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Über quantenmechanische Systeme mit einem
stochastischen Hamiltonoperator*)

von H. Primas
(Laboratorium für physikalische Chemie der ETH, Zürich)

(15. VIII. 1960)

Summary. This paper deals with the theory of quantum mechanical systems with
a stochastic Hamiltonian which are of importance in the theory of dissipative
systems and in experimental investigations of the response of physical systems by
means of electronic devices. A new formal development of quantum mechanical
density matrices is given that is valid even for strong stochastic perturbations. If
the stochastic part of the Hamiltonian has a Gaussian distribution and an almost
constant spectral density the given solution reduces to an expansion in terms of
Hermite functionals which are othonormal respective to the Wiener measure
(Cameron-Martin development). This expansion is operationally meaningful and
characterized by good convergence and simple properties. As an example of the
application of the theory a new foundation of Bloch's relaxation theory is sketched.

1. Einleitung
Diese Arbeit ist ein Beitrag zur Theorie von quantenmechanischen

Systemen, die durch einen Hamiltonoperator mit einem expliziten
stochastischen Anteil beschrieben werden.

Solche Systeme sind als Modelle für viele physikalische, chemische
und biologische Phänomene von Bedeutung. Dabei treten stochastische
Hamiltonoperatoren in zwei grundsätzlich verschiedenen Zusammenhängen

auf:

a) Systeme, in denen gewisse äussere Parameter absichtlich stochas-
tisch variiert werden.

b) Zur Beschreibung dissipativer Systeme kann man das Modell der
Ankopplung eines quantenmechanischen Systems an eine
makroskopische Umgebung benützen. Dieses Problem kann reduziert
werden auf eine Beschreibung des Systems allein, wobei ein
modifizierter Hamiltonoperator benützt werden muss, der einen explizit
stochastischen Anteil aufweist.

*) Die Arbeit ist im wesentlichen identisch mit einer im November 1959 der
Eidgenössischen Technischen Hochschule eingereichten Habilitationsschrift.
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Für den ersten Fall werden wir in folgenden Arbeiten Anwendungsbeispiele

aus dem Gebiet der Kernresonanzspektroskopie geben2). Die
Anwendung der Theorie auf die Beschreibung dissipativer Systeme ist
im Anhang 3 kurz skizziert.

2. Das Response-Funktional quantenmechanischer Systeme

Die zu der Observablen A (A hermitescher, zeitunabhängiger
Operator) gehörige, makroskopisch beobachtbare Grösse sei a(t). Nach der
Quantenmechanik ist a(t) gegeben durch

a(t) Sp{AQ(t)} (2-1)

wobei die Dichtematrix g(t) der Differentialgleichung

i g (t) [H, g(t)] {+ Anfangsbedingung) (2-2)

genügt. Der Hamiltonoperator H des Systems darf explizite zeitabhängig
sein. Hat der Hamiltonoperator H die Form

H(t) H0(t) + s(t) ¦ V (2-3)

V explizite zeitwwabhängig
s(t) äusserer Parameter (c-Zahlfunktion)

so ist die beobachtbare Grösse a(t) ein Funktional des Parameters s(t).
Wir können die klassischen Grössen s(t) als Input und a(t) als Output
des Systems betrachten und bezeichnen dann R

a(t) R{s(t)} (2-4)

als das Response-Funktional des Systems.
Begnügt man sich mit einer Näherung, in der der Output a(t) linear

von dem Input s(t) abhängt, so kann man leicht eine vollständige Übersicht

über alle auftretenden Probleme erreichen. Eine solche lineare
Theorie wurde vor allem von R. Kubo3),*),27),28) im Detail ausgearbeitet.

Die höheren Terme dieser Entwicklung können leicht angegeben
werden; man erhält dann eine Volterra-Entwicklung5) des Response-
Funktionals R nach Potenzen von V. Diese Volterra-Darstellung des

Responsefunktionals ist aber oft von nur geringem praktischem Wert.
Bei wesentlichen Nichtlinearitäten des Systems ist die Volterra-Entwicklung

nur langsam oder gar nicht konvergent. Ist der Input s (t) eine
stochastische Funktion, so stösst die Berechnung der stochastischen
Invarianten des Outputs a(t) aus denjenigen des Inputs bei einer Volterra-
Entwicklung im allgemeinen auf ernsthafte Schwierigkeiten.
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Im folgenden geben wir für den Fall eines stochastischen Inputs eine

Darstellung des Responsefunktionals, welche die erwähnten Nachteile
nicht besitzt. Es handelt sich um eine Entwicklung, die mit den
asymptotischen Methoden von Bogoliubov und Mitropolskii6) eine gewisse
Verwandtschaft besitzt. Wählt man als Inputfunktion eine stochastische
Funktion mit Gausscher Wahrscheinlichkeitsdichte und weissem Spektrum,

so erhält man eine besonders einfache und konvergente Entwicklung

nach stochastisch orthogonalen Funktionalen (vgl. Kap. 4). Wie
N. Wiener7) eindrücklich zeigte, ist die Methode «white noise input»
das angemessene mathematische und experimentelle Hilfsmittel zur
Untersuchung nichtlinearer Systeme. In diesem Zusammenhang dürften
die folgenden Resultate auch eine allgemeinere Bedeutung für die
Untersuchung quantenmechanischer Systeme haben.

