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Polarization Phenomena in Deuteron Stripping Reactions

By L. C. BiepENHARND) and G. R. SATCHLER?)

Abstract. Polarization phenomena in the usual theory of (d, p) reactions (i. e.,
the distorted wave Butler theory without explicit spin-orbit coupling) are shown
to have a common origin, which is in effect simply a measurement of the neutron
transfer angular momentum direction (multiplied by quantum geometrical factors).
The limitations implied by this result are discussed.

The effect of explicit spin-orbit couplings is discussed in detail for the important
case where the transfer angular momentum is zero. It is shown that for this case
the proton polarization is approximately given by the derivative of the (unpolarized)
angular distribution. (Conditions are given under which this approximation is
useful.)

Symmetry considerations in the distorted wave Butler theory are next discussed,
and illustrated by application to Coulomb effects. Various numerical examples are
cited to illustrate the qualitative predictions of the present discussion.

The great importance of the stripping process for nuclear reactions lies
in the fact that from the qualitative features of the angular distribution
one may infer, almost directly, information of use in nuclear spectroscopy.
Although deuteron induced reactions had previously been considered in
much experimental and theoretical detail (e.g., the Oppenheimer-
Phillips process) it was the simplicity and usefulness of the Butler
stripping theory that led to the widespread attention this process has
received since BUTLER’s paper [1]3) in 1951. Since that time numerous
further developments of the theory have been made, and the whole
subject has been treated comprehensively in several reviews and books
2] devoted either exclusively to the stripping process, or else treating it
as a special case of the so-called ‘direct reaction theory’. Following
AUSTERN [2], one may divide the stripping theories into three classes:

(1) the ‘crude’ Butler theory, which uses plane waves [1], (2) the simple
theories, which employ distorted waves in the Born approximation (with
or without explicit spin-dependent interactions), and (3) the ‘sophisti-
cated’ theories which attempt a more or less fundamental treatment from
general reaction theory. In surveying these it seems fair to say that two

1) Department of Physics, Duke University, Durham, North Carolina, USA.
2) Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tenn. USA.
3) Numbers in brackets refer to References, page 400.
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points are clear: (1) The Butler theory, even in its simplest form, works
surprisingly well and (2) the Butler theory, and all later modifications,
are but approximations whose real applicability has yet to be fully
assessed. This last point is hardly surprising since the stripping process
is an instance of the general three-body rearrangement process, and above
the deuteron binding energy, even the general Wigner dispersion theory
becomes, in principle at least, inapplicable.

It is not our intention to attempt a discussion of the foundations of the
theory; rather we shall accept the general applicability of the distorted
wave Born approximation (a development that stems from Horowirz
and MEssiaH [3]), and try to assess some of the consequences?). One of
the bothersome difficulties of the distorted wave treatment lies in the
fact that it is so general, and contains so many parameters, that it is not
casy to know whether agreement (which generally is found sooner or
later) is really significant or not. It is, therefore, particularly important
to understand intuitively the gualitative predictions, and this is the real
aim of the present discussion?).

The nuclear spectroscopic information obtained from the Butler
analysis (in favorable cases) is the orbital angular momentum / (and thus
the parity) of the transferred neutron$). Further information, such as the
total angular momentum of the absorbed neutron, is desirable, and it was
quickly pointed out that further measurements on the stripping process
could be useful. BovEr [4] for example, suggested angular correlations
with any gamma rays emitted; this gives information both for nuclear
spectroscopy and the stripping reaction mechanism. It was NEWNS [5]
who suggested polarization measurements, and since this conference
deals with polarization we shall confine our attention to the information
such measurements convey.

4) There are some exceptional cases where the observed stripping pattern may
be fortuitous or the result of other mechanisms (for example, B(d, #)), but we
shall not discuss such cases. It is possible to regard the distorted wave calculations
in a more subtle way, and consider that the distorted waves themselves already
contain resonant effects in both the elastic and inelastic channels. This latter
would then relax the stripping selection rules. For example take Mg (d, p)Mg?*,
with the Mg? in the 1.611 MeV, 7/2% state.

The usual selection rules require I = 4; but if Mg?* were first excited to the / =2
rotational level, then ! = 2 stripping would now be permitted. This process would,
to be sure, be both improbable and not a well defined ! = 2 stripping pattern.
We shall not, however, go further into such extensions of the distorted wave cal-
culations, since they are not directly at issue in polarization processes.

%) A quite different approach to the same problem (for stripping, as opposed to
polarization) is the ‘semi-classical’ treatment of AusTERN [2]. Although marginal
in application perhaps, it nonetheless is quite helpful for an intuitive feeling for
the stripping process.

% The (d, p) reaction will be considered as the prototype.
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In order to understand intuitively the basis for the existence of proton
polarization (even in the absence of explicit proton spin orbit coupling)
let us consider the (d, ) reaction from the standpoint of the stripping
assumption. This we take to mean that the process may be described by
the Born approximation, with the transition matrix element:

T/i = <‘P§_) (kp) l Vnp l QPS'H (R,)> (1)

Here p{ " is the initial system with (outgoing) deuteron waves, and 1/);") is
the final system with (ingoing) proton waves. For simplicity we take the
n—p potential, V,,, to be of zero range. Whether or not the integral
extends over the nuclear volume is a matter of preference; the usual
considerations that the stripping process occurs primarily at larger
distances exclude the nucleus proper?). According to eq. (1), the as-
sumption that the proton spin-orbit coupling is neglected in y)f,_’ is
equivalent to the assumption that the proton spin is not directly in-
volved in the process at all, and is only affected by virtue of its coupling
to form the deuteron in the initial state.

