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Untersuchungen zum statischen Modell der Mesontheorie

‘ von Giinther Rasche
Institut fiir Theoretische Physik, Universitdt Ziirich

(25. XI. 1961)

Summary. A variational principle given by SCHWINGER is used for meson pro-
cesses treated by the static fixed source model. The nonrenormalized n-N coupling
constant f2 ( ff, = renormalized coupling constant) is calculated for the purpose of
ascertaining whether the theory is consistent and leads to a unitary S-matrix (which
is only the case when f2 = fﬁ). The result is that for a cut-off wp ;5 less than about
4,5 my ¢® and f? = 0,08 f2 lies between 0.15 and 0.25 and the theory is consistent.
For higher values of wpax the approximations are not reliable but the indications
are that the theory ceases to be consistent for a sufficiently high wpax.

The variational principle is also applied to double meson production and the
results are similar to those derived with various approximations from the CHEW-
Low equations.

Einleitung

KALLEN und PauLri?) haben gezeigt, dass selbst in einer verhaltnis-
massig einfachen Feldtheorie wie dem LEE-Modell?) Schwierigkeiten
prinzipieller Art entstehen kénnen. In diesem exakt l6sbaren Modell zeigt
es sich ndmlich, dass bei gegebener renormalisierter Kopplungskonstante
f2 > 0 und gegebenem Abschneideimpuls &, = + J/@wZ. — 1 die nicht-
renormalisierte Kopplungskonstante f2 <0 wird, sobald w,,, > ®yi¢,
wobel wy,;, als Funktion von f? durch Auswertung des Modells berechnet
werden kann.

KALLEN und PAuULI (loc. cit.) zeigten, dass ein f2 < 0 zu sogenannten
Geisterzustdnden und einer nichtunitidren S-Matrix fiihrt.

CHEw und Low?) haben fii1 die kompliziertere (und im allgemeinen
nur mit betrdchtlichem Rechenaufwand niherungsweise auswertbare)
statische pseudoskalare Mesontheorie (mit ladungssymmetrischer Pseudo-
vektorkopplung) gezeigt, dass unter Voraussetzung der Unitaritdt der
S-Matrix exakt f7 < f2 gilt.

Auswertungen der statischen Mesontheorie sind mit den Parametern
f; und w,,,, gegeben worden und durch Anpassung an die Experimente
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70 Giinther Rasche H.P. A.

max —

das heisst & = ¢ = m,_ = 1). Dabei wurde unseres Wissens nie nachge-
priift, ob diese Werte auch zu einer unitdren S-Matrix bzw. einem Wert
f2 > f2 fithren. Die Schwierigkeit liegt darin, dass die unrenormalisierte
Theorie bis jetzt nicht exakt genug ausgewertet wurde.

Wire f2 < f?, so wiirde die Unitaritit der S-Matrix verletzt und die
Theorie wire nicht konsistent. Der Zweck dieser Arbeit besteht nun
darin, zu zeigen, dass fiir /> = 0,08 und w_,, < 4,5 die Theorie sicher noch
konsistent ist. Es ergibt sich ein verntinftiger Wert fiir /2, 0,25 > f2 >
0,15. Bei héherem w,,, ist die Ndherung schlecht, aber es zeigt sich, dass
es zumindest zweifelhaft ist, ob f2 > f*. Es gidbe dann also auch in der
statischen Mesontheorie eine obere Grenze fiir die Abschneideenergie.
Diese liegt aber iiber den in heutigen Rechnungen allgemein benutzten
Werten fiir w,,, obwohl wahrscheinlich nicht sehr viel héher.

Ferner berechnen wir ebenfalls mit Hilfe des Variationsprinzips den
Wirkungsquerschnitt fiir den Prozess # + N - 2x + N auf Grund der
statischen Mesontheorie; dieser wurde schon mit demselben Modell er-
mittelt4=7). Es handelte sich dabei jedoch um Auswertungen von Inte-
gralgleichungen, die nur mit Vernachldssigungen zu lésen waren und
in die ausserdem die dem Experiment entnommenen Streuphasen ein-
gingen. Da die Ergebnisse dieser Arbeiten zum Teil erhebliche Diskre-
panzen mit den Messungen aufweisen, ist ¢s wiinschenswert, den Prozess
mit demselben Modell, aber durch eine vollkommen andere Niherungs-
methode zu ermitteln. In dieser Arbeit werden die bendtigten Matrix-
elemente fiir die Wirkungsquerschnitte direkt berechnet. Die Ergebnisse
bestdatigen im Wesentlichen die Rechnungen der vorgehenden Arbeiten,
was zeigt, dass unser Variationsverfahren ungefihr so gut ist, wie die
genannten Ndherungen der Chew-Low-Gleichungen. Fiir den Prozess

folgt f? = 0,08 und 4 < w,,,, < 7. (Wir verwenden natiirliche Einheiten,

f RN
n++p\

e gt A+

findet man eine verniinftige Ubereinstimmung mit den Messungen, wih-
rend der Prozess
/‘—+ n-+xat+n
n‘+p<——> =+ 7%+ p

\—> A A
durch die Theorie nicht befriedigend erklirt werden kann. Wir vermuten

deshalb, dass der Fehler am Modell und nicht am N&herungsverfahren
liegt.
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I. Das statische Modell

Das Nukleon wird als ruhend angesehen mit Spindrehimpuls { ¢ und
Isobarenspin 4 7 als Freiheitsgraden. Seine Zustandsfunktion schreiben
wir | 3 05 % 7,>. Dabei bedeuten die Eigenwerte 7, = 1, — 1 ein Proton
oder ein Neutron, und oy =1, — 1, dass die z-Komponente des Spins
+ 4 bzw. — } ist. Die Ausdehnung des Nukleons wird durch eine Quellen-
funktion Q(x) bzw. ihre Fouriertransformation g¢(k) beschrieben. Die
Mesonen werden durch ein quantisiertes Pseudoskalarfeld mit 3 Kom-
ponenten im Isobarenspinraum (entsprechend den drei moglichen La-
dungszustdnden) dargestellt. Einen Erzeugungsoperator fiir ein Meson
im Ladungszustand ¢, mit dem Impuls k schreiben wir a*(k, ¢,). Dabei
entspricht Z; = 1, — 1,0 den &t, #— und =°.

Einen Zustand mit einem Nukleon und einem Meson schreibt man

at(k, ty) | 305 > 75>

und entsprechend die Mehrmesonzustinde.

Die Wechselwirkungsenergie ist bei symmetrischer Pseudovektorkopp-
lung?)?)

H,= ) [alk, t)) V(k, t;) + at(k, t;) V*(k, 15)]
k1,

mit
(k T)
T
Zerlegt man das Mesonfeld nach Drehimpulseigenfunktionen, so ergibt
sich

Vik, ty) =i fdm 22 7 q(k).

H, = 2 a(wy, U3, t3) V(R, I, t3) + at(wy, Iy, t5) VR, I3, £)]

wp Iy ty
mit

V(k’ l3’ t3) = f O'Is Tta Q(k) ’ (l3) t3 = + 1’ - 1) 0)

ke
Vg
(n. b. es wechselwirken nur p-Mesonen und es sei g(k) = ¢(%)). Dabei ist
a*(wy, I3, t;) ein Erzeugungsoperator fiir ein Meson mit Drehimpuls / und
der z-Komponente I, sowie der Energie w, und der Isobarenspinkompo-
nente 5.

