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The Master Equation for the
Interference Term and the Approach to Equilibrium
in Quantum Many-Body Systems

by Aloysio Janner
Battelle Memorial Institute, Geneva, Switzerland

(2. XI. 1961)

Synopsis. The techniques developed by Van Hove for deriving a master equa-
tion to general order in the perturbation for the transition probability are now
applied to the interference term. A master equation to general order for the partial
interference term is obtained, which, in the limit of small perturbation, leads to a
Pauli master equation for the interference term itself. The long-time behaviour of
the interference term is discussed. By means of these results, one can write down
a complete master equation without any random phase assumption. The ergodic
behaviour of a quantum many-body system is demonstrated for a large class of
physical quantities, and the approach to micro-canonical equilibrium is discussed.

1. Introduction

PauLi derived his well-known master equation in the limit of small per-
turbation, making use of the so-called repeated random phases assump-
tion!). VAN HovVE, using special properties of the perturbing potential
valid for a great number of large quantum-systems having physical in-
terest, derived a master equation to general order in 4 and discussed the
approach to equilibrium of a quantum many-body system in a series of
papers?)*). Underlying was the assumption of random phases for the
initial state only**), corresponding to rapidly varying phases as a func-
tion of the state variables o, which are quantum numbers for the eigen-
functions of the unperturbed hamiltonian. Following this assumption,
the contribution of the phase-dependent interference term to the oc-
cupation probability density p,(x) was neglected for every time of in-
terest, and p,(x) was expressed by means of phase-independent terms

*) Here quoted as S, S, and Sj.
**) Other assumptions on the initial states have also been considered by VAN HoVE
in the weak-coupling case (S,).
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only. It was then possible to derive the PAULI master equation from the
general one, in the limiting case of small perturbation without the re-
peated random phase assumption. The approach to equilibrium has been
discussed to general order in 4 by considering the singularities of corre-
sponding Fourier-transformed expressions. By assuming some additional
conditions, VAN HoVE was able to show that for a diagonal operator 4
with an eigenvalue A4 (x) which is a smooth function of «, the statistical
equilibrium reached corresponds to the micro-canonical one. In this con-
nexion, FIERZ?) pointed out the importance (a) of considering a broader
class of macroscopic operators than the diagonal ones, and (b) of an
appropriate discussion of the interference term, so far neglected. As
regards (a), the ergodic behaviour for quantum many-body systems was
extended in Sg to a larger class of non-diagonal operators B, and its im-
plications for the classical case were discussed.

Concerning (b), a first step was made by ProspER1?). In his paper, this
author shows, under some restrictive assumptions, that the class of
hamiltonians considered by VAN HovE also satisfy abstract ergodicity
conditions: for this, Prosperi also considers the non-diagonal contributions,
i.e. the interference term I,. What we discuss in the present paper is the
time evolution and the asymptotic behaviour of this interference term.
Our results are consistent with those derived by ProspERI. However, our
work has been inspired by VAN HovE’s papers, and only represents a
straightforward application to the non-diagonal part of his own way of
dealing with the problem. Starting from an expression for the inter-
ference term, which expression is equivalent to that given by PROSPERI?),
a general equation is derived for the interference term, it being of the
same type as that obtained for the transition probability, i. e. an in-
homogeneous integro-differential equation of non-markoffian character.
To lowest order in 4 we get the same PAULI master equation as for the
transition probability, however with another initial condition. Within
this limit, it was also possible to derive an explicit solution. The discus-
sion, to general order in A, of the asymptotic behaviour of the inter-
ference term is based on an analysis of the singularities of the Fourier-
transformed non-diagonal term. We have considered only the case in
which all states o« are dissipative, characterized as they are by some
regularity properties of the diagonal part of the resolvent R,(«). Approach
to statistical equilibrium is observed without any random phase assump-
tion, even for the initial state. Under the same supplementary hypothesis
as made by VAN Hove for the diagonal part alone (validity of a general-
ized microscopic reversibility or detailed balance and interconnexion of
states having the same unperturbed energy), the equilibrium is a micro-
canonical one. The probability distribution of the total energy in the
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initial state now contains contributions from the phase-dependent terms.
The calculation is first made for a class of diagonal operators 4 ; the
generalization to the non-diagonal operators B considered by VANHoVE2)
is straightforward.