3. Asymptotische Entwicklung des Response-Funktional

31. Einleitung

Basierend auf dem Lemma 1 des Anhangs geben wir im folgenden eine

asymptotische Entwicklung der gewöhnlichen Dichtematrix £(£)undder
Karplus-Schwinger Dichtematrix P(t). Diese Dichtematrizen sind durch
Operatoren-Differentialgleichungen definiert ; für die gewöhnliche Dichtematrix

gilt bekanntlich

Q(t) -i[H(t),Q(t)] (31-1)

+ Anfangsbedingung,

während für die Dichtematrix P(t) nach Karplus und Schwinger1) gilt:

P(t) -i [H(t), P(t)] ~-oj{P(t) - P0(t)} (31-2)
mit

P0(t) exp {- ß H(t)}jSp exp {- ß H(t)} (31-3)

ß \\kT (31-4)

Der Formalismus von Karplus und Schwinger berücksichtigt auf
einfachste Weise eine Relaxation des Systems mit der Umgebung; co ist
eine reziproke Relaxationszeit. Die Benützung der Karplus-Schwinger-
Dichtematrix P(t) anstelle der gewöhnlichen Dichtematrix ç(t) ist immer
dann angebracht, wenn für das betreffende Problem das detaillierte
Relaxationsverhalten nicht von Interesse ist, aber trotzdem eine
Relaxation in grosso modo berücksichtigt werden muss. Z. B. darf man bei
Systemen, die ein Sättigungsverhalten zeigen, die Dissipation mit der
Umgebung nie vernachlässigen; andererseits ist in diesen Fällen eine
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globale Erfassung der Relaxation nach Karplus und Schwinger oft
hinreichend.

Obwohl die Differentialgleichung (31-1) formal ein Spezialfall der

Differentialgleichung (31-2) ist, erweist es sich als zweckmässig, diese
beiden Fälle separat zu diskutieren. In Kap. 32 geben wir die Entwicklung

der gewöhnlichen Dichtematrix g(t) und in Kap. 33 die Entwicklung
der Karplus-Schwinger-Dichtematrix P(t).

Über die Struktur des Hamiltonoperators H(t) machen wir folgende
Annahmen. Der Hamiltonoperator soll sich in zwei hermitesche Operatoren

H0(t) und V(i) aufspalten lassen.

H(t) H0(t) + a V(t) (31-5)

wobei H0(t) immer ein mcA^-stochastischer Operator sein soll; a ist eine
reelle Zahl. In praktisch allen physikalischen Anwendungen kann V(t)
zerlegt werden :

V{t)=Zs„(t)-Vn (31-6)

wobei die Vn zeitwwabhängige hermitesche Operatoren sein sollen. Die
sn(t) seien stationäre stochastische c-Zahlfunktionen, von denen wir ohne

Einschränkung der Allgemeinheit annehmen dürfen, dass ihr stochas-
tischer Mittelwert verschwinde. Als Mittelwert einer stochastischen Funktion

wählen wir immer den Ensemblemittelwert (im Gegensatz zum
Zeitmittelwert). Somit ist

<*.(<)> 0 (31-7)

<•••> Ensemblemittelwert (31—8)

Um die Formeln etwas einfacher schreiben zu können, werden wir im
Verlaufe der Rechnung eine Spezialisierung vornehmen, nämlich dass

V(t) die etwas einfachere Struktur

V(t) s(t) ¦ V (31-9)

habe. Solange die sn(t) nicht korreliert sind (<snsmy Ofür n$m), bedeutet
dies keine Einschränkung der Allgemeinheit; der allgemeine Fall kann
mit genau den gleichen Methoden erledigt werden.*)

Alle folgenden Beziehungen sollen nur formale Relationen sein; Kon-
verg nzfragen müssten von Fall zu Fall erledigt werden. Deshalb machen
wir keine weiteren Konvergenzvoraussetzungen über die Operatoren
und über die stochastischen Zeitfunktionen.

*) Im allgemeinen Fall transformiert man vorteilhafterweise auf stochastisch
unabhängige Variable, vergleiche dazu z. B. das Referat von Lax28).
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32. Entwicklung der gewöhnlichen Dichtematrix

Zur Behandlung der Differentialgleichung (31-1) mit dem Hamiltonoperator

(31-5) transformieren wir zunächst mit dem Operator H0 in
die Wechselwirkungsdarstellung. Wir definieren einen unitären Operator
S(t) durch die Differentialgleichung

S(t) i S(t) H0(t); S(0) 1 (32-1)

Falls Ha explizite zeitunabhängig ist, gilt natürlich

S(t)=exp{iH0t} (32-2)

Mit den transformierten Grössen

Q(t) S(t) ß(t) S'(t) (32-3)

V(t) S(t) V(t) S\t) - (32-4)

reduziert sich dann die Differentialgleichung (31-1) auf die folgende:

i Q(t) [V(t), Q(t)] (32-5)

Den Ensemblemittelwert von q(£) bezeichnen wir mit cp(t),

<Q(t)> <p(t) (32-6)

und analog in der Wechselwirkungsdarstellung

<p(t) <e(t)> S(t)cp(t)Si(t) (32-7)

Auf Gleichung (32-5) können wir nun das Lemma 1 des Anhangs
anwenden und erhalten dann folgende Entwicklung (setze Q(t) R(t),

V(t) V(t),Q(t) 0):
Où

Q(t) v(t)+Z°"Fn(t) (32-8)
n - 1

wobei der Mittelwert (p{t) Lösung folgender nicht-stochastischer Integro-
Differentialgleichung ist :

OQ

cp(t) ~i£o« <[V(t), Fn_M> (32-9)

