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Uber quantenmechanische Systeme mit einem
stochastischen Hamiltonoperator¥*)

von H. Primas
(Laboratorium fiir physikalische Chemie der ETH, Ziirich)

(15. VIII. 1960)

Summary. This paper deals with the theory of quantum mechanical systems with
a stochastic Hamiltonian which are of importance in the theory of dissipative
systems and in experimental investigations of the response of physical systems by
means of electronic devices. A new formal development of quantum mechanical
density matrices is given that is valid even for strong stochastic perturbations. If
the stochastic part of the Hamiltonian has a Gaussian distribution and an almost
constant spectral density the given solution reduces to an expansion in terms of
Hermite functionals which are othonormal respective to the Wiener measure
(Cameron-Martin development). This expansion is operationally meaningful and
characterized by good convergence and simple properties. As an example of the
application of the theory a new foundation of Bloch’s relaxation theory is sketched.

1. Einleitung

Diese Arbeit ist ein Beitrag zur Theorie von quantenmechanischen
Systemen, die durch einen Hamiltonoperator mit einem expliziten
stochastischen Anteil beschrieben werden.

Solche Systeme sind als Modelle fiir viele physikalische, chemische
und biologische Phinomene von Bedeutung. Dabei treten stochastische
Hamiltonoperatoren in zwei grundsitzlich verschiedenen Zusammen-
hingen auf:

a) Systeme, in denen gewisse dussere Parameter absichtlich stochas-
tisch varilert werden.

b) Zur Beschreibung dissipativer Systeme kann man das Modell der
Ankopplung eines quantenmechanischen Systems an eine makro-
skopische Umgebung beniitzen. Dieses Problem kann reduziert
werden auf eine Beschreibung des Systems allein, wobei ein modi-
fizierter Hamiltonoperator beniitzt werden muss, der einen explizit
stochastischen Anteil aufweist.

*) Die Arbeit ist im wesentlichen identisch mit einer im November 1959 der Eid-
genossischen Technischen Hochschule eingereichten Habilitationsschrift.
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Fiir den ersten Fall werden wir in folgenden Arbeiten Anwendungs-
beispiele aus dem Gebiet der Kernresonanzspektroskopie geben?). Die -
Anwendung der Theorie auf die Beschreibung dissipativer Systeme ist
im Anhang 3 kurz skizziert.

2. Das Response-Funktional quantenmechanischer Systeme

Die zu der Observablen A (A = hermitescher, zeitunabhingiger Ope-
rator) gehorige, makroskopisch beobachtbare Grosse sei a(f). Nach der
Quantenmechanik ist a(¢) gegeben durch 2

alt) = Sp{4 o(0)} -
wobei die Dichtematrix g(f) der Differentialgleichung
i0(t) = [H, ()] (+ Anfangsbedingung) , (2—-2)

geniigt. Der Hamiltonoperator H des Systems darf explizite zeitabhingig
sein. Hat der Hamiltonoperator H die Form

H{t) = Hy(t) + s(t) - V (2—3)

V = explizite zeitunabhingig
s(f) = dusserer Parameter (c-Zahlfunktion)

so ist die beobachtbare Grosse a(f) ein Funktional des Parameters s(t).
Wir kénnen die klassischen Grossen s(f) als Input und a(f) als Output
des Systems betrachten und bezeichnen dann R

a(t) = R{s(t)} (2—4)

als das Response-Funktional des Systems.

Begniigt man sich mit einer Ndherung, in der der Output a(f) linear
von dem Input s(¢) abhingt, so kann man leicht eine vollstindige Uber-
sicht iiber alle auftretenden Probleme erreichen. Eine solche lineare
Theorie wurde vor allem von R. Kupo3),%),2?),%) im Detail ausgear-
beitet. Die hoheren Terme dieser Entwicklung koénnen leicht angegeben
werden; man erhdlt dann eine Volterra-Entwicklung®) des Response-
Funktionals R nach Potenzen von V. Diese Volterra-Darstellung des
Responsefunktionals ist aber oft von nur geringem praktischem Wert.
Bei wesentlichen Nichtlinearititen des Systems ist die Volterra-Ent-
wicklung nur langsam oder gar nicht konvergent. Ist der Input s(Z) eine
stochastische Funktion, so stdsst die Berechnung der stochastischen
Invarianten des Outputs a(¢) aus denjenigen des Inputs bei einer Volterra-
Entwicklung im allgemeinen auf ernsthafte Schwierigkeiten.
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Im folgenden geben wir fiir den Fall eines stochastischen Inputs eine
Darstellung des Responsefunktionals, welche die erwdhnten Nachteile
nicht besitzt. Es handelt sich um eine Entwicklung, die mit den asymp-
totischen Methoden von BocoriuBov und MITROPOLSKII®) eine gewisse
Verwandtschaft besitzt. Wahlt man als Inputfunktion eine stochastische
Funktion mit Gausscher Wahrscheinlichkeitsdichte und weissem Spek-
trum, so erhdlt man eine besonders einfache und konvergente Entwick-
lung nach stochastisch orthogonalen Funktionalen (vgl. Kap. 4). Wie
N. WIENER?) eindriicklich zeigte, ist die Methode «white noise input»
das angemessene mathematische und experimentelle Hilfsmittel zur
Untersuchung nichtlinearer Systeme. In diesem Zusammenhang diirften
die folgenden Resultate auch eine allgemeinere Bedeutung fiir die Unter-
suchung quantenmechanischer Systeme haben.