2. Van Hove’s Derivation of the Master Equation for the Transition
Probability

In this section we summarize the assumptions and the results of VAN
HovE’s master equation derivation. We refer to his papers?) for further
details. We assume that the hamiltonian of the system may be written as:

H=H, +t AV (2.1)

The eigenstates | « > of H, are supposed to be known and to form a com-

lete set.
¥ Hy|o>=elo) |a> (2.2)

where « represents a collection of quantum numbers characterizing the
state, and e(«) is the unperturbed energy of the system in the state | o >.
In the limit of an infinite system, the eigenstates are normalized to:

(o |a'>=0(a—a'). (2.3)
Any operator O can be split into a ‘diagonal part’ 04 and a ‘non-diagonal
part’ O™ defined by:
o [0y =< |0 a'> + <o |OM | a'> =
= 0%a) 0 (a0 — ') + O™ (x ') (2.4)
where: 04| o> = | > 0%(a), and O*¥(x &) has only singularities of smaller
order than d(x — &'). The perturbation 4 V' has special properties in the
representation | o ». In particular, it is supposed that V' has a vanishing -
diagonal part, but that operators of the type VA4, V... 4,V have a non-

vanishing diagonal part for 4;-diagonal operators.
We define as ‘irreducible diagonal part’:

the diagonal operator, the matrix elements of which are obtained by

keeping all intermediate states different from one another and from the
mitial and final states. In the same way, an ‘irreducible non-diagonal

t'z
par VAV ... A, V).

1s defined for a non-diagonal operator.

4 H.P.A. 35 1(1962)
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We now consider a diagonal operator 4 and assume that its eigenvalue
A (o) is a smooth function of the o’s. Let us introduce the time evolution
operator U,:
U=exp[—i(Hy+AV) ] ((R=1). (2.5)
We may write:

(| {U A U}q | @'> = [ dag Aloo) Plag) b — ),
1 (2.6)
Ca [{U_; A Ulnq | o> =/ dory A(oeg) I,(og o ') .

In order to interpret the physical significance of the two functions P, and
I, defined in (2.6), let us consider the wave function of the system at time
t = 0 expanded in the a-eigenfunctions:

|%>=fdoc|0t>0(a), (2.7)
with | ¢, > normalized to one:
<%|%>=fdoc|c(oc)|2:1. (2.72)

We introduce a coarse-grained probability density ,(«) at the time #:

(@ | 4|9 = [ dog Als) pilo @9

where [@,> = U, g >.
One obtains:

Bilotg) = f do P, (g ) | o(o) |2 + f do do’ (g % ') ¢*(a) c(o) . (2.82)

. Therefore, the quantity P,(og o) can be interpreted as coarse-grained
transition probability from « to «, during the time interval ¢, and I ,(etgote”)
as a function describing the time evolution of the interference effects
between the initial states.

The ‘random phase assumption’ for initial time, corresponding to the
assumption of rapidly varying phases for the ¢(x) as a function of «,
allows the description of the time evolution of the system towards equi-
librium, in terms of P,(«,e) alone. The interference term is considered
negligible during this time period.

P,(oy ) itself, in the weak coupling limit (A0, > oo, A%¢ finite)
obeys the PAULI master equation with the initial condition:

Pylog ) = 0oy — o) . : (2.9)
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The general order behaviour is best discussed on the basis of the resolvent
defined by:
R,=(Hy+ AV —1)-*, [ complex number (2.10)

which is related to U, by means of the relation:
e a3 .
_— —ilt
U= 5 j dle-ilt R, (2.11)
Y

y is a counter-clockwise integration contour in the complexe plane, en-
circling a sufficiently large portion of the real axis.
Let us define:

<o {R, A Ry}, I > =0(e— a')j daty A (o) Xu' (ot ) ,
(2.12)
< [{Ry A Rp}og o> = [ dag Alag) Yivlaaa ).

The functions X, («y &) and Y, ;. (etg & ") are related to Py(eg o) and I (op o ')
respectively through the relations:

-1 r AT
Py ) = Wfdzfdz eI X, ()
2 (2.13)

’ -1 r t(l=1 ’
I (g x ') =Wfdlfdl e CNEY, oo o) .
: i Y

The reduction of {R, 4 R}, to its irreducible diagonal part leads to the
following expression for X, (og o)

X0 %) = Dlotg) D) 6 (g — @) + 22 Dyfarg) Dilotg) [ Wyt @) +
L f doty W, (00 2) D) Do) Wiplag @) + -] Difo) Do) (2.14)
where D, is the diagonal part of R, and W, (x, ) is defined by:
{(V—AVD,V+..) AV —=AVD,V+.. ) hla>=
= |a> f doey Aforg) Wy (ot ) - (2.15)

In the next section we shall derive a corresponding expression for
Y, (xgae’), which was first explicitly given by PROSPERI?).
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We now consider the spectral component Py ,(xy ) of Py(apa):

400
P, (o o) =de PE’,:(OL0 ®) ;
e (2.16)

s

11 :
Py (o 0) = z(ﬂ)zfdl A X, ()
Y

which represents the partial transition probability at energy E and
s(t) = tf|¢].