Die F„ sind rekursiv gegeben durch

XW -*'/" X(X ?W3 dr (32-10)
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m ~ij {[XX F..&) - <[V(r), F„XX >} dr (32-11)
— oo

für n > 1

Dies ist die allgemeine Lösung des Problems. Für den Spezialfall, dass

V(t) die einfache Struktur

V(t) s(t) ¦ V (32-12)

mit <s(t) > 0

aufweist, folgt aus (32-8) bis (32-11) sofort folgende Darstellung für die
ersten Terme :

ö(t) cp(t)

CG

+27 ff"(
»=i

¦ wn

h

dtx l dto ¦ ¦

— oo

t„

¦I
— oo

Ä. ¦/. («i. ,<

(32

„)•

-13)

Dabei ist ç>(/j) die Lösung folgender nicht-stochastischer Integro-Dif-
ferentialgleichung :

<p(t)

CO

=2><
n 2

-0-/
— CO

dtx 1 dt2 ¦

— CO

• wn (t, tlt

.jdtn
— OO

¦¦..*.-

-1

l)

•&, (*. 'l

(32--14)

Es wurden folgende Abkürzungen benützt :

K(k,---Jn) =[V(k),[V(k),[--.[V(tn)Mtn)]...]] (32-15)

kik) s(k) (32-16)

fjfv k) s(k) s(h) - <s{h) s(t2) >

Uk, k. k) s(k) s(k) s(t3) - sfa) <s(*2) sfe) > - <sfe) sfe) sfa) >

Afe, ** ffr h) s(k) s(k) s(ts) sfa) - sfa) s(t2) <sfa) sfa) >

- sfa) <s(k) sfa) sfa)} + <sft) s(ü2)> <sfa) sfa)} etc.

g2fe,y <sfe)*(<J> (32-17)
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g3(k- k, k) <s(k) sfa) Sfa) >

giik. k, k. k) <s(k) Sfa) Sfa) Sfa) > - <sfa) Sfa) > (Sfa) Sfa) >

g,{k> k, k. k, k) <s(k) sfa) sfa) sfa) sfa) > - (sfa) sfa) sfa) >

<sfa) sfa) > - (sfa) sfa) > (sfa) sfa) sfa) > etc.

Mit der Relation (2-1)

a(t) Sp{AQ(t)}=Sp{A(t)Q(t)}

ergibt dies die gewünschte Darstellung des Reponsefunktionals.

33. Entwicklung der Karplus-Schwinger-Dichtematrix

Durch die Substitution

R(t) e'"' P(t) (33-1)

Q(t) X P0{t) (33-2)

vereinfacht sich die Karplus-Schwinger-Differentialgleichung (31-2) wie
folgt:

R(t) -i[H(t),R(t)]+a>Q(t) (33-3)

Analog wie in Kap. 32 gehen wir mit dem unitären Operator S von Gl.
(32-1) zur Wechselwirkungsdarstellung über und bezeichnen die
transformierten Grössen mit einem Querstrich.

X Sfa) XS\t), X(0) X(0) (33-4)

für X V, P, P0, R, Q, cp

Mit (31-5) folgt dann aus (33-3) :

R(t) -ia [V(t), Rfa] + co Qfa) (33-5)

Diese Gleichung hat genau die Form der Operatorengleichung von
Lemma 1 des Anhangs, also folgt die Entwicklung:

y(t) <R(t)y (33-6)
OO

R(t)=r(t)+2Jo°Fn(t) (33-7)
n 1

Der Mittelwert cpfa) ist die Lösung folgender nicht-stochastischer Integro-
Differentialgleichung
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OO

cp(t) co <Q(t) > - i£<r i[Vfa), F„_M > (33-8)
» 2

Die Fn sind rekursiv gegeben durch

t

F„(t) -*y"{l7(T),F,_1(T)] - <X(t),F„_1(t)]>}^t +
— OO

+ /{<?.W - <Ç„(t) >} dr für « > 1 (33-9)
— OO

% t

Fifa - ;J [V(r), cp(r)] dr + cof {(?,{%) - <Ç1(t) >} rfr (33-10)
— OO —oo

_ °o

mitÇ(/)=27o"ÇB(0 P3"11)

Dies ist die exakte Lösung des Problems. Für den praktisch oft eintreten
Fall «hoher Temperaturen» lassen sich wesentliche Vereinfachungen
erreichen. Dazu entwickeln wir nach Potenzen von ß \jkT und brechen
nach dem linearen Term ab. Praktisch verschwindet oft die Spur des

Operators V; machen wir auch diese unwesentliche Annahme,

Sp {Vfa} 0 (33-12)

so ergibt die Entwicklung von P0 (Gig. 31-3) :

P0=x{l-ßH0-oßV+0(ß2)) (33-13)
mit

x=llSp{l- ßH0} (33-14)

mit (33-2) und (33-11) folgt dann

Q(t) xS*{l-ßH0-oßV(t)} (33-15)
also:

Q0-xS*(l-ßHJ (33-16)

Q1=-xemtV(t) (33-17)

Qn 0'für n > 1 (33-18)

Damit folgt aus (33-8) bis (33-11) :

CO

çfa)=o)Q<t-i^<f<[Vfa},Fn_lfaj\>
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t t

Fifa - i I [V(r), çX)] dr-mxß I e"" V(r) dx (33-20)

Fnfa) -i {[V(r), Fn^(r) - <[V(r), F„_t(r)]>} dr (33-21)

4. Entwicklung des Responsefunktionals
nach orthonormalen Funktionalen bezüglich dem Wienerschen Mass

41. Einleitung

In einer grundlegenden Arbeit führten Cameron und Martin8) eine

Orthogonalentwicklung von nicht-linearen Funktionalen bezüglich dem
Wienerschen Mass*) ein. Die im vorhergehenden Kapitel hergeleitete
Darstellung des Responsefunktionals enthält nun als Spezialfall eine solche