3. Asymptotische Entwicklung des Response-Funktional

31. Einleitung

Basierend auf dem Lemma 1 des Anhangs geben wir im folgenden eine
asymptotische Entwicklung der gew6hnlichen Dichtematrix o(f) und der
Karplus-Schwinger Dichtematrix P(¢). Diese Dichtematrizen sind durch
Operatoren-Differentialgleichungen definiert; fiir die gew6hnliche Dichte-
matrix gilt bekanntlich

o) = —1 [H(), o(t)] (31—1)
+ Anfangsbedingung, l

wihrend fiir die Dichtematrix P(¢) nach KARPLUS und SCHWINGER?) gilt:

P() = —i [H(), P()] —o {P() — Po(0)} (31-2)
mit

Py(t) = exp {— B H()}/Sp exp{—p H(»)} (31-3)

g =1/kT (31—4)

Der Formalismus von KARPLUS und SCHWINGER beriicksichtigt auf ein-
fachste Weise eine Relaxation des Systems mit der Umgebung; w ist
eine reziproke Relaxationszeit. Die Beniitzung der KARPLUS-SCHWINGER-
Dichtematrix P(¢) anstelle der gewdhnlichen Dichtematrix p(#) ist immer
dann angebracht, wenn fiir das betreffende Problem das detaillierte
Relaxationsverhalten nicht von Interesse ist, aber trotzdem eine Rela-
xation in grosso modo beriicksichtigt werden muss. Z. B. darf man bei
Systemen, die ein Sittigungsverhalten zeigen, die Dissipation mit der
Umgebung nie vernachlissigen; andererseits ist in diesen Fillen eine
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globale Erfassung der Relaxation nach KARPLUS und SCHWINGER oft
hinreichend. . »

Obwohl die Differentialgleichung (31-1) formal ein Spezialfall der
Differentialgleichung (31-2) ist, erweist es sich als zweckmaissig, diese
beiden Fille separat zu diskutieren. In Kap. 32 geben wir die Entwick-
lung der gewdhnlichen Dichtematrix p(f) und in Kap. 33 die Entwicklung
der Karplus-Schwinger-Dichtematrix P(%).

Uber die Struktur des Hamiltonoperators H(¢) machen wir folgende
Annahmen. Der Hamiltonoperator soll sich in zwei hermitesche Opera-
toren H () und V (¢) aufspalten lassen.

H(t) = Hy(t) + o V() (31-5)

wobei H(¢) immer ein nicht-stochastischer Operator sein soll; o ist eine
reelle Zahl. In praktisch allen physikalischen Anwendungen kann V(¢)

zerlegt werden:
= X5V, (31-6)

wobei die V, zeitunabhingige hermitesche Operatoren sein sollen. Die
s,(¢) seien stationire stochastische ¢-Zahlfunktionen, von denen wir ohne
Einschrankung der Allgemeinheit annehmen diirfen, dass ihr stochas-
tischer Mittelwert verschwinde. Als Mittelwert einer stochastischen Funk-
tron wihlen wiv immer den Ensemblemittelwert (im Gegensatz zum Zeit-
mittelwert). Somit ist

(s> =10 - (31-7)
¢-++> = Ensemblemittelwert (31—8)

Um die Formeln etwas einfacher schreiben zu kénnen, werden wir im
Verlaufe der Rechnung eine Spezialisierung vornehmen namlich dass
V(#) die etwas einfachere Struktur

V) =s(t) -V (31-9)

habe. Solange die s,(f) nicht korreliert sind (<s,s,,> = 0 fiir #n+m), bedeutet
dies keine Einschrinkung der Allgemeinheit; der allgemeine Fall kann
mit genau den gleichen Methoden erledigt werden.*)

Alle folgenden Beziehungen sollen nur formale Relationen sein, Kon-
verg nzfragen miissten von Fall zu Fall erledigt werden. Deshalb machen
wir keine weiteren Konvergenzvoraussetzungen iiber die Operatoren
und iber die stochastischen Zeitfunktionen.

*) Im allgemeinen Fall transformiert man vorteilhafterweise auf stochastisch
unabhingige Variable, vergleiche dazu z. B. das Referat von Lax?%8),



40 ' H. Primas H.P.A.

32. Entwicklung der gewohnlichen Dichtematrix

Zur Behandlung der Differentialgleichung (31-1) mit dem Hamilton-
operator (31-5) transformieren wir zundchst mit dem Operator H, in
die Wechselwirkungsdarstellung. Wir definieren einen unitdren Operator
S(#) durch die Differentialgleichung

S(t) =1 S(t) Hy(?); S(0) =1 (32—1)
Falls H, explizite zeitunabhingig ist, gilt natiirlich
S(t) = exp {t Hyt} (32—2)
Mit den transformierten Grossen
alt) = S(t) olt) S0 (32-3)
Vi) =S Ve sty - (32—4)
reduziert sich dann die Differentialgleichung (31-1) auf die folgende:

iot) = [V(), o(¢)] (32—5)

Let)> = () (32—6)
und analog in der Wechselwirkungsdarstellung
() = <o(t)> = S(t) pt) S'(®) (32—7)

Auf Gleichung (32-5) kénnen wir nun das Lemma 1 des Anhangs an-
wenden und erhalten dann folgende Entwicklung (setze po(¢) = R(?),

V() = V@), Q@) = 0):
o(t) = @(t) + 3, 0" F,(t) (32—8)

wobei der Mittelwert ¢(¢) Losung folgender nicht-stochastischer Integro-
Differentialgleichung ist:

50 = —i 3on V), Fy (0] (32-9)