Ferner gilt fiir

1
Op1= 04 —l/—-z—(0'1+“’2)

1 0'0=0'3,
Oy =0_= —ﬁ(ﬁ i Gg)

1/ a 1/2 +1/2 g 11 . L
(& 03> = (—1)ATIRY V(211 — 030, £ 1

G0 |os| o) = (~)EHENV (L —00 0) o],
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wobei sich das reduzierte Matrixelement ||o|| aus der Forderung ergibt,
dass die Eigenwerte von o3 + 1 bzw. — 1 sind.
Es ergibt sich
lo] =6

<%O‘; |U:t| %G;> = (_ 1)1/2-'_1/2 i VZ aas’{cs”i 1-

also

Damit hat man als einzige nichtverschwindende Matrixelemente
Glod-p=-y2, <floelp=}2,
kol g =k 1,

Es gelten folgende Hermitizititseigenschaften der Operatoren:

+

oy = oy, ot =—g

Fiir die 7., 74 Operatoren gilt selbstverstindlicu das Gleiche. Die Kon-
sequenzen der Vernachldssigung des Nukleonenriickstosses bei Streu-
prozessen werden spiter behandelt.

II. Das Variationsprinzip

LippMANN und SCHWINGER??) haben verschiedene Variationsprinzipien
fiir die Operatoren der Streutheorie angegeben. Die Auswertung der-
selben ist aber, ausser fiir die elastische Streuung, sehr umstandlich. Wir
benutzen deshalb in dieser Arbeit ein anderes Variationsprinzip, welches
eine direkte Berechnung der Matrixelemente der Streuoperatoren ge-
stattet. Es stammt urspriinglich auch von SCHWINGER und wurde von
CHEw!!) und ArTsHULER!?) diskutiert. Die Theorie dieser Methode soll
kurz skizziert werden.

Hat man eine Integralgleichung der Art

v =@+ GV [w> (1)
und die «adjungierte»
9> = |@> + GTV* |y )

wobei | @, ;> und G sowie V' vorgegeben sind, so interessieren uns nach
der Losung Ausdriicke der Form

Xpo= <@, IV1’Pa>~

Dabei ist die Bedeutung von X abhingig von G (s. u.). Wir definieren nun
nach SCHWINGER ein Funktional
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X <o | VI@a <@n | Vv

3
ba Ly | Vg —<wy | VG V] )

irgendwelcher |w,> und |w,>, sowie der gegebenen |¢,>, |¢,>, von
welchem wir zeigen, dass es stationir ist, wenn | y,> und | y,> Lésungen
von (1) bzw. (2) sind. Den stationiren Wert von X{*) nennen wir X}, und

zeigen, dass er mit X, , iibereinstimmt.
Variation von X{") nach |,> und | ¢;> gibt:

50 — < 1 V190> < | VIve>
ad (" | VI —<yy" | VG V]y,»)?

T < [V v =<9 | VG V] e 5 ]
X{[ LS @] = <y | + W |V G|V [0p> +

X

[ <@ |V v =<’ |V G V] B v }
+ <oy V| o L L P> = 9>+ GV v |-

0X{") = 0 erfordert wegen der Unabhingigkeit der Variationen

<"I)a | V+| %')— <QPa [ V+ G+t V+| wb’>
o |V @y

| @p> — |y + GV > =0, (4

W' | Viwed> =<y | VG Vg
—* wgwb’lTI/quj@ E"‘_}WQ*‘GVWQ:O' ()

| 9>

Diese beiden Gleichungen sind aber fiir Losungen von (2) und (1) erfiillt,
da dann wegen der aus (1) und (2) folgenden Losungseigenschaft,

|V g> = <y |V]wd — <y |V GV |9,

die Faktoren von | @,> und | ¢,> in (4) bzw. (5) = 1 werden. Damit ist
auch sofort gezeigt, dass

1V @
X(vs) - <Yy | o X =X, .
e T ) [ Vg — <y VG Vg “ b 0e

Um dieses Variationsprinzip praktisch anzuwenden, wéihlen wir folgenden
Weg:

Formal lassen sich die Losungen von (1) und (2) unter Voraussetzung der
Konvergenz einer Potenzreihenentwicklung nach V schreiben:

[e o]

l%> :2 (G V)@ \(pa> ’

i=0

o0

v =2 (GTVHi gy,

i=0
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Eine Losung N-ter Ordnung in ¥ erhdlt man, wenn man nur bis N sum-
miert. Setzen wir diese in (3) ein, so erhilt man

N+1 L\ 2
£

i=1

MXP = N+l

X (Xg) _XéH- N+ 1))
wobei X|" das Glied j-ter Ordnung in V bei einer Entwicklung von X,
nach IV bedeutet:

o= <@ [V(GVY ™ @

Man sieht, dass fiir N - oo die Potenzreihenentwicklung von X, , resul-
tiert.

Fiir einen bestimmten Erzeugungsprozess m-ter Ordnung (d.h. | ¢,>
enthdlt 1 Meson, | @,> enthidlt m Mesonen) geben wir nun folgende
Naherungsvorschiift erstet Ordnung zur Auswertung des Variations-
prinzips: Man setze in der Entwicklung der Versuchsfunktionen |w,>,
| ;> des Variationsprinzips N = m. Dann wird (X" bedeutet i-te Nihe-
rung im Variationsprinzip!)

1 @) 4 152
(Xfa+Xbat+ - X )

(1) (2) (m+ 1) (m +2) (m + 3) 2m+2) °
Xba+Xba+“'+Xba —‘Xba —Xba —“'_Xba

Xy =

Das erste nichtverschwindende Matrixelement bei einer Potenzreihen-
entwicklung fiir einen Erzeugungsprozess m-ter Ordnung ist X%+ ", Fer-
ner sind dann nur alle X{” *'*?% & 0 und man erhalt
+1)\2
(x5 ")

X0 — (6)
ba +1 43 2m 42
> o | T

2m 42 :
@m+2) verschwindet, wenn m + 2

wobei im Nenner das letzte Glied X
gerade ist.

Entwickelt man in (6) den Nenner nach den X\, 7 = m + 3, so sieht
man, dass

K= X0 op XRFN e o XEPHH o
3 5 2 2)\2
S VR R T

+1
xPa Y

_|_ +...

Der letzte aufgeschriebene Term enthilt Beitriage m + 5 -ter und hoherer
Ordnung; der entscheidende Unterschied zu den ersten Gliedern ist
jedoch, dass die ersten Glieder sich eindeutig Feynmandiagrammen zu-
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ordnen lassen. Der Rest der Glieder ist typisch fiir das Variationsprinzip
und ladsst sich nicht in Form solcher Diagramme deuten, obwohl er natiir-
lich aus Produkten von Diagrammbeitrigen besteht.

