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Über die Matrixelemente des Translationsoperators

von R. Jost*) und K. Hepp*)
Institut des Hautes Etudes Scientifiques, Paris

(6. XI. 1961)

Summary : The matrix elements of the translation operator T(a) in a Wightman
field theory are analyzed. If the vectors 0 and \P aie chosen from a certain dense
set D in Hilbert space, it is shown that

(0, T(a) W) - (0, Q) (Q, W) tx (a)

is a C°° function, which decreases in the side-cone C£ {a : (a, a) < 0} faster than
\(a, a)\~Nl2 for any integer N > 0. The connection of this result with a theorem
of H. Araki is discussed.

§ 1. Einleitung
Die axiomatische Feldtheorie von A. S. Wightman1)2) hat es

gestattet, einige grundlegende Fragen aus der Theorie der quantisierten
Felder entweder abzuklären oder wenigstens scharf zu formulieren. Zu
den geklärten Fragen gehört das Problem über den Zusammenhang von
Vertauschungsrelationen und geometrischem Charakter der Felder. Letzthin

gelang es G. F. Dell'Antonio3) 13) auf Grund eines Satzes von
H. Araki4)5), den - vorläufig - letzten Baustein zur Lösung dieses
Problems beizubringen. Dieses führt uns dazu, den Satz von H. Araki,
der auch in anderem Zusammenhang («Cluster»-Eigenschaft der Wight-
mandistributionen nach R. Haag6)) eine wichtige Rolle spielt, erneut zu
diskutieren und von einer etwas anderen Seite zu beleuchten. Als
typisches Hilfsmittel verwenden wir dabei die Spektralzerlegung des

Translationsoperators

Die vorliegende Untersuchung macht keinen Anspruch auf besondere

Originalität. Wir sind im Gegenteil überzeugt, dass die meist elementaren
Überlegungen auch von anderer Seite bis zu einem gewissen und vielleicht
bedeutenden Grade durchgeführt worden sind. Wir denken hier besonders

an A. S. Wightman und die Princetoner Schule. Es lag uns aber daran
zu zeigen, wie weit man bei der konsequenten Handhabung einfacher
Hilfsmittel etwa gelangen kann.

*) Permanente Adresse: Eidgenössische Technische Hochschule, Zürich.
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§ 2. Grundlagen

Die Wightmanschen Axiome einer neutralen skalaren Feldtheorie2)
werden in der folgenden Form und im folgenden Umfang vorausgesetzt :

0. Axiom: Der Raum der Zustände ist ein Hilbertraum § mit Elementen

0, W, und dem positiven, hermiteschen Skalarprodukt (0, W).

1. Axiom: Die Testfunktionen cp(x) aus D(i?4)10) über dem 4-dimensio-
nalen Punktraum R* mit den Elementen x (x°, x1, x2, x3) werden auf
lineare Operatoren A(cp) des Hilbertraumes abgebildet. A(cp) ist dabei
in einer dichten Menge ÖC§ definiert und ordnet zwei Vektoren
&¦,, 02gD eine Distribution (0lt A(cp) 02) (A(tp) 0lt 02) zu. Schliesslich

gilt A(cp)DCD.
Bemerkungen: a) Für A(cp) werden wir auch <A, cp} oder / A(x) cp(x) d*x

schreiben.
b) Wir brauchen nicht vorauszusetzen, dass (0X, A (cp) 02) eine temperierte

Distribution ist.

