert fftotai 2,0 mb. Bei einer Vernachlässigung

des Nukleonenrückstosses gäbe hier die Rechnung o"total 6,0 mb.
Man sieht, dass wegen der starken Energieabhängigkeit des

Wirkungsquerschnittes die Vernachlässigung des Rückstosses das Ergebnis
vollkommen verändert. Auch die angenäherte Berücksichtigung dieses

Effektes (s. o.) bringt immer noch eine grosse Unsicheiheit in der
Energieskala mit sich. Das gemessene Verhältnis

O (7C++p^-7l+A-7l0A-p) _ 1 5 + l,5
ff (n+A-p-ï-71+A- 31++ n) ' -°-5

ergibt sich aus der Rechnung zu 0,7.
Blevins et al.22) messen im Energiebereich 3,2 mw c2 bis 5,1 m^ c2 für

das Verhältnis von Doppelerzeugung zu elastischer Streuung

0,06 ± 0,02.

Es ist in diesem Energiebereich ael x 20 mb, also

<Wi ~ (1.2 ± 0,4) mb
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was ungefähr in Übereinstimmung mit der Rechnung steht, ebenso wie
das (jedoch nur aus 18 Ereignissen, darunter 4 nichtidentifizierbaren)
gemessene Verhältnis

ff (7l+ + pA>-7t+A7l0+p) ^ 7

ff (71+ + p -> 31+ + 31+ + n) ~ 7

Blevins et al.23) erhalten bei cok (4,4 ± 0,5) m„ c2 einen Doppel-
erzeugungswirkungsquerschnitt von 2 mb ; die Rechnung ergibt

i.6±S:2 mb.

wenn man den Fehler aus der Unbestimmtheit der Primäreneigie
abschätzt.

Ähnliche Wirkungsquerschnitte sind auch von Kazes 7) auf Grund von
CHEW-Low-Gleichungen für das statische Modell ermittelt worden. Die
Voraussagen dieses Modells stehen hier also in befriedigendei Übeiein-
stimmung mit den Experimenten.

Tabelle II

(Ok ff (71+ + p -> 31+ + 31° + p) ff (31+ + p -> 71+ + 31+ + n)
[m„ c2] [mb] [mb]

2,75 0,0086 0,019
4,3 0,53 1,0
5,1 1,0 1,9
6,0 1,9 3,4
6,9 2,8 4,3

2. Tabelle III zeigt die berechneten Wirkungsquerschnitte für den
Prozess n~ A-p^- 2 ti + N. Die Figur zeigt den berechneten Wirkungsquerschnitt

a (jt~ + p -> ar + 77:+ + m) und die Experimente von Perkins
et al.2i) sowie zum Vergleich die auf Grund verschiedener Auswertungen
von CHEW-Low-Gleichungen desselben Modells gefundenen Kurven von
Franklin5) und Kazes7). Die Übeieinstimmungmit den experimentellen
Ergebnissen ist hier bedeutend schlechter. Obwohl auch die Versuchswerte
noch mit grossen Fehlern behaftet sind, bleibt eine erhebliche Diskrepanz
mit den gerechneten Grössen. Perkins24) gibt an, dass bei einem
Vergleich mit ZiNOV und Korenchenko25) in dem betrachteten Energiebereich

folgt:
ff (ti~ + p -> 3Î+ + TV A n) _.

ff (71-A-p-> n-A-Ta + p)

das steht in Übereinstimmung mit dem gerechneten Wert x 0,8. Ferner
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ergibt sich in Übereinstimmung mit den Messungen, dass der
Wirkungsquerschnitt für die Ei zeugung zweier ungeladener Mesonen beträchtlich
kleinei als der für die beiden anderen Prozesse ist.