If we neglect proton spin-orbit coupling, the angular momentum
relationships which govern the proton spin in the stripping process are
simply:

a) 8§+ 8, =8y

b) Sﬂ ‘IL lﬂ = j?l (2)
c) ji+ j.= jf'

That is to say, the proton spin, by assumption, is coupled only to the
neutron spin to form the incident deuteron, and the neutron spin is
coupled to its orbital angular momentum in the final system. Since, by
hypothesis, the initial and final spin angular momenta (j; and j,) are not
observed (therefore random), one sees from (2c¢) that the direction of j, is
similarly random. One can now obtain the proton spin polarization dis-
tribution quite easily by applying semi-classical correlation techniques
[6]. (This is given in detail in Appendix I.) These techniques lead at once
to the relation:

Proton = Pl (sp ’ Su) Pl (Sn ’ lﬂ) [3/l (Z + 1)]]/2 <[n> # (3)
In other words, the measurement of the proton spin is e/fectively a measure-
ment of the divection of the neutron’s orbital angular momentum, diminished

7y T. Honpa and U. Nacasaxkl, Proc. Phys. Soc. London, 74, 571 (1959). These
authors go further and assume that the proton is completely excluded from the
nuclear region, even in the final state wave function.
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by the (quantum) geometrical factors Pl(/s?n -;\p) = 1/3 from the deuteron
spin coupling, and the factor

3 1/2 [0+ 1)~ for =1+ 1/2
[1(z+22“)“] Pl(s ) |(= -t for §=1—1/2

from the neutron spin coupling.

This result for the polarization is even clearer if one takes /, = 1, for
then the result may be written in vector notation, instead of the more
complicated multipole tensor products. For a zero range np potential and
[, =1, eq. (1) becomes:

Tfi(ln = 1) > M = <1P g):o)ton (1') [ r Pheutron (V) | wgi_lx)teron (f) )- (4)
With this, one obtains then the simple result:

1 /2 () (M)(M*) -
P = ? (1—’1) o M M* v (3)

From eq. (5) one can easily see all the qualitative features of the proton
polarization process (under the present assumptions). Namely:

a) The maximum polarization is 33%,. This is actually a result of the
quantization of angular momenta, since the triangle formed by s, + s, =
s, —even though the angular momenta are ‘parallel’—still has finite area,

and ;; : .;; + 1.

b) The sign of the polarization distinguishes 7 =17+ 1/2 from j =
[ —1/2 (but one must know the sign of M x M* to specify either
absolutely).

c) There is no polarization if the matrix element is not complex, and
no polarization if the matrix element is a function of a single direction.
Either one of these restrictions eliminates any polarization in Butler’s
original approximation where plane waves are used. (Alternatively one
may say that in the plane wave approximation, the neutron is effectively
taken from a plane wave along the recoil direction, and since [, is equally
probable in the plane perpendicular to this direction, <I,> = 0.) The tm-
portance of polarization measurements (for comparison with the theory) lies
wn the fact that the polarization is solely due to the distortion effects in the
absence of 1 - s forces, and is therefore a sensitive test of the stripping mecha-
NISH.

d) Since there are but two physically defined directions in the problem,
k, and k,, it is clear that 1 M x M* = (k, x k,) f(k,, k,, k, - k,). This is
the well known general result that P must lie normal to the scattering
plane. (None of these conclusions is in any way affected by our special-
1zation to 7, = 1.)
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It is quite easy to apply the same techniques to determine the polari-
zation of the final nucleus in the stripping reaction. The angular mo-
mentum relationships are exactly the same as before, except that the
experimental observations differ. Thus s, is now random (since neither s,
or §,1s observed), but j, is not random any longer. It follows that the
polarization of the final nucleus is given by:

o~ P T N

<jf> = Pl (jf.jn) Pl (jn ’ ln) < 1r>' (6)

On using the usual definition that the polarization vector P is defined as

<_/i}>/7'f, one gets:
[t VR Gy p (G T 5
Pnucleus - [ 7.f(ln)(ln+ 1) ] Pl (]f Jn) Pl (]n ln) <ln>‘ (/)

It will be noted at once that the neutron spin coupling introduces here
quite a different result than for proton polarization. Unlike the proton
case, here both j7 =/ + 1/2 have the same sign. One sees further that
complete polarization can result if 7, = 0.

As a final example of the utility of this method of deducing polarizations
let us construct the deuteron polarization in the inverse reaction. This is,
by the same general method,

Pdeuteron = l/sd+£ ] 1 (;‘\d E ./S‘\") Pl (;‘\n s i;) <2;> (8)
(inverse) Sa

However, the angular distribution of the products of a nuclear reaction

induced by polarized particles and the polarization of the particles

produced in the inverse reaction are related [7] under very general

conditions by the equation:

do - do 3 ] I, 7 _
(Eg) pol. (d.Q) unpol. [1 - ]+T P -P ] d (0)
(Here P' and P! are the polarization vectors of a particle of spin 7, with
I referring to the particle initiating the reaction and I/ to the inverse
reaction.) We may now substitute eq. (8) in eq. (9) and, if we further
recall eq. (3), then one obtains

[ do do
(Efj) pol. — ( d.{j) unpol. [1 + 3 Pdeuteron ' Pproton] . (10’
This relation was first obtained by SATCHLER?®) and is of interest experi-
mentally in that reactions produced by polarized deuterions may be a

8) G. R. SATCHLER, Nucl. Phys. 6, 543 (1958). Note that the sign convention in
eq. (10) differs from that given in this reference.
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1009, effect, as opposed to the 339, limit of the proton polarization. One
further notes that fewsor moments do not enter this relation (eq. (10)).
Referring to the angular momentum coupling diagram one sees that this

is due solely to the fact that the angular information on the deuteron spin is

coupled through the neutron spin. Thus Pv(;:, . /s\n) enters for the tensor
moments, but (because s, = 1/2) » must be 0 or 1 only.