Diese .Auswertung des Variationsprinzips gibt also mehr Aussagen als
eine Entwicklung nach V bis zur 2 m + 2-ten Ordnung. Dabei steht natiir-
lich a priori nicht fest, ob die Zusatzglieder eine erhebliche Verbesserung
oder sogar eine Verschlechterung des Ergebnisses bedeuten. Das kann
erst nach Angabe von G und insbesondere von V entschieden werden.

Will man im Variationsprinzip eine Ordnung hoéher gehen, so setze
man N = m + 2. (Wiirde man N = m + 1 setzen, so erhielte man zwar
Zusatzglieder im Nenner, nicht aber im Zihler; das entspriache aber im
Nenner einer Entwicklung nach der Kopplungskonstanten.) Mit N = m
+ 2 ergibt sich:

1 +3)\2
(xp Y+ x{n D)

X{d = 1 3 5 2mF5)
a + + +5) @m+
ARES RS AR Ak
Als Beispiel ermitteln wir fiir die Streuung:
2)\2 2 4)\2
o) _ _ (Xba) o _  (XatX33)
ba — 2) 4 ba 2 4 (6 8
Xia—X4a Xfa+ Xya- X0 - Xy,
und fiir die Doppelerzeugung:
(3)\2 () 1 3(5)\2
o (X52) W (Xt X3,)
ba T (3) 5) ba T 5(3) 5 (M _ x® °
XéamXég Xbu'i-X}Jg,_Xba_Xba

Um einen Eindruck von der Wirksamkeit des Variationspiinzips zu be-
kommen, kénnte man die Konvergenz priifen, d.h. X® mit X® verglei-
chen. Dies erfordert jedoch einen zu grossen Rechenaufwand, da die
Ermittlung von Matrixelementen mindestens 8-ter Ordnung notwendig
ist. Man kann andrerseits die Methode an einem exakt l6sbaren Modell
priifen. Dieses ist z.B. das LEE-Modell?). Seine Losungen fiir die Streu-
matrizen sind von der Form

x@)
ba 2 2
ba = 1+g® F, :Xéa ngég):Fba'{'

und das Variationsprinzip liefert:

(2)\2 (2)
(v)) (Xba) o Xba _
ba = ) T 2 = Xy
x@_x® 1+g* Fy,
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d.h. man hat die exakte Losung in 2-ter Naherung gefunden. Die hoheren
Néiherungen, z.B. X =) Jjefern aber wieder ein nichtexaktes Ergebnis und
erst fir N - oo erhilt man wieder das richtige Resultat.

Fiir Anwendungen in der Feldtheorie ist V' = H; und entweder
1 1

Eom, %9 6= g

Im ersten Fall berechnet man mit X die Reaktionsmatrix K, im zweiten
Fall die Ubergangsmatrix U, wie aus (1) hervorgeht, K und U hingen
zusammen nach der Heitlerschen Integralgleichung??):

UﬂazKﬁa—inZKﬂyQ},(Ea) 2 (7)
Y
wihrend die tibliche S-Matrix

Spa=1—2mi0(Eg— E,) Uy,
1st.

Der gesamte hier entwickelte Formalismus ist natiirlich nicht auf die
statische Mesontheorie oder nichtrelativistische Theorien beschrinkt. Er
konnte z.B. auch auf die relativistische Meson-Nukleonkopplung ange-
wandt werden. Die Notwendigkeit der Ermittlung von reduziblen Matrix-
elementen héherer als der ersten nichtverschwindenden Ordnung erfor-
dert aber die Renormalisierbarkeit der Wechselwirkung oder ein Ab-
schneideverfahren fiir hohe virtuelle Impulse. Die Rechnungen werden
dann jedoch enorm kompliziert.

ITI. Streuung

Die Streuung lédsst sich in dem behandelten Modell bekanntlich auf die
Ermittlung der drei Phasendifferenzen 6, »; = 03, 05, = 0,3, 0,; zuriick-
fithren, wobei T und J die Gesamtquantenzahlen des Isobarenspins und
des Drehimpulses des ein-Meson-ein-Nukleon-Systems sind. Dabei sind
diese Phasendifferenzen definiert durch

1 1 P
K=—"tard oder U= — —¢"%sind.
T T

Wendet man das Variationsprinzip in erster Ndherung in der angegebenen
Form fiir die Streuung an, so erhdlt man

_(BRy e AP

(v) _— S — S
K KD — g@ U — g

(8)

b

Dieselben Formeln erhielten Cint und Fusini!%) bei Auswertung eines
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anderen Variationsprinzips und SATORIN und WATAGHIN?®) berechneten
daraus unter Benutzung der K-Matrix

2y
tandg = 45 44,
taily = (9)
WO =T34 —44, °
4
tan611= x

1+44_+24, "~
_ 2 ¢ 2
—g-fy;;W(Q)l i

2 " R3
A:}_-(C()q) = —3——n- ]:2, C{)q me !q(k)lzda)k.
1

Dazu ist zu bemerken, dass man dieselben Phasendifferenzen unter Be-
nutzung der U-Matrix erhalten hitte; das bedeutet, dass die aus (8)
berechneten Matrizen K™ und U™ die Integralgleichung (7) fiir o, < 2
exakt erfiillen. In einer exakten Losung wiirde 6 fiir w, > 2 komplex.
Beschrankt man sich jedoch auf 1-Meson-1-Nukleon-Konfigurationen, so
bleibt ¢ auch fiir w, > 2 reell und K® und U® geniigen der Integral-
gleichung auch fiir w, = 2. Das Ganze ist analog der Einmesonnédherung
der CHEW-Low-Gleichung fiir Streuung?). In der Tat ist (9) identisch mit
den Losungen dieser Gleichung, wenn man die «crossingmatrix» des
CrEw-Low-Formalismus’ leicht verindert, um die Gleichungen separie-
ren zu kénnen?8), was keine w sentliche Anderung des Resultats bedingt.
Dieser Umstand bildet eine Rechtfertigung fiir die Anwendbarkeit des
Variationsprinzips in der statischen Mesontheorie.

IV. Die nichtrenormalisierte Kopplungskonstante

Um die Konsistenz des Modells zu priifen, berechnen wir in diesem
Abschnitt die nichtrenormalisierte Kopplungskonstante f2. Sie wird ab-
hingen von der renormalisierten Kopplungskonstanten fZ und ¢(k). Wir
verwenden ein scharfes Abschneiden, d.h.

gty =1 fir k) =B+ 1 =< 0y,

gk) =0 fir k) =)E+1 =0,

Man kann im allgemeinen f? nach f2 entwickeln:

fi=2) ¢ fPi=1 D ¢y fHi72. (10)
i=1 i=1



78 Giinther Rasche H. P. A.

Es ist bei der Renormalisation fiir ein Matrixelement elastischer Streuung

. SR
Y, 24 oy )
wobei WK®9(w, ) das renormalisierte Matrixelement 2i-ter Ordnung divi-
diert durch f** ist

In allen bisherigen vertrauenswiirdigen Auswertungen des statischen
Modells ging ebenso wie in die Dispersionsrelationen nur f* ein. Dieses
wird aus verschiedenen Prozessen (n-N-Streuung, Photoproduktion) zu
f# = 0,08 angenommen.