Die F, sind rekursiv gegeben durch

F(t) = —i j V(7), p(r)] dr (32—10)
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— i /{[V @) = V@), E_@Dydr  (32-11)
firnw > 1

Dies ist die allgemeine Losung des Problems. Fiir den Spezialfall, dass
V() die einfache Struktur

Vi)y=s@) -V (32—12)
mit ¢s()> =0

aufweist, folgt aus (32-8) bis (32-11) sofort folgende Darstellung fiir die
ersten Terme:

ln-1

0 =9t Jéa"(z‘)n fdtl fdtg f by - o (o )

YN

W, by onn s b)) (32—13)

Dabei ist @(f) die Losung folgender nicht-stochastischer Integro -Dif-
ferentialgleichung:

t i tn-
20'" —1) jdtlj dt, fdtn—l g (. 4 » 1)
Wn (tr tl: E tnml) (32 14)

Es wurden folgende Abkiirzungen beniitzt:

W, (ool = V), V() Lo V(L) @] -] (32—15)
fi(t) =) (32—16)
fz(tp ty) = s(t,) S(tz) - <S(t1) s(ts) >

fa(tp tz: ta) =

f‘l(tl’ t2’ t3’ t4)

w

(
(ta) s(ty) s(ts) — s(ta) <s(ta) s(la) > — <s(ty) s(ta) s(ts) >
(t1) s(ts) s(ts) s(ts) — s(ty) s(ta) <s(ty) s{t) >

— 8(t)) <s(ty) s(tg) s(ta) > + <s(t) s(ta)> <(ts) s(ty) > et
2a(ty, 9) = <s(ty) s(ts) > (32—17)

S
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g3ty L, 1) = (5(4) s(ty) s(f5)>
Galty, ta, 13, by) = (s(ty) s(ta) s(ts) s(ty) > — <5(fy) s(ta) > <s(ts) s(ta)>
Gslty, ta, B3, Ly t5) = <s(ty) S(ta) s(ts) s(£y) S(ts)> — <s(ty) s(t) s(ts)>

slt) sl > — <slly) slta)> <s(ty) s(t) slty)> cte.
Mit der Relation (2-1)

a(t) = Sp{A o(t)} = Sp {A(t) o(t)}

ergibt dies die gewiinschte Darstellung des Reponsefunktionals.

33. Entwicklung der Karplus-Schwinger-Dichtematrix
Durch die Substitution
R(f) = e P(t) (33—1)
Q) = ¢ Py) o (33-2)

vereinfacht sich die Karplus-Schwinger-Differentialgleichung (31-2) wie
- folgt: :

R() = —i [H{), R®)] + o Q) (33-3)
Analog wie in Kap. 32 gehen wir mit dem unitaren Operator S von Gl.

(32-1) zur Wechselwirkungsdarstellung iiber und bezeichnen die trans-
formierten Grossen mit einem Querstrich.

X = S(@) XS'(), X(0) = X(0) (33—4)
fir X =V, P, P, R, Q, p
Mit (31-5) folgt dann aus (33-3):

Rit) = —io[V({t), RO +w Q) (33—35)

Diese Gleichung hat genau die Form der Operatorengleichung von
Lemma 1 des Anhangs, also folgt die Entwicklung:

o(t) = <R(t)> (33—6)
t) + f‘anF,,(t) (33—7)

Der Mittelwert ¢(#) ist die Losung folgender nicht-stochastischer Integro-
Differentialgleichung
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() = w <QU)> — i 3o (V). Ey_4(0)]> (33-8)

Die F, sind rekursiv gegeben durch

E) = —i [{V@), Fy@)] — V@), F @]} e +

+ f {0,(1) — <Q,(1)>}dr fir n> 1 . (33-9)

Fy(t)=—i f V(v), ¢(x)] dr + o f {0,(1) — <Qy(1)>} dx (33—10)

[e.°]

mit Q(t) = 30" Q,(1) (33—11)

n=>0

Dies ist die exakte Losung des Problems. Fiir den praktisch oft eintreten
Fall «hoher Temperaturen» lassen sich wesentliche Vereinfachungen er-
reichen. Dazu entwickeln wir nach Potenzen von f# = 1/kT und brechen
nach dem linearen Term ab. Praktisch verschwindet oft die Spur des
Operators V; machen wir auch diese unwesentliche Annahme,

Sp{V()} =0 (33-12)
so ergibt die Entwicklung von P, (Glg. 31-3):
Py=x{1—BH,—cBV + 08} (33—13)
mit
x=1/Sp{1 — f Hy} - (33—-14)

mit (33-2) und (33-11) folgt dann

Q) = % e {1 — § Hy— 0 BV ()}  (33-15)
also:
0, = xe* (1 — B Hy)  (33-16)
0, = — e V(1) - (33—17)
0, =0 fir n>1 (33—18)

Damit folgt aus (33-8) bis (33-11):

Plt) =w Qy— i Z;"" V@), F_a6)]>
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t

) = —i [ V@), 9] dr — o % / V(e de  (33—20)
E ()= i [ {{V@D),F, 1) — V@), F, a(mD}yde  (33-21)

4. Entwicklung des Responsefunktionals
nach orthonormalen Funktionalen beziiglich dem Wienerschen Mass

41. Einleitung

In einer grundlegenden Arbeit fithrten CAMERON und MARTIN®) eine
Orthogonalentwicklung von nicht-linearen Funktionalen beziiglich dem
Wienerschen Mass*) ein. Die im vorhergehenden Kapitel hergeleitete Dar-
stellung des Responsefunktionals enthilt nun als Spezialfall eine solche
Entwicklung nach Orthogonalfunktionalen und gewinnt damit eine
wesentlich tieferliegende Bedeutung. Zur Darstellung dieses Zusammen-
hanges werden wir nun nicht den abstrakten mathematischen Apparat
des Wienerschen Masses benutzen. Wir bevorzugen hier eine physikalisch
anschaulichere Darstellungsweise, wie sie etwa in der Elektronik iiblich
ist und beniitzen auch die dort tibliche Sprechweise. Es sei aber darauf
hingewiesen, dass alle unsere Resultate mathematisch einwandfrei mit
dem Wienerschen Mass hergeleitet werden kénnen und mit diesen véllig
identisch sind.