For Pg ,(xya), a general master equation of non-markoffian character
can be derived from the following equation for X, ,.(etq )

(0 =10) Xyplop @) = (Dz(ao) - Dt'(“o)) 0 (% - 0‘) i3

— 22 [ Wirloto o) doy X, ploy0) -+ 72 [ doo Wyl ) Xirloto ) (2.17)

~

where W, (g o) =7 (D y{otg) — Dy(atg)) Wy plotg o) (2.18)

3. General Properties of the Interference Term

Our first aim is to derive an expression for Y, (¢, a’) in terms of
irreducible non-diagonal parts.

From the definition of Y, , (¢, «'), and expressing the resolvent in its
irreducible contributions, we have:

fdaoA(%) Y plegaa') = <°‘l{[Dt + (=AD, VD 4 s)imal 4 [(Dy +
+(=AD, VD, + ... )inal}na |2

We note first that reducible contributions can only arise from identities
between intermediate states to the right and to the left of the state | o>
as schematically shown in Fig. 1.

Fig. 1
Reducible contribution to Yy (a, o o)
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The corresponding subdiagonal contribution is simply X, (aga). We
also note that interlocked pairs of identical intermediate states are ex-
cluded (Property (iii) of S,, p. 445) — Fig. 2:

Fig. 2
Excluded reducible contribution to Yjp(o; o o)

In the same approximation as for X, («, «) (this means, in the limit of
a very large system?)), we therefore obtain for Y, (aqaa’):

Yiglayao!) = [ doy X, (oo 1) Vo 2 ) (3.1)
where V), ,(¢g « &) is a non-diagonal operator defined by:
< |{1 —AD, V+2D, VD,V + ..)AQ—AVD,+2VD,VD,+
+ oo )kina |27 =fdoc0 Alog) Vyplog ) . (3.2)
(3.1) can also be put into another form:
{RLAR,},«={1—AD,V+..)) (RLAR)y(1—AVD,+.. ) }ipa (3.1a)
from which the expression indicated by Prosperi?) is immediately

derived.
Using the well-known identity:

R,—R,=({-1)R,R, 3.3)
and taking the non-diagonal part, we get the relation
R o) — Rifa o) = (1 1) [ daty Yirlag ') =

= (1= 1) [ doy X, oty ) dy Vil o). (3.4)
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By means of the corresponding diagonal-part relation

Dyfa) = Dilo) = (1= 1) [ datg Xy1(atg ) (3.5)

we obtain

R?d(“ ') — er}d(“ a’) =/ dog (Dz(ao) - Dz'(%)) Vyp(og a') . (3-6)
This last expression can easily be derived directly from the definition of
V,p(agaa’) for A = D, — D,, and from the irreducible expression of R}.

To the lowest order in 4, V; (%, ') is given by:
V}})(gxo wo') = —AV(ea) (8 (g — ) DP (o) + DIV (@) 6 (g — ')  (3.7)
where D® = (H,—1})-1.
For I > oo, V,(¢y ') has a non-vanishing limit. The same is true for
I'. For large ! and V', V, (x,a o’) approaches to zero as ||~ ~|I'|~L
From the asymptotic behaviour of X, («, «) for large / and /’ respectively,

one sees that Y, . («, 2 «") approaches to zero as | /|~ for I > oo, as |/ |~?
for I’ > oo, and as 21" |-t ~|11'%|~1 when / and /" & oo.

4. Master Equation to General Order for the Interference Term

We consider the relation (2.17) for X, (e e,), and we multiply this
equation by V, (e, ««’). Integration over o, yields:

{1 — l’)fdocl X (o) Viplog ') =fdoc1 0 (otg — &1) (D,(0tz) — Dyploty)) %
X Viplog a’) — 2 A2 f douy dots I/ffl (o %)* X, p(otg 0ty) V(o ) +
+1 lzf dovy doty Vf/”»(ocz o) X p(otg otq) Vyplog o ot’) .
From it, we immediately obtain a basic equation for Y, (et o) :
(=0) Y, (agua’) = (D) g) — Do) Vyplotg o) +
— 1 A2 f doty I/f/} Ao 0g) Yy p(og ) + 2 A2 f docy T/T}l oty otg) X
X Y, plegaa). (4.1)

From this basic equation, the derivation of a master equation for the
interference term follows closely that given by VAN HovE in S, for the
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transition probability P,. Here too we obtain an equation to general
order in 4 not for I, itself, but only for its spectral component I , de-
fined by:

IEt(ocooca

B4l E- fepaa’)  with (4.2)

L(xgo ') de Hogoa’) .