Entwicklung nach Orthogonalfunktionalen und gewinnt damit eine
wesentlich tieferliegende Bedeutung. Zur Darstellung dieses Zusammenhanges

werden wir nun nicht den abstrakten mathematischen Apparat
des Wienerschen Masses benutzen. Wir bevorzugen hier eine physikalisch
anschaulichere Darstellungsweise, wie sie etwa in der Elektronik üblich
ist und benützen auch die dort übliche Sprechweise. Es sei aber darauf
hingewiesen, dass alle unsere Resultate mathematisch einwandfrei mit
dem Wienerschen Mass hergeleitet werden können und mit diesen völlig
identisch sind.

Für unsere Darstellungsart benötigen wir den aus der Elektronik
entlehnten Begriff des «white noise». Darunter sei folgendes verstanden:
asfa) sei eine stationäre stochastische Funktion mit Gausscher
Wahrscheinlichkeitsverteilung, die im Frequenzbereich — Bj2 < m < B\2
eine konstante Spektraldichte von o2\B habe und ausserhalb dieses
Bereiches verschwinde.

PH
a2\B für - B/2 < m < B\2

0 sonst

Die Korrelationsfunktion a2K(t) ist die Fouriertransformierte der
Spektraldichte P(co), also

oo

a2K(t) j P{œ)e""tdco a2- *^|L
*) Für eine Einführung in die Theorie des Wienerschen Masses vgl. etwa Gelfand,

Jaglom9), Wiener'), Kac10).
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Für «weissen Noise» sollte man die Bandbreite B unendlich wählen, was
aber auf Konvergenzschwierigkeiten führt, wenn man das Wienersche
Mass vermeiden will. Wir wählen B endlich, aber sehr gross. Man kann
in jedem spezifierten Anwendungsbeispiel die Bandbreite B so gross
wählen, dass die Korrelationsfunktion a2Kfa) beliebig genau durch eine

Diracsche Deltafunktion approximiert wird, d. h.

o-2 Kfa x 2 n a2\B ¦ afa)

Die physikalisch bedeutsame Grösse ist nicht die Streuung c2, sondern
die Streuung pro Bandbreite, a2\B.

42. Spezialisierung der früheren Resultate für weissen Noise als Input-
funktion

Wir spezialisieren nun die früheren Resultate für den Fall, dass der

Hamiltonoperator die einfache Struktur

Hfa H0A- sfa V (42-1)

hat. H0 und V seien nun zeitwwabhängige Operatoren (dies ist eine
unwesentliche Einschränkung) und sfa sei Gausscher weisser Noise mit dem
Mittelwert Null

<s(t)> 0 (42-2)

Für weissen Noise ist es bequem die Normierung der stochastischen
Funktion zu ändern; wir schreiben

H H0 + X rfa) V
mit

X ^2n a2jB (X2 Streuung pro Bandbreite)

Dann gelten für rfa bekanntlich folgende Relationen :

<rfa)rfa)>~dfa-t2) (42-3)

<r fa) r(t2n) > ZuWj - <*) (42"4)
m

<jfa).--rfan + 1)y 0 (42-5)

»=1,2,3,,..
Die Summe in (42-4) erstreckt sich über alle Möglichkeiten, 2 n Terme

tlt t2l..., t2n in » Paare zu teilen und das Produkt ist über alle Paare
dieser Aufteilung.
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Mit diesen Relationen vereinfachen sich nun die früheren Resultate
ausserordentlich :

Entwicklung der gewöhnlichen Dichtematrix (vgl. Kap. 32). Mit Hilfe von
Lemma 2 des Anhangs ist sofort zu sehen, dass im Integral (32-14)
nur die Funktion g2 (Gl. 32-17) einen nicht-verschwindenden Beitrag
gibt. Somit erhalten wir das einfache Resultat :

<p{t) -A2 [V(t), [Vfa, cpfa]] (42-6)

Entwicklung der Karplus-Schwinger-Dichtematrix (vgl. Kap. 33). Wir
beschränken uns auf den Fall «hoher Temperaturen». Aus Gl. (39-19)
folgt genau analog nach kurzer Rechnung :

cpfa co Q0 - X2 [Vfa, [Vfa, cpfa]] (42-7)

43. n-dimensionale Hermitesche Funktionalpolynome

In vielen Problemen mit weissem gausschen Noise erweist es sich als

vorteilhaft, w-dimensionale Hermitesche Funktionalpolynome
einzuführen (vgl. etwa Zadeh11), Wiener7). Wir benützen als Definition der
w-dimensionalen Hermiteschen Polynome diejenige von Grad12). In
einer funktionalen Schreibweise lauten die ersten dieser Polynome

H0 =1

H.fa) rfa)

H2fa, k) rfa) rfa) - afa - tk)

H3fa, k, y rfa) rfa) r(tm) -
- rfa) afa - tm) -
- rfa) ôfa - y -
- r(tm) ôfa - tk)

Dabei benützen wir die Abkürzung

Hnfa,...,tn) H{rfa),...,rfa)}

(43-1)

etc.

(43-2)

Mit den Relationen (42-3) bis (42-5) ergeben sich folgende Ortho-
normalitätsrelationen :

<Hnfa, ...,tn)- Hm(rv rj > ônm£YIofa - rk) (43-3)
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Die Summe erstreckt sich wiederum über alle Möglichkeiten, aus tx...,tn
und Tj,..., t„ Paare zu bilden und das Produkt geht über alle Paare
einer solchen Aufteilung.