2. Axiom: Es existiert eine stetige, unitäre Darstellung der Einskomponente

der inhomogenen Lorentzgruppe { (a, A) }, die mit U(a, A)
bezeichnet sei und die folgende Bedingungen erfüllt :

1. U(a,A)A(cp)U-1(a,Ä) A(cp{a<A)),

(1)
mit cp{ai A)(x) cp (A-1 (x - a))

2. U(a, A) D C D

Bevor wir zum 3. Axiom übergehen, müssen wir etwas ausgreifen. Sei

T(a) U(a, 1) die unitäre, stetige Darstellung der Translationen. Als
Darstellung einer «lokalkompakten abelschen Gruppe» erlaubt dann T(a)
eine Spektralzerlegung7)8)9) :

T(a) f et{M dE(p) (2)

wobei (p, a) p°a° — p • a ist und p im Impulsraum (d. h. im Dualraum
von R*) variiert. E ist ein eindeutig bestimmtes, projektionswertiges
Mass, das jeder Borelmenge A eine Projektion E(A) E(A)2 E(A)* in
wohlbestimmter und als bekannt vorausgesetzter Weise zuordnet. Über
den Träger dieses Masses macht das 3. Axiom eine Aussage :

3. Axiom: Der Träger von E enthält den isolierten Punkt {p 0} und
ist im übrigen in

V™ {p : p° > 0 (p, p)> M2> 0}
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enthalten. Die Projektion EQ E(A0), wobei A0 den Punkt {p 0} enthält

aber A0C\ Vtf tf> ist, ist eindimensional und projiziert auf den
Vakuumzustand Q. Es gilt Q e D.

4. Axiom: Bezüglich der sukzessiven Anwendung von Operatoren A (cp)

auf Q ist Q zyklisch.
Das Lokalitätsaxiom brauchen wir im folgenden nicht. Dagegen brauchen

wir einige Elemente aus der Entwicklung der Theorie. Zunächst
existieren nach Voraussetzung die Grössen

2Bn (<Pv <P* • ¦ ¦ Vn) s {Q, A M A (<p2) .--A (cpn) Q) (3)

und sind Distributionen in den einzelnen Funktionen cpk. Nach dem théorème

nucléaire von L. Schwartz11) ist durch 2DH(ç>1( ...Ç>„) eindeutig
eine Distribution 2B„((/j) mit cp e T>(R*n) bestimmt. Diese Tatsache erlaubt
es, Zustände zu definieren, die wie folgt beschrieben werden können :

0n(cp) s <A»,cp>Q=Jd*"x(p(x1,---xn)A(x1) ¦¦¦ A(xn)Q. (4)

In der Tat ist 0n(%) definiert, falls % von der Form
n

x(xi- •••*»)=n^k(xk)
k-l

ist. Durch lineare Fortsetzung gemäss

#(zi + z«)-*tei)+#(*«).
(5)

0(cX) c-0(x)

wird dann die Definition auf T>®n(R*) ausgedehnt. X>®n(R*) ist aber dicht
in D(R*n). Sei also eine Folge %k gegen cp konvergent, dann gilt

II*« fe - Xt)\\2 ^ (fe - Xi) fe - Xi)) - (6)

wobei generell y>(xlt xA yj(xn, xA. gesetzt ist. Wegen des théorème
nucléaire strebt die rechte Seite von (6) gegen Null, falls k,l^-oo. Da

§ vollständig ist, existiert damit

iim0„(xk)=0M-

0n(cp) ist zudem eine Distribution hinsichtlich der starken Topologie in §,
das heisst

U<P-(V) II" 9B..ÖP 9») "* «. (7)

falls cp -> 0 in der Topologie von T)(R*").
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Die Entwicklungen erlauben es nun, für D eine Menge anzugeben, auf
die wir uns im folgenden beziehen werden :

Festlegung von D: D sei im folgenden immer die lineare Hülle der
Vektoren 0„(<p), wobei n 0,1,2,... und 0o(c) c Q gesetzt wird.

Satz: Die so festgelegte dichte Menge D in § erfüllt alle Bedingungen
aus dem 2. und 3. Axiom. Ausserdem sind auf Vektoren aus D die
infinitesimalen inhomogenen Lorentztransformationen anwendbar und diese
bilden D in sich ab.