Tabelle III

<°k ff (tt- A p->n+ A 7i~ A n) ff (ti-A p r>-7l~ A 71° A p) ff (31- + p -> 71° + 71° A n)
[m„ c2] [mb] [mb] [mb]

2,75 0,0059 0,0084 0,0018
4,3 0,37 0,51 0,092
5,1 0,71 0,98 0,19
6,0 1,4 1,87 0,31
6,9 2,1 2,71 0,46

äimbl

////
M

Fig.
• • • Franklin
— diese Rechnung ohne Rückstoss

diese Rechnung mit Rückstoss
Kazes

t Messungen von Perkins et al.

e) Diskussion der anderen Arbeiten und des Modells.

Die Autoren4-7), die die Doppelei zeugung bisher behandelt haben,
gehen alle von Integralgleichungen aus, die auf ähnliche Weise wis die
CHEW-Low-Gleichungen abgeleitet werden. Sie verwenden dann zur
Lösung verschiedenartige Vernachlässigungen, unter denen immer die

Einmesonnäherung vorkommt. Ferner werden die Phasen für elastische

Streuung auch im hochenergetischen Gebiet benötigt; die Autoren ent-
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nehmen diese dem Experiment oder der Einmesonnäherung dei Chew-
Low-Gleichung für Streuung. Die Phasen werden auch für cok > 2 als
reell angenommen, d. h. alle inelastischen Prozesse werden vernachlässigt.

In den Integralgleichungen sind die Amplituden für Doppelerzeugung

fernei noch gekoppelt und ihre zum Zwecke der Lösung notwendige
Separation ist nur näherungsweise möglich. In unserer Rechnung
dagegen treten die Matrixelemente unabhängig voneinander auf und werden
direkt berechnet. Streuphasen werden überhaupt nicht benötigt. Die
Ergebnisse sind also eine direktere Anwendung des statischen Modells.

Trotz diesen verschiedenartigen Näherungen sind unsere Ergebnisse
denen der anderen Autoren ähnlich, wie z. B. die Figur zeigt. Während
die Ergebnisse für

/ 71+ A- 71° A- p
Tt+A-p/

\ 7i+ A- 71+ A- n

und die «branching ratios»

a {ti+A-p ^-7i+A-ti" A-p) ff [ti-A-p-> 7i+A-7i~ A-n)
CT (tc+ A- p -> 31+ + 7i+ A- n)

'
ct (ti-A-p ^-Tt-A-ti" A p)

in befiiedigender Übereinstimmung mit der Erfahrung sind, ist das für
die Prozesse

/ 7i+ A- 7i~ A- n

7i~ A- p r > n~ + n0 A- p

tc u + 71 " + n

nicht der Fall. Es ist schwer zu sagen, ob diese Diskrepanz an den
Näherungsmethoden oder am Modell liegt. Es scheint uns wahrscheinlicher,
dass der Fehler im Modell begründet liegt, da die verschiedensten
Näherungen zu ähnlichen Resultaten führen. Die n+ + ^-Prozesse beruhen
ausschliesslich auf den T 3/2-Zuständen und der T 3/2, / 3/2-
Zustand gibt den grössten Beitrag. Die tv + /»-Prozesse enthalten auch
die T 1/2-Zustände. Schon bei dei elastischen Streuung gibt das Modell
nur den T 3/2, / 3/2-Zustand einigermassen richtig wieder, während
alle anderen Zustände (deren Streuphasen allerdings experimentell und
theoretisch klein sind) nur mangelhaft beschrieben werden. Es scheint,
dass für die Doppelerzeugung die Verhältnisse ähnlich liegen, dass also
das statische Modell insbesondere die T 1/2-Zustände nicht richtig
wiedergibt.

Zur Beseitigung der Diskrepanz ist vorgeschlagen worden, eine direkte
Ti-Ti-Wechselwirkung einzuführen und es war möglich, diese so zu wählen,
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dass Übereinstimmung mit der Erfahrung resultiert26)*). Auf diesen
Problemkreis können wir aber hier nicht näher eingehen.

Meinem verehrten Lehrer, Herrn Prof. Dr. W. Heitler, bin ich für
die Anlegung zu dieser Arbeit und für sein dauerndes Interesse zu gröss-
tem Dank verpflichtet. Herrn Prof. Dr. A. Thellung danke ich für viele
Diskussionen, die mir eine grosse Hilfe waren.
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