Fiir unsere Darstellungsart benétigen wir den aus der Elektronik ent-
lehnten Begriff des «white noise». Darunter sei folgendes verstanden:
os(f) sel eine stationdre stochastische Funktion mit Gausscher Wahr-
scheinlichkeitsverteilung, die im Frequenzbereich — B2 < w < B/2
eine konstante Spektraldichte von ¢%/B habe und ausserhalb dieses
Bereiches verschwinde.

=0?B fir — Bl2 < w < B/2
Plw) =
= () sonst

Die Korrelationsfunktion o¢2K(f) ist die Fouriertransformierte der
Spektraldichte P(m), also

e o]

a? K(t) = / P(w) ¢ dw = o? -

— 00

sin (Bt/2)
(Btf2)

*) Fiir eine Einfiihrung in die Theorie des Wienerschen Masses vgl. etwa GELFAND,
Jagrom?), WieNeR"), Kacl9).
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Fiir «weissen Noise» sollte man die Bandbreite B unendlich wihlen, was
aber auf Konvergenzschwierigkeiten fithrt, wenn man das Wienersche
Mass vermeiden will. Wir wihlen B endlich, aber sehr gross. Man kann
in jedem spezifierten Anwendungsbeispiel die Bandbreite B so gross
wihlen, dass die Korrelationsfunktion ¢2K(¢) beliebig genau durch eine
Diracsche Deltafunktion approximiert wird, d. h.

o? K(t) ~ 2mo?/B - (f)

Die physikalisch bedeutsame Grésse ist nicht die Streuung ¢2, sondern
die Streuung pro Bandbreite, o?/B.

42. Spezialisierung der friiheren Resultate fiir weissen Noise als Input-
funktron

Wir spezialisieren nun die fritheren Resultate fiir den Fall, dass der
Hamiltonoperator die einfache Struktur

H(t) = H,+sit)V (42—1)

hat. Hy und V seien nun zeitunabhingige Operatoren (dies ist eine un-
wesentliche Einschrankung) und s(#) sei Gausscher weisser Noise mit dem
Mittelwert Null

s(E)>=0 (42—-2)

Fiir weissen Noise ist es bequem die Normierung der stochastischen
Funktion zu dndern; wir schreiben

H=H,+Ar@)V
mit
A = ]/2 m 0%/ B (A* = Streuung pro Bandbreite)

Dann gelten fiir 7(f) bekanntlich folgende Relationen:

rlty) 7(ts) > = O(t, — 1) (42-3)

() .o r(ten)> =3 [ [ 0t; — t) (42—4)

lty) - 7(t2n+1;1§)— 0 (42-5)
=12, 8, s

Die Summe in (42—4) erstreckt sich iiber alle Moglichkeiten, 2 # Terme
t1,tg,. .., t3, In m Paare zu teilen und das Produkt ist iiber alle Paare
dieser Aufteilung.
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Mit diesen Relationen vereinfachen sich nun die fritheren Resultate
ausserordentlich: \

Entwicklung der gewohnlichen Dichtematrix (vgl. Kap. 32). Mit Hilfe von
Lemma 2 des Anhangs ist sofort zu sehen, dass im Integral (32-14)
nur die Funktion g, (Gl. 32-17) einen nicht-verschwindenden Beitrag
gibt. Somit erhalten wir das einfache Resultat:

plt) = =22 [V(©O), V), ()] (42—6)

Entwicklung der Karplus-Schwinger-Dichtematrix (vgl. Kap. 33). Wir
beschrinken uns auf den Fall «hoher Temperaturen». Aus Gl. (39-19)
folgt genau analog nach kurzer Rechnung:

l o) = o Qo — 22 [V (1), [V(2), 9(0)] (42-7)

43. n-dimensionale Hermitesche Funktionalpolynome

In vielen Problemen mit weissem gausschen Noise erweist es sich als
vorteilhaft, n-dimensionale Hermitesche Funktionalpolynome einzu-
fithren (vgl. etwa ZADEH!), WIENER?). Wir beniitzen als Definition der
n-dimensionalen Hermiteschen Polynome diejenige von GRrAD!?). In
einer funktionalen Schreibweise lauten die ersten dieser Polynome

H, =1 (43—-1)
H,(%) = 7(t;)
H,(t;, 1) = 7(t;) (t,) — 6t — &)
Hy(t), 4, t,,) = 7(8;) 7(&) 7(2,) —
— 7(ty) 0ty — ) —
—r(l) 0t — 2,) —
—r(t,) (sz 1) etc.
Dabei beniitzen wir die Abkiirzung
H,(ty, ..., t,)=H{rlty), ..., r({,)} (43—2)

Mit den Relationen (42-3) bis (42-5) ergeben sich folgende Ortho-
noyrmalititsrelationen:

CHobys oov s bg) " Hp(Tn, oo, ) > =0, 0 [ [ 00t — ) (43-3)

(1%)
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Die Summe erstreckt sich wiederum {iiber alle Moglichkeiten, aus ¢;..., £,
und 7,,..., 7, Paare zu bilden und das Produkt geht iiber alle Paare
einer solchen Aufteilung.