Beweis: Es gilt offensichtlich

< A", y, > 0n(cp) 0„ +m(ip cp) g D (8)

und
U(a,A)0n(<p) 0n(tp{a,A))£D. (9)

Nun sei T(ra0) eine einparametrige stetige Untergruppe von { T(a)} und
es sei cpT(x) <p(x — r a0) ; schliesslich sei

àrMx) - -jr vAx) It-o - 4 ipr f(x) ¦

Dann gilt zunächst in der Topologie von %)(R*n) :

lim [t-1 (cpx -cp)- d <p] 0

Falls wir also

0T„(<p) =0n(q>z)

setzen, gilt
lim \\r-\0Kcp) - 0M) - ®«K<P) |=0. (10)
r—>0

Man beachte, dass auch dieser Limes in der starken Topologie in §
existiert. Ausserdem ist 0n(dTcp) eD.

Analog schliesst man für eine einparametrige Untergruppe A(a), wobei
diesmal cpa(x) cp(A~1(a)x) und dacp(x) =d\da cpa(x) |a_0 gesetzt wird.
Wieder gilt in der Topologie von Î)(J?4") :

lim [ff-1 (cv -cp)- d cp] 0

und daher, mit 0°n(cp) 0n(cpa) :

lim ||ff-1 {0l(cp) - 0n(cp)) -0n(dacp) ||=0, 0n(da<P) eD ¦ (11)
a—>0

In dem so festgelegten Bereich D ist also, um es kurz und salopp
auszudrücken, «alles» erlaubt.
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§ 3. Das Mass (€>, dE(p) W)

Das projektionswertige Mass E ist durch die Spektralzerlegung

T(a) f A^a) dE(p)

eindeutig bestimmt. Da für unsere Zwecke die Bezeichnung mit dem

Stieltj esschen Integral nicht passend ist, führen wir eine andere ein, die
sich an die Theorie der Distributionen anlehnt. Wir fassen E als stetiges,
operatorwertiges, lineares Funktional auf dem Banachraum 93 der
stetigen beschränkten Funktionen auf:

<[E,x>=Jx(p)dE(p) für zeS. (12)

Aus den elementaren Eigenschaften von E folgt dann unmittelbar

\\<E,x>\\<sup\x(j>)\. (13)

Dabei steht links die übliche Norm eines Operators 0:

|| 01| sup j| O0\\
H*ll-i

Für die Fouriertransformierte gilt in der neuen Bezeichnung die Formel :

T(a)=(E,ey, ea(p) *«*•>. (14)

Natürlich ist «aeS.
Die Darstellungsbedingungen

T(a) T(b) T(a+b) und U(A) T(a) U~l{A) T(Aa)

wobei U(A) U(0, A) gesetzt ist, reflektieren sich in den Gleichungen

T(a)<E,xy=<E,x_y
und (15)

U(A)<E,x>U-1(A) <E,XA_l>.

Dabei wurde als Abkürzungen

x-+tfi) =»**•'> Z&)
und (16)

Xa->(P) ZW)

verwendet. Da die Abbildungen % -> X_a und X -> Xa-i topologische
Abbildungen von 93 auf sich sind, können wir durch die Gleichungen
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<Ea,x>=<E,X-a> (17)

und <Ea,x> <E,Xa-i> (18)

eindeutig die Grössen Ea und EA definieren.
Dann gilt

T(a) E Ea und U(A) E U~\A) EA

EA ist wieder ein projektionswertiges Mass, was für Ea nicht gilt.
Nach diesen Präliminarien können wir zum eigentlichen Gegenstand

dieses Paragraphen übergehen und das komplexe Mass

<m,xy (0,<E,xyW) für 0,WeD (19)

betrachten. Dieses Mass ist beschränkt mit der Schranke

| <»».#>| < Sup \X\ -\0\ -llìr7! (20)

welche unmittelbar aus der Schranke für iE, Xy folgt, im, Xy aber zeigt,
dank des besonders gutartigen Charakters der Zustände in D, ein viel
reguläres Verhalten als iE, Xy. Um dies einzusehen, betrachten wir
zunächst