Following Van HovEe, we introduce:

Wg, s(og &) = fdl 321”W5+1E )0t ) - (4.3)

In the same way as for the dlagonal part, and owing to the asymptotic
behaviour of Wy, ; p_;and of Yz ; p_; for I > co, we obtain the relation:

s(t)fdl e Wy 1 (%3 %) Yp o) gyt a’) =

b
t

= 4:713f dt' wg ,_p(xgag) Ip (o).
0

Multiplying equation (4.1) for Y1 g_i(®exa’) b s(t) @'fdl eilt
¥
one finally gets:
Uilon®) _ g 2t [at [ 1
————— = &g, xaa’) + 27 o Wg 4 _p(%g %) I plogaa’) +
—2m e f it f doty Wy, ,_play 0tg) Ty (ot o o) (4.4)
0 ;

where :

gE,:(% xa’) =

( E+l(°‘0) - DE»J(%)) VE+1,E-1(°°00‘°") . (4.5)

The partial interference term Ip ,(apxa’) obeys an integro-differential
equation of general order in 4, which equation has the same structure as
the general master equation derived by VAN Hove for Py ,(xy). The
present equation only differs from the other in its inhomogeneous term.
It is therefore indicated to call it a general master equation for the (par-
tial) interference term Iy, ,. The lowest order equation that we shall derive
from it will confirm this standpoint.
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With the initial condition
I, alog o’} =10 (4.6)

which is a result obtained from the definition of I , for £ =0 by deform-
ing the integration path to infinity, the behaviour of I , is uniquely de-
termined for all times.

We note that, here too, equation (4.4) only holds for ¢ + 0. We were
able to derive an equation for I, itself only to the lowest order in 4, i.e.
in the limiting case of small perturbation.

5. The Limiting Case of Small Perturbation

For the same reasons as for P ;, two time-scales exist in the evolution
of Iy ;, which, in the limiting case of small perturbation, do not overlap.

The initial stage for I, , is determined by the behaviour of the rapidly
varying functions g ,, and wy ;, and is measured within the short-time
scale, which is of the order of 7';, and is independent of 4. The approach
of Iy, to its asymptotic value takes place during a much longer time,
measured in a long-time scale of the order of T, where 7T, is proportional
to A2 :

Neglecting terms of order A2, we have on the short time scale:

ar® (o o o)
—B gD (wa) (5.1)
where
’ — 1 As(t 2
gg,)t(% xw) = zan( : fezut (D, 1(og) — DY 4(eto) ) X
v

X {0 (g — @) DY (') + 0 (0tg — ') DY, (o)} V(') dl .

“The integration over / can now easily be performed, and we obtain:

(1) N AsO) Viea) o [._._ﬁz"f.f'_‘f_’_‘ e
gE,t(%“ o) - 0 (g — ') P
e—2i(e'—E)t — ¢2i(e—E)¢ e—2i(e—E)t —g—2i(¢'—E)t
e+e—2E ]—i—é(ao—a)[ g—¢ )
e2i(e—E)t —g—-2i(s'—E)t |
 ete—2E ]} (5-2)

In (5.2), and in the following formula and in others as well, we use the
short notation ¢, for (o). Integration of (5.1) together with the initial
condition (4.6) gives I ,, which in the upper limit of the short-time scale
becomes:
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A V(acx

I (o o ') =TEr£mIg3T(“o““’) Py

[0 (@ — atg) — 8 (otg — )] X
X 0 (€g — E) . (5.3)

In deriving this result, use was made of the asymptotic formula:

fdtfdse“’F i F(O)+¢fdsF (E)P (5.4)

the principal value part giving a vanishing contribution in (5.3).
We note that we obtain an expression independent of the direction of
time only for # > co. In general

IE.,(ocoococ') o IE,_t(ocoococ’) .

ID(ay o) now represents the initial condition for the long-time scale.
In the mean for ¢ large compared to T, the inhomogeneous term in (4.4)
becomes negligible, and the homogeneous term alone determines the time
variation of Iy ,, which variation is very slow, being of the order 2. We
may therefore write:

t co
fdt' wE,t’(% o) IE,t—t’(al e’y o E,t(“l x “’)fdt’ Wg, (oo %) =
0 0

~

1 ’
o7 Wezio, exiol% %) g, y(0g 2 ') (5.5)

where the upper signs are to be taken for positive, and the lower signes
for negative time.
On the long-time scale, the master equation for Iy , is given by:

alEg, (e x o) & ,
o tdto T Azfd‘xl WEL 0 £+ i0(o %) Ip og xat’) +
- Azfdal Wg):Fio,Ei@o(% ag) Iglogoea’), for ¢~T,