Finally one may ask as to the generality of the results given by eqs. (3),
(7) and (9). It is clear that they are all a direct consequence of the as-
sumption that the proton spin is not directly coupled to the reaction in
the stripping approximation without spin-orbit forces, and are no longer
valid upon considering spin-orbit couplings®). This is important because
several examples are already known where P, > 1/3, and hence the
Butler theory is not always applicable.

To summarize: Polarization in the stripping approximation, without
explicit spin-orbit coupling on the proton, is essentially a measurement of the
transfer angular momentum divection, multiplied by the appropriate quantum
geometrical factors.

Let us turn next to the effects of spin-orbit coupling. The general
results that can be obtained using the stripping hypothesis, are quite
involved because of the complicated nature of the angular momentum
couplings. This general result is given in Appendix II, but will not be
discussed otherwise!?). Not many numerical calculations have been
carried out with spin-orbit coupling included, but in these [8] the effect is
found to be small. (Since P, = 1/3 is not valid here, there can in
principle be quite large effects.)

The special case where /, = 0 is of particular interest, because here it is
clear that proton spin-orbit effects are the only cause of polarization. In
order to obtain most conveniently the desired polarization formula, it is
useful to recall that for spin 1/2 particles and photons the polarization
can be formally!) expressed quite simply in terms of the angular dis-
tribution [9]. Thus if the angular distribution is given by:

" do G 7
(7!?) = B, ({ljl']) P, (cos 0),
vijl'j

?) Dr. J. GamMmEL has also arrived at similar conclusions in a paper appearing in
these Proceedings. The authors are indebted to Dr. GaMMEL for discussions on these
topics prior to delivery of this paper.

10) See also the paper by GOLDFARB, these Proceedings.

) Tt is essential to call attention to the formal nature of this result, for the
polarization and the angular distribution are in principle independent functions and
one cannot be obtained from the other. The difficulty resides in the fact that in
e]. (11) only the symmetric (real) part of the dynamical factors in B enters, while
in eq. (12) only the anti-symmetric (imaginary) part enters; hence eq. (11) and
e]. (12) only formally involve the ‘same’ dynamical factors.
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with 74 1)* = 1"19), 11)
ith B, (Lg0'1")*=B,(I"7" (9 ]
then:

P(0) = (cZQ) (i 2 B, 57 ') )v+!‘+i’+l/2

vijly’

6(21J+1) 11y l,>,1/2 A I A ‘
Lo () wpsrr e e

- P (cos ) .

In eq. (12) the unit vector 7 has the direction k,xk,, in accord with the
‘Basel convention’. An identity [10] for the X coeffizient that appears in
eq. (12) is given in Appendix III; this simplifies eq. (12) but is less useful
for the usual manipulations of the Racah algebra. IFor the special case
that /, = 0, one finds the result!?) that the angular distribution is:

~ o~

S G Ee R R, o

1 L r e
- IZZ CpTplyip spv) (=) 77700

Z (ld ?.d l{; 7(;" Sd 'V) (#) jd—Sd .

where:

(P I2G+ 1) 21, +1) Qg+ 1) @+ VI W G, 9 dudas 5, 1)

A ln 7;n ) A*: I~ /n, ) (14)
) lpip'lata Iy fp s lata’ /
with,
Iy in — i ) lgln!
A ‘nlr ':ez[(;pip) (g ja C "d D .
ip 713 ](L'Jtl 00 0
o e _[tasa 7d L jn _
V@L+D @s+ DX (han)- Gy, - (15)
VDT D 71’
Ly Tn e e : :
; - 1s discussed followi . 1= A 1X.
[o 1o 1y jg 1S dlSCUS ed following eq. II-3 of the Appendix

It is convenient now to neglect the spin-orbit coupling on the deuteron,
and then:

(‘{%Ln = Ei?f ( 3?: ) 2: B, P, (k, k),

B, (I, =0)= (2 (z jli; = v))z (4,,) (4%,) |

4

12) Here, and elsewhere unless stated otherwise, we are assuming the stripping
hvpothesis with a zero-range np potential. The further approximation is made that
the center of mass is fixed throughout on the target nucleus.
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A = exp i(0f + o) G (16)

It has been noted many times in the past that the polarization obtained
in calculations with the optical model are qualitatively similar to a deri-
vative of the angular distribution. Recently RopBERG [11] has shown
that this ‘derivative relation’ is in fact semi-quantitative for small spin-
orbit coupling, and that moreover the ratio

do a do
Pl (2g)] s (ao)]
is a measure of the strength of the spin orbit potential. RODBERG's physical
argument is more general, it appears, than his specific application (to the
optical model), and it is tempting to apply it to the stripping process as

well. For the situation described by eq. (16) it is shown in Appendix IV
that for small spin-orbit forces on the proton, the polarization*) is

-~ (do\-1 d [ do 1
Pn(ug) g la) 2 # (17)
0
9 o 3
where <ﬁt> - <(T_) e 6l/ dr U[(‘)* (}’) Vspin Uf[(+) (7)/\
0 orbit

(If one assumes that the deuteron spin-orbit potential is small, then the
same result applies at once to the more general case given by eq. (15).
Although we do not have a proof, it is quite plausible that eq. (17) is
approximately correct for the spin-orbit contribution to P in the general
case. One sees that this is qualitatively correct from examining the results
of ref. (15), but the published data do not permit much more than a very
rough estimate.)