(0, T(a) iE, xy W) (0, iE, x_ay W) im, x_ay

Nun gilt gleichzeitig auch

im, X_ay {T(-a)0, iE, xyW)

und dieser Ausdruck ist, wie wir in § 2 gesehen haben, beliebig oft nach
a ableitbar. Führen wir durch

T(a) expi(P, a)

oder, gleichbedeutend, durch

Pk=JpkdE(p)

den Energie-Impulsoperator ein, dann findet sich durch die erwähnte
Ableitung nach a die Gleichung

im,$xy (y(P)0,iE,xy¥), (21)

wobei *ß links für ein Polynom ty(p) in den Komponenten von p steht,
während rechts dasselbe Polynom mit den Unbestimmten ersetzt durch
P, den Energie-Impulsoperator, auftritt.
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Der wesentliche Punkt besteht aber darin, dass die rechte Seite wieder
ein beschränktes Mass ist :

\im,%Xy\<\\y{P)0\\ -|| «Pfl -sup|z|. (22)

So haben wir das

1. Resultat : Für ein beliebiges Polynom ^S (p) ist auch Sfi m ein beschränktes

Mass.
Durch die Betrachtung von

(0, U(A) iE,xy U-\A) V) im, %Ay

<™a> X> {U-1(A)0, iE, xy U-^A) W)

erhalten wir eine zweite Art von Regularitätseigenschaften. Denn für A
können wir eine einparametrige Gruppe A(a) substituieren und - wieder
nach dem Resultat des zweiten Paragraphen - beliebig oft nach a
differenzieren. Durch einmalige Ableitung entsteht dann, wenn

_ d d
"kl -Pk-szr Pt-tyk

gesetzt wird und Mk[ die entsprechende infinitesimale Lorentztransformation

bedeutet, die Gleichung

<àkl m,xy i (Mkl0, iE, xy V) - i (0, iE,xyMkl V).
Wieder ist die rechte Seite ein beschränktes Mass; es gilt nämlich:

\<dklm,Xy\<{\\Mkl0\\\\W\\A-\\0\\-\\MklW\\}suV\X\. (23)

Wir haben so durch schwache Verallgemeinerung das

2. Resultat: Die Operatoren dkl lassen sich beliebig oft und in beliebiger
Reihenfolge auf das Mass m anwenden. Immer entsteht dabei wieder ein
beschränktes Mass (das natürlich auf ganz 93 definiert und stetig ist).
Durch Kombination der beiden Resultate erhalten wir den

Satz 1 : Aus dem beschränkten Mass m, das durch

im,xy (0,iE,xyW),0,WeD, (24)

als stetiges Funktional auf 93 erklärt ist, entsteht durch die folgenden
Operationen
(I) Multiplikation mit einer Komponente pk des Vektors p ;

(II) Anwendung einer infinitesimalen Lorentztransformation dkl
wieder ein beschränktes Mass, das eine Linearkombination von Massen
der Art (24) ist. Die Operationen (I) und (II) lassen sich also beliebig
wiederholen.
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Es ist für das folgende bequem, das ursprüngliche Mass E in einen
trivialen und einen nichttrivialen Teil zu spalten :

iE,xy=iE1,xy + x(0)EQ, (25)

wobei EQ, wie schon erwähnt, die Projektion auf den Zustand Q darstellt.
Der Träger von E1 ist in Vit enthalten. Der obige Satz gilt offensichtlich
auch für das Mass

im1,xy (0, iEx,xyW).

Schliesslich ist es angezeigt, durch passende Koordinaten der Lorentzgruppe

Rechnung zu tragen.
Wir führen dazu die in Vit völlig reguläre Transformation

(Po,P)^(t*2,P)

mit pt,2 (p, p) und p (plt p2, p3) ein. Die dadurch induzierte Transformation

x(AÌ)=x(\/t*2 + P2-p) (26)

vermittelt die Transformation der Masse

<E1>x> <ë,x>,

<m1>xy im,xy.

