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Uber die Matrixelemente des Translationsoperators

von R. Jost*) und K. Hepp*)
Institut des Hautes Etudes Scientifiques, Paris

(6. XI. 1961)

Summary: The matrix elements of the translation operator T(a) in a Wightman
field theory are analyzed. If the vectors @ and ¥ are chosen from a certain dense
set D in Hilbert space, it is shown that

(@, T(a) ¥) - (D, Q) (2, ¥) = ¢, (a)

is a C® function, which decreases in the side-cone € = {a: (a, @) < 0} faster than
|(a, a)|~N/2 for any integer N > 0. The connection of this result with a theorem
of H. ArRaKI is discussed.

§ 1. Einleitung

Die axiomatische Feldtheorie von A.S. WicHTMAN!)2) hat es ge-
stattet, einige grundlegende Fragen aus der Theorie der quantisierten
Felder entweder abzukliren oder wenigstens scharf zu formulieren. Zu
den gekldrten Fragen gehoért das Problem iiber den Zusammenhang von
Vertauschungsrelationen und geometrischem Charakter der Felder. Letzt-
hin gelang es G.F. DELL’ANTONIO®)13) auf Grund eines Satzes von
H. Arak1%)%), den - vorldufig — letzten Baustein zur Loésung dieses
Problems beizubringen. Dieses fithrt uns dazu, den Satz von H. ARrAKI,
der auch in anderem Zusammenhang («Cluster»-Eigenschaft der Wight-
mandistributionen nach R. HAAGSY)) eine wichtige Rolle spielt, erneut zu
diskutieren und von einer etwas anderen Seite zu beleuchten. Als typi-
sches Hilfsmittel verwenden wir dabei die Spektralzerlegung des Trans-
lationsoperators.

Die vorliegende Untersuchung macht keinen Anspruch auf besondere
Originalitdt. Wir sind im Gegenteil iiberzeugt, dass die meist elementaren
Uberlegungen auch von anderer Seite bis zu einem gewissen und vielleicht
bedeutenden Grade durchgefithrt worden sind. Wir denken hier besonders
an A. S. WIGHTMAN und die Princetoner Schule. Es lag uns aber daran
zu zeigen, wie welt man bei der konsequenten Handhabung einfacher
Hilfsmittel etwa gelangen kann.

*) Permanente Adresse: Eidgendssische Technische Hochschule, Ziirich.
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§ 2. Grundlagen

Die Wightmanschen Axiome einer neutralen skalaren Feldtheorie?)
werden in der folgenden Form und im folgenden Umfang vorausgesetzt:

0. Axiom: Der Raum der Zustédnde ist ein Hilbertraum $§ mit Elemen-
ten @, ¥, ... und dem positiven, hermiteschen Skalarprodukt (@, ¥).

1. Axiom: Die Testfunktionen ¢(x) aus D(R?)10) iiber dem 4-dimensio-
nalen Punktraum R* mit den Elementen x = (x°, %, 2, %) werden auf
lineare Operatoren A(p) des Hilbertraumes abgebildet. A (gp) ist dabel
i einer dichten Menge D C § definiert und ordnet zwei Vektoren
D,, D, € D eine Distribution (@,, 4(p) @,) = (A(p) DP,, D,) zu. Schliesslich
gilt A(¢) D C D.

Bemerkungen: a) Fiir A (@) werden wir auch <A, ¢> oder f A(x) @(x) d*x
schreiben.

b) Wir brauchen nicht vorauszusetzen, dass (@,, 4(p) P,) eine tempe-
rierte Distribution ist.

2. Axiom: Es existiert eine stetige, unitdre Darstellung der Einskompo-
nente der inhomogenen Lorentzgruppe { (4, 4) }, die mit Uf(a, A) be-
zeichnet sei und die folgende Bedingungen erfiillt:

: Ula, A) A(p) U= (a, A) = A, 1) »

(1)
mit Pla, p(0) =@ (A7 (x — a)).
2. U, A) DCD.