(5.6)

in which W%LF i0,£ + ;0 15 taken to the first order in 4. Equation (5.6) must
be integrated with 1) (¢, «’) as initial condition. In order to discuss the
solution, we suppose Iy ; to be developed in powers of 2 and we obtain
a system of differential equations of the form:

dIg": & 1)(% o)
) di

= anzfdocl Wg):,-"iﬂ,Ej:iO(ao %) .Ig,?—l)(“l“ ') 0 (go— E) +

- Zﬂ:izfdocl W0 54 io(0 %) 157 g ') 8 (e, — E).
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Solving by recurrence, and noting that the initial condition for I ,(etq  a”)
contains a factor d(¢,— E), one recognizes that the general solution is of
the form:

Igs@gaa’) = Jfop ') 6 (g — E).

Integration over dE gives:

+ 00
I,(agoran’) zf dE I (wpaa) = [agaa’).

Therefore:
Ip J(ogaa’) = Iy(og o) 0y — E) (5.7)

within our approximation. In this way we obtain a differential master
equation for I, itself:

aly(og oo’

a 27 Azfdal 0 (g0 — &) Wg)wo, e rio(o ®y) Ly(og ) +
— 2 ﬂ-zfdoh d (g0 — &1) Wi:);m, e, + i0(%1 %) ITfogaa’) (5.8)

with the initial condition:

AVEE) 8l — o) — 8 fag— )] (5.9)

To(og e ') = PR
The equation obtained is the same master equation as that derived by
PauLr for P(aya) in the weak field case, and whose solution is known.
It is therefore possible to give an explicit solution of I, in terms of P,
in the limiting case of small perturbation:

AViea')

Lmaa)="2"T00

[Py(otg @) — Pylotg )] (5.10)

with Py a) = 0 (0tg — t)-
Under the usual assumptions of detailed balance:

WO (aty ) = WO(a ox) (5.11)

and of interconnexion of all states having equal unperturbed energy, the
long-time limit for P,(x, ) is given by:

) d(gg— &)
1 P = e SO 5.12
 lim P o T (e~ (5.12)
In the same limit, we have for I,(ey o a’):
. , A V(o) O(eg— &) — O(gy— &)
lim [ = L L 5.13
Aim (o e e Faon bler— e [ o ] (5.13)



Vol. 35, 1962 The Master Equation for the Interference Term 59

For ¢t ~ T, - oo the interference term tends towards an equilibrium value.
This result does not follow from any assumption relative to the initial
state, and it depends only on the properties of the hamiltonian. As we
shall show later on, this remains true for I, to general order in A the only
difference being that in the general case we cannot give any estimation
for the time needed by the system for it to reach statistical equilibrium.

6. The Long-Time Behaviour of the Interference Term

In this section we investigate the asymptotic behaviour of the functions
I (agoa’) and I,(oy o a”) for very large times, ¢ - 4- oo, to general order
in the perturbation. For this purpose, we have to determine the singu-
larities of Y5 ., p_; as a function of the complex variable /. We limit our
discussion to the case of a dissipative system. Analytically speaking, this
restriction corresponds to the assumption that the function D («,) has
no pole for an / in the domain of integration and for each state occurring
as initial, final or intermediate state in the development of Y} (otg et o).
In this case, the state | o, > is said to be dissipative. To be clearer, let
us consider D, written as:

D,(@) = (e(a) — I — A2 (). 6.1)

G,() has the property that for / approaching to the real axis, it approaches
a finite limit:
lim G i) = Kelo) 2 J(a) (6.2)

0 < n—0

The dissipative behaviour for the state |« ) implies that:
Je(®) £ 0 for E solution of the equation
gl) — E— A2 Kg(a) =0. (6.3)

Keeping this result in mind, and considering the equation:

fd“O(DE.,H(%) = DEo—l(aO)) Ve, +1, E,—1(%0 axa’) =
= 2 lfdao Ye, 11, £,-1(% ') (6.4)

one realizes that Yy ,; p _; has a pseudo-pole of degree one for I = 0.
The factor responsible for this singularity is Xz . ; g,-;, as discussed in S,.