Schliesslich bildet sich dok auf — coDk ab, wobei

w ~\/pi2 + J2 und Dk -^- gesetzt ist.
dpk

Aus dem Satz 1 ergibt sich die

Folgerung: Auf das beschränkte Mass m können die folgenden Operationen

beliebig oft angewendet werden :

1. Multiplikation mit co oder pk.
2. Anwendung von co Dl.

Dabei entsteht immer wieder ein beschränktes Mass.
Nun besitzen wir aber für das Mass w dank der Trägerbedingung

Tr {m) C {(pt2,1):pt2> M2} (28)

noch die Möglichkeit der Multiplikation mit co-1, denn co"1 ist mit allen
seinen Ableitungen in Tr {m} beschränkt. Statt œ Dl können wir also
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D1 selbst auf m anwenden und erhalten damit wieder ein beschränktes
Mass. So erhalten wir den

Satz 2: Seien ^(co, px, p2, p3) und ^(D1, D2, D3) beliebige Polynome
in den eingeschriebenen Variablen, und sei ausserdem n eine beliebige
natürliche Zahl, dann ist

û»"" $i(ß>, Pi, p» Pz) y*{D\ D2, D3) m

immer ein beschränktes Mass.
Schliesslich brauchen wir für spätere Zwecke noch eine bessere Einsicht

in die Schranke von (Dk)N m. Es gilt

(D")N [oj-l((ü Dk)f,

und daraus schliesst man, dass (Dk)N in der Form

(Dkf=ZAr(co.Pk)(coDkY

geschrieben werden kann, wobei Ar(co, pk) im Träger von m beschränkt
ist:

\Ar(co,pk)\<Br.
Es ist daher

| i(D«)Nm, xy | \£<{a>D*yih, ArXy\. (29)
r- 1

Ferner gilt für beliebige ip e 93 :

<(wDk)rm,xpy (-l)r idr0k «!, ipy

irZQ(-iY(M*Ok0,<E1,ipyM<o-A¥)
s 0

und damit die Abschätzung

| i(coD»ym, y»\ <Z0 \\M™0\\ ' \\M'ÜS n SUP \f\ > (3°)
s-0

denn:

sup \ip\ sup |y>|

Also ist

\i(œDky m, ArXy\ < Brsuv\~X\2J Q\\Mlk0\\ -WMl'A y\\,
s-0

und i(Dk)N in, xy wird durch einen Ausdruck folgender Art abgeschätzt:
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\i(Dkf m, ~Xy\<suV\X\ JA BrJ\Mtk0\\-\\Ml-An^
säräiV

rCkN(0,¥)sup\X\, (31)

wobei die Br s wieder Konstanten sind.
Diese Abschätzung gestattet eine Anwendung. Sei Aok eine

Lorentztransformation in der (0, Ä)-Ebene und Uok U(Aok) die entsprechende
Darstellung. Natürlich gilt [Uok, Mok] 0. Nun bilden wir

(UOk0,iE1,xyUokW) imok,Xy,

dann gilt unabhängig von Uok wieder

I <(Dkf m0k,X>\< ChN(0, W) sup |x| (32)

wegen
\\MsOkUOk0\\ =\\UOkMlk0\\ =\\M°Ok0\\

§ 4. Das Matrixelement (*, T(a) W)

Mit der Aufspaltung von E in Ex und die Projektion auf das Vakuum
Ea ist eine Aufspaltung des Translationsoperators verbunden :

T(a) iE, eay EaA- <Elt eay =EaA- 7»
Parallel dazu spaltet sich auch das Matrixelement

t(a) (0, T(a) W) (0, Q) (Q, W) + tt(a)

in eine Konstante und den Term

t^a) (0, TM V) imx,eay.