Bevor wir zum 3. Axiom iibergehen, miissen wir etwas ausgreifen. Sei
T(a) = U(a, 1) die unitire, stetige Darstellung der Translationen. Als
Darstellung einer «lokalkompakten abelschen Gruppe» erlaubt dann 7'(a)
eine Spektralzerlegung?)$)?9):

~

T(a) = [ e dE(p), @

wobei (p, a) = p%a® -?5 -a ist und $ im Impulsraum (d. h. im Dualraum
von R%) variiert. E ist ein eindeutig bestimmtes, projektionswertiges
Mass, das jeder Borelmenge A eine Projektion E(A4) = E(A)2 = E(A)* in
wohlbestimmter und als bekannt vorausgesetzter Weise zuordnet. Uber
den Trager dieses Masses macht das 3. Axiom eine Aussage:

3. Axtom: Der Trager von E enthilt den isolierten Punkt {p = 0} und
1st im iibrigen in

VY ={p:p°>0, (p, p) > M2 > 0}
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enthalten. Die Projektion E, = E(4,), wobei A, den Punkt {# = 0} ent-
hilt aber 4,N VY = ¢ ist, ist eindimensional und projiziert auf den Va-
kuumzustand . Es gilt 2 € D.

4. Axiom: Beziiglich der sukzessiven Anwendung von Operatoren 4 (p)
auf £ ist £ zyklisch.

Das Lokalitdtsaxiom brauchen wir im folgenden nicht. Dagegen brau-
chen wir einige Elemente aus der Entwicklung der Theorie. Zunichst
existieren nach Voraussetzung die Gréssen

W, (@1, Par - @) = (Q: A(py) Alpy) -+ Alp,) Q) 3)

und sind Distributionen in den einzelnen Funktionen ¢,. Nach dem théo-
réme nucléaire von L. Scawartz!l) ist durch MW, (¢, ... ¢, ecindeutig
eine Distribution I, () mit ¢ € D(R*") bestimmt. Diese Tatsache erlaubt
es, Zustande zu definieren, die wie folgt beschrieben werden kénnen:

o) = AN > Q= [dwpln, - x) Alw) - A) Q. (4
In der Tat ist @,(y) definiert, falls ¥ von der Form
Ay, o 2y) = ;;lj ()
ist. Durch lineare Fortsetzung geméss
D (x1+ 22) = P(x1) + Pl »
D(cy) = ¢ D(x)

()

wird dann die Definition auf D®”(R%) ausgedehnt. D®”(R%) ist aber dicht
in D(R4"). Sei also eine Folge y, gegen ¢ konvergent, dann gilt

«— _
H@n (x — x1) “2 = 1,, ((Xk — 47 (X— Zz)) ) (6)

wobei generell P(x,, ... x,) = w(x,, ... x,) gesetzt ist. Wegen des théoréme
nucléaire strebt die rechte Seite von (6) gegen Null, falls £,/ > co. Da
$ vollstindig ist, existiert damit

Jim &, (y,) = P,(p)
D, () 15t zudem eine Distributron hinsichtlich der starken Topologie in ),
das heisst _ ‘
[2.(@)[* = BW,.(p p) =0, (7)

falls ¢ - 0 in der Topologie von D(R47).
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Die Entwicklungen erlauben es nun, fiir D eine Menge anzugeben, auf
die wir uns im folgenden beziehen werden:

Festlegung von D: D sei im folgenden immer die line.';re Hiille der Vek-
toren @, (p), wobein =0, 1, 2, ... und Dy(c) = ¢ 2 gesetzt wird.