In fact, for a dissipative system, Iz, ; z_; is holomorphic in the whole
complex plane except on a portion of the real axis; Xz, ; g_; has no other
singularities apart from /= 0, so that the pseudo-pole for / =0 is the
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only singularity for Yz , ; g_;. This pseudo-pole determines the long-time
behaviour of I ; according to the equation:

If(@goa’) = lim IE,t(ocoococ'):—l— lim 7Y,

RgA ') =
t—>+ 00 T 0<n—0

ZFiﬂ,Ei‘i??(

i . ,
= ;oilnm—m f doy XEq:in,E;tin(OCO o) VE:{:in,Eiiq(al o) =
= /‘dml qx (00 %) Vg0 5+ so(01 2 ) (6.5)
where
1 "
935&(“00‘):;DglgoﬂXE¢m,Eiiq(“oa)- (6.5a)

An explicit evaluation of g (xy«) is only possible provided further as-
sumptions are made. These assumptions are:

(i) Generalized microscopic reversibility *):
W,p(laa') =W, ,(¢" @) which implies (6.6)
Xyplowa') = Xp (o' o) .

(11) Interconnexion of states with equal unperturbed energy:
For two states |a)» and |«') with ¢(x) = &(a’), a succession of states
| o>, £ =1,2, ..., n of same energy &) = &(a) exists, such that:

WO(a) +0 WO a) +0 ... WO o) +0 (6.7)

where WO(q; o) is the A° term of W, («; o). This assumption also im-
plies that the states |«> are dissipative.

Under these supplementary conditions, one can prove that ¢ and gz
are equal, and that for A smaller than a critical value 4, they are given by:

A A
g5 (%o &) = ot ) = ﬁ% (6.8)
1 1
with i
Ap(e) = ETY (Dg 1 io(®) — Dp_jo(x)) - (6.9)
For I#(xaa’), it follows that:
I (e a) wfdocl Ip(%0 %) Vi zio £ io(® ). (6.10)

*) This relation, already assumed by VanN Hove in S,, corresponds to a very
strong assumption. We hope to be able to show in a further paper how it can be
avoided.
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This equation is completely equivalent to the expression indicated by
ProsPERr1?) for the value of:

1 !/
L lim g <al( EMAREi,.,,)nd|a'>=fdaoA(ao)Ig(aom). (6.11)

T O0<y—>0

Using the explicit expression of ggz(x,«), and equation (3.6), we obtain:

I (g or’) =

1 ‘ Ag(og) f ’
da m D ol Ol V : 4 i O, OLOL ) ==
T Zami fdcclAE 1 E‘*‘"“ 1) | 1)) ETi0, E4+ oo )
1 A g (o)

= . R e RO ). 6.12
273 fdal AE(GI) ( E+10(ma‘) E—wﬂ(mm)) ( )

We note that under the same conditions as previously for gi, the limit
1s independent of the direction of time:

If(wpaa’) = I(ogao). (6.13)

Let us define the operator Qy by the relation:

1 ;
Op = - lm (Rg,,— Rg_ ;). (6.14)

2m1 0<n—0

For Ig(xyaxa’), we get:

Ap(og) QR (o er’)

Lolotg oo a’) = (6.15)
E( ’ ) fdml Ag(oy)
After integration over dE, the final result is given by:
A ,
Lim [ (egoa’) =1, (g ') de E() QF (@ @) . (6.16)
t—+ 00 f doy Ag(ey)

Developing this last equation on both sidesin powers of 4, and making
use of the relations:

~AV (@) .
(e—EFi0) (¢~EFi0)’

we obtain to the lowest order in A:

RP plaa) = AV =6 (E — &) (6.17)

(1) ' V(oc: o) /' dE 6(gq— . 1
Ij:oo(fxo(xa) 2w fdal (&~ [(s—go_«jo) (6= go— 1 0) o}
o 1 ) _ AV(xa) . B . 1

(6.18)
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This corresponds to the result (5.13) obtained in the weak field case, it

being noted that the P can be dropped, for there is no singularity for
g >e.

7. The Complete Master Equation and the Approach to Statistical
Equilibrium

For a better understanding of the dynamic behaviour of the whole
system under the influence of the perturbation, let us summarize the
principal results so far obtained by considering together the diagonal and
the non-diagonal part of the various expressions.

We define:
o |U, AU, a'> = f dotg A(og) Z (et % o) (7.1)
respectively:
(o |R,ARy| oy = f g Al 2ol 56 %) (7.2)
where
L= 2—:2 fdlfdl’ et Z (g ). (7.3)
¥ v 4
We obtain:

Z (oo o) = Pilotg ) 8 (0 — &) + I, {org o ') ,
Ziplpaa) =X, ploga) 6 (o — ') + Y, (g at) .
Using relation (3.3), we get:
Ree) — Ryfxo) = (1 — 1) / dag Z, g o 0"} =
- f dtg (Do) — Dy(otg)) (8 (ot — o) 8 (x — o) + Vi plog ) . (7.5)
In particular, Z; (¢, «’) obeys the equation:
(=) Z,plog o) = (Dylotg) — Dylotg)) (8 (atg — ) 8o — o) +
Vg a’)) — i 22 f doty Wplotg 4y) Z, ooty 2 ') +
Az f doy W, (g o) 2, p(etg o ') (7.6)

from which a general master equation can be derived for a Zy ,(ogx a’)
defined mathematically for £ & 0 as:

, 1 i / -
Zp(egaa) = P S(t)fdl et Zp g i &) (7.7)
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where 5

Z(gae) = [ dE Z, (apoe) .

— o0

The general master equation valid for ¢ = 0 is expressed by

¢
ﬁ%ﬁﬂ = b (apaa) +2m l2fdt’fda1 W, 1 y(%0 %) Zg plogoee’) +
0

t
—2n szdt'fdocl We (0 %) L p(otpx ) (7.8)
0
where:
h’E, (g a’) =

(2

= 2:;..52 S(t)fdl e2itt (DE-H(OCO) - DE_;(O{(,)) ((5 (0!.0 — Ot.) (S(OC — oc') +

+ Ve 1, E—1(% % oc')) (7.9)

and wy, ,(ae o) is given by (4.3).
Equation (7.8) must be supplemented by the initial condition:

Zg olgaa’) =0. (7.10)
In the limiting case of small perturbation, Z(«, e o) itself obeys a PAULI
master equation:

gt o)

0% %) _ 20 2 f doty 8 (0 — &) Wi 4 soltto 1) Z(ay o ot’) +

— 2732 [ doy 8eo — &) Wik s, wial0a 2%0) Zilto ) (7.11)

with the initial condition:

AV(ea')

Zologoa') =6 (otg— o) 8 (o — ') + e (0 (otg—0t) = (otg—a’)). (7.12)

For a dissipative system, the singularity that determines the asymptotic
behaviour of Z,(xya ) is a pseudo-pole of degree one of the function
ZE v 1, E-i{2gx &) for I = 0 and E solution of the equation ¢(a) — E — A2 X
Kg(x) = 0. [Where Kg(x) is defined by (6.1) and (6.2)]. For very long
times:

Ziaa) = lim_Z, (qaa)=— lim 752Z, (otg 0t ') =

t—+ 00 0> 7—0 Fin,Edin

:fd‘xl q}f (0g &tq) [0 (ot — o0) O (o — &) + V Fi0 Eiw(‘xl aa)]. (7.13)
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Under the assumptions of generalized detailed balance [W,,(xa’) =
W, (¢’ «)], and of interconnexion of states of same unperturbed energy,
we obtain:

ZE(wpa o) = Zp(oga ') = Ar() Qplex ) (7.14)

where Qj is defined by (6.14), and Az by (6.9). From (7.14), one immedi-
ately derives

A
Jim Z,(apa) = Z, ologa ) fd ?;‘:jz)- (7.15)

For a diagonal operator 4, whose eigenvalue is a smooth function of the
state variables «’s, we therefore get:

o A () A
lim <o |U_,AU,|a> —de /® @ (@) Ap(e) Qplaa’).  (7.16)

t—4 00

Let us now consider our system to be at time ¢ = 0 in the quantum
state:

| @o> =fd0t |y c(er)

and a time 7 such that the limit value of (7.16) is practically attained
for the diagonal operator A. The expectation value at time ¢ for || < T
is given by:

A= <@, | A 9> = <o |U-, A U, | g
so that

sy, = f dity o d” Alie) 2oy ) 0%(a0) sl (7.17)

For ¢ > + T, this expression approaches the limit:

+ oo

Jim <4, = de (ASp by (7.18)
where
docy A (org) A
= [ e A o) An(e) —
fdalAE(al)
and
- f do do’ Qpfox o) c*(@) c(e) . (7.20)

Now, @ is the projection operator on the energy shell H,+ AV = E, and
{A>p is the micro-canonical average of a diagonal operator 4 on the
energy shell E. On the other hand, when the system is in its initial state
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| @o>, the probability for the total energy Hy, + AV to have a value be-
tween E and E + dE is:

(Po | Qg | @o> dE = f do do’ Qglaa’) c*(@) c(’) dE (7.21)

P therefore gives the probability distribution of the total energy in the
initial state.

8. Extension of the Results to Non-Diagonal Operators B

What follows represents the natural extension of the results so far
obtained for a diagonal operator A to the case of the more general class
of non-diagonal operators defined in S;. The non-diagonal operators B,
considered by Van HovE, are given by convergent series, each term of
which is a product of creation and destruction operators for individual
plane wave excitations. It is assumed that the number of creation and
destruction operators in each term of the series is finite and independent
of the large number N of particles in the system.

Let us consider

U, BU,= (2;7}2 fdlfdl' ¢i-0t R, BR,. (8.1)
Y Y

In analogy to (3.1a), we now have:

{RiBR},s={1—AD,V +2D, VD,V + ...)(R,BR})4 x

Xx(1—AVD,+2VD.VD.+ .. ) }ina (8.2)
where, following VAN HoVE:

{Rz B Rl’}d ={R,B,, Rl’}d (8.3)
with
B, ={1—AVD,+2VDVD,+...)B(1L—4D,V +

+ 2D, VDV + .. )} gy (8.4)

As in S4, we mean by the subscript Bd that the ‘B-irreducible diagonal’
part of the expression (8.4) should be taken, i.e. that diagonal part in
which subdiagonal intermediate states outside B are excluded; however,
subdiagonal contributions involving at least one intermediate state inside
B are allowed.

5 H.P.A. 35,1 (1962)
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Let us define:
(a |RyBR,|a'> =z, (aa) (8.5)
with

z (o o) =fdoc0 B, (o) £y (g x &) | (8.6)

and where B, (x,) is the eigenvalue of the diagonal operator B, for the
state |oy> and Z, (g ') is given by (7.2).
In analogy to (7.17), we consider the expectation value:

(B>, = <@y |U_, BU,| gp> (8.7)

where the initial state | ¢,> is expanded in the | > eigenfunctions as
in (2.7). We get:

(BS, = (;;){ f dl f il git-e f da do’ 7, (o o) c* () ca) . (8.8)
¥

y

The asymptotic behaviour of (B>, is determined by the singularities of
z;(ea’) as a function of the complex variables / and /’. According to S
and to the results obtained in our previous paragraph, the pseudo-poles
of zg 4y p-;are the same as those of X ,, g ;, so that in the limit for
t > 4 oo we find:

(B, .= dEfdoada' Hm {25 sy g i@ )} *(@) e(o) =

0<n—>0

+ 00
1 / . ’
:;defd% dot. da BE;m,Eiio(%)oilnn_l_)onZEq:m Exin(®oaa’) X

x c*(o) c(a’) . (8.9)

Using equations (7.13) and (7.14), we obtain

g B}i N de fdfxo dodoa’ By - ;0 g4 i0(®0) Aplog) Qpleca’) e*(a) c(o) . (8.10)

oy Agley)

Qx being the projection operator on the energy shell considered in (6.14).
We now define

(Bg —[fdocA fd% E F 40, Eizﬂ(ao) A () (8-11)
and we get: too
(B>, o :/ dE (B> pg (8.12)

where py 1s the same as in (7.20).
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The microcanonical average of B is

Sp(B Qg) | Sp(Qg) (8.13)

Using (3.3), (6.5a), (6.6) (6.8) and (6.14), we can evaluate Sp(B Qﬁ)

Sp(B ) = %oiinrﬁ,o NSp(Rg =, BRg ) =
B %ogﬂon Sp(RE?r'in BE:Fin,E:tin RE:tz‘;;) =
- %fdao BEaIiO,Er‘:iO(mﬂ)fdaoiiﬂoﬁXEﬂFin,Eiin(ocoa) =
= fd% BE:,EiO,E;{:iU(aO) Ag(og) -
Consequently: |
Sp(B 0) :fd% Bg 0, 51 iolot) Aglot) - (8.14)

By comparing (8.14) with (8.11) and remembering that Sp(Qg) is
f do A (), one recognizes that (B) is in fact the microcanonical average
over the energy shell. We have therefore established the ergodic behaviour
of our system also for the non-diagonal operators B, without any random
phase assumption for the initial state. '

9. Concluding Remarks

The main conclusion of our work is that the special properties of the
pertubation responsible for the dissipative behaviour of the system are
sufficient to derive the quantum mechanical transport equation. No
random phase assumption at all is needed. On the other hand, we have
established the approach to microcanonical equilibrium values for a class
of diagonal operators, and this for arbitrary initial states. The result has
been generalized to a wider class of macroscopic operators®). The fact
that a special choice of initial states may give rise to large deviations from
the equilibrium value after a very long time does not invalidate our result,
because nothing is said (to general order in 1) about the relaxation time
for the system, which of course strongly depends on the proper choice
of the initial phases, and may even become infinite. So the question of
approach to equilibrium is shifted to another question, i.e. how fast does
the system do it. Now very little is known about the solution of the general
master equation. The fact that the complete master equation which we
have derived here is of the same type as that analyzed by Van Hove and
VERBOVENS) increases the interest of their results.
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Finally, we may point out that the dissipative, or non-dissipative, be-
haviour of a state with respect to a given perturbation is of primary im-
portance for a discussion of irreversibility, and needs further investiga-
tions.
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