Uns interessiert nur tx(a). Dieses ist offenbar eine C°°-Funktion von a, von
der daher ausschliesslich das asymptotische Verhalten interessiert. Falls

a von der Form (0, a) ist, dann liefert der Satz 2 unmittelbar den

Satz 3: tx(0, a) ist eine Testfunktion aus <Z(R3) (10), Bd. II, p. 89ff).
Dasselbe gilt für alle Ableitungen nach der Nullkomponenten :

dN&<X0

Den Beweis brauchen wir nicht auszuführen.

Der Satz 3 sagt im besonderen aus, dass für Vektoren der Art (0, a)

[- (a, a)f'2 tx(ä) -^0 für - (a, a)~*oo. (33)



44 R. Jost und K. Hepp H. P. A.

Natürlich gilt ein ähnliches Resultat auf jeder raumartigen Ebene, aber
die Gleichmässigkeit der Konvergenz für verschiedene Ebenen liegt tiefer.
Ihr wenden wir uns jetzt zu.

Es sei a beliebig raumartig. Dann existiert eine Raumrotation 0, für
die O a in der (0,1)-Ebene liegt. Aox sei weiter die Lorentztransformation,
die O a in die 1-Achse dreht :

Aox O a (0, jX (a, a), 0, 0) a

Wir setzen U(A0X) Uox und (7(0) s R. Dann gilt

(0, iEx, eay V) (Uox R0, iEx, eäy U01 RW)

<mA,e.y tx(a). (34)

Weiter ist

<(öf^, edy [- i)/- (a, a)f imA, e.y

und daher mit der Abschätzung vom Ende des letzten Paragraphen :

| (a, a) f'2 \tx(a) \=\(a, a) \N>2 \imA,eäy\< C1N(R0, R W)

denn bei den ursprünglichen Argumenten U01 R 0, Uox R ¥ von CN können

wir die Transformation U01 weglassen. Schreiben wir die rechte Seite
der Ungleichung aus, so erhalten wir

| (a, a) f'2 \tx(a) \ < £ BrJ M*ox R0\\ ¦ \\ M'0A R W\ (35)
sS.r£.N

Die rechte Seite ist stetig auf der 3-dimensionalen Rotationsgruppe und
kann daher unabhängig von R majorisiert werden. Es existiert also ein
Funktional KN(0, ¥) von 0 und W allein, derart dass

\(a,a)\Nl2-\tx(d)\<KN(0,W)
falls

(a, a) < 0.
Wir haben so den

Satz 4: Falls 0 und W Elemente von D sind, dann erfüllt

tx(a) (0, T(ä) W) - (0, Q) (Q, W)

im Nebenkegel £ {a: (a, a) < 0} für jede Wahl der natürlichen Zahlen
N, m0, mx, m2, m3 eine Ungleichung

I («. «) \m IC aj d:: dl' tx(a) | < K»(0, V). (36)
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§ 5. Eine Anwendung und Bemerkungen

Im folgenden verwenden wir die Abkürzung

2ß»+mfe =y 2ß„ +r* (xx, ...xn,yxA-a,---ymA-a) x(xx, ¦ ¦ • xn, yx ¦ ¦ ¦ ym) x

x d*nxd*my. (37)

Ausserdem führen wir das Tensorprodukt 9B„ ® 9Bm der beiden Distributionen

2B„ und 2Bm ein (10), Bd. I, p. 106ff). Dieses ist durch die Werte
2B„® 2Bm (ç>y>) 3B„(ç>) • 9!Bm(^) vollständig definiert.