Im Gegensatz zu den Funktionalen von Gl. (32-16) ist in der Hermiteschen

Funktionalpolynomen (43-1) keine Zeitrichtung ausgezeichnet.
Es ist nun bemerkenswert, dass in der Entwicklung (32-13) die
Funktionale /„ durch die Hermiteschen Funktionale Hn ersetzt werden können.
Es gilt

- >-
Q(t) 9»W + 2>(- 0" I dtt... dtn Hn fa, ...,k)Wn fa, ...,tn)

» i •> J

(43-4)
Die Differenz zwischen dem Ausdruck (32-13) und demjenigen von
(43—4) sind alles Integrale, die nach Lemma 2 des Anhangs verschwinden.
Diese Möglichkeit der Einführung orthogonaler Polynome ist typisch für
den weissen Noise und kann nicht in einfacher Weise auf stochastische
Funktionen mit einem anderen Powerspektrum verallgemeinert werden.
Diese Tatsache hängt mit der ausgezeichneten Stellung des Wienerschen

Masses zusammen.

44. Mittelwert und Spektrum für ein stationäres Responsefunktional

Bis jetzt benützen wir nicht, dass im Hamiltonoperator (42-1) die
Operatoren H0 und V explizite zeitunabhängig sind. Ist dies aber der
Fall, so wird das Reponsefunktional stationär und die Berechnung der
Spektraldichte der Response ist dann sinnvoll und in einfacher Weise
möglich.

Vorteilhafterweise transformieren wir von der Wechselwirkungsdarstellung

mit dem Operator S+ (Gl. 32-2)

S+ exp{-iH0t} (44-1)

wieder in die Schrödingerdarstellung zurück. Wir formulieren im
folgenden alle Resultate für die Karplus-Schwinger-Dichtematrix*). Die
Schrödingerdarstellung von Gig. (42-7) lautet

cpfa - i [H0, cpfa] - X2 [[V, [V, cpfa]] +coQ0 (44-2)

*) Wir benützen die Näherung der «hohen Temperatur» von Kap. 33 und lassen
der Einfachheit halber auch den meistens verschwindend kleinen Kreuzterm
zwischen Relaxation und Temperatureinfluss in Gl. (33-20) (letzter Term in der
Gleichung für F1 weg). Dies ist keine wesentliche Einschränkung; die exakte Theorie
kann genau analog entwickelt werden. Wesentlich ist lediglich die Mitberücksichtigung

der Relaxation in grosso modo; ohne Relaxation wäre die Existenz des
Grenzwertes (44-^1) nicht gesichert.
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Macht man die Substitutionen (33-1) und (33-2) wieder rückgängig, so
erhält man :

^ <P> -i [H0, <P>] - X2 [V, [V, <P>]] - co{<P> -x(l-ß H0)}

(44-3)
Da diese Differentialgleichung ein stationäres System beschreibt, muss
<P> nach Abklingen des Einschwingvorganges asymptotisch zeitunabhängig

werden ; wir definieren

77=lim<P> (44-4)

Da die Existenz dieses Limes aus physikalischen Gründen evident ist,
können wir zu seiner Berechnung folgendes Abelsches Theorem der
Laplacetransformation benützen,

oo

77 limp f e-P'<P(t)ydt
p^ + 0 0

Durch Laplacetransformation der Gleichung (44-3) folgt damit:

[H0, 77] + X2 [V,[V, 77]] co{x (1 - ß H0) -77} (44-3a)

Zur Berechnung des stationären Teils des Spektrums können wir <P>
durch 77 ersetzen. Unter den gemachten Annahmen sind die Gleichungen
für die Fx und F„ für die gewöhnliche und für die Karplus-Schwinger-
Dichtematrix formal identisch sind (vgl. Gl. (32-10) und (32-11) mit
Gl. (33-20) und (33-21)), können wir für das folgende direkt das
Resultat (43—4) benützen. In der Schrödingerdarstellung lautet nun Gl.

(43-4)*):
oo i fn_1

Pfa) 77 + 2> (-i)" [dt,... fdtn-Hnfa,...,tn).
— CO —oo

• [V fa - t), [V fa - t), [V fa - t), U fa -t)]...]] (44-5)
mit

Ufa e'"'* n é""1 (44-6)

Daraus folgt durch die Substitution x, t — tj :

*) Den asymptotisch verschwindende Einschwingvorgang haben wir bereits
weggelassen.
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oo oo
oo

Pfa 77 + £X«(-iY dxx...J d„ ¦ Hn (t - rv f, - r„) •

U ^ 77-1

• XXX. XX r2), [V(- r„), 77(- t„)] ...]] (44-7)

Zur Berechnung des quantenmechanischen Erwartungswertes afa der
Observablen A führen wir folgende Kerne ein :

K0 Sp {A 77} (44-8)

K«(*i. ¦ ¦ ¦.. r„) X"(- i)" U(xx) U (r2 - t,) U (rn - r„_x)

• Sp {[V(- tx), [7(- t„), 77(- r„)] ...] 4} (44-9)

wobei {/(<) die Einheitsstossfunktion ist,

L7(<) 1 für * > 0 (44-10)

Ufa 0 für t < 0

Dann folgt für «(*) S/> {APfa)} aus Gl. (44-7) :

OO OO

a(t) K0+2J / ÄTl. ¦¦ f dxn K„ (t1; ¦¦ rj ff„ (t --Tj, .,*-"Tj
"-1-«) — OC

(44-12)

Dies ist die Entwicklung des Responsefunktionals nach stochastisch
orthogonalen Polynomen.
Dank den Orthogonalitätsrelationen der Hermiteschen Orthogonalfunktionale

ist nun die Berechnung des Powerspektrums von afa) sehr
einfach. Wir berechnen zunächst die Korrelationsfunktion von afa) und
können dann das Spektrum mit dem Wiener-Khintchineschen Satz
erhalten.