Mit Hilfe des Variationsprinzips ist es nun moglich, die K-Matrix auch
in der nichtrenormalisierten Theorie zu berechnen. Dann e1hilt man durch
Vergleich der Resultate einen Wert fiir /2, der natiirlich von wp,, und
f? abhingt.

In der nichtrenormalisierten Theorie ist

o0 K(2 1,)( o0
lim 2 —— = Zd 128
wg—0 77 K
wobei K*%(w,) das nichtrenormalisierte Matrixelement 2 ¢-ter Ordnung
dividiert durch f27 ist.
Da in einer konvergenten Theorie die Ergebnisse der renormalisierten
und der nichtrenormalisierten Auswertung gleich scin miissen$), gilt

f(r)K(zi)( £ ZKh) ) f2i (12)

1=1 =1

und da ferner stets
(’)K(z)(wq) = K(z)(wq)

folgt durch Gleichsetzen von (10) und (11) unter Beriicksichtigung von
(12):

(21)
By, = Hip, o P2 (13)

’ mq-~>0 K(2)(a)q)

In erster Ndaherung des Variationsprinzips fiir Streuung gilt:

r (Ul) o ( K(2) )
R ((uq) - 2 (r)K (wg) — f4’ (r 4)(w ) !
K®(w,) = 1 (Ko@)

P EDw) 1 KD (wg)

wobei M K@) (w ) (K" (w,)) das in erster Variationsndherung in der renor-
malisierten (nichtrenormalisierten) Theorie berechnete Matrixelement ist.
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Beide Matrixelemente sollen iibereinstimmen, sofern die Variationsme-
thode gut ist. Fiir kleine w, ist sie sicher verldsslich. Wir gehen deshalb
iiber zum Grenzfall @, - 0. Durch Gleichsetzen in diesem Grenzfall von
WK™ (w,) und K (w,) folgt

= i i 2
lim PR lim @

00 KDy w0 K%y
() (2) fr @)

(Ct)q) K (wq)
oder
S f2— o
o 1-g+f ° 1+cg f7°

Das ist eine dhnliche Formel wie sie KALLEN und PAULI bei der Auswer-
tung des LEE-Modells?) erhielten.

Fiir ¢, erhdlt man ohne gréssere Rechnung aus Selbstenergie- und
Vertexmodifikationen:

®max
ch — 16 k3 d
L 3: w3 @O -
1

Wir gehen nun im Variationsprinzip eine Ordnung weiter und erhalten

AR (e,) = — i (PE® (@) + 12 VED (@,))?
q ﬁ (V)K(2)(wq) + f: () g4 (CUq) _ fﬁ (”)K(ﬁ)(wq) _ }‘f (f)K(S)(wq)

A (EP(w,) + 72 KM (w,)?

K(Uz) —
@) =% E®(wg) +1¢ KD (wy) - 1* KO (wy) - 1* KO (wy)

wobei WK®)(w ) (K*)(w,)) das in zweiter Variationsnaherung in der re-
normalisierten (nichtrenormalisierten) Theorie berechnete Matrixelement
ist.

Wieder folgt mit den selben Argumenten wie vorher durch Gleich-
setzen von MK)(w ) und K@ (w,)

4 2
i Lt
i 4 (7‘)}((2)(wq)
lim =
>0 141 NED @) ; KOy " (’)K(:;(wq)
2 2 ¥
(" g )(wq) () g )(wq) " gt (wq)
4) 2
fz 1 +]¢2 K g (wq)
f E®(w,)
— lm i
wg>0 Ky _ 4 KO _ K%

L+ By I xE
E®(w,) E®w,) K®w,)
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(1+cy 12
Ltcy fP—cgft—cg % °

;=1 (14)

Um nun ¢z und ¢g zu bekommen, gehen wir folgendermassen vor: Es ist

1
(5 e

Dabei ist X(E) die Summe aller Selbstenergiemodifikationen. Man erhilt
2/(E) aus de: Chewschen Arbeit17)18) mit dessen Bezeichnungsweise wie
folgt:

E'=FE — E_ ist die renormalisierte Energie, E_ die Selbstenergie. Der
exakte Nukleonenpropagator ist

ZZ
2
=P Z=

oder
S(E) = (E — X (E))~"
wobei
S(E') = S(E(E")),
~ E'
(S(EN)-2 = E' — Z(E) — 3(0) = [ Ty(d) da
also 0
2(E") = Z(E) — X(0)
Es ist
dX(E")  dX(E)
dE’ dE’
und damit erhdlt man sofort |
Zy= lim E'S(E") = lim - & -
E'—0 E'—0 E’—Z(E')
B 1 o _71
o a3 (E’) o _(aZ(E)
l_(T)E'=0 ' ( akE )E=°

Z, braucht man nicht zu beriicksichtigen; es kommt von den Vertex-
modifikationen; diese betragen hochstens 1/9 der Selbstenergiemodifika-
tionen8) und treten additiv auf. Wiirde man sie in ¢, vernachléssigen, so
ergidbe sich z.B.

Dmax

;18 k3

dw;,

% 3n | o}
i
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anstatt

Wir entwickeln nun

(dE

Es ergibt sich fiir a,

Fiir a, ergibt sich
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®max

By 16 k3 do
L 3n w,% k-
i

)E Za 2

=1

max .
32 [ R
()
zoE) =20 [ E o,
1
Pmax
3 k3
Clz == ? 5;2; dwk
To(E) =
Pmax “max
#8 5%

(E—a)m)z (E—com—wk) da)x dwk +

e
5T
1

1

Pmax “max

1 k3 a8
F f f E_wm) (E_wk) (E_wa:—wlc) dwk da)x’
1 1

1 18 9 2
_ 3 .83
i nzf f B (w% (g, + @y) + w2 (wy+w,)? + ok oy, (w,+wy,) +
i i

1
Wy, Wy, (0 + wm)z

) dw, dw, .

Fiir ag hat man 2'®(E) zu ermitteln. Dazu tragen 10 Diagramme bei, so
dass man schreiben kann

mit

ZO(E) =

®max “max wmax

k3 23 ps
[ f ] “Niwn on, o B) dewy dw, doy, .

6 H.P.A. 35 2 (1962)
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Die Diagramme und die entsprechenden Funktionen N(w,, o,, ®,, E)
sind nachstehend angegeben. Die nach der Differentiation beitragenden
24 dreifachen Integrale sind langwierig und mussten numerisch ermittelt
werden,

N 27 n? 9
1= ~g3 (E —wy)? (E —wp— wp)? (E — 0, — 0 — ),
AN
//1'/’ \‘. [ i \‘n \\
27 m3
/,/"—"'\.\\
4 SR S Y \
o f//:/ R
N,= 2% (g E
= T E—0) (E—w,—a) (E—w,—o,— ) (E—w,—w,),
// /\«:\ &
7 27 73 2
4= g (E_wp) (E—wp—wk) (E — wp)? (E — o — w,)
27 :\‘. /.: :\— —\\\
N. — 27 7® E 38 (E
5 02 ( wp) ( Wy — wp) (E - wp - wx) (E - wx) ’
AT T T TN
A e N
i / .'l Y X A\

—f// ""s\\\\\
-1~
/, II { \l\ \\l \
N 27 =8
1T g (E—wp) (E wp_wk) (E—wp““wk_wx) (E — oy —o,) X
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/---
-~ \\

// —-_——— N
I’ /’ /’\—\—\P\\
1 l’ £ L) N\
27 78 £ B i
x (E—w,),
/, al :)< I.:‘< \\ \\\
27 73 . .
Ny = 9 (B —w,) (E—w,—w) (E—w) (E—ow,—o,) (E—-w,),
a—"-\,—;‘::-_-\\\
4/, /’/ I\A/\ \\ \\\
27 n® 5
Nyp=—g—(E =) (E —p—w,) (E —wp— 0, — o) (E —0,— )X
X (E _ wx) .
Es ist also

Zi= (L4 g+ agf 4 ag /92

und daraus folgt durch Entwicklung nach f2
cg=1,
C,=—2a,,
¢ =3a;—2a,,
cg=6a,a,—2a,—4a.