Satz: Die so festgelegte dichte Menge D in § erfiillt alle Bedingungen
aus dem 2. und 3. Axiom. Ausserdem sind auf Vektoren aus D die infini-

tesimalen inhomogenen Lorentztransformationen anwendbar und diese
bilden D in sich ab. |

Beweis: Es gilt offensichtlich

<A™, 9> D (¢) = Dy iy @) €D (8)
und

Ula, 4) D,(¢) = Po(@ia,0) €D us e (9)

Nun sei T'(ra,) eine einparametrige stetige Untergruppe von { T'(a) } und
es sei @,(¥) = ¢(¥ — T a,); schliesslich sei

d 0
01:,, (p(x) = d_‘t' (pr(x) ]T=0 . aﬁ W QO(x) .
Dann gilt zunichst in der Topologie von D(R4"):

lim [z~ (p, —¢) — 0, 9] =0.

7—0

Falls wir also

Dr(p) =D,(p,)

lim [|[v=Y(D5(e) — P,(9)) — D0, 9) | =0 (10)

—0

setzen, gilt

Man beachte, dass auch dieser Limes in der starken Topologie in §) exi-
stiert. Ausserdem ist @,(0, ) € D.

Analog schliesst man fiir eine einparametrige Untergruppe A (o), wobei
diesmal ¢ (x) = ¢(4(0)x) und 0,@(x) = d/do @ (x) |s_o gesetzt wird.
Wieder gilt in der Topologie von D(R%"): |

lim [6-! (p, — @) — 0,9] =0,

a—0

und daher, mit @4(¢) = D,(¢,):
lim o2 (@(g) ~ @,(p) ~ @0, 9| =0, D09 eD. (@D

In dem so festgelegten Bereich D ist also, um es kurz und salopp auszu-
driicken, «alles» erlaubt.
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§ 3. Das Mass (@,dE(p) ¥)

Das projektionswertige Mass E ist durch die Spektralzerlegung

T(e) = [ ¢'* dE(p)

eindeutig bestimmt. Da fiir unsere Zwecke die Bezeichnung mit dem
Stieltjesschen Integral nicht passend ist, fithren wir eine andere ein, die
sich an die Theorie der Distributionen anlehnt. Wir fassen E als stetiges,
operatorwertiges, lineares Funktional auf dem Banachraum B der ste-
tigen beschriankten Funktionen auf:

CE, y> = f 2(B)dE(p) fir yz€%B. (12)

Aus den elementaren Eigenschaften von E folgt dann unmittelbar

| <E x| < sup [ ()| (13)
Dabei steht links die iibliche Norm eines Operators O:

| O] = sup [0 @] .

lel-1

Fiir die Fouriertransformierte gilt in der neuen Bezeichnung die Formel:
T(@)=<E,e,>, e (p) = P (14)

Natiirlich ist ¢, € B.
Die Darstellungsbedingungen

T@ TW) =T (@+b) und U(A) T(a) U-YA) = T(Aa),
wobei U(A) = U(0, A) gesetzt ist, reflektieren sich in den Gleichungen

T(a) <E, y>=<E, y_o>
und (15)
U(A) LE, > UYA) = (E, g7

Dabei wurde als Abkiirzungen

L-a(P) = " x(p)
und (16)

x4 (B) = x(Ap)

verwendet. Da die Abbildungen y > y_, und y - y,4- topologische Ab-
bildungen von ¥ auf sich sind, kénnen wir durch die Gleichungen
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By g =4LE, ) o> (17)
und KEq, 4> =<E, g 42> (18)

eindeutig die Gréssen E, und E , definieren.
Dann gilt
T@E=E, und U(A)EU-YA)=E,.