Mit Hilfe der Orthogonaldarstellung (44-12) von afa), den Ortho-
normalitätsrelationen (43-3) und dem Lemma 2 des Anhangs erhält
man nach kurzer elementarer Rechnung :

(44-13)

(44-14)

(.afa) > K0

(a(x) a(y)> k(i; — y) (Definition der Korrelationsfunktion)

k(x) \K I2
1 o|

OO

+27
CO

/dtx.
— CO

OO

..JdtnKnfa,...
— CO

,ttt)K*nfa + x,. ¦,k+ r) (44-15)

4 HPA 34, 1 (1961)



50 H.Primas H. P.A.

Nach Wiener-Khintchine ist das Powerspektrum p(Q) die
Fouriertransformierte der Korrelationsfunktion k(x)

P(Ü) (1 /2 n) / k(x) e-^ dx =2Jpn(£!) (44-16)
X "-0

OO CO oo

p„(Ü) (1/2 n) f dx e~ia*f dt,... dtn Knfa,... ,t„) K*n fa + x,..., tn + x)

-oo (44-17)

Vorteilhaft führt man die «-dimensionale Fouriertransformierten der
Kerne Kn ein :

oo oo

Ln(Qlt Qn) (ll2n)"jdt1...Jdtn Kfa, ,tn) e'(Q1 txA- ¦¦¦ + QHtn)

(44-18)

Damit findet man nach kurzer elementarer Rechnung für das
Powerspektrum p(Q)

OO

p(Q)=£pn(Q)
n 0

(44-19)

OO OO

MW - (2 nf 1 düx... I d ß„_j | Ln (Qx, ü2,
— CO —CO

ü-üx-... -ß„X|2 (44-20)

In genau analoger Weise können aus der Orthogonalstellung (44-12)
andere stochastische Invarianten berechnet werden.

5. Einige Bemerkungen über die Natur der Reihenentwicklungen
dieser Arbeit

Im Gegensatz zu der üblichen Volterra-Entwicklung der Dichtematrix

sind die Reihenentwicklungen dieser Arbeit weder Entwicklungen
für kleine Zeiten noch Approximationen für kleine Störungen V.

Wir werden in einer folgenden Arbeit an einem Beispiel explizite
zeigen, dass man die höheren Terme der Entwicklung immer dann
vernachlässigen darf, wenn oT <^ 1 ist, wobei T eine durch

1 1

Y=co + Y7
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definierte Relaxationszeit ist. Ts ist eine für die stochastische Funktion

sfa) charakteristische Korrelationszeit. Es ist zu beachten, dass unsere

Entwicklung nicht eine Potenzreihenentwicklung nach a ist; es werden
bereits in den ersten Näherungen alle Ordnungen partiell mitberücksichtigt.

Diese Entwicklung ist besonders zur Berechnung von
Linienverbreiterungen und level-shifts geeignet, die bekanntlich mit einer
Polynomapproximation in a nicht erhalten werden können.

Der in Kapitel 4 diskutierte Spezialfall liegt deshalb besonders einfach,
weil für weissen Noise die Korrelationszeit Ts und damit auch T null
wird und damit die Entwicklung nach Potenzen von T abbricht. Bezüglich

dem Wienerschen Mass reduzieren sich dann unsere Approximationen
auf eine Orthonormalentwicklung nach Hermiteschen Orthogonalfunktionen.

Eine solche Entwicklung hat gegenüber einer Volterra-Entwicklung

die analogen Vorteile, die eine Entwicklung nach Hermiteschen
Polynomen gegenüber einer Potenzreihenentwicklung hat. Eine
Entwicklung nach Hermiteschen Funktionalen ist physikalisch sinnvoll, da
die «Fourierkoeffizienten» dieser Entwicklung experimentell unabhängig
voneinander bestimmt werden können. Solche Verfahren sind in der
Elektronik wohlbekannt (man vgl. etwa Wiener7), Zadeh11) usw), und
können auch auf allgemeinere Fälle ausgedehnt werden. In diesem
Zusammenhang sei darauf hingewiesen, dass die experimentelle Bestimmung

von Transferfunktionen mit weissem Noise als Input das ideale
Hilfsmittel zur Untersuchung nicht-linearer Systeme ist.

Da die Koeffizienten einer hermiteschen Orthogonalentwicklung
experimentell einen wohldefinierten Sinn haben, lässt sich die

Konvergenz einer solchen Entwicklung oft physikalisch leicht diskutieren.
In vielen physikalischen Systemen wird diese Entwicklung ausgezeichnet
konvergent sein.

Anhang 1

Lemma über stochastische Operatorendifferentialgleichungen *)

In Verallgemeinerung einer Methode von Krylov und Bogoliubov13)
wurde von Bogoliubov und Mitropolskii6) eine allgemeine Methode
zur asymptotischen Entwicklung nichtlinearer Differentialgleichungen
ausgearbeitet (man vgl. auch die Referate14) und 15)). Das folgende
Lemma basiert auf diesen Arbeiten; jedoch benutzen wir als Mittelwertsbildung

nicht den Zeitmittelwert, sondern den Ensemblemittelwert einer
stochastischen Funktion.