Die Gleichung (14) wird dann

Pleatesh) +1* Qeg+eof}) +2(L—eufy) = f;=0.

Eine Lésung ist

- s —\13 s S\ 1
P=(=z+VD) 4 (-3 -VD) = 5« 13)
wobei
T Ao Y N Ty
_ 2 4 1 o 1 i FAd
S=gp@-gefty, t=f-Fza, D=+
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Aus der Form der vorkommenden Integrale ist ersichtlich, dass ¢z und ¢g
mit w,,,, schneller verschwinden als ¢,, so dass fiir 1 < @ ,,, < 2 nur noch
¢, in die Losung wesentlich eingeht:

2 1—cy 13 ir
a_;hc_’ ﬁ_> 2 ’ Yy 5
4 Cy 2

Damit erhilt man fiir kleine w d.h. kleine ¢, aus (15)

=1 —cafy +0(c) .
Man kann ferner den Grenzfall kleiner f> betrachten und erhilt:
=1 +0(f).

Damit ist gezeigt, dass die oben angegebene Losung (15) fiir f2 die richtige
ist, da sie fiir kleine f? oder kleine w,,,, in die Ergebnisse der Stérungs-
theorie iibergeht.

Die numerischen Resultate fiir die verschiedenen Niherungen fiir f2
sind in Tabelle I zusammengestellt.

Die erste Ndherung des Variationsprinzips gibt ein Ergebnis, welches
fir wy,, > 4,5 zu einem negativen f2 fithren wiirde. Die zweite Ndherung
des Variationsprinzips zeigt zwar, dass dies nicht der Fall ist, dass aber
fir wy..>5 f7 > f2. Das widerspricht der Unitaritit der S-Matrix, da
man unter Voraussetzung der Unitaritdt f* << f2 ableiten kann. Wie
CreEw und Low3) und CinI und FuBiNI??) gezeigt haben, ist dann nim-
lich exakt: Ooa

F=it g [ 5 (@) +o(y) do,

1

wobeil ¢+ und ¢~ die totalen Wirkungsquerschnitte fiir die Prozesse
nt + p bzw. 7~ + $ sind. Man kann diese Formel numerisch auswerten,
wenn man die Messergebnisse fiir o= und o~ einsetzt. Man erhilt auf
diese Weise mit /Z = 0,08 und w,,, ~ 5

max

2~ 0,18

in guter Ubereinstimmung mit den aus dieser Arbeit folgenden Ergebnis-
sen. Es ist méglich, dass die ndchste Ndherung im Variationsprinzip den
kritischen Wert fiir w,,,, noch erh6ht. Dieser hdngt auch wesentlich von
f; ab und erhoht sich fiir kleinere f;. Wir kénnen also sagen, dass das
iibliche Abschneiden bei w,,,, & 5 und f? = 0,08 durchaus noch vertretbar
ist, wihrend ein wesentlich héherer Abschneideimpuls eventuell zu prin-
zipiellen Schwierigkeiten fithren kénnte. Man bekommt dann ndmlich
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voraussichtlich Werte fiir f2, die mit der Unitaritit der S-Matrix nicht
vertriglich sind.

Tabelle I
zweite
erste Variationsndherung
Storungstheorie Variationsndherung s 13
@max 2 2 2 2 fzz(_7+ VE) +
=hralk T 5 13 1
14¢4 f2 (_i__ "5) 1
+ 3 V 7
1,5 0,08 0,08 0,09
2,0 0,09 0,09 0,10
2,9 0,10 0,10 0,16
3,0 0,11 0,12 0,26
4,0 0,14 0,33 0,15
5,0 0,19 negativ 0,07

V. Die Doppelerzeugung

Wir berechnen nun mit der Variationsmethode in erster Ndherung den
totalen Wirkungsquerschnitt fiir Doppelerzeugung. Dieser soll dann mit
den aus CHEw-Low-Integralgleichungen®-7?) ermittelten Wirkungsquer-
schnitten und den Experimenten verglichen werden. Dabei gilt fiir das
Matrixelement der Ubergangsamplitude in erster Vaiiationsniherung

U(a))z i\ -1
U — _ ( bal (1 %22} (16)
ba 3 5 ba 3
Upa—Uba Uta,

Damit die Erhaltungssitze und die Symmetrien des Modells ausgenutzt
werden konnen, berechnen wir die Matrixelemente zwischen Eigenzu-
stdnden des Drehimpulses J und des Isotopenspins 7" sowie ihrer diago-
nalen Komponenten [, und 7, Fiir die numerischen Rechnungen ver-
wenden wir die gebriuchlichen Parameter f7 = 0,08 und w,,, = 6.

a) Zerlegung des Wirkungsqueischnittes nach diagonalen Matrixelemen-
ten von [, [, T, T,.

Der totale Wirkungsquerschnitt fiir den in leicht verstindlicher Weise
geschriebenen Prozess

n(k, ts) + N (373) > (ty) + w(ts) + N (3 75)
wird
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wp—1

ot = Z’_l/ dws, 0(,) 0 (0, — wp)[/dgp aQ, x

x 2
oy | oy

Man macht mit Vorteil von der aus der symmetrischen Kopplung fol-
genden Erhaltung aller drei Gesamtisobarenspinkomponenten und de-
Gesamtdrehimpulserhaltung Gebrauch sowie von der wegen der alleini-
gen Wechselwirkung von p-Mesonen folgenden Symmetrie zwischen den
Isobarenspin- und Drehimpulsquantenzahlen. Die in der Streutheorie
vorkommenden Matrizen sind also diagonal in den Gesamtdrehimpuls-
und Gesamtisobarenspinquantenzahlen und dndern sich nicht bei Ver-
tauschung von Drehimpuls und Isobarenspin untereinander. Sie sind
ferner unabhidngig von der zusitzlichen diagonalen Komponente der
Gesamtvariablen. Wie bezeichnen mit | [;, T T4 den Gesamtdrehimpuls
bzw. Isobarenspin eines Zustandes und seine z-Komponente, und mit
1 75, ¥ ¥, den Betrag des jeweiligen Mesonanteils an den Gesamtquanten-
zahlen bei zwei-Meson-ein-Nukleon-Zustdnden. Es wird dann:

', VS A 1 1 2
<P, 53) q: t37 303: 513 |U‘ k: t3) _2‘0_3r _é_'53>

. 1 1 1
I k, t3, 30'3, ET3> = a+(kr t3) | ?G?u ?1"3> =

_; 2)2a 3 YR (15 hgos]15 ] ) x
R
Is ] Ja T T,

X (1gt57l1 3T Ts) o JJ3 T Ts),

[Pty Q. b5 205, 213> = at(p, by) at(q, ty) | 03, 15> =
8J 2 ’ ” ’ n Y
=" 3 Y (p) Yi®g) (L4 I | 114 ) x
P q Wi J' TS
90y T/ T

(%7.20'3]31 P} ]] ]3) (]‘1t’t”

X oy, J' 37 T' T3 9>.