Im Gegensatz zu den Funktionalen von Gl. (32-16) ist in der Hermite-
schen Funktionalpolynomen (43-1) keine Zeitrichtung ausgezeichnet.
Es ist nun bemerkenswert, dass in der Entwicklung (32-13) die Funk-
tionale f, durch die Hermiteschen Funktionale H, ersetzt werden kénnen.
Es gilt -

5] % In—1
~é(t) == (P(t) +Eln(* Z)n/ dtl s f dtn Hn (f’li st tn) Wn (tli tet tn)
=1 —o0 — 4 (43—4)

Die Differenz zwischen dem Ausdruck (32-13) und demjenigen von
(43—4) sind alles Integrale, die nach Lemma 2 des Anhangs verschwinden.
Diese Moglichkeit der Einfiihrung orthogonaler Polynome ist typisch fiir
den weissen Noise und kann nicht in einfacher Weise auf stochastische
Funktionen wmit einem anderen Powerspektrum verallgemeinert werden.
Diese Tatsache hidngt mit der ausgezeichneten Stellung des Wiener-
schen Masses zusammen.

44, Mittelwert und Spektrum fiir ein stationdres Responsefunktional

Bis jetzt beniitzen wir nicht, dass im Hamiltonoperator (42-1) die
Operatoren H, und V explizite zeitunabhdngig sind. Ist dies aber der
Fall, so wird das Reponsefunktional stationdr und die Berechnung der
Spektraldichte der Response ist dann sinnvoll und in einfacher Weise
moglich. ,

Vorteilhafterweise transformieren wir von der Wechselwirkungsdar-
stellung mit dem Operator S+ (Gl. 32-2)

S+ =exp{— tH,t} - (44-1)

wieder in die Schrédingerdarstellung zuriick. Wir formulieren im fol-
genden alle Resultate fiir die Karplus-Schwinger-Dichtematrix*). Die
Schrédingerdarstellung von Glg. (42-7) lautet

Q) = — i [Ho, p(t)] = 22 [V, [V, @(t)]] + @ Qg (44—2)

*) Wir beniitzen die Niherung der «hohen Temperatur» von Kap. 33 und lassen
der Einfachheit halber auch den meistens verschwindend kleinen Kreuzterm zwi-
schen Relaxation und Temperatureinfluss in Gl. (33-20) (letzter Term in der Glei-
chung fiir F; weg). Dies ist keine wesentliche Einschrinkung; die exakte Theorie
kann genau analog entwickelt werden. Wesentlich ist lediglich die Mitberiicksich-
tigung der Relaxation in grosso modo; ohne Relaxation wire die Existenz des
Grenzwertes (44—4) nicht gesichert.
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Macht man die Substitutionen (33-1) und (33-2) wieder riickgingig, so
erhilt man:

a ] -
S (Py=—i[Hy (P~ [V, [V, (P>]] — 0{<P>— (1 — B Hy)}
(44—3)
Da diese Differentialgleichung ein stationdres System beschreibt, muss

(P> nach Abklingen des Einschwingvorganges asymptotisch zeitunab-
hingig werden; wir definieren

1T =lim <P> (44—4)

t—>0c0

Da die Existenz dieses Limes aus physikalischen Griinden evident ist,
kénnen wir zu seiner Berechnung folgendes Abelsches Theorem der
Laplacetransformation beniitzen,

M =limp [ es<Plt)> at

p—>+0 0

Durch Laplacetransformation der Gleichung (44-3) folgt damit:

i [Ho I+ 2V,[V,II =w{x(1—pH) I} | (44-3a)

Zur Berechnung des stationdren Teils des Spektrums koénnen wir (P>
durch I7 ersetzen. Unter den gemachten Annahmen sind die Gleichungen
fir die F/; und F, fiir die gewohnliche und fiir die Karplus-Schwinger-
Dichtematrix formal identisch sind (vgl. Gl. (32-10) und (32-11) mit
Gl. (33-20) und (33-21)), kénnen wir fiir das folgende direkt das Re-
sultat (43-4) beniitzen. In der Schrédingerdarstellung lautet nun Gl.
(43-4)*):

Figi

H+22n — i /azzl fdt M, 2o B
W =0,V y—=t) -, [V, =8, T, —1)]..]]  (44=5)
mit B

II(t) = efe? IT ¢! (44—6)
Daraus folgt durch die Substitution 7; = ¢ — ¢;:

) Den a.symptotlsch verschwindende Einschwingvorgang haben wir bereits weg-
gelassen.
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P(2) :H+Z}_n(_z)rlfdtl '/dan (t—1y, ... ’tj —Tn) ¥
ol J Tn-

V(=) V(=79 oo, V(=) H(—7)]..0]  (44=7)

Zur Berechnung des quantenmechanischen Erwartungswertes a(f) der
Observablen A4 fithren wir folgende Kerne ein:

Ko= Sp{A I} (44-8) -
Kty oo s T) =21 Ulr) U (1 — 1) «-. U {5, = T5-1) -
SP{V (=), V(=) (= 7,)] . ] 4) (44-9)
wobel U(f) die Einheitsstossfunktion ist,
Ut) = 1&ft‘1r t >0 (44—10)

U) =0 fir £<< 0
Dann folgt fiir a(t) = Sp {4 P(f)} aus Gl. (44-7):

a(t)—;K0+2 /drl...fdrnKn(rl,...,tn) H (t—1,.,t—1,)
n:1_=°° s

(44—12)

Dies ist die Entwicklung des Responsefunktionals nach stochastisch
orthogonalen Polynomen.
Dank den Orthogonalititsrelationen der Hermiteschen Orthogonal-
funktionale ist nun die Berechnung des Powerspektrums von a(f) sehr
einfach. Wir berechnen zunichst die Korrelationsfunktion von a(f) und
kénnen dann das Spektrum mit dem Wiener-Khintchineschen Satz er-
halten. :

Mit Hilfe der Orthogonaldarstellung (44-12) von a(t), den Ortho-

normalitdtsrelationen (43-3) und dem Lemma 2 des Anhangs erhilt
man nach kurzer elementarer Rechnung:

<a(t)> = K, (44—13)
<a(x) a(y)> = k(x — y) (Definition der Korrelationsfunktion) | (44—14)

k) = | Kot + /dtl...fdtnKn(tl,...,tn)K:(t1+r,...,tn+r) (44—15)
A=l 2es —0

4 HPA 34,1 (1961)
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Nach WIENER-KHINTCHINE ist das Powerspektrum p(£2) die Fourier-
transformierte der Korrelationsfunktion k()

oo

~

p(Q) = (12 7) / k() e 97 dv A;‘Op,,(.o) (44—16)

— 00

o0 o0 o0 '
5(2) = (1)2 n)/ dv e—ff-’ffda,q o [ WKty ) K 4T )
~% —o - (44—17)

Vorteilhaft fithrt man die #n-dimensionale Fouriertransformierten der
Kerne K, ein:

L@, ... Q) (1/2n)nfd¢1 ...fdt,, Kty ... 1) ei(Qt,+ + 82 1)
o e (44—18)

Damit findet man nach kurzer elementarer Rechnung fiir das Power-
spektrum $(£2)

p(£2) =Z;15n(9) (44—19)
b (Q) = 27 / 7o) / i0Q, 1|L, (2 Q... 2, 1
Q-0 —.—0, ) (44—20)

In genau analoger Weise konnen aus der Orthogonalstellung (44-12)
andere stochastische Invarianten berechnet werden.

5. Einige Bemerkungen iiber die Natur der Reihenentwicklungen
dieser Arbeit

Im Gegensatz zu der ublichen Volterra-Entwicklung der Dichte-
matrix sind die Reihenentwicklungen dieser Arbeit weder Entwicklungen
fiir kleine Zeiten noch Approximationen fiir kleine Stérungen V.

Wir werden in einer folgenden Arbeit an einem Beispiel explizite
zeigen, dass man die hoheren Terme der Entwicklung immer dann ver-
nachlissigen darf, wenn o7 < 1 ist, wobei T eine durch

1 1

T 9T

S
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definierte Relaxationszeit ist. 7 ist eine fiir die stochastische Funk-
tion s(¢) charakteristische Korrelationszeit. Es ist zu beachten, dass unsere
Entwicklung nicht eine Potenzrethenentwicklung nach o ist; es werden
bereits in den ersten Nidherungen alle Ordnungen partiell mitberiick-
sichtigt. Diese Entwicklung ist besonders zur Berechnung von Linien-
verbreiterungen und level-shifts geeignet, die bekanntlich mit einer
Polynomapproximation in ¢ nicht erhalten werden kénnen.

Der in Kapitel 4 diskutierte Spezialfall liegt deshalb besonders einfach,
weil fiir weissen Noise die Korrelationszeit 7', und damit auch 7 null
wird und damit die Entwicklung nach Potenzen von T abbricht. Beziig-
lich dem Wienerschen Mass reduzieren sich dann unsere Approximationen
auf eine Orthonormalentwicklung nach Hermiteschen Orthogonal-
funktionen. Eine solche Entwicklung hat gegeniiber einer Volterra-Ent-
wicklung die analogen Vorteile, die eine Entwicklung nach Hermiteschen
Polynomen gegeniiber einer Potenzreihenentwicklung hat. Eine Ent-
wicklung nach Hermiteschen Funktionalen ist physikalisch sinnvoll, da
die «Fourierkoeffizienten» dieser Entwicklung experimentell unabhéngig
voneinander bestimmt werden kénnen. Solche Verfahren sind in der
Elektronik wohlbekannt (man vgl. etwa WIENER?), ZADEH!!) usw), und
kénnen auch auf allgemeinere Fille ausgedehnt werden. In diesem Zu-
sammenhang sei darauf hingewiesen, dass die experimentelle Bestim-
mung von Transferfunktionen mit weissem Noise als Input das ideale
Hilfsmittel zur Untersuchung nicht-linearer Systeme ist.

Da die Koeffizienten einer hermiteschen Orthogonalentwicklung
experimentell einen wohldefinierten Sinn haben, ldsst sich die Kon-
vergenz einer solchen Entwicklung oft physikalisch leicht diskutieren.

In vielen physikalischen Systemen wird diese Entwicklung ausgezeichnet
konvergent sein.

Anhang 1
Lemma diber stochastische Operatorendifferentialgleichungen*®)

In Verallgemeinerung einer Methode von Kryrov und BocoLiusov13)
wurde von Bogoriusov und MITrRoOPOLSKII®) eine allgemeine Methode
zur asymptotischen Entwicklung nichtlinearer Differentialgleichungen
ausgearbeitet (man vgl. auch die Referate!4) und 1%)). Das folgende
Lemma basiert auf diesen Arbeiten ; jedoch benutzen wir als Mittelwerts-
bildung nicht den Zeitmittelwert, sondern den Ensemblemittelwert einer
stochastischen Funktion.

*) Ein Resumé iiber neuere Ergebnisse bei der Behandlung stochastischer Dif-
ferentialgleichungen gab U. GRENANDER in dem « HARALD CRAMER Volume» 29).
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Lemma 1

Essei V(t) ein zeitabhidngiger stochastischer hermitescher Opera-
tor mit dem Ensemblemittelwert Null,

Vt)=20 (A-1)

V (#) soll einen stationdren stochastischen Prozess beschreiben und es
sei vorausgesetzt, dass jedes Funktional von V (f) wiederum einen sta-
tiondren stochastischen Prozess darstellt. Es sei weiter o eine reelle
Zahl und Q(¢) eine Funktion des Operators ¢ V (£). Der Operator R(¢)
sei durch folgende Operatoren-Differentialgleichung definiert:

R(t) = —1o [V(H), R(?)] + Q@)

R(T) = R, (A-2)
Formal gilt dann fiir die Losung diese Differentialgleichung:
R(t) = (&) + 30" F,(t) (A-3)
n=1
mit (R{#)> = @(t); <F,(t)>=0 (A—4)

Dabei ist der Mittelwert ¢(¢) die Losung folgender nicht-stoch-
astischer Integro-Differentialgleichung:

o) = Q)> —i X o V(D) Fy_1(t)> (A-5)

p(W) =R,

Die F, sind rekursiv gegeben durch
t

~

E() = —i [ {IV@), Fyoaln] = V() Fya(®)]>} de +

T

+ [ {00 = Quep}dr fir w>1 (A-6)

Fit) = —i [ V), g0 dr+ [ {Ou0) = e} dr (A7)

Dabei sind die @, aus der Potenzreihenentwicklung von Q(f) nach
Potenzen von ¢ definiert,

Q=Z_;G”Qn

Alle Relationen gelten nur formal; Konvergenzfragen miissen von
Fall zu Fall abgekldart werden. Gemiss der Stationaritidtsvoraus-
setzung sind die stochastischen Invarianten von der Wahl des
Anfangswertes 7 nur iiber den deterministischen Teil R, der An-
fangsbedingung abhidngig.
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Beweis von Lemma 1

Zur Losung der Differentialgleichung (A-2) spalten wir zunichst von R(f#) den
Mittelwert @(f) = {R(#)> ab und definieren ein Funktional F durch folgende
Relation

R(t) = () + F{p()} | | (A-8)

F {p(?)} ist ein zeitabhingiges stochastisches Operatorenfunktional, das definitions-
gemiss den Ensemblemittelwert Null hat,

(F{p)}> =0 (A-9)

Setzt man Gl. (A-8) und (A-9) in die Differentialgleichung (A-2) ein, so folgt:

¢(5)+%F{fp(1’)}=—i0[V(t) p()] —io [V(1), F{e®)}]+ Q) (A-10)

Da ¢(f) eine nichtstochastische Groésse ist, folgt durch Mittelwertbildung aus
Gl. (A-10) unter Beriicksichtigung von Gl. (A-1) und (A-9):

@) = —io {[VQ), F{p)}1>+<Q0)> (A-11)

Durch Subtraktion dieser Gleichung von Gl. (A-10) ergibt sich:

() F{(p(t }—io[V(t), @(t)] —ic[V(), F{e)}]+

+ia {[V({), F{e®)}]>+0@) - Q@) (A-12)
Diese Funktionalgleichung in ¢(f) ist eine Identitdt und kann fiir eine beliebige,

hinreichend reguldre Argumentfunktion @(t) gelost werden. Gl. (A-12) mit @D(¢)
als Argument lautet:

%F{@(i)} = —ia [V({t), D)) —io [V(), F{®@®)}+

+ia (VD). F{OW}>+Q(t) — Q@) (A-12a)

Zur Losung dieser Funktionalgleichung entwickeln wir alle Gréssen nach Potenzen
von o,

= };o o F, (A-13)
n-0
o0

Q=3 o0, (A-14)

Die Gl. (A-12a) ergibt dann durch Koeffizientenvergleich:

2 Fy (@0} = =8, V), D)1= [V (), Fy 1 DO+ LV, Fpy (DO +

+Qp(8) — <2 (8)> (A-15)

Wegen (A-1) ist Qy() = <Q,(#)>, somit F, = 0. Die Integration von (A-15) ergibt
fiir » = 1 (als Argument schreiben wir nun wieder ¢)
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t t
Fy{g)} = Fy{p(D)} =i [ V@), o] de+ [{Qir) —<Qyx)>}dr  (A-16)
T T
und fiir » > 1
1
Fy {pt)} = Fy {@(T)} —i [ [V(2), F,; {@(0)}] dv+
T

t

t
+i [<V(@), Foy {9} dr+ [{Q,(0) = <Qu(@}dr  (A-17)
T

T

Es ist wohlbekannt (vgl. 7), 16), dass die stochastischen Invarianten eines stationiren
stochastischen Prozesses unabhingig von einer speziellen Wahl von Anfangsbedin-
gungen sind. Wir diirfen daher ohne Einschrinkung der Allgemeinheit die Wahl
V(T) = 0 und damit F {¢(T)} = 0 treffen. Damit sind alle Aussagen von Lemma 1
bewiesen.

Die Konvergenz dieser Entwicklung muss von Fall zu Fall gepriift werden;
Lemma 1 gibt daher nur formal richtige Relationen. Oft wird es sich um Entwick-
lungen von asymptotischem Charakter handeln.

Anhang 2
Lemma 2%)
Es sei F(t, t,, . . ., 1,,) eine beschrankte Operatorfunktion und d(¢) sei die
Diracsche Deltafunktion. Weiter sei #,, . . ., ¢j,,, %, . . ., t, irgend eine Per-
mutation der Gréssen ¢, 4, . . ., #,,. Das Integral I(t)

t t, ¢ "
1) = [ at [ dt,... [2tdtyy - Flty, by, - ., tay) [ [ 60—ty
—0c0 —00 — 00

§ =1

hat dann den Wert

t T Tn—1
It) = f drlfdrg. = fdrﬂ * T Ty By s 3 33 Tpe Tip)
—00 —00 —0
falls | j,— &, | = 1 fiir alle s
und
I(t) = 0 fiir alle anderen Permutationen.
Beweisskizze:

Man beginne mit den Integrationen bei #,,. Solange die Paare (7, %) die chrono-
logische Reihenfolge #,, <1,, ; < ... aufweisen, sind die betreffenden Integra-
tionen sofort elementar ausfithrbar. Bei der ersten Abweichung von der chrono-
logischen Reihenfolge ergibt das betreffende Integral Null.

*) Formulierung und Beweis dieses Lemmas verdanke ich Herrn Dipl. Ing.
R. ErnsT.
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Anhang 3

Quantenstatistische Relaxationstheorie

Der 1n dieser Arbeit beniitzte Formalismus kann zu einer einheitlichen
und strengen Begriindung der verschiedenen quantenstatistischen Rela-
xationstheorien dienen (vgl. WANGSNESs und BLocH!?), ANDERSON !8),
KuBo und Tomita3), Ayant!?®), Fano?0)21)22) Kuso?), BLocH?3)24),
REDFIELD %), JAYNES %),

Wir betrachten ein quantenmechanisches System A (Hamiltonoperator
H 4 aus dem Operatorenbereich B, des Hilbertraums § 4, das durch die
Wechselwirkung H ,; an ein makroskopisches System B (Hamiltonopera-
tor Hy aus dem Operatorenbereich B des Hilbertraums £p) gekoppelt
sei. '

Der Gesamt-Hamiltonoperator ist also

H=H,+Hy,+ H,, (A-19)

H,eB,, H,eBy,, H,, B, x By (A-20)

E(X) bezeichne den quantenstatistischen Erwartungswert einer Obser-
vablen X. Da das System B makroskopisch ist, zeigt der quanten-

statistische Erwartungswert einer Observablen X aus dem System B
praktisch keine Streuung, d. h.

E{X, — E(Xgp)}* =~ 0, falls X; e By (A-21)
somit gilt also

E(J[X,) ~ [] E(X,), falls X, B, (A-22)
Der Wechselwirkungsoperator H 5 kann immer geschrieben werden als

HABZZVan mit V, € B, und W, e B, (A-23)
(]

Definitionsgemiss ist §, N Hp = 0, somit ist E(X) = E{Ep(X)}, wobei
fiir die Erwartungswertbildung £, resp. E die Spurbildung nur iiber
den Hilbertraum $, resp. $p zu erstrecken ist.
Die Gleichung der Dichtematrix des Gesamtsystems

i6=[Hy+Hy+ Y V,W,ql (A-24)

lautet in der Wechselwirkungsdarstellung des Operators Hy:
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é = + 2 V n» u (A_ZS)
mit
oe Bt Wn — Bt W ¢Hp1 (A-26)
Der Erwartungswert einer Observablen X, € By des makroskopischen
Systems B muss unabhingig von dem Zustand des «kleinen» Systems A4

sein. Dies ist nur moglich, wenn die Dichtematrix o (approximativ)
separabel ist

o) = 04(¢) - 05(t), 04 €B,4, 05 EBy (A-27)
Da die Spuren von Dichtematrizen auf eins normiert sind, folgt
04(8) = Spp {Q(t)} (A-28)

Durch Spurbildung iiber den Hilbertraum B folgt bei Beriicksichtigung
von (A-22) (A-27) und (A-28) aus Gl. (A-25):

i) =[H, —{—Zs V,, 04(t (A-29)

mit s, (f) = Ez{e"B! W, ¢ "Bt} : (A-30)

Eine Observable X, € B, ergibt somit den Erwartungswert

g = SP {XA Q(t)} = SPA {XA 04 (t)} (A‘31)

d. h. die Dichtematrix p,(f) beschreibt das System A4 vollstindig. Da
iiber das makroskopische System B keine exakten Kenntnisse zugdnglich
sind, sind auch die ¢-Zahlfunktionen s,(f) nicht bekannt. Dariiber, dass
die Funktionen s,(f) ausgezeichnete Approximationen zu stochastischen
Zeitfunktionen sind, kann wohl kein Zweifel bestehen. Um 1n unserem
Formalismus die Relaxation eines quantenmechanischen Systems mit esnem
makroskopischen System zu beschreiben, ist nur eime einzige Annahme
notig: die Interpretation der s,(t) als stochastische Funktionen.

Die iibrigen Relationen, wie Gl. (A-22), (A-27) sind nicht eigentlich
als Voraussetzungen zu werten, sondern eher als Definitionen eines
makroskopischen Systems.

Die Resultate der vorliegenden Arbeit geben mit (A29) sofort eine Ver-
allgemeinerung der «Boltzmann»-Gleichung von WANGSNESsS und BLocH
und erlauben eine Diskussion der Giiltigkeitsgrenzen der Blochschen
Relaxationstheorie.
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