The origin of the factor of 1/2 in eq. (17) (as opposed to the result of
ref. (11) for elastic scattering) comes from the fact that the spin-orbit
potential acts on the outgoing wave only.

Qualitatively then one may say that for stripping reactions with /, = 0,
a measurement of P is approximately the same thing as measuring the
proton polarization in the elastic scattering from the final nucleus.

It was early noticed in the numerical calculations involving BUTLER’s
theory by the use of distorted waves [3, 12] that Coulomb effects and
nuclear scattering effects tended to compensate, thus improving the
range of applicability of the simpler theory (but no general basis for the
cancellation [other than the difference in sign of these potentials] has
been given). NEwNs and REFa1 [8] gave a qualitative argument to show

*) Note added in proof: Recent numerical calculations of Mr. WiLLiam Gisss for
C12(d, p)C13* (I, = 0 case with spin-orbit coupling), indicate good agreement with
this “‘derivative relation”, particularly for giving the minima in the polarization.
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that absorptive distortion effects on the incident particle tended to
cancel absorptive distortion effects on the emergent particle in producing
polarization. Recently Oxkar [13] and SATCHLER [14] have investigated
the origin of this cancellation. It is shown in [14] that if the two con-
ditions: 1) |k,| = |k,|, and 2) m, M, V.= m, M, V,;, hold, then the
polarization is exactly zero. To understand why this occurs one need only
note that the two conditions given are equivalent to eliminating any
physical distinction—except direction of motion—between the incident
and emergent particles, since both have equivalent length scales and
equivalent interactions (i.e. same dimensionless strength parameter, and
same length scale).

There is, however, now a physical operation which can interchange the
role of the two wave functions in the matrix element by interchanging the

two directions k, and k,. This exchange may be accomplished in two
steps: 1) a rotation by 7z about a direction bisecting 6l = cos™' k, - k,,

and 2) a reversal in the directions k -> — k. These two operations give
an invariance operation for the process. But P reflects under the same
process; therefore, P must vanish. Clearly the vanishing of P implies that
distortions (whether absorptive or not) must give cancelling effects on the
polarization. The second condition (above) requires that the deuteron
potential, V,;, must be about half as strong (since m, M >~ 1/2 m, M) as
that for the proton; since it is usual to take the two potentials to be about
of the same strength this supports the general statement that deuteron
distortion is the dominant effect in stripping.

For Coulomb effects on the stripping one sees that the second con-
dition is never satisfied since this would require % # to be the same, whereas
kqynq = 2 k,m,. (It is interesting to note that for the Coulomb field, these
two conditions are necessary for the classical limit to exist, as in, for
example, Coulomb excitation.)

Forl,= 0, stripping calculations using Coulomb distorted ‘plane’ waves
lead to an integral which (for R = 0) can be expressed in closed form, and
this result can be exploited to give a qualitative understanding of the
effects of large Coulomb fields [15]. Unfortunately no similar result can
be obtained for I, = 1. The best that can be done (without employing
series) is the integral for M given in Appendix V. I'rom this one sees that,
for the special case |k,| = |k,|, the effect of the Coulomb field is to
mntroduce besides the recoil vector (k, — k,) a second independent vector:
(1, ky — 14 k,) which leads to the result that

P = (n,—m,) (kg x k) [ (k, ky k- k).

This explicitly shows the cancellation of Coulomb distortion effects on
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the polarization. Moreover, since k, == %, implies that n, = 2, it is clear
that the deuteron distortion dominates once again.

With these qualitative results in mind let us look now at some of the
numerical results!?).

Example 1: B, p)BN, Q=924MeV, [—1, j=3/2

The data for this example are taken from the summary of HENSEL and
Parxkixson [16] and give the angular distribution of protons for an in-
cident deuteron energy of 8.1 MeV (lab.). The Coulomb parameters are:
M= 0.4, ,=~ 0.2; hence the wave numbers are approximately equal:
k, = k,. To carry out a distorted wave calculation the ancillary task of an
optical model fit to the elastic deuteron scattering (from B!?) and the
elastic proton scattering (from B1!) must be carried out. These fits (com-
pared to an experiment at approximately the desired energy) are shown
in figures 1 and 2. The optical model data are given in table I.