*) Ein Resumé über neuere Ergebnisse bei der Behandlung stochastischer
Differentialgleichungen gab U. Grenander in dem «Harald Cramer Volume»29).
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Lemma 1

Es sei Vfa) ein zeitabhängiger stochastischer hermitescher Operator

mit dem Ensemblemittelwert Null,
Vfa) 0 (A-l)

Vfa) soll einen stationären stochastischen Prozess beschreiben und es

sei vorausgesetzt, dass jedes Funktional von Vfa) wiederum einen
stationären stochastischen Prozess darstellt. Es sei weiter a eine reelle
Zahl und Qfa) eine Funktion des Operators a Vfa). Der Operator Rfa)
sei durch folgende Operatoren-Differentialgleichung definiert :

Rfa -io [Vfa, Rfa] + Qfa

R(T) R0 (A-2)
Formal gilt dann für die Lösung diese Differentialgleichung:

CO

Rfa cpfa+2J<y"Fn(t) (A-3)
n 1

mit <R(t)> cpfa); <Fn(t)} 0 (A-4)
Dabei ist der Mittelwert cpfa die Lösung folgender nicht-stoch-
astischer Integro-Differentialgleichung :

oo

cpfa (Qfa) > - i£<f> <XWX,XX (A-5)
M-2

9>(W) R0

Die P„ sind rekursiv gegeben durch

F„fa "*/{X(t)X„_x(t)] - <X(t),P„-1(t)J>}^ +
r

+ / {<2„M - <Qn(x) >} rfT für n > 1 (A-6)
r

X(<) -*' j \V(x), cp(x)] dx+j {Qx(x) - <Qx(x) >} dx (A-7)
r r

Dabei sind die Qn aus der Potenzreihenentwicklung von Qfa) nach
Potenzen von g- definiert,

oo

M-0

Alle Relationen gelten nur formal; Konvergenzfragen müssen von
Fall zu Fall abgeklärt werden. Gemäss der Stationaritätsvoraus-
setzung sind die stochastischen Invarianten von der Wahl des

Anfangswertes T nur über den deterministischen Teil R0 der
Anfangsbedingung abhängig.
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Beweis von Lemma 1

Zur Lösung der Differentialgleichung (A-2) spalten wir zunächst von R(t) den
Mittelwert <p(t) (R(t)y ab und definieren ein Funktional F durch folgende
Relation

R(t)=cp(t) + F{cp(t)} (A-8)

F {<p(t)} ist ein zeitabhängiges stochastisches Operatorenfunktional, das definitions-
gemäss den Ensemblemittelwert Null hat,

<F{<P(t)}> 0 (A-9)

Setzt man Gl. (A-8) und (A-9) in die Differentialgleichung (A-2) ein, so folgt:

V'W+^F{?'W}="W[FW'?'W] -^tm w)}]+qw (A-io)

Da cp(t) eine nichtstochastische Grösse ist, folgt durch Mittelwertbildung aus
Gl. (A-10) unter Berücksichtigung von Gl. (A-l) und (A-9):

<p(t) ~ia<{V(t), F{cp(t)}]y + (Q(t)y (A-ll)

Durch Subtraktion dieser Gleichung von Gl. (A-10) ergibt sich:

-ftF{<p(t)} -ra[V(t),q,(t) -ioiV(t).F{<p(t)}-\ +

+ io<\V(t),F{cp(t)}]> + Q(t)-<Q{t)y (A-12)

Diese Funktionalgleichung in <p(t) ist eine Identität und kann für eine beliebige,
hinreichend reguläre Argumentfunktion &(t) gelöst werden. Gl. (A-12) mit <P(t)

als Argument lautet:

~ F{0(t)} =~ia lV(t), 0(f)] - io [V(t), F{0(t)}] +

+ ia aV(t), F{®(t)}iy + Q(t)-(Q(t)y (A-12a)

Zur Lösung dieser Funktionalgleichung entwickeln wir alle Grössen nach Potenzen
von es,

oo
F Z <rn Fn (A~13)

n-0

oo

0 Z °n Qn (A'14>
>i-0

Die Gl. (A-12a) ergibt dann durch Koeffizientenvergleich :

¦ft Fn {*(*)} =-iànX [V(t), *(*)]-« [V(t), Fn^{0(l)}] + i<.[V(t), Fn_1{0(t)}]y +

+ ß«W-<Ö»W> (A-15)

Wegen (A-l) ist Q0(t) <0O(^)>, somit F0 0. Die Integration von (A-15) ergibt
für ti 1 (als Argument schreiben wir nun wieder cp)
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t

Fi {?>(')} -Fi {<P(T)} - i f [V(r), cp(x)] dT+f {0:(t) - <Öi(t)>} dr (A-16)
r r

und für n > 1

^B {?(<)} -FM {?>(r)} -i/ [V(t), Fn_x (q>(r)}] dr +
T

t t

+ i f <[V(r), Fn_x{cp(r)}]y dr+ f {ö„(t) -<ßn(r)>}rfr (A-17)
r r

Es ist wohlbekannt (vgl. '), 16), dass die stochastischen Invarianten eines stationären
stochastischen Prozesses unabhängig von einer speziellen Wahl von Anfangsbedingungen

sind. Wir dürfen daher ohne Einschränkung der Allgemeinheit die Wahl
V(T) 0 und damit Fn{<p(T)} 0 treffen. Damit sind alle Aussagen von Lemma 1

bewiesen.
Die Konvergenz dieser Entwicklung muss von Fall zu Fall geprüft werden;

Lemma 1 gibt daher nur formal richtige Relationen. Oft wird es sich um Entwicklungen

von asymptotischem Charakter handeln.