E 4 ist wieder ein projektionswertiges Mass, was fiir E, nicht gilt.
Nach diesen Priliminarien kénnen wir zum eigentlichen Gegenstand
dieses Paragraphen iibergehen und das komplexe Mass

(m, x>= (P, <E, x> W) fir &, ¥eD (19)
betrachten. Dieses Mass ist beschrankt mit der Schranke

| <m, 2> < sup x| -[D] -[|¥], (20)

welche unmittelbar aus der Schranke fiir <E, y> folgt. <m, y> aber zeigt,
dank des besonders gutartigen Charakters der Zustidnde in D, ein viel
reguldres Verhalten als <E, ¥>. Um dies einzusehen, betrachten wir zu-
nichst

(@, T(a)<E, y> V)= (D, KE, y_ > W) =<m, y_,> .
Nun gilt gleichzeitig auch
<m, x> =(T(—a)D, <E, x> ¥),

und dieser Ausdruck ist, wie wir in § 2 gesehen haben, beliebig oft nach
a ableitbar. Fithren wir durch

T(a) = expi(P, a)
oder, gleichbedeutend, durch
P k= f Ibk dE (Ib)

den Energie-Impulsoperator ein, dann findet sich durch die erwdhnte
Ableitung nach @ die Gleichung

m, B> =(BP)®, <E, 1>¥P), (21)
wobei P links fiir ein Polynom PB(p) in den Komponenten von p steht,
wihrend rechts dasselbe Polynom mit den Unbestimmten ersetzt durch
P, den Energie-Impulsoperator, auftritt.
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Der wesentliche Punkt besteht aber darin, dass die rechte Seite wieder
~ein beschrianktes Mass ist:

[<m, By>| < | BP)D| -] -sup|x]- (22)
So haben wir das

1. Resultat: Fiir ein beliebiges Polynom {3(p) ist auch 33 s ein beschrink-
tes Mass.
Durch die Betrachtung von

(@, U(A) <E, > U-YA) V) = <m, y4-> =
= <my, x> = (U-YA) D, <E, x> U-Y(4) P)

erhalten wir eine zweite Art von Regularititseigenschaften. Denn fiir A
kénnen wir eine einparametrige Gruppe A(o) substituieren und — wieder
nach dem Resultat des zweiten Paragraphen — beliebig oft nach o diffe-
renzieren. Durch einmalige Ableitung entsteht dann, wenn

k1 = Py —05;7 — 4y 'O%E
gesetzt wird und M, , die entsprechende infinitesimale Lorentztransfor-
mation bedeutet, die Gleichung
Ogym, 3> =i (M, D, <E, 1> ¥) — i (B, <E, 1> M,, P) .
Wieder ist die rechte Seite ein beschrinktes Mass; es gilt ndmlich:

| <O, > | < {| My, @[ [ ] + @] - [ My, F}sup 2] - (23)

Wir haben so durch schwache Verallgemeinerung das

2. Resultat: Die Operatoren 0, , lassen sich beliebig oft und in beliebiger
Reihenfolge auf das Mass m anwenden. Immer entsteht dabei wieder ein
beschrinktes Mass (das natiirlich auf ganz B definiert und stetig ist).
Durch Kombination der beiden Resultate erhalten wir den

Satz 7: Aus dem beschrinkten Mass m, das durch
<m, x> = (D, E,y>%¥), ®,¥YeD, (24)

als stetiges Funktional auf B erklirt ist, entsteht durch die folgenden
Operationen

(I) Multiplikation mit einer Komponente p, des Vektors ¢;

(IT) Anwendung einer infinitesimalen Lorentztransformation 0,

wieder ein beschrianktes Mass, das eine Linearkombination von Massen
der Art (24) ist. Die Operationen (I) und (II) lassen sich also beliebig
wiederholen.
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Es ist fiir das folgende bequem, das urspriingliche Mass E in einen tri-
vialen und einen nichttrivialen Teil zu spalten:

CE, x>=<E;, x>+ x00) Eg, (25)

wobel E, wie schon erwihnt, die Projektion auf den Zustand £2 darstellt.
Der Tréger von E; ist in V¥ enthalten. Der obige Satz gilt offensichtlich
auch fiir das Mass

<m13 Z> = (@J <E1: x> T) ]