Table T

Parameters characterizing the three examples illustrated

B0(d, p) Bl Tid8(d, p) Tito* 018(d, p)O17
a I b ¢ d
E ;(MeV) 3.1 3.1 2.6 19.0
Q(MeV) 9.24 9.24 4.46 1.918
l 1 1 1 2
i 3/2 3/2 3/2 5/2
(1) 5.41 6.15 6.18 3.944
Wood-Saxon well parameters:
Va(MeV) - 60 - 50 - 44 - 40
W, ,(MeV) ~17 - 14 -13 ~15
a;q(f.) 0.70 0.68 0.7 0.75
e, (1) 3.66 3.23 5.32 3.8
1p(MeV) - 50 -50 - 60 - 38
W;p(MeV) - 11 - 8 - 7 - 10
azy(f) 0.4 0.4 0.45 0.5
R, (f) 2.9 2.9 4.36 3.35

Turning now to the Butler curve (plane waves) first, figure 3, one sees
that the shape of the peak is rather well fitted but 1s quite poor beyond

13) Examples 1 and 2 are taken from the paper of W. ToBocman, Phys. Rev. 773,
O8 (1939). Example 3 is preliminary, and is taken from the thesis of Mr. WILL1AM
Giess, Rice Institute (1960), (in preparation). We are indebted to both Dr. ToBoc-
MaN and Mr. Giess for permission to include their examples. (It should be noted
that the sign convention used in the paper cited is not explicitly stated, but appar-
ently the k; <k, convention is used, judging from the quoted experimental data.)
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50°. From the high energy and low Z value one expects the simplest
Butler theory to be reasonably applicable although, as suggested by
WILKINSON, the relatively high Q value may be a factor opposed to this
conclusion.

1000¢

100

0.1 L .
25 50 75 100 125 1500 175

{c.M)

Figure 1

Cross section for the elastic scattering of 8.1 MeV (lab) deuterons on B1°. Curves a
and b are the cross sections predicted by the potentials @ and b given in table I.
Carve ¢ is the Rutherford cross section. (The experimental data {(circles) arc from
ref. 16 and represent the elastic scattering of 7.7 MeV (lab) deuterons on Be?)

Introducing now Coulomb effects only we obtain figure 4. Because
Na = Mp> kp ~ k,; and 7 =17+ 1/2 we expect the polarization to be
initially positive in the convention adopted. This is borne out by the
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numerical results. Note that 7 = 0 at almost precisely the point where
the Butler curve has its first zero.

With the optical potentials as well as Coulomb effects, but cutting off
the integral at R, we get figure 5. Note that the Coulomb term dominates
the (opposing) optical term in the forward direction (as it must) but that
otherwise little else can be said about the result in general.

10000 E
1000}
Opp [
(mb) I
ster [
100 |-
g (o]
d
10 o
[ o
b
S ¢ il 1 1 A 1 A " g
30 60 20 120 150 180
8 (C.M)
Figure 2

Cross-section for the elastic scattering of 17.44 MeV (lab) protons on Bll. Curves
a and b are calculated with potentials @ and & given in table I. (The circles represent
the experimental elastic cross section for 17.0 MeV (lab) protons on B10))

Finally without cut-off we get figures 6 and 7 for two choices of the
deuteron optical potential. The significant points here are 1) the extreme
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sensitivity of the polarization in the two cases and 2) the qualitative
explanation in terms of cancellation which these potentials suggest.
Taking M V' R? as the appropriate parameter, in case (a) the deuteron to
proton parameter is about 4 to 1 and in case (b) about 4 to 3. Thus the
latter case should show less polarization, which is observed.

-

Tdp
ARBITRARY

20 40 60 80 I00 120 140 160
Bcm
Figure 3

B10(d, p) B! cross section according to the Butler theory for 8.1 MeV (lab) deuterons
taking / = 1 and 7 = 3/2. (The experimental points are arbitrarily normalized to
fit the calculated curve.)

Example 2: Ti®s(d, p)Ti*™, Q =4.46 MeV, I =1, j=3/2, R=6.18}.

The angular distribution for 2.6 MeV incident deuterons is taken from
PratT [17]. Figure 8 shows the Butler plane wave curve: this is quali-
tatively inconsistent with the data. Since this case is chosen to be both
low energy and high Z (the Coulomb parameters are 5, >~ 3, , >~ 1.25),
Coulomb effects should be large, and the lack of agreement with a plane
wave calculation is to be expected. In figure 9 only the Coulomb effects
are introduced, and the fit is improved considerably. Since %, ~ %, and
Ng > M, With 7 = I + 1/2 the polarization should initially be positive as
is obtained. Finally in figure 10 the non-cut-off distorted wave theory
results are shown, and the agreement seems quite good.

The problem as to whether or not to extend the integrals over the
nuclear interior is not clear-cut. In figure 11 we show the effect of various
neutron wave functions on the polarization and angular distribution; in
figure 12 the corresponding wave functions are shown. The great
sensitivity of the results to the interior is disturbing, for stripping is best
justifiable as a long range effect.
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Figure 4
Blo(d, p) B! cross section and polarization using the Butler theory modified to in-
clude Coulomb etfects, with / = 1 and 5 = 3/2, 8.1 MeV deuterons.

In this connection it might be well to call attention to an unusual feature of the
direct reaction process which has not, to the authors’s knowledge, been explicitly
discussed ). Consider the case where the process is at such low energies that the
reaction is dominated completely by Coulomb forces. From the asymptotic form
of the Coulomb matrix element (as given in Appendix V say, since / is not important
in this limit) one can obtain the asymptotic form of the direct reaction cross section.
Now for a resonance process, this asymptotic form is simply the product of the two
penetration factors, i. e. ~e=2" ", - ¢~ 7, Comparing this to the direct reaction
result one may define an enhancement factor (E. F.), i. e., E. F. = Ratio of direct
process to resonance process (compound nucleus). One finds that for £, >0, E. I.
~ exp { 7 f(¥) }, where J = 4 Ze? M[h?a (with o being the reciprocal radius of the

My Tt is implicitly contained, however, in the work of Lanpau and LIFSHITS,
J. Exptl. Theor. Phys. 78, 750 (1948); and in the papers of ref. [15].