119 9) (20 27385 29 T' Ty) x

Es ist
w0, ' J3i T T30 |U|wy J Js T Ty =
= U(Ji T wpw, ) Oppryy 1y 715,17,
unabhingig von T3 und J,. Wir legen k in die 2-Achse, also

3
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integiieren tiber die Kugelfunktionen und summieren {iber die magneti-
schen Quantenzahlen?). Dann fithrt man die Winkelintegrationen und
Spinsummationen aus. Der Wirkungsquerschnitt wird damit:

wp—1

2 W, O )
Iy = kz”klf ﬁ;ﬁdqu£5(2]+1) U(JjTdw,m,w,) X
39 J i

% U*(]j’f”éwkwpwq) X

X (118525 |11 95) (2O Ly 95| 20T Ty) (1 Lt 375|151 T)

X (1188|119 8,) (2O L1, 0| LG T Ty) (12t 10,| 11T Ty) +

’ "

T+ l3 >ty

(17)

Wir nennen g,,,, den \Nirkungsquerschnitt bei Summation iber alle
zwel-Mesonen-Endzustidnde, d. h. allet t3, 13

wp—1

2 Wy Wy
total — kzvk / Pq _dwqx
1

x;’ RJ+1) (13t in| 1L TH+ L2 |UJ T dw,0,0,) .
7

(o)

b) Zerlegung der diagonalen Matrixelemente.

Zerlegt man die Eigenzustinde von Gesamtdrehimpuls und Gesamt-
isobarenspin in bekannter Weise nach Nukleonen und m-Mesonen be-
stimmter Ladung und bestimmten Drehimpulses, so erhdlt man fiir das
in J Jyund T T, diagonale Doppelerzeugungsmatrixelement der héch-
sten z-Komponente der Gesamtvariablen allgemein:

w0, JITH|\U| JTwpy= ) Ulkhbij it

gk i O WA BTNl Tty 7
1:313 L
3 3

X (1T —t3t3| 3 1TT) (30T —ty— by b+ 1, | 39T T) x
x (1148 | 119 £ + £,) X
(1] bl 1] ) Gi]— -k L+5[57]]) x

) (11050 | 11785 +13) . (18)
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c) Berechnung der diagonalen Matrixelemente.
Aus (18) sieht man, dass wir zuerst die

ka’ ls’rts;rj_ls’ Z‘_f’s ’ ” ’ ”
w}]’ lﬁ)ts ; wq: la ,"’8 ,']—ls _Ia E] T—ta _t:i

berechnen miissen. Dazu definieren wir entsprechend den folgenden drei
Graphen die drei Funktionen A®(w,; w,, w,) und sechs Operatoren

P 1 h) . TG 8) .

1

& / /s
N /7 7 e P
N 7’ 7’
N\ 7/ 7/
N /s ) QY = o 0, o,
//\\ e Ag:%) P q
N ¥ 0, (Wp—w,) " ey _ _+ +
il N pad ¢ % A== Tep T Tigo
N& = s
\ /’/q // p

s -

P, P (3) +
N 7 Q) =0, o ag
s N 3 1 2 b Tl lq?
-~ P Aé ) =
e ]

, 7 N\ (,!)k w 3) __ =+ #t
s o . a Iy =+, Ty, T

\ k lq /

/ '

\\\ // ,’P

\ / / 3
S el 1 Wedaa
x / / A3 - Oy (@k“w )’ (3) + o+

\ / / ¢ I'y? = Ty Vg T

Die Matrixelemente 3. Ordnung zwischen den Zustinden

1 1 1
| _‘63, ?Tg, wk, l ] tk> und

5 3

I P 2
?Gs, ?T3, wq, lq, tq, wﬂ, l y tp>

kann man dann schreiben:

3

(3) wp, Igy b1y 1/2 05, 1/2 1 . 3) y

U gr tqs Oy by ts /2 0l 12 1 = M 2: AP (o ; 0y, wp) X
o |

x <oy | QP by L) | 503> <G| TP 8, 1) | 570 +p e g,

k2 pz q2 fz
M = N3 S Y N2 =1
M Vo, Ve 3
Die Renormalisation wird durchgefiihrt nach CHEwW17)18); nur die Selbst-
energiemodifikationen werden beriicksichtigt, da die Vertexanteile um
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einen Faktor 1/9 kleiner sind und additiv auftreten'®). Entsprechend den
obigen drei Diagrammen definieren wir:

— f} [ A(~w,) + Ao, — w,)],
f2 [A(— )+A(_wk)]:
— 1} [A{wy) + Aoy, — )],

6

A(wq)zifka P4 ey, .

JT wk wk—wq-—'be

Sy (e Wy, wp)

Solewg; Wy, )

JI

JI

Sslewy; Wy, )

Die renormalisierten Matrixelemente schreiben wir dann:

(3) wp, Ipy s 1/2 04, 1)2 1, (3) :
renUwq, I gt o Uy Lo 12 0, 1275 = =M 2: AP g ; 0y, 0,) Si{wy; w,, wp) X
i=1

X {5 03‘9(3)(%) q’ )|163>< 1:3'1-‘ (}c: q’ )IQT3>+PHQ

Entsprechend den weiteren 9 Graphen definieren wir die 9 Funktionen
6

. N 1
AE )(wk) a)lp wP) = f B, x? dwx

JT i wk; wqr wfp; w:c)

und die 18 Operatoren
QP I L) s TPt 8, 8,) -

(3 )

N Ve
\k\ 7 e
~ /, ,/ p
\\ // f/
\K/ //
k. s
s \\\ >
s s \\ - //
L7 N Z

D u’
]"'(5)—1:;'” T T 'c:,
\k 4 s
N, / /
\\\ ///q ///P
N/ s
\< Vi
% 4
4 N —— s
// »,’ -~/
Z Z \\ L \\
By=—w,(w,+o0,) o, (0, -0, —o, +1¢,

(5) — +
' =0, al 0y, O Ol

& - o il
Iy =77 v vl o,
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A #
\\ //q /p
N 7 /s
N Ve 7
\\ / 7/
o /
// \ - //
d,/’ - ‘e\\ B i V/
Z N 2>
By;=—w, (0, +w) (w,—-—0,—0,+1i¢),
(5) + + -+
2 = 0,0 0,0 0y,
6) _ =+ + ++
Ta" = Ty T Ty Ty Ta s
A -
\\ /’q ///b
N e
NS ,/
P x s
Ve N7
- ol
,’,-/, --\x/ N
ya 7 Z N \\