Schliesslich ist es angezeigt, durch passende Koordinaten der Lorentz-
gruppe Rechnung zu tragen.
Wir fithren dazu die in V¥ véllig regulidre Transformation

(p()’ p) ¥ (”’21 )

mit u? = (p, ) und ;; = (p1, P2, Ps) ein. Die dadurch induzierte Transfor-
mation

2 h =z (Ve +73) (26)
vermittelt die Transformation der Masse
<E1: x> = <E: i> ’
] 27)
Cmy, x> =<m, 1>

Schliesslich bildet sich d,, auf — w D¥ ab, wobei

0= ]/,u2 + ;52 und Dk= 0;1 gesetzt ist.

k

Aus dem Satz 1 ergibt sich die

Folgerung: Auf das beschrinkte Mass s konnen die folgenden Opera—
tionen beliebig oft angewendet werden: |

1. Multiplikation mit w oder p,.
2. Anwendung von w D'

Dabei entsteht immer wieder ein beschranktes Mass.
Nun besitzen wir aber fiir das Mass s dank der Trigerbedingung

Tr {m} C{(u2 p) : 2 > M2} (28)

noch die Méglichkeit der Multiplikation mit w1, denn w™! ist mit allen
seinen Ableitungen in T7 {m} beschrinkt. Statt o D*‘ kdnnen wir also
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D! selbst auf m anwenden und erhalten damit wieder ein beschrinktes
Mass. So erhalten wir den

Satz 2: Seien Py(w, py, pq, Ps) und P,(DY, D2, D3) beliebige Polynome
in den eingeschriebenen Variablen, und sei ausserdem » eine beliebige na-
tiirliche Zahl, dann ist

=" Py, Py, pa, s) Ba(DY, D, D3 m

immer ein beschrinktes Mass.
Schliesslich brauchen wir fiir spitere Zwecke noch eine bessere Einsicht
in die Schranke von (D*)¥ m. Es gilt

(D]Y = [~ DH)IY,

und daraus schliesst man, dass (D¥)" in der Form
N

(DFN = 3" A, (w, py) (o D¥y
r=1

geschrieben werden kann, wobei 4,(w, #,) im Triger von m beschriankt
1st:

| 4,(w, p) | < B, .
Es ist daher

N
[ <D, x> | = | Y <(@D¥yrm, 4, x> 1. (29)
=1
Ferner gilt fiir beliebige y € B:

(wD¥ym, p> = (= 1) <05, my, p> =

(4

=17 3 () (= 1) (M5, @, <Eqy, 9> Mg W)

s=0

und damit die Abschitzung

< DRy 1, 3| < ;(;)HMsk@H-HM:,;STHsuphbl, (30)

denn:

sup |y| = sup |9p] .
Also ist

| <(wD¥m, 4, 35| < Bsup x| 3, () | M5, @ - | MGz® ¥,

s=0

und <(D*)¥ m, y> wird durch einen Ausdruck folgender Art abgeschitzt:
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<D m, g>| <suplz] 2 By Miu®|-| M ¥ =

= Ck(®, ¥)sup | %], (31)

wobeil die B, ; wieder Konstanten sind.

Diese Abschitzung gestattet eine Anwendung. Sei A,, eine Lorentz-
transformation in der (0, £)-Ebene und U,, = U(4,,) die entsprechende
Darstellung. Natiirlich gilt [U,,, M,,] = 0. Nun bilden wir

(Uor D, <E1, x> Ug ) = <oy, 05
dann gilt unabhingig von U, wieder

[ <(DEYN gy, 7> | < Co(D, W) sup | x| (32)
wegen
| MG, Uok @[ = | Uox M5, @ = | M5, P -

§ 4. Das Matrixelement (®, T(a) &)

Mit der Aufspaltung von E in E, und die Projektion auf das Vakuum
E,, ist eine Aufspaltung des Translationsoperators verbunden:

T(a)=<E,e,>=Ep+ <(E,,e,>) =Ep+ T,(a).
Parallel dazu spaltet sich auch das Matrixelement
tHa) = (D, T(a) V) = (D, Q) (2,¥) + t,(a)
in eine Konstante und den Term
ti(a) = (D, Ty(a) V) = <my, €,> .