Anhang 2

Lemma 2*)

Es sei F(tlr t2, t2n) eine beschränkte Operatorfunktion und d(t) sei die
Diracsche Deltafunktion. Weiter sei tf,, ¦ tjn, tkv ¦ ¦ -, hn irgend eine
Permutation der Grössen tx, t2, t2n. Das Integral /(/)

t t, t

i(t) =fdt1fatt...f
— oo —oo —oo

ahn F\h> h> ¦ • • ' hn
n

s 1

'*,)

hat dann den Wert

t

1(f) j dxx f dr2.
— oo —oo

Tfl—1

Jdrn
— CO

r (T1( T-i, Tg, T%, ¦ ¦ -, ~Cn, Tn

falls \ js— ks] 1 für alle s

und
I(t) =0 für alle anderen Permutationen.

Beweisskizze:

Man beginne mit den Integrationen bei t2n. Solange die Paare (js, ks) die
chronologische Reihenfolge t2n £5 t2n_x gj aufweisen, sind die betreffenden Integrationen

sofort elementar ausführbar. Bei der ersten Abweichung von der
chronologischen Reihenfolge ergibt das betreffende Integral Null.

*) Formulierung und Beweis dieses Lemmas verdanke ich Herrn Dipl. Ing.
R. Ernst.
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Anhang 3

Quantenstatistische Relaxationstheorie

Der in dieser Arbeit benützte Formalismus kann zu einer einheitlichen
und strengen Begründung der verschiedenen quantenstatistischen
Relaxationstheorien dienen (vgl. Wangsness und Bloch17), Anderson18),
Kubo und Tomita3), Ayant19), Fano20)21)22), Kubo4), Bloch23)2*),
Redfield26), Jaynes26).

Wir betrachten ein quanten mechanisches System A (Hamiltonoperator
HA aus dem Operatorenbereich 9ßA de? Hilbertraums $>A, das durch die
Wechselwirkung HAB an ein makroskopisches System B (Hamiltonoperator

HB aus dem Operatorenbereich 237i des Hilbertraums §B) gekoppelt
sei.

Der Gesamt-Hamiltonoperator ist also

H=HA+Hn + HAB (A-19)

HA gS8A, HB gSBB, HAB e%Ax 93B (A-20)

E(X) bezeichne den quantenstatistischen Erwartungswert einer Obser-
vablen X. Da das System B makroskopisch ist, zeigt der
quantenstatistische Erwartungswert einer Observablen XB aus dem System B
praktisch keine Streuung, d. h.

E {XB - E(XB)Y x 0, falls XB eS8B (A-21)
somit gilt also

X/7X) * IlXX). falls X, e23ß (A-22)
n n

Der Wechselwirkungsoperator HAB kann immer geschrieben werden als

HAB=ZVnW„ mit Vn e ®A und Wn e 23B (A-23)
n

Definitionsgemäss ist ^n&= 0, somit ist E(X) EA{EB(X)}, wobei
für die Erwartungswertbildung EA resp. EB die Spurbildung nur über
den Hilbertraum §^ resp. %>E zu erstrecken ist.

Die Gleichung der Dichtematrix des Gesamtsystems

iQ [HÄ+HB+Z Vn Wn, q] (A-24)
«

lautet in der Wechselwirkungsdarstellung des Operators HB :
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ÌQ-[HA+ZVnWH,~Q) (A-25)
n

q eiHB *
q e-lHi> ', Wn etHB < W„ XH£ ' (A-26)

Der Erwartungswert einer Observablen XB e 23# des makroskopischen
Systems B muss unabhängig von dem Zustand des «kleinen» Systems A
sein. Dies ist nur möglich, wenn die Dichtematrix o (approximativ)
separabel ist

e(0 £?X) • toW. ^ e8„ fe eS8;j (A-27)

Da die Spuren von Dichtematrizen auf eins normiert sind, folgt

QA(t) SpB{ofa} (A-28)

Durch Spurbildung über den Hilbertraum B folgt bei Berücksichtigung
von (A-22) (A-27) und (A-28) aus Gl. (A-25) :

(A-29)

(A-30)

ÌQAfa [HA+]Ts
n

,(t) vn, Qa(W

mit s, fa EB{eiHB <Wne -'HBt\

Eine Observable XA g 23A ergibt somit den Erwartungswert

xA sp{xAefa} spA{xAQAfa} (A-31)

d. h. die Dichtematrix gA(t) beschreibt das System A vollständig. Da
über das makroskopische System B keine exakten Kenntnisse zugänglich
sind, sind auch die c-Zahlfunktionen sn(t) nicht bekannt. Darüber, dass
die Funktionen sn(t) ausgezeichnete Approximationen zu stochastischen
Zeitfunktionen sind, kann wohl kein Zweifel bestehen. Um in unserem
Formalismus die Relaxation eines quantenmechanischen Systems mit einem

makroskopischen System zu beschreiben, ist nur eine einzige Annahme
nötig: die Interpretation der snfa als stochastische Funktionen.

Die übrigen Relationen, wie Gl. (A-22), (A-27) sind nicht eigentlich
als Voraussetzungen zu werten, sondern eher als Definitionen eines

makroskopischen Systems.
Die Resultate der vorliegenden Arbeit geben mit (A29) sofort eine

Verallgemeinerung der «Boltzmann»-Gleichung von Wangsness und Bloch
und erlauben eine Diskussion der Gültigkeitsgrenzen der Blochschen
Relaxationstheorie.
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