B4 = Wy W, (wx + wq) (wx + wh) '

+
u >

(5) — d
Q) =o0,0,0 0 0

5 + et ot
Iy =, 7,7 6T,

Nk z Ve
NCLTT
7 PV
/’R s
7 N7
e X
// /’/‘,‘-—-\.{'\\
Z pa AN
BS _wqwx (wx+wq) (Q)x+ wk) )
(5) _ A ey
Q) =o0,0, 0 o5 o,
(5) _ + e sk
P s T, Ty, T Ta T
\ £ /7 -,
\\ //q //fo
~
> .
T % -
- N e
s \K/
—— e ol
/7/ --..\_*\\
= 7 Z N
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/
\ /7 i
\ F /
\ / /
\ i :
\ /\\ /
L AY VA AN V4

BTZ (wq‘wk)wx(wk—wx—i_ia) (wk—wx_(})q_f_in)’

(5) _ o+ o gt £
2 =0 0,0 0,0/,

(5) _ o+ + +
I3 = Ty Ty T Ty Ta s

k / /
\\ ,]?’ //P
\ Vi /
\ / /
\ / /
\ s
X <7 Y
Y A A
BS= —wkw:c(wk——wx—*_is) (wk_O)xﬁ_wq_l—in):

(5) _ + ot gt
) =o0,0 Ty Oy Oy

(5) — 4+ ot o+
1§ =, 7, 5 T Ty
\ & / /
\ Vi /P
\ p 3
\ / /
\ ——— /
\ ,/ /N /
)\/ /I N //
/
Y \\ ya IA\

B9$wi(wk_wx+is) (wkmwx_wq_i_in)t

(5) e + +
Q2 =o0,07 oy 0,0,

(5) _ + o+ +
Iy =<, o7 v, .
Die irreduziblen Matrixelemente 5. Ordnung kann man dann schreiben:

9
(5) wg, lgpy 135 1/2 05, 142 7 _ E ' 4(5) ;
Uwq lytg; wplpty; i/Z 03’,31,’2 T T M ] Az (wk’ Wy, wﬁ) x
=

X <%o§ | Q9L ; Lply) | 505> <175 T, . 2o tp) |%rs> + Py s

Wir sind somit vom weiteren Gebrauch der Graphen unabhédngig und
kénnen alle Matrixelemente zwischen den Zustinden

.1 1
](X)k, lk! tkl §O'3, ET3> und | wq, q, (Dﬁ, l tp; 2 631 T3>
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schematisch ermitteln. Es ist notwendig, 50 derartige Matrixelemente
in 3. und 5. Ordnung zu berechnen, um die diagonalen Matrixelemente
zwischen den Zustdnden

lwy J J3 T T3> und ]wqu]]:;jTT:,??)

ermitteln zu kénnen. Diese ergeben sich dann aus (16) und (18) in der
Form

i 7 ~ UGN | T 8 o 0y @)
U] iTédw,w,0,) l—a (JiTdopw,w)—iB(J 1T oo m,) ’
; U®
o+ 7 :—U(—s)’

(o, B reelle Funktionen).

Wihrend die o-Beitrdage virtuelle Zustinde beschreiben, die nicht auf
der Energieschale liegen, entsprechen die § virtuellen Zustdnden auf der
Energieschale; sie sind somit ein Ausdruck fiir die Heitlerschen Dimp-
fungsterme!3), die hier automatisch ohne Lésung einer Integralgleichung
auftreten.

d) Berechnung der Wirkungsquerschnitte und Vergleich mit Experi-
menten.

Die numerische Ermittlung der « und f zeigt, dass sie im wesentlichen
unabhéngig von w,, w, sind und sehr stark von w, abhéngen. Die Matrix-
elemente in Bornscher Naherung U®(J 7 T ¢ 0, w, w,) werden dann
durch einen Faktor

M—a(Ji T w,w) —iB(J]TIw0,w,)] 1.
korrigiert.
Auf Grund elementarer Uberlegungen sieht man, dass

U(%Z%lwkwﬁa)q), U(%Z%—lwkwpwq),

U(-g’-l-i;Owkwpwq), U(%lé'owkwpwq):
antisymmetrisch sind in w, und w, und die restlichen symmetrisch. Man
iiberlegt sich leicht, dass der Beitrag der antisymmetrischen Matrixele-
mente bel Berechnung des totalen Wirkungsquerschnittes vernachldssigt
werden kann gegeniiber dem Beitrag der symmetrischen. Es zeigt sich,
dass die o und # von der Grossenordnung 1 sind und somit eine betrdcht-
liche Korrektion der Bornschen Niherung ergeben.
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Der grosste Fehler bei der Vernachldssigung des Nukleonenriickstosses
kommt durch die Energiebilanz, die im statischen Modell im Labora-
torilumssystem lautet

Wy = W, + 0, .

Man kann dem Riickstoss des Nukleons Rechnung tragen durch die
Annahme, dass die gesamte Energie im Schwerpunktsystem abziiglich
der Nukleonenruhenergie fiir die Endmesonen verfiigbar ist?)?). Diese ist

}/M *+142Mo,— M (M = Nukleonmasse).

Mit dieser Modifikation wird der Veigleich mit dem Experiment durch-
gefiihrt. Berechnet werden nu1 totale Wirkungsquerschnitte nach Formel
(17). Infolge der grossen Vernachlissigungen bei Anwendung des sta-
tischen Modells in diesen Energiebereichen kann man auch nur eine
grossenordnungsgemisse Ubereinstimmung mit dem Experiment er-
warten. Besonders im Gebiet 3m, c? < w, < 5m, c® sollte sich eine
Ubereinstimmung mit den Messungen ergeben, da die Energie zu hoch
fiir s-Mesonerzeugung und zu niedrig fiir d-Mesonerzeugung ist?).

1. Tabelle IT zeigt die berechneten Wirkungsquerschnitte fiir den
Prozess nt 4+ p > 27 + N. Experimentelle Angaben in dem Energie-
bereich von 3.2 m,, ¢? bis 5.1 m, ¢ wurden von WILLIs und BLEVINS ge-
macht®-2), Bei w, =4.7 m_ ¢* misst WILLIs fiir den gesamten Wir-
kungsquerschnitt fiir Doppelerzeugung oo, = (2,85 4 0,5) mb gegen-
iiber einem gerechneten Wert o, = 2,0 mb. Bei einer Vernachlissi-
gung des Nukleonenriickstosses gibe hier die Rechnung o,,,,; = 6,0 mb.
Man sieht, dass wegen der starken Energieabhdngigkeit des Wirkungs-
querschnittes die Vernachlissigung des Riickstosses das Ergebnis voll-
kommen verdndert. Auch die angeniherte Beriicksichtigung dieses
Effektes (s. 0.) bringt immer noch eine grosse Unsicherheit in der Ener-
gieskala mit sich. Das gemessene Verhiltnis

o(nrt+p—>nt+na+p) _ 1 5+Ls
o (tt+p—>nt+ at+n) el

ergibt sich aus der Rechnung zu 0,7.
BLEVINS et al.2%) messen im Energiebereich 3,2 m, ¢2 bis 5,1 m, c2 fir
das Verhiltnis von Doppelerzeugung zu elastischer Streuung

0,06 + 0,02.
Es ist in diesem Energiebereich o¢,; &~ 20 mb, also

Oora = (1,2 4 0,4) mb
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was ungefihr in Ubereinstimmung mit der Rechnung steht, ebenso wie
das (jedoch nur aus 18 Ereignissen, darunter 4 nichtidentifizierbaren)
gemessene Verhiltnis

gmt+p->at+a’+p) 7

o(t+p>at+at+n) T °

BLEVINS ef al.?) erhalten bei w, = (4,4 & 0,5) m, c* einen Doppel-
erzeugungswirkungsquerschnitt von 2 mb; die Rechnung ergibt

0,7
1,6:"0’6 mb ,

wenn man den Fehler aus der Unbestimmtheit der Priméreneigie ab-
schatzt.