Uns interessiert nur £, (4). Dieses ist offenbar eine C*-Funktion von 4, von
der daher ausschliesslich das asymptotische Verhalten interessiert. Falls

a von der Form (O,;) ist, dann liefert der Satz 2 unmittelbar den

Satz 3: t,(0, a) ist eine Testfunktion aus G(R?) (19, Bd. II, p. 891f).
Dasselbe gilt fiir alle Ableitungen nach der Nullkomponenten:

ON =
Bl tl] (0, a) .

Den Beweis brauchen wir nicht auszufiihren.
Der Satz 3 sagt im besonderen aus, dass fiir Vektoren der Art (0, a)

[— (a, a)]M* t,(a) =0 fir — (a,a) —>oco. (33)
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Natiirlich gilt ein dhnliches Resultat auf jeder raumartigen Ebene, aber
die Gleichmissigkeit der Konvergenz fiir verschiedene Ebenen liegt tiefer.
Thr wenden wir uns jetzt zu.

Es sei a beliebig raumartig. Dann existiert eine Raumrotation O, fiir
die O a in der (0,1)-Ebene liegt. A, sei weiter die Lorentztransformation,
die O a in die 1-Achse dreht:

Ay Oa = (0,]/— (a,a),0,0)=4a.
Wir setzen U(Ay;) = Uy und U(0O) = R. Dann gilt

(D, <Ey, e.> W)= (Upy RD, {Ey, ¢,>Upy RY) =
= (my, ;> = ty(a) . (34)
Weiter ist
DY my, 6> =[— z']/— (a, @)Y My, €50

und daher mit der Abschitzung vom Ende des letzten Paragraphen:
| (@, a) |N? [ty(a) | = | (a, @) [N |<my, 6,0 < Cy(RD, RYP),

denn bei den urspriinglichen Argumenten Uy, R®, Uy, R ¥ von C} kon-
nen wir die Transformation U, weglassen. Schreiben wir die rechte Seite
der Ungleichung aus, so erhalten wir

| (a, @) [N |t4(a) | < ZNBr,sH M, RO|-|My* RY|. (35)
s=r=

Die rechte Seite ist stetig auf der 3-dimensionalen Rotationsgruppe und
kann daher unabhingig von R majorisiert werden. Es existiert also ein
Funktional Ky(®, ¥) von @ und ¥ allein, derart dass

| (@, a) [V - |ty(a) | < Ky(D, P)
falls

(a, a) < 0.
Wir haben so den

Satz 4: Falls @ und ¥ Elemente von D sind, dann erfiillt
ta) = (@, T(a) ¥) — (@, 2) (2, P)

im Nebenkegel C = {a: (a, a) < 0} fiir jede Wahl der natiirlichen Zahlen
N, m,, m,, my, my eine Ungleichung

[ (@, @) [¥7 | o g o 1, (a) | < KD, ). (36)
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§ 5. Eine Anwendung und Bemerkungen

Im folgenden verwenden wir die Abkiirzung

ﬂB‘S:.a-){-m(%) Efm;n+m(x11'°‘ X y1+a1 '“ym+a) X(xl’“'xn’ Y1 '“ym) X
W g g, ' (37)

Ausserdem fithren wir das Tensorprodukt I8, ® 23,, der beiden Distribu-
tionen W, und QB ein (19, Bd. I, p. 1061f). Dieses ist durch die Werte
W, OMW,, (py) = W,(¢) - W, (y) vollstindig definiert.

Spezialisiert man die Diskussion des letzten Paragraphen auf Vektoren
® und ¥ der Form @,(p) und @, (), dann ergibt sich leicht die

Folgerung: Fir jede natiirliche Zahl N und beschrinkte Mengen
B, CD(R*) und B, C D(R%) existiert eine Schranke Ky(B,, B,) derart,
dass

|, (¢ ) — B, ® W,lpy) | < |(a a) |~ Ky(B,, B,)
fiir alle

peB,, webB, und (a,a)<0. (38)

B, hat als beschrinkte Menge die Eigenschaft, dass jede Distribution
aus D'(R*") auf B, beschrankt ist, und analoges trifft fiir B, zu. Die
Beschrianktheitsaussage in der Folgerung ergibt sich dann unmittelbar
aus der Tatsache, dass die Schranke K%(®, ¥) sich in unserem Spezial-
fall als endliche Summe bilinearer Ausdriicke von Dlstrlbutlonen mit den
Variablen ¢ und y darstellt.

Nun ldsst sich aber die Folgerung unschwer auf beliebige Funktionen
x € B,,, C D(R4n+4m) ausdehnen, wobei B, , wieder als beschriankt vor-
ausgesetzt ist. An die Stelle der Schranke Ky(B,, B,) tritt dann eine
Schranke, die von B, , abhidngt.

Zu B, , existiert immer eine Konstante M > 0 und beschrinkte Men-
gen B, C D(R*") und B, C D(R*™) derart, dass jedes y € B,,, die Darstel-
lung gestattet (12), p. 64):

4 CSTRERT M VLR W :Eli @i, - %) YilVs o0 Vn)
1=1

o0
mit D)4 <M und ¢,€B, und y;€B,.

i=1

Damit ergibt sich aber
|5 () — B, @ W) | < 2 1] | T2 )
a)|”

—SIBH® %m(qgi"pi) | g ! 0 MK B ’ By) . ‘ (39)
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Gleichbedeutend mit dieser Aussage ist der

Satz 5: Im Sinne der Konvergenz in D'(R4"+4m) gilt fiir jede natiirliche
Zahl N gleichmissig fiir alle raumartigen Vektoren a:

Jim | (s, @) [ (1, — B, ©W,) = 0. (40)
—(a, a)—

Dieser Satz ist eine Verallgemeinerung eines Satzes von H. ArRAKI. Ein
Vergleich unserer Beweismethode mit derjenigen von ARAKI ist lehrreich:
ARraAKI verwendet die Spektralzerlegung des Translationsoperators nicht,
sondern erschliesst allein aus den linearen Eigenschaften der Wightman-
distributionen das Resultat. Dagegen muss er die Temperiertheit der
Wightmandistributionen wenigstens in jeder Differenzvariablen einzeln
annehmen. Diese Temperiertheit ist nun allerdings eine Folge der Spek-
tralzerlegung von 7'(a). Verwendet man diese direkt, dann erscheinen
die Grundlagen der beiden Beweise nahezu identisch.

Beiden Beweisverfahren gemeinsam ist, dass die Voraussetzungen tiber
das Spektrum nicht vollstindig ausgeniitzt zu werden brauchen. Insbe-
sondere gelten alle hier aufgefithrten Satze auch dann, wenn der Tréger
von E; in V¥ U VM enthalten ist (V¥ = {p: (p, p) > M?, p,<0}).
Sie haben also nur beschrankt etwas mit dem Postulat positiver Energie
und damit mit den Analytizizitseigenschaften der Wightmanfunktionen
zu tun.

Die Autoren mochten dem Institut des Hautes Etudes Scientifiques
und besonders seinem Direktor Dr. LEoN MoTCHANE fiir die Einladung
nach Paris danken. Es war ithnen so moglich, wihrend einiger Wochen
in Ruhe zu arbeiten. Diese Untersuchung ist ein Ergebnis dieser Arbeit.
Einer der Autoren (K. H.) dankt ferner dem Schweizerischen National-
fonds (K. A.W.) fiir ein Forschungsstipendium.
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