Spezialisiert man die Diskussion des letzten Paragraphen auf Vektoren
0 und *F der Form 0n(cp) und 0m(y>), dann ergibt sich leicht die

Folgerung: Für jede natürliche Zahl 2V und beschränkte Mengen
BXCT>(R*") und ß^C ü(R*m) existiert eine SchrankeKN(BX, BA derart,
dass

13BLal> V) - SB,. ® 2Bm(ç> y>) | < | (a, a) | ^/2 tfw(B„ B,)
für alle

epe Bx, %pe By und (a, a) < 0. (38)

Bx hat als beschränkte Menge die Eigenschaft, dass jede Distribution
aus ^>'(R*n) auf Bx beschränkt ist, und analoges trifft für By zu. Die
Beschränktheitsaussage in der Folgerung ergibt sich dann unmittelbar
aus der Tatsache, dass die Schranke K%(0, W) sich in unserem Spezialfall

als endliche Summe bilinearer Ausdrücke von Distributionen mit den
Variablen cp und ip darstellt.

Nun lässt sich aber die Folgerung unschwer auf beliebige Funktionen
X e BXiy C î)(i?4"+4m) ausdehnen, wobei B wieder als beschränkt
vorausgesetzt ist. An die Stelle der Schranke KN(BX, By) tritt dann eine
Schranke, die von Bx abhängt.

Zu BXig existiert immer eine Konstante M > 0 und beschränkte Mengen

BxC î)(it4") und By C T)(R*m) derart, dass jedes xG Bx,y dle Darstellung

gestattet (12), p. 64) :

oo

X(xx, ¦ ¦ ¦ x„, yx, ¦ ¦ ¦ ym) =£li(pi(xx, ¦¦¦ xn) xpt(yx, ¦ ¦ ¦ ym)
»=i

oo

mit 2J I ^i I < M und cpl e Bx und ipt e By
i- 1

Damit ergibt sich aber
oo

I SBiaUx) - SB» ® SM*) I <E l*i I I *»&>' Vi) -i-l
-Wn® 3&JfptVt) \<\(a,a)\-N'2 MKN(BX, BA (39)
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Gleichbedeutend mit dieser Aussage ist der

Satz 5: Im Sinne der Konvergenz in £>'(B4"+4"!) gilt für jede natürliche
Zahl N gleichmässig für alle raumartigen Vektoren a:

lim | (a, a) f2 (SB« „ - 9B„ ® 2BJ 0 (40)
— (a, a)—>oo

Dieser Satz ist eine Verallgemeinerung eines Satzes von H. Araki. Ein
Vergleich unserer Beweismethode mit derjenigen von Araki ist lehrreich :

Araki verwendet die Spektralzerlegung des Translationsoperators nicht,
sondern erschliesst allein aus den linearen Eigenschaften der Wightman-
distributionen das Resultat. Dagegen muss er die Temperiertheit der

Wightmandistributionen wenigstens in jeder Differenzvariablen einzeln
annehmen. Diese Temperiertheit ist nun allerdings eine Folge der
Spektralzerlegung von T(a). Verwendet man diese direkt, dann erscheinen
die Grundlagen der beiden Beweise nahezu identisch.

Beiden Beweisverfahren gemeinsam ist, dass die Voraussetzungen über
das Spektrum nicht vollständig ausgenützt zu werden brauchen.
Insbesondere gelten alle hier aufgeführten Sätze auch dann, wenn der Träger
von Ex in Vif U VM_ enthalten ist (Vi {p : (p, p) > M2, p0<0}).
Sie haben also nur beschränkt etwas mit dem Postulat positiver Energie
und damit mit den Analytizizätseigenschaften der Wightmanfunktionen
zu tun.

Die Autoren möchten dem Institut des Hautes Etudes Scientifiques
und besonders seinem Direktor Dr. Léon Motchane für die Einladung
nach Paris danken. Es war ihnen so möglich, während einiger Wochen
in Ruhe zu arbeiten. Diese Untersuchung ist ein Ergebnis dieser Arbeit.
Einer der Autoren (K. H.) dankt ferner dem Schweizerischen Nationalfonds

(K.A.W.) für ein Forschungsstipendium.
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