25 H. P. A. Supplementum VI
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deuteron (4.32 f~1)) and x = k /a. The function f() is: f(x) = [+ )2 -1]71 +
v ltan—1(x/[2 - (2+ x2)12]). For Q= 0, E. F.—>-exp (212(1 + 27 1/2)2py) ; for Q—> o0, the
enhancement factor becomes exp {7,(4+ 3 @)}, which approaches 1, as it must.
Clearly then, the direct process is considerably enhanced by processes taking place
at very large distances, i. e. the deuteron does nof have to penetrate the barrier
to react.

The most striking instance of this occurs for the case where £, 1, = &, 7, (unlike
the (d, p) case). For this case the direct reaction goes as e 2*!m—7:l; in other
words for 1, = 7, the barrier to the ingoing particle cancels the barrier for the out-
going particle. Since barriers oppose for either direction this is a surprising, but
correct, result!®).

el
P16 |
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\ 7o 0 1 A 1 " 1 1 A L 1 1 n A e
20 \Q] 60 80 100 120 140 160

gcm
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o]
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e ). I ? cortmr e T
100 120 140 160
8 c.m
Figure 5

BY(d, p)BY cross section and polarization using the distorted wave modification
of the Butler theory, with cut-off at K. The potentials given in case a of table I
were used in the calculation.

15) This effect is well-known in Coulomb excitation, and might be important in,
say, Coulomb induced fission. Data in the barrier inhibited region (for protons on
U2) do not decide for or against such a process. (Unpublished calculations 1956,
of R. M. THaLER and L. C. BIEDENHARN.)
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Eximple 3; Q8 (g, HH30, = 1918 MeV, 8 = 39441, i=2, 1 = §jZ

The deuteron energy in this example is 19.0 MeV, and the Coulomb para-
meters are 7,22 0.4 and 75, ~ 0.25. Coulomb effects should be quite
small. The required fits to the elastic scattering for the deuteron and the

A L i

A o s b A " 1 A
20 40 €0 80 100 120 140 160

Bcm

Figure 6
BI0(d, p) B cross section and polarization using the distorted wave modification
of the Butler theory without cut-off. The optical potentials are those of case a,
table I.

proton are shown in figure 13. The data for the potentials are that for
case 4 in table I. The results obtained for the complete distorted wave
treatment, with and without cut-off, are shown in figure 14.



388 L. C. BiepENHARN and G. R. SATCHLER

The small # approximation discussed in Appendix V ought to be quali-
tatively applicable to this example (even though the / value is 2). From
the results in the appendix one sees that the initial (small 6) polarization
due to Coulomb effects can be negative for kf, > k> and small £, such as
obtains in this example. One notes in accord with this that both the cut-
off and non-cut-off cases show negative polarization near the forward
direction. Note also that in both cases the polarization vanishes almost
exactly at the first extremum in the angular distribution.

\hy‘ 30 60 T R T B T T T m <
8 cm

8t
o
o
8
o
o
nl
o
&
o
o

20
Bicm)

Figure 7

B10(d, p) B cross-section and polarization using the distorted wave modification of
the Butler theory without cut-off. The optical potentials are those of case b, table I.

Unlike example 2, where the cut-off greatly varied P but not (do/d{?),
this case shows just the opposite behaviour!
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To conclude then, it 1s clear that anything more then a qualitative
understanding of the stripping process is a very arduous task. It is
equally clear that there is quite a lot of work to be done in this field —ex-
perimental, numerical, and theoretical.

Acknowledgements: In the preparation of this paper the authors were
greatly helped by many colleagues, in particular Drs. GOLDFARB, IVASH,
and ToBocmaN, and by Messrs. WirLiam Gisss and THOMAS GRIFFY.

Appendix I

In the distorted wave Born approximation for stripping reactions the
proton polarization (assuming no proton spin orbit coupling) is governed
by the angular momentum relations:

S, + 8, =8, (I-1)
S ln = jn ’

with the directions of neither s, or j, being observed.
Using (classical) vectors to represent the angular momenta, one can
diagram these relations as shown in figure (I-1).

Figure (1-1)
The (classical) angular momentum vectors are represented by their intersection
with the surface of a unit sphere with all vectors taken to issue from a common
origin. Since §; = §,+$,, and s, + 1, = j, the representing points for these cases
lie along arcs of great circles. The vectors j, and §; are random (unobserved), and
thus the angles y, and y, are random. k represents an arbitrary direction in space.

Taking an arbitrary axis in space, I,z\, the probability that s, make an

angle (0, ¢) with  must be independent of ¢ (cylindrical symmetry), and
we, therefore, represent this probability by W(fl) and develop it as a
Legendre series.

W)= 3221 <P, (5, k) P, (k- s,) . (1-2)
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ARBITRARY

5 & 1 L 1
20 80 120 160
Gic.m)
Figure 8
Ti'8(d, p)Ti¥** cross section for 2.6 MeV (lab) deuterons, calculated for the Butler
theory with / = 1, j = 3/2. (The experimental points are arbitrarily normalized.)
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Figure 9
Ti'8(d, p)Ti*** as in figure 8, except that the Butler theory is modified to include
Coulomb effects.
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Here < P> represents an average over the random directions of j, and
s,. Using the addition theorem to carry out the averages (over y; and y,)

one finds successively:

(P, (s, k)>=P,(5,"5,) <P (s, k)>
= PV (/‘;!J ' ;n) PV (/';il ’ /i:l) <Pv (/l\n ’ E)\' (1—3)

and hence:

o) 2
N L\

40 80 (o] 3;0
-2 | Biem

-4 F

-6 ¥

2 + e ‘ L
40 80 120 160
Eem

Figure 10
Ti8(d, p)Ti*** as in figure 8, except the non-cut-off distorted wave modification
of the Butler theory (using the optical potential parameters of case ¢, table I)
is employed.

From (I-4) it follows that:

Pl (S[) ’ k)\ - :'/-S[i ’ k\ = Pl (S[) ’ Sn) pl (sn ’ In) < n’ /k;"\’
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or, since k is arbitrary,

<SP> - Pl (sp : Sn) Pl (Sn ’ lu) <l”>. (I—-S)

P
(%)
z [ LN
E | i
S5 b
@ a
L- 4
o 8o 2o 1e0
Bicm
Figure 11

Ti%(d, p)Ti1%* as in figure 10, using various choices of the captured neutron wave
function. (Note that various scale factors are used in the cross-section curves.)
The neutron wave functions are shown in figure 12.

Replacing the classical quantities in eq. (I-5) by their quantum ana-
logues,

. ‘ Jo: S /7 “ AW

e, —->—"2 _andP,(@a-b) - (—)})(2a +1) (20 + 1)

( el (@ b) = (=) 20+ 1) (
W(avch; ab) witha + b = c),
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and noting also that the polarization vector P is defined as the ex-
pectation value of s, divided by the maximum spin projection, one finds
the final result:

Pl (_5:12__(‘.*1’*“1) )”2. (=) ((2s,+ 1) (25, + 1)) W(s, 15,5, 5,5,)]

25 L (L, +1)

) (@s, + 1) (20, + D))EW(s, 14,45 s, L)1 <(L),,> =

_ 1 fln/(ln+l) for 7, = I, + 1/2] 1 -
— & l =1 for j, = ln—l/ZI : ln— <(ln)op>_ (I 6)

= 2 ‘; 6 * °|3 10 I.Z
| r {10~ cm)

—l -

-2L

-3F

-4

Figure 12
The radial wave functions for the captured neutron used in calculating the results
shown in Figure 11.

Appendix 1T

Using the distorted wave Born approximation (‘direct reaction’) the
angular distribution for the (4, p) reaction is most easily treated in the
angular momentum representation, and this leads to a Legendre series
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for the proton distribution. This is not a particularly satisfying way to
develop the answer—although it seems necessary—for the angular dis-
tribution is characteristically peaked at or near the forward direction, and
requires (especially for the Coulomb field) a great many terms in the
Legendre series. (One might expect that the use of an exact summation
of the high / terms could be used to advantage, but this has not yet been
carried out except for /, = 0.)

For convenience we make two further approximations: a) a zero range
n—p potential and b) we take the target nucleus to be heavy, so that
recoil can be neglected.

With these assumptions, the usual techniques [18] lead to the result:

d P2 N 279.+1 . R BN i
i = |z () 2B, Py (ky k), (1)
where:

] Y ] “ P
1)%124 (Cp Tp lp Tps Sp y) (=) 4

Z (ltl jd l{;' 7d’ Sd ]}) (_) fa=sa .

()2, + 1) @1+ 1) 24+ 1) 244+ VI W, iu i 1p0a) -

L g L1
AR . A* N,7'.'l, : 11-2
d l-p 719; ld?cl 11: Tp > ld7r,? ’ ( )
and,
l'n j’r . 1P l( ]n Z-) .
A I, 7‘;; laia exp i[0 (L, 7,) + 0 (1,7)] C Ot X D’
e ly Sq 14 .

' }/(2 ['n =¥ ]) (2 Sy + ]) X ]ni Si: ]7(5) -G {'" 7ﬂ‘ i " (I[M_S)

lp Sp 7'_1) 'plp> tala

In these formulas, the symbols have their usual significance: [ = or-
bital —, s = spin —, j = total — angular momenta; the Z coefficient is
defined as in ref. [18] (except that the bar denotes the phase factor 1s
omitted); the ¢'s are the phase shifts suffered by the respective proton
and deuteron waves; and ¢ ° " and X(...) denote the Wigner coefficient
and (9—7) symbol respectively. The quantity G ' denotes the (cut-off)
radial integral over the neutron, proton, and deuteron (considered as a
point particle) radial (real) wave functions. This quantity is defined
exactly as is the many treatments of the stripping problem in this
approximation.

The structure of this result, as far as angular correlation effects are
concerned, is that of a general (d, p) nuclear reaction in which 7, and 7,
play the role of intermediate ‘nuclear’ states connected by an unobserved
‘radiation’ of angular momentum 7,. The coefficient 4~ plays the role
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of the S matrix, and involves a ‘re-coupling’ from (/—s) to (j—7) coupling
for the nuclear process.

0 1 e PE 1
o] 20 40 60 80 100 120 140 160 180

| 1 1 L 1

0 20 40 80 80 100 120 140 160 180
acm)
Figure 13

The elastic scattering of 20.9 MeV protons on O (top curve) and 19.0 MeV deute-
rons on O (bottom curve) calculated from the optical potentials listed under case
d in table I. (The experimental data are from [19, 20].

The assumption that /, = 0, and that the spin orbit effects on the
deuteron may be neglected greatly simplifies the above result. After a
little angular momentum algebra, one obtains:

o~ o~

do L FITSR
(':(_((f)")z” 0o (72757[!4'{1 ) ’ (7;%1 ) Z;Bp (l,, =0) Py (kp . kd) 3
BJ' ([n - O) - (Z(Z jl]: _;_ y))z A[j A;k];
A, = e O +0) o (T1—4)

Here / and j refer to the proton’s orbital and total angular momentum.
Since /, = 0, both /, and /, are the same.
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Appendix 111

To put eq. (12)into the form given by SATCHLER, one needs the identity :

/ Iy 1/2 (=) ¥ —j +172
Cll VAY l, -’12 — ‘_"_:‘:‘,; III-*].
00 (v]v 1/ ) 2 )/3v(p+1) ( )
. R ) . lllV Z 7 1/2
Q@Y+ (il x z'm/z):
v v 0

—Colo” WGV 5 1)20) - [+ 1)+ (=)t 7+ (27 +1)]
2)6v (1) 2r+1)

Appendix IV

In order to show that the polarization for small spin-orbit coupling is
approximately given by the derivative of the angular distribution we

assume that eq. (II-4) applies to the process at hand and then use eq. (12)
to obtain the polarization.

20
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P8}
(o}
(%)
NO CUTOFF
-0
20
1 L ! 1 1 1 L L
0 20 40 60 80 100 120 140 160 180
8 (C.M)
1.0
I
0.85 NO CUTOFP
-
0.6
%
oar
B GUTOFF
0.2
0 1 1 1 L 1 L 1
20 40 60 80 100 120 140 160 180
g{C.M)
Figure 14

O18(d, p)O7 cross-section and polarization for 19.0 MeV deuterons, calculated from
the distorted wave modification of the Butler theory, with and without cut-off.
The various parameters are given under case 4 in table I.)
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We further assume that the spin-orbit phase shift splitting is small, so
that:

Ay O +0[) GUI 1L G A8P), (IV—1)

J =

with 4 8%’ = the spin-orbit proton phase shift splittin
] P p P P g

=7 -]/6 L(1+1) 21+ 1)7- Wi(171/2;11/2), (IV-2)
and

2 —9 ’ L iy 7
ﬁ[ = — V/EW e - % /di’ ’M} i (}’) Vspin (r)orbit M§ " (7’) . (IV~3)

(This definition of §, is chosen to agree exactly with that used by Rop-
BERG. His choice of radial wave function (in IV-3) differs from ours in
that the phase shift ¢/ is included.)

(It should be noted explicitly that eq. (IV-1) assumes that the radial
matrix elements G~ are not effectively different with or without the
spin orbit coupling. This assumption seems reasonable in itself, but is
actually better than may appear since the variation in G is real, and thus
leads to only off-diagonal contributions which are small under the same
assumption that j, is slowly varying in /.)

Inserting (ITI-1, 2) into eq. (12), (using (I1-4) for the definition of B )
one finds for the polarization the expression:

o A(24+1)
P(6) = n @s,+1) 27,41) (

)— 2251 [of) + o)) _o(d)]

df2
vll

.i( OUﬂ BY6L(+1 obyﬁ(cﬁﬁ 21+ 1) 2V +1)

7 6(2v+1 RIS R 1)
d‘g_.(pp(cosg))l/ ((1+) }2‘ ) I R ) 2i+1 @27 +1).

LR -
. X (i 2'11/2) w (1 PETs ; 'V) w (Z' 1y ;_ ! %)} '

(This employs the result that — d P,/df = P!")) (IV—4)

The bracketed sum in eq. (IV-4) may be carried out using the various
sum rules given in ref. [18]. The result is:

1 . . Y7
{u}gauWU1ZvJﬂ. (IV—5)
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Inserting this result (in its explicit algebraic form) in eq. (IV-4) one
finds the desired result:

~ (do -1 A227:,41) d
PO = n ( ) _ Aaeptl) e .
(9) (2sg+1)(24,+1) df %1
11y

B[y @+ U+ (O

)2 A, A* P, (cos 0)] . (IV—6)

If we assume, following RODBERG, that it is justified to regard 5, as
slowly varying with 7 so that f, ~ ¢f,> then one finds that (IV-6) takes
the form:

| d do do .
P(O) == 5 n (B>) 55 (55 ) | 5 (IV=7)
(The further approximation that ¢f,> ~ — 7;:: V., (R),

as given in ref. [11], may be of value in obtaining a rough estimate of the
spin orbit potential.)

Appendix V

If, in addition to the usual approximation of the direct reaction process
with a zero range n—p potential, one neglects all except Coulomb dis-
tortions and takes the nucleus to have R, = 0, the stripping integral may
be written in the form (for /, = 1):

M- ] BT Ik, 1) 9t () palr)
where :

¢ J \ 172 —ik =N & . .
) = (o) e B (=i Ly + o))

etnny—1

pult) = (ot )T (=i 10y — Ry 1) (V)
(All factors independent of %, k4, 7,, 1,4, &, have been eliminated.)

The approximation that R, = 0 is made for convenience, so that
SOMMERFELD’s techniques may be applied to evaluating thisintegral. This
approximation is of little importance when the reaction is Coulomb-
limited; for cases where this is not applicable a rapidly convergent series
for the contribution from 0 = » =< R, may be subtracted explicitly from
the result in eq. (V-1). The usefulness of the results given below (or in
ref. [15] for /, = 0) lies in the fact that the contributions for large values
of » and [ are treated concisely.
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With the application of SOMMERFELD’s techniques this integral may
be written as:

—(16224) [ . e ]
M— (]6.7[ l) [((?21 ’lp—l) (821’)(1—1)]
0
] ds (s? + ki + ki — 2 ky