Ahnliche Wirkungsquerschnitte sind auch von Kazgs?) auf Grund von
CHeEw-Low-Gleichungen fiir das statische Modell ermittelt worden. Die
Voraussagen dieses Modells stehen hier also in befriedigender Ubeiein-
stimmung mit den Experimenten.

Tabelle 11
Wy, 0@ +p>at+al+p) ¢ (at+p=>nat+at+n)

[mn c?] [mb] [mb]

2,75 0,0086 0,019

4,3 0,53 1,0

i 1,0 1,9

6,0 1,9 34

6,9 2,8 4,3

2. Tabelle III zeigt die berechneten Wirkungsquerschnitte fiir den
Prozess n—+ p—> 2 m+ N. Die Figur zeigt den berechneten Wirkungsquer-
schnitt ¢ (m=+ p >n~ + wt + n) und die Experimente von PERKINS
et al.?) sowie zum Vergleich die auf Grund verschiedener Auswertungen
von CHEW-Low-Gleichungen desselben Modells gefundenen Kurven von
FRANKLIN ) und KAazgs?). Die Ube1einstimmung mit den experimentellen
Ergebnissen ist hier bedeutend schlechter. Obwohl auch die Versuchswerte
noch mit grossen Fehlern behaftet sind, bleibt eine erhebliche Diskrepanz
mit den gerechneten Grossen. PERKINS?%) gibt an, dass bei einem Ver-
gleich mit Zinov und KORENCHENKO?) in dem betrachteten Energie-
bereich folgt:

o +p>at+a +n) ~ 1
G (= +p>n+a+p) ’

das steht in Ubereinstimmung mit dem gerechneten Wert =~ 0,8. Ferner
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ergibt sich in Ubereinstimmung mit den Messungen, dass der Wirkungs-
querschnitt fiir die Eizeugung zweier ungeladener Mesonen betréichtlich
kleiner als der fiir die beiden anderen Prozesse ist.

Tabelle ITI

Wy, O +p>nat+a—+n)|o(r+p>a+a+p) |6 (@ +p>a+n+n)
[ c*] [mb] [mb] [mb]
2,75 0,0059 0,0084 0,0018
4,3 0,37 0,51 0,092
5,1 0,71 0,98 0,19
6,0 1,4 1,87 0,31
6,9 2,1 2,71 0,46
&
almbl
5+

------- FRANKLIN

—e—r diese Rechnung ohne Riickstoss
-——— diese Rechnung mit Riickstoss

— —— Kazrs

E Messungen von PERKINS éf al.

e) Diskussion der anderen Arbeiten und des Modells.

Die Autoren%-7), die die Doppelerzeugung bisher behandelt haben,
gehen alle von Integralgleichungen aus, die auf dhnliche Weise wiz die
CHEw-Low-Gleichungen abgeleitet werden. Sie verwenden dann zur
Losung verschiedenartige Vernachlissigungen, unter denen immer die
Einmesonnidherung vorkommt. Ferner werden die Phasen fiir elastische
Streuung auch im hochenergetischen Gebiet benétigt; die Autoren ent-
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nehmen diese dem Experiment oder der Einmesonniherung det CHEwW-
Low-Gleichung fiir Streuung. Die Phasen werden auch fiir w, > 2 als
reell angenommen, d. h. alle inelastischen Prozesse werden veinachlis-
sigt. In den Integralgleichungen sind die Amplituden fiir Doppelerzeu-
gung ferner noch gekoppelt und ihre zum Zwecke der Losung notwendige
Separation ist nur ndherungsweise moglich. In unserer Rechnung da-
gegen treten die Matrixelemente unabhingig voneinander auf und werden
direkt berechnet. Streuphasen werden iiberhaupt nicht bendtigt. Die
Ergebnisse sind also eine direktere Anwendung des statischen Modells.

Trotz diesen verschiedenartigen Nidherungen sind unsere Ergebnisse
denen der anderen Autoren dhnlich, wie z. B. die Figur zeigt. Wahrend

die Ergebnisse fiir
nt+ n®+4 P
7t + p <
— gt -+ at + n

und die «branching ratios»

0 (At+p>at+al+p) and  ° (T=+p>nt+n+n)

o (@t+p—>nt+at+n) 0@ +p—>na+a+p)

in befiiedigender Ubereinstimmung mit der Erfahrung sind, ist das fiir
die Prozesse
At taT
AN

Jr~|—p\

nicht der Fall. Es ist schwer zu sagen, ob diese Diskrepanz an den Nihe-
rungsmethoden oder am Modell liegt. Es scheint uns wahrscheinlicher,
dass der Fehler im Modell begriindet liegt, da die verschiedensten Nihe-
rungen zu dhnlichen Resultaten fithren. Die i+ + p-Prozesse beruhen
ausschliesslich auf den 7 = 3/2-Zustinden und der T = 3/2, J = 3/2-
Zustand gibt den grossten Beitrag. Die z~ + p-Prozesse enthalten auch
die T = 1/2-Zustdnde. Schon bei der elastischen Streuung gibt das Modell
nur den T = 3/2, J = 3/2-Zustand einigermassen richtig wieder, wihrend
alle anderen Zustdande (deren Streuphasen allerdings experimentell und
theoretisch klein sind) nur mangelhaft beschrieben werden. Es scheint,
dass fiir die Doppelerzeugung die Verhéltnisse dhnlich liegen, dass also
das statische Modell insbesondere die 7 = 1/2-Zustdnde nicht richtig
wiedergibt.

Zur Beseitigung der Diskrepanz ist vorgeschlagen worden, eine direkte
nt-ni-Wechselwirkung einzufithren und es war moéglich, diese so zu wéhlen,

* a4 w4 B

—_— .'7'60—|-7l'0-|-’ﬂ
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dass Ubereinstimmung mit der Erfahrung resultiert)*). Auf diesen
Problemkreis kénnen wir aber hier nicht ndher eingehen.

Meinem verehrten Lehrer, Herrn Prof. Dr. W. HEITLER, bin ich fiir
die Anregung zu dieser Arbeit und fiir sein dauerndes Interesse zu gross-
tem Dank verpflichtet. Herrn Prof. Dr. A. THELLUNG danke ich fiir viele
Diskussionen, die mir eine grosse Hilfe waren.
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