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The Master Equation for the
Interference Term and the Approach to Equilibrium

in Quantum Many-Body Systems

by Aloysio Janner
Battelle Memorial Institute, Geneva, Switzerland

(2. XI. 1961)

Synopsis. The techniques developed by Van Hove for deriving a master equation

to general order in the perturbation for the transition probability are now
applied to the interference term. A master equation to general order for the partial
interference term is obtained, which, in the limit of small perturbation, leads to a
Pauli master equation for the interference term itself. The long-time behaviour of
the interference term is discussed. By means of these results, one can write down
a complete master equation without any random phase assumption. The ergodic
behaviour of a quantum many-body system is demonstrated for a large class of
physical quantities, and the approach to micro-canonical equilibrium is discussed.

1. Introduction

Pauli derived his well-known master equation in the limit of small
perturbation, making use of the so-called repeated random phases assumption1).

Van Hove, using special properties of the perturbing potential
valid for a great number of large quantum-systems having physical
interest, derived a master equation to general order in A and discussed the
approach to equilibrium of a quantum many-body system in a series of
papers2)*). Underlying was the assumption of random phases for the
initial state only**), corresponding to rapidly varying phases as a function

of the state variables oc, which are quantum numbers for the eigen-
functions of the unperturbed hamiltonian. Following this assumption,
the contribution of the phase-dependent interference term to the
occupation probability density pt(ct) was neglected for every time of
interest, and pt(a) was expressed by means of phase-independent terms

Here quoted as Sx, S2 and S3.
Other assumptions on the initial states have also been considered by Van Hove
in the weak-coupling case (Sx).
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only. It was then possible to derive the Pauli master equation from the
general one, in the limiting case of small perturbation without the
repeated random phase assumption. The approach to equilibrium has been
discussed to general order in A by considering the singularities of
corresponding Fourier-transformed expressions. By assuming some additional
conditions, Van Hove was able to show that for a diagonal operator A
with an eigenvalue A (a) which is a smooth function of a, the statistical
equilibrium reached corresponds to the micro-canonical one. In this
connexion, Fierz3) pointed out the importance (a) of considering a broader
class of macroscopic operators than the diagonal ones, and (b) of an

appropriate discussion of the interference term, so far neglected. As

regards (a), the ergodic behaviour for quantum many-body systems was
extended in S3 to a larger class of non-diagonal operators B, and its
implications for the classical case were discussed.

Concerning (b), a first step was made by Prosperi4). In his paper, this
author shows, under some restrictive assumptions, that the class of
hamiltonians considered by Van Hove also satisfy abstract ergodicity
conditions : for this, Prosperi also considers the non-diagonal contributions,
i. e. the interference term It. What we discuss in the present paper is the
time evolution and the asymptotic behaviour of this interference term.
Our results are consistent with those derived by Prosperi. However, our
work has been inspired by Van Hove's papers, and only represents a

straightforward application to the non-diagonal part of his own way of
dealing with the problem. Starting from an expression for the
interference term, which expression is equivalent to that given by Prosperi4),
a general equation is derived for the interference term, it being of the
same type as that obtained for the transition probability, i. e. an in-
homogeneous integro-differential equation of non-markoffian character.
To lowest order in A we get the same Pauli master equation as for the
transition probability, however with another initial condition. Within
this limit, it was also possible to derive an explicit solution. The discussion,

to general order in A, of the asymptotic behaviour of the
interference term is based on an analysis of the singularities of the Fourier-
transformed non-diagonal term. We have considered only the case in
which all states a are dissipative, characterized as they are by some

regularity properties of the diagonal part of the resolvent Ä;(oc). Approach
to statistical equilibrium is observed without any random phase assumption,

even for the initial state. Under the same supplementary hypothesis
as made by Van Hove for the diagonal part alone (validity of a generalized

microscopic reversibility or detailed balance and interconnexion of
states having the same unperturbed energy), the equilibrium is a micro-
canonical one. The probability distribution of the total energy in the
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initial state now contains contributions from the phase-dependent terms.
The calculation is first made for a class of diagonal operators A ; the
generalization to the non-diagonal operators B considered by Van Hove 2)

is straightforward.

2. Van Hove's Derivation of the Master Equation for the Transition
Probability

In this section we summarize the assumptions and the results of Van
Hove's master equation derivation. We refer to his papers2) for further
details. We assume that the hamiltonian of the system may be written as :

H H0 + A V (2.1)

The eigenstates | ot > of H0 are supposed to be known and to form a
complete set.

H0 | <x > e(a) | a > (2.2)

where a represents a collection of quantum numbers characterizing the
state, and s(<x) is the unperturbed energy of the system in the state | a >.

In the limit of an infinite system, the eigenstates are normalized to:

<<x \ ol'y ô(ol-«.'). (2.3)

Any operator 0 can be split into a 'diagonal part' 0d and a 'non-diagonal
part' Ond defined by :

<a | 0 | a'> <a 10d | «'> + <a | 0nd j a'>

0d (a) ô (a - a') + Od (a a') (2.4)

where : 0d | a > j a > 0d(a), and 0nd(a a') has only singularities of smaller
order than ô(cc — oc'). The perturbation A V has special properties in the
representation | a >. In particular, it is supposed that V has a vanishing ¦

diagonal part, but that operators of the type VAX V... AnV have a non-
vanishing diagonal part for .4 -diagonal operators.

We define as 'irreducible diagonal part' :

(VAXV AnV)id

the diagonal operator, the matrix elements of which are obtained by
keeping all intermediate states different from one another and from the
initial and final states. In the same way, an 'irreducible non-diagonal
Part:

(VAXV AnV)ind

is defined for a non-diagonal operator.
4 H. P. A. 35, 1 (1962)
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We now consider a diagonal operator A and assume that its eigenvalue
A (oc) is a smooth function of the oc's. Let us introduce the time evolution
operator Ut:

U, exp[- i (H0 + XV)t] (%=i). (2.5)
We may write :

<oc | {[7_( A Ut}d | oc'> / da0 A(a0) Pt(a0 a) ó(a — a')

(2.6)

<a \{U_tA Ut}ni | a'> / rfoc0 ,4(oc0) /,(oc0oca')

In order to interpret the physical significance of the two functions Pt and
11 defined in (2.6), let us consider the wave function of the system at time
t 0 expanded in the oc-eigenfunctions :

\<p0y fda. |oc>c(oc), (2.7)

with | cp0 > normalized to one :

Xo I 9?o> da. |c(a) |2 1 (2.7a)

We introduce a coarse-grained probability density pt(a) at the time t:

<<Pt\A\cpty= d*o Xao) PM (2-8)

where \cpty Ut |ç>0>.

One obtains:

pt(a0) da. Pt(a0 oc) | c(oc) |2 + / da da' I,(a0 a oc') c*(oc) c(a) (2.8 a)

Therefore, the quantity Pt(a0 oc) can be interpreted as coarse-grained
transition probability from oc to oc0 during the time interval t, and It(a0aA)
as a function describing the time evolution of the interference effects
between the initial states.

The 'random phase assumption' for initial time, corresponding to the
assumption of rapidly varying phases for the c(a) as a function of a,
allows the description of the time evolution of the system towards
equilibrium, in terms of Pt(a0a.) alone. The interference term is considered

negligible during this time period.
Pt(a0 a) itself, in the weak coupling limit (A -> 0, t^- oo, X2t finite)

obeys the Pauli master equation with the initial condition :

P0(oc0oc)=<5(oc0-a). (2.9)
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The general order behaviour is best discussed on the basis of the resolvent
defined by :

Rl (H0 A- A V - I) -1, I complex number (2.10)

which is related to U, by means of the relation :

Vt-ièiJ***"** (2-n)
V

y is a counter-clockwise integration contour in the complexe plane,
encircling a sufficiently large portion of the real axis.

Let us define : *.

ix \{R,A Ä,.}d|a'> <5(ac- a') / da0A(a0) XIV (a0a),
(2.12)

<a \{Rt A Rr}nd | oc'> =Jda0A(a0) Y,r(a0 « «') •

The functions^, r(a0 oc) and Yt r(oc0 a a') are related to Pt(a0 oc) and It(a0 ac a')
respectively through the relations :

P<(a°a) -^rfdlfdl'e^-^X^aoa)
y y (2.13)

/,(«, a a') -^ I dl I di' A«-1^ Y;r(«0 a a!).
V 7

The reduction of {Rl A Rr}d to its irreducible diagonal part leads to the
following expression for Xl r(oc0 oc) :

Xu,(a0 a) Dt(a0) D,(a0) ô (a0 - a) + A2 Dt(a0) Dr(a0) [wir(cc0 a) +

+ I2J dxx W,r(a0 ax) Dt(ax) Dv(ax) Wl v(ax a) + ...] Dt(a) Dr(a) (2.14)

where Dt is the diagonal part of Rt and Wt v(oc0 a) is defined by :

{(V -XVD^A- ...)A (V-XVDl,V+...)}id\ay

\aL>fdoL0A(*0)Wn.(*0*). (2.15)

In the next section we shall derive a corresponding expression for
Yir(a0ococ'), which was first explicitly given by Prosperi4).
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We now consider the spectral component PEt(a0a.) of P((oc0oc):

+ 00

pMo cc) I dE PE>t{a0 oc) ;

(2.16)

PE,tK«)=-2%fdle*i><XE + lyE_l(*0a.)
7

which represents the partial transition probability at energy E and

s(t)=tl\t\.
For PEt(a0a), a general master equation of non-markoffian character

can be derived from the following equation for Xt r(oc0 a) :

[I - V) Xu,(a0 a) (Dt(a0) - Dr(x0)) <5 (a0 - a) +

- iX2 Wir(cc0ax) dax Xu.(ccxa) + iX2 dax Wiv(ccx a0) XH,(a0 a) (2.17)

where Wt r(a0 a) * (D.fa) - D,(*0) W, r(a0 a). (2.18)

3. General Properties of the Interference Term

Our first aim is to derive an expression for y;r(oc0ococ') in terms of
irreducible non-diagonal parts.

From the definition of Y;r(oc0ococ'), and expressing the resolvent in its
irreducible contributions, we have:

Jda0A(a0) yir(o,«a') <a| {[D, + {-XD,VD,+.. .)ind] A [(D, +

A-(-XDvVDvA- ...)ind]}ndk'>-

We note first that reducible contributions can only arise from identities
between intermediate states to the right and to the left of the state | a0 >

as schematically shown in Fig. 1.

«,= fX
1 — k

Fig. 1

Reducible contribution to Yj/'(a0 a a')
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The corresponding subdiagonal contribution is simply Xn,(cc0ak). We
also note that interlocked pairs of identical intermediate states are
excluded (Property (iii) of S2, p. 445) - Fig. 2 :

a,- =«

Fig. 2

Excluded reducible contribution to Yii'(a.0 a a')

In the same approximation as for Xt r(oc0 a) (this means, in the limit of
a very large system5)), we therefore obtain for Y, r(oc0 a a') :

Y, ,<(a0 a a') / dax Xt r(a0 ax) Vt v(ax a a') (3.1)

where Viv(a0a oc') is a non-diagonal operator defined by:

ia\{(l-XDlVA-X2DlVDtV A- A (1 - A V Dv + A2 VD,. V Dv +

+ • • • )}ind I cc'y Jda0 A(oc„) Vl r(a0 a a') (3.2)

(3.1) can also be put into another form:

{RlARl.}nd={(l-XDlVA-...)(RlARl,)d(i-XVDl, + ...)}ind (3.1a)

from which the expression indicated by Prosperi4) is immediately
derived.

Using the well-known identity :

Rt - Rr (I - I') Rt R,, (3.3)

and taking the non-diagonal part, we get the relation

Rf(x a') - Rf(a oc') (/ - I') J da0 Y;r(oc0 a a')

(/ - /') / da0 X, r(a0 ax) dax Vt r(ax a a'). (3.4)
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By means of the corresponding diagonal-part relation

D,(x) - D,(x) (l- I')f da0 Xt r(oc0 oc) (3.5)

we obtain

Rf(a a') - Rf(x a') j da0 (D,(aJ - XXo) V, r(a0 a a'). (3.6)

This last expression can easily be derived directly from the definition of
F(r(oc0ococ') for A Dl — Dr, and from the irreducible expression of R*d.

To the lowest order in A, F/r(oc0occc') is given by:

V\])(a0 aa') -X V(a a') (<5 (oc0 - a) Df\a') A- ö<°> (a) ô (a0 - oc') (3.7)

where Z)<0) (H0 - l)-1.

For I -> oo, F,r(oc0oca') has a non-vanishing limit. The same is true for
T. For large / and V, F;r(oc0ococ') approaches to zero as | /|_1 ~ | /' |_1.
From the asymptotic behaviour of Xt r(oc0 a) for large I and I' respectively,
one sees that Y, r(oc0 a a') approaches to zero as 111_1 for I -> oo, as | I' |_1

for /' -> oo, and as 112 V A1 ~ III'2]-1 when I and /' -> oo.

4. Master Equation to General Order for the Interference Term

We consider the relation (2.17) for Xiv(ccüax), and we multiply this
equation by Vn,(axaA). Integration over ax yields:

(l-l') j ^«iXr(«oai) ViAaxcca')=j daxô(a0-a1)(Dl(ax) -DAax)) x

x V, r(oc! a a') - i A2 / dax da2 Wt ,.(a0 a2) Xt r(a2 ax) F; v(ax a a') +

A-i A2 / dax da2 Wt r(oc2 a0) Xl r(a0 ax) Vt r(ax a a)

From it, we immediately obtain a basic equation for Y;r(oc0ccoc') :

(I - I') Yir(oc0 a A) (A(oc0) - D?(«*)) Vir(a0 a oc') +

— i X2 dxx Wl r(a0 ax) Y, v(a.x <*¦°0 + i X2 dax Wt v(ax a0) x

X YH,(a0 oc oc') (4.1)

From this basic equation, the derivation of a master equation for the
interference term follows closely that given by Van Hove in S2 for the
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transition probability Pt. Here too we obtain an equation to general
order in A not for I, itself, but only for its spectral component IE t
defined by :

IEt(a0aa') ^Jdle2iltYE + lE_l(aoxA) with (4.2)

y
+ 00

I,(oc0 oc a') / dE IEJ(a.0 a cc').

Following Van Hove, we introduce:

»*>o«) Ttffdl e2ilt^E + i,E-i^o») ¦ (4-3)

7

In the same way as for the diagonal part, and owing to the asymptotic
behaviour of WE +1? E _, and of YE +1iE _ ; for I -> oo, we obtain the relation :

s(t) jdl e2ilt WE + hE_l(a3a2) YE + hE_l(a1aa')
7

t

Aji3J dt' wEt_t,(a3 a2) IE<t.(ax a cc').
o

Multiplying equation (4.1) for YE + lE_l(a0 a a) by —-^s(t)ildle2iu,
v

one finally gets :

t

dlE^"a'] &>„«a') + 2nX2Jdt'fdax wEJ_t,(a0ax) /,,,,(%««') +
o

— 2 n X2 j dt' I dccx wE< t_v(ax a0) IEj\a9 a cc) (4.4)
o

where :

&X<*o<*<x')

is(t)
2rf- die2-" (DE + l(a0) - DE^(a0)) VE + l:E_l(a0aa') (4.5)

The partial interference term IE t(a0cca') obeys an integro-differential
equation of general order in A, which equation has the same structure as
the general master equation derived by Van Hove for PEtt(a0a). The
present equation only differs from the other in its inhomogeneous term.
It is therefore indicated to call it a general master equation for the (partial)

interference term IE t. The lowest order equation that we shall derive
from it will confirm this standpoint.
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With the initial condition

/£>0(a0aoc') 0 (4.6)

which is a result obtained from the definition of IE t for t 0 by deforming

the integration path to infinity, the behaviour of 7£> t is uniquely
determined for all times.

We note that, here too, equation (4.4) only holds for t #= 0. We were
able to derive an equation for It itself only to the lowest order in A, i.e.
in the limiting case of small perturbation.

5. The Limiting Case of Small Perturbation

For the same reasons as for PE t, two time-scales exist in the evolution
of IEft, which, in the limiting case of small perturbation, do not overlap.

The initial stage for IE is determined by the behaviour of the rapidly
varying functions gEt,, and wEt t, and is measured within the short-time
scale, which is of the order of T0, and is independent of A. The approach
of IEt to its asymptotic value takes place during a much longer time,
measured in a long-time scale of the order of T,, where Tx is proportional
to A-2.

Neglecting terms of order A2, we have on the short time scale :

<XX(<x0aa')

at =#>.««') (5-1)

éi>o«X ^1 fe2"'(D^+l(a0) -D$_/a,)) x
7

where

a^An.r, r,'\ Z
2ji2

x {«5 (oc, - a) Dp_t(a') + ô (a„ - a') D^+l(a)} V(a a') dl.

The integration over / can now easily be performed, and we obtain:

Xs(t) F(aa') [ e2Ue'-E)t -e2i(e-E)tgg>, ««') - XS(t)l(**'] fs(«„-a')[ e— s

e-2i(e'-E)t -e2i(e-E)t X r e-2i(e-E)t - e-2i(e'-E)t
A-

I „ r e-2'(e-E)l-e-2l(e'-E)l
j + d (ao - a) [ ^r-r +

]}¦ (5-2)

eA-e'-2E

e2i(z-E)t —e-2i(s'-E)t
+ sA-e'-2E

In (5.2), and in the following formula and in others as well, we use the
short notation ek for e(ak). Integration of (5.1) together with the initial
condition (4.6) gives IE t, which in the upper limit of the short-time scale
becomes :



Vol. 35, 1962 The Master Equation for the Interference Term 57

IEl)(a0 a a') lim i^fao a a') \zAAL rß (a _ afl) _ § (^ _ a')] x

xô(e0-E). (5.3)

In deriving this result, use was made of the asymptotic formula:
T

fdtfde eut F(e) -~ F(0) + iJ ds F(s) (±)p (5.4)
o

the principal value part giving a vanishing contribution in (5.3).
We note that we obtain an expression independent of the direction of

time only for t -> oo. In general

IEt(a0acc') 4= IB_t(a0aa')

7^'(a0 a a') now represents the initial condition for the long-time scale.

In the mean for t large compared to T0, the inhomogeneous term in (4.4)
becomes negligible, and the homogeneous term alone determines the time
variation of IEt, which variation is very slow, being of the order A2. We

may therefore write :

t oo

j dt' wEt,(a0oc.x) IEt_t,(axaa') s IEJ(axax') j dt'wEt,(<*-0ax)
o o

YA ^ET,-0,£±i0(aOal) X,*(<*laa') (5-5)

where the upper signs are to be taken for positive, and the lower signes
for negative time.

On the long-time scale, the master equation for IEi t is given by :

^•<S'ag0 =vfd*iWE%i0!E±i0(x0*x) IE>t(axaa') +

- X2 jdax WE\i0iE± i0(ax a0) IE>t(a0 a a') for t ~ Tx

(5.6)

in which WET i0iE ± i0 is taken to the first order in A. Equation (5.6) must
be integrated with /^(ocj a a') as initial condition. In order to discuss the
solution, we suppose 7£_ t to be developed in powers of A and we obtain
a system of differential equations of the form :

dt

2nX2Jdax WfTi,tE±i0(a0 ax) /£»-1>(«1«a') ô (s0 -E) +

- 2nX2Jdxx WE\i0iE±i0{ax a0) igirI>(«,a a') Ò (ex - E).
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Solving by recurrence, and noting that the initial condition for IEi t(a0 a a')
contains a factor d(e0 — E), one recognizes that the general solution is of
the form :

IE,t(a-o ce ce') J,(a0 ce oc') ò (e0 - E).

Integration over dE gives :

-f oo

It(a0 oca) / dE IE ((a0 a oc') /j(oc0 oc a').

Therefore :

X <(ao cc a') /((oc0 a a') <5 (e0 - E) (5.7)

within our approximation. In this way we obtain a differential master
equation for It itself :

^J^OOO =27rÀ2jd0Liô (£o _ £i) W(1)t .o ei t .oK Ki) I(K a a.) +

-2nX2fdaxô (e0 - ex) W^i0_ £q±f0(a1 «,) It(cc0 a a') (5.8)

with the initial condition :

70(«0 a a')
X

g*;'1 [Ô (a0 - «) - ô (a„ - a')] (5.9)

The equation obtained is the same master equation as that derived by
Pauli for P;(oc0 oc) in the weak field case, and whose solution is known.
It is therefore possible to give an explicit solution of It in terms of Pt
in the limiting case of small perturbation :

It(*o ce a')
A y [Pt(x0 a) - Pt(cc0 cc')] (5.10)

with P0(oc0a) ô (a0 — a).
Under the usual assumptions of detailed balance :

WW(a0 a) W<°>(a oc0) (5.11)

and of interconnexion of all states having equal unperturbed energy, the
long-time limit for P((oc0oc) is given by:

lim P,(a0oc)
d{e°~e) (5.12)

*-±°° fdax6(ex-e)

In the same limit, we have for It(a0 a a') :

lim !,(«, a oc')
A F(g g°

- \ *('o~ e) - ò(eB-e>) 1
(5 13)

<-*±°° fda.1ò(ex-ev) L e-e' J
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For t <~ Tx -> oo the interference term tends towards an equilibrium value.
This result does not follow from any assumption relative to the initial
state, and it dépends only on the properties of the hamiltonian. As we
shall show later on, this remains true for It to general order in A the only
difference being that in the general case we cannot give any estimation
for the time needed by the system for it to reach statistical equilibrium.

6. The Long-Time Behaviour of the Interference Term

In this section we investigate the asymptotic behaviour of the functions
IEj(cco a oc') and It(a0 a oc') for very large times, t -> Az °°, to general order
in the perturbation. For this purpose, we have to determine the
singularities of YE + l> E_i as a function of the complex variable /. We limit our
discussion to the case of a dissipative system. Analytically speaking, this
restriction corresponds to the assumption that the function D,(xk) has

no pole for an / in the domain of integration and for each state occurring
as initial, final or intermediate state in the development of Y;r(a0ococ').
In this case, the state | ak > is said to be dissipative. To be clearer, let
us consider Dl written as:

Dl(a) {e(a)-l-X2Gl(a))-1. (6.1)

G,(oc) has the property that for I approaching to the real axis, it approaches
a finite limit :

o
hm

o GE±,» KE(a) ± i JE(x). (6.2)

The dissipative behaviour for the state | a > implies that :

JE(a) 4= 0 for E solution of the equation

e(oc) - E-X2KE(a) =0. (6.3)

Keeping this result in mind, and considering the equation :

d<*o(DE0 + lM - fl£,-iW) 'ï. + l.f.-lK"')
21J da0 YEo + Z; Eo_i(cc0 a a') (6.4)

one realizes that Y£o + /Eo_; has a pseudo-pole of degree one for / 0.
The factor responsible for this singularity is XEti+ [y Ea _ i, as discussed in S2.

In fact, for a dissipative system, VE + 1 E-As holomorphic in the whole
complex plane except on a portion of the real axis ; XE + i,e-i has no other
singularities apart from / 0, so that the pseudo-pole for / 0 is the
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only singularity for YB + (£_;. This pseudo-pole determines the long-time
behaviour of IE t according to the equation :

X (ocn oc oc') lim IF ,(ocn oca') =— lim n YF_ ¦ F (a0 a oc')

1

n o< jj^o jl™Ln / ^'n Xet in, e ± irriseci) VETiV:E±iv(axaa')

where

/ dccx ?f (a0 ocx) VETi0:E± i0(ax a a') (6.5)
J

?±(oc0oc) —
o hmo»?X£T4>|£±^(a0oc) (6.5 a)

An explicit evaluation of <7£(a0oc) is only possible provided further
assumptions are made. These assumptions are :

(i) Generalized microscopic reversibility *) :

Wiv(aa') Wvl(a' cc) which implies (6.6)

X,r(ococ') Xvi(a' a)

(ü) Interconnexion of states with equal unperturbed energy :

For two states | oc> and | oc'> with e(oc) e(oc'), a succession of states
| ocft>, k= 1,2, n of same energy e(ak) e(oc) exists, such that:

W(»i(a oci) 4 0 W®(xx a2) 4= 0 W™(a„ a') 4= 0 (6.7)

where ^«"(oc,- ak) is the A0 term of Wir(ccj ak). This assumption also
implies that the states | oc > are dissipative.

Under these supplementary conditions, one can prove that q^ and qE

are equal, and that for A smaller than a critical value Xc they are given by :

ql(cc0a) qE(x0cc)=Afo)^) (6.8)

with
1

A£& AAA (DE + i«(«) - DE-io(*)) ¦ (6-9)

For I^(a0aA), it follows that:

1% (<x0 a a) / dccx qE(x0 ax) VE T<0, £± io(«i « «') • (6-10)

*) This relation, already assumed by Van Hove in S2, corresponds to a very
strong assumption. We hope to be able to show in a further paper how it can be
avoided.
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This equation is completely equivalent to the expression indicated by
Prosperi4) for the value of:

è"o<T*o n <<X I (Re*'>, A RE±iJnd I cc'y =Jda0 A(x0) 7f (oc0 oc a'). (6.11)

Using the explicit expression of ^(aooc), and equation (3.6), we obtain:

7±(oc0ococ')

-2AAi fir! \ [ d«x{DE + i{)(xx) -DE_ia(xx))VE^^E:*n% ^dv.xAE(a.x) J

~2nA ffE{y, ; (REäA^ «') - Rf-Jcc «')) • (6.12)
z " * J dttx AE(a.x)

We note that under the same conditions as previously for q^, the limit
is independent of the direction of time :

If (oc0 a oc') IE(a0 a a') (6.13)

Let us define the operator QE by the relation :

For IE(cc0ccx'), we get:

IE(cc0aa) —r———- - (6.15)
J da.x AE(ax)

After integration over dE, the final result is given by:

r rt i\ r i >\ f JT? JeW öld(<x a')
hm 7, a0 a a 7± ^ a0 xx) dE — (6.16)

*^±oo - 7 /(faiZj^Ot!)
— oo ^

Developing this last equation on both sides in powers of A, and making
use of the relations :

W±«M-^E-%™ETi^ Af(x) 6(E-e) (6.17)

we obtain to the lowest order in 1 :

-f-oo

i±oo(a0aa)- / ^. y L (•-*-<(>) (•-*-*0) +
— oo ^

- (XIoTloïWxo)] - jSxj [ó (e - £o) - ô (e' - eo)] fe)p-
(6.18)
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This corresponds to the result (5.13) obtained in the weak field case, it
being noted that the P can be dropped, for there is no singularity for
e' -> e.

7. The Complete Master Equation and the Approach to Statistical
Equilibrium

For a better understanding of the dynamic behaviour of the whole
system under the influence of the perturbation, let us summarize the
principal results so far obtained by considering together the diagonal and
the non-diagonal part of the various expressions.

We define:

ix \U_t A Ut\ x'y f dx0 A (x0) Zt(x0 x oc') (7.1)

respectively :

ix^AR^x'y =Jdx0A(x0)Zn,(x0xx') (7.2)

where

Zt(x0xx') y±jdljdï X-r>< Zlv(xaxx') (7.3)

7 7
We obtain :

(7.4)
Zt(x0 x x') Pt(x0 x) ô (x — x) A- 1t(cco x a')

Zn,(oc0 a a') Xtl,(x0 x)ò(x- oc') + Yn-(oc0 a a')

Using relation (3.3), we get:

Rt(x oc') - RAx oc') (l- V)j dx0 Z, ,,(00 x oc')

Jdx0 (D,(x0) - DAx0)) {Ô (oc0 - a) <5(a - a') + Vir(x0 x a')). (7.5)

In particular, Ziv(a0xx') obeys the equation:

(I - I') Zu,(x0 x oc') (D,(oc0) - ör(oc0)) ((5 (oc0 - oc) ò (oc - oc') +

+ V, i'(x0 xx'))- i X2 / dxx Wn,(x0 xx) Zl v(xx x oc') +

A-iX2 dxx Wt r{ccx x0) Zt v(xü x oc') (7.6)

from which a general master equation can be derived for a ZEt(x0xx')
defined mathematically for t 4= 0 as :

ZE,t(cc0xx') -j-t s(f) dle2ilt ZE + hE_l(x0ax') (7.7)
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where
+ 00

Zt(x0 xx') dE ZE t(x0 a oc')

The general master equation valid for t 4= 0 is expressed by
t

—£''^°'X°C- K, j(«o a cc') A- 2 n X2J dt'j dxx wE< t_t,(cc0 xx) Z^ t,(ccx x a') +
0

t

— 2nX2 dt' dxxwEt_t,(xxx0) ZEt,(x0xx') (7.8)
o

where :

hEJ(x0xx')

* I? S®J dl e2i"(DE + t(*o) - DE^(x0)) (ó(oc0 -a)ô(x- x') +

+ ^ + *,£-*K «<*')) (7-9)

and wEtt(a0x) is given by (4.3).
Equation (7.8) must be supplemented by the initial condition:

ZEO(a0aoc')=0. (7.10)

In the limiting case of small perturbation, Zt(a0 x oc') itself obeys a Pauli
master equation:

^<(yg° 2 n X2f dxx Ò (e0 - ex) W^ i0> £„ ± .0(oc0 a,) Zt(xx x a') +

- 2 n X2J dxx Ò (s0 - ex) WQ ilt e< ± i0(ccx x0) Zt(x„ a a') (7.11)

with the initial condition :

Z0(x0 xx')=ô (x0 - x) ô (x - oc') -I ^X (<5 (a0 - a) - ô (a0 - x) (7.12)

For a dissipative system, the singularity that determines the asymptotic
behaviour of Zt(x0xx') is a pseudo-pole of degree one of the function
Ze +1, e-i{cc0 ce oc') for I 0 and E solution of the equation e(oc) — E — X2 x
KE(x) 0. [Where KE(x) is defined by (6.1) and (6.2)]. For very long
times :

Zf (oc0ococ') lim ZEJ(x0xx) =—¦ lim J^Tj,,i±i,K«')t—? zO OO *v U ^> 7} -—yl/

/ dxx gf (a0 ocx) [t5 K - oc) .5 (oc - a') + VE i0 E ± i0(aj a a')]. (7.13)
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Under the assumptions of generalized detailed balance \Wlv(xx')
Wvi(x'x)'\, and of interconnexion of states of same unperturbed energy,
we obtain :

Zf (oc0 x oc') ZE(x0 x «') 4yy" - (7.14)

j dax AE(«.x)

where QE is defined by (6.14), and AE by (6.9). From (7.14), one immediately

derives
+ 00

lim Zt(x0 x oc') Z, „(a,, xx')= f dE àE}a°) 0£(tt °° • (7.15)
— oo J

For a diagonal operator A, whose eigenvalue is a smooth function of the
state variables oc's, we therefore get :

A °° rr / danA(a.n) AE(<x„)
lim ix U_t A Ut \x'y / dE J

.—— — — QAx oc'). (7.16)
<— ±°° J dci1AE(ci1)

— OO ^

Let us now consider our system to be at time t 0 in the quantum
state :

\<p0y dx\xy c(x)

and a time 7" such that the limit value of (7.16) is practically attained
for the diagonal operator A. The expectation value at time t for \ t \ < T
is given by:

iAyt= i<pt \A\cpty= <9?0 \U_tA Ut\cp0y
so that

iAyt f dx0dxdx' A(x0) Zt(x0xa') c*(a) c(oc') (7.17)

For t -> Az T, this expression approaches the limit :

+ 00

(limr<^>( S f dE <AyEpE (7.18)
— oo

where
fda.„ A(a„) AE(a.a)

<A>£ ;/ (7-19>
J dax AE(a.x)

and

PE= fda da' QE(a a') c*(a) c(oc') (7.20)

Now, QE is the projection operator on the energy shell H0 + A V E, and
<^4>£ is the micro-canonical average of a diagonal operator A on the
energy shell E. On the other hand, when the system is in its initial state
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|gp0>, the probability for the total energy H0 A- A V to have a value
between E and E A- dE is :

i<p0 | QE | 9?0> dE j dx dx' QE(x x') c*(x) c(oc') dE (7.21)

^>£ therefore gives the probability distribution of the total energy in the
initial state.

8. Extension of the Results to Non-Diagonal Operators B

What follows represents the natural extension of the results so far
obtained for a diagonal operator A to the case of the more general class
of non-diagonal operators defined in S3. The non-diagonal operators B,
considered by Van Hovê, are given by convergent series, each term of
which is a product of creation and destruction operators for individual
plane wave excitations. It is assumed that the number of creation and
destruction operators in each term of the series is finite and independent
of the large number N of particles in the system.

Let us consider

U-'BUt=AÂW Jdlfdl'eH'-ntRiBRr- (M
7 7

In analogy to (3.1a), we now have:

{R, B R,}nd {(i-XD,V + X2DlVD,V+ ...)(R,B R,,)d x

x(l-XVDvA-X2VDl,VDvA- ...)}lnd (8.2)

where, following Van Hove :

{RlBRv}d^{RlBll.Rv}d (8.3)

with

Bu. {(\-X VDl A- X2 VD, VD, A- B (1 - XD,, V +

A-X2DvVDvVa- ...)}Bi. (8.4)

As in S3, we mean by the subscript Bd that the ' i?-irreducible diagonal'
part of the expression (8.4) should be taken, i.e. that diagonal part in
which subdiagonal intermediate states outside B ave excluded ; however,
subdiagonal contributions involving at least one intermediate state inside
B are allowed.

5 H. P. A. 35, 1 (1962)
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Let us define:
<a|Ä,BÄr|a'> *jr(««') (8.5)

with
zi vice A) dx0B, ,r(x0) Z, ,,(x0 x x') (8.6)

and where Bir(x0) is the eigenvalue of the diagonal operator BIV for the
state | oc0> and Zu.(x0xx) is given by (7.2).

In analogy to (7.17), we consider the expectation value:

iByt=icp0\U_tBUt\cpoy (8.7)

where the initial state | cp0 > is expanded in the | a > eigenfunctions as
in (2.7). We get:

iByt -y±— f di f di' e*«-«">' f dxdx'zlv(xx) c*(x) c(x'). (8.8)

7 7

The asymptotic behaviour of iByt is determined by the singularities of
z, v(x oc') as a function of the complex variables I and /'. According to S3

and to the results obtained in our previous paragraph, the pseudo-poles
of zE + ,}E_, are the same as those of XE + l E_,, so that in the limit for
t -> Az °° we find :

+ 00

<By±0O= ~ j dEJ dxdx'ü Km^o{n zETirìE±iri(xx')} c*(x) c(x')

A J dEJdcco dcL d*' BE^io,E± ,o(«o)
0

lim>0 V Ze in,e± <,(«o a a') X

-OO

x c*(oc) c(x'). (8.9)

Using equations (7.13) and (7.14), we obtain

+ OO f
/ Rx I" jc J^dad*'BE*io,E±io(ao)AE(z<l)QE(«.«.')c*(a.)c(x')
<By±00= / dt ——— (8.10)

A jdv-xAEKa-x)

QE being the projection operator on the energy shell considered in (6.14).
We now define

<ByE ^JdxAAx)]'1f da0 BE^i0E±i0(xo) AE(x0) (8.11)

and we get: +oo

<By±co=jdEiByEpE (8.12)

-OO

where fiE is the same as in (7.20).
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The microcanonical average of B is

Sp(5<?£)/SP((?£) (8.13)

Using (3.3), (6.5a), (6.6) (6.8) and (6.14), we can evaluate Sp(B QE):

Sv(BQE) ^oUmor]SV(RE:firiBRE±in)

Ao<^oriSv{REA^BEAin,E±irlRE±i>1)

— j da0BETi0tE ±i0(oo) j dx
g

lim_o rjXETi,hE ± ^(oc0a)

da-o BE T i0, e ± »o(*o) X(ao) •

Consequently :

Sp(J5 QB) J dx0 BE T i0: E ± ;o(oc0) ÀBi*J (8.14)

By comparing (8.14) with (8.11) and remembering that Sp(QE) is

Jdx AE(x), one recognizes that iByE is in fact the microcanonical average
over the energy shell. We have therefore established the ergodic behaviour
of our system also for the non-diagonal operators B, without any random
phase assumption for the initial state.

9. Concluding Remarks

The main conclusion of our work is that the special properties of the
Pertubation responsible for the dissipative behaviour of the system are
sufficient to derive the quantum mechanical transport equation. No
random phase assumption at all is needed. On the other hand, we have
established the approach to microcanonical equilibrium values for a class
of diagonal operators, and this for arbitrary initial states. The result has
been generalized to a wider class of macroscopic operators5). The fact
that a special choice of initial states may give rise to large deviations from
the equilibrium value after a very long time does not invalidate our result,
because nothing is said (to general order in A) about the relaxation time
for the system, which of course strongly depends on the proper choice
of the initial phases, and may even become infinite. So the question of
approach to equilibrium is shifted to another question, i.e. how fast does
the system do it. Now very little is known about the solution of the general
master equation. The fact that the complete master equation which we
have derived here is of the same type as that analyzed by Van Hove and

Verboven6) increases the interest of their results.
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Finally, we may point out that the dissipative, or non-dissipative,
behaviour of a state with respect to a given perturbation is of primary
importance for a discussion of irreversibility, and needs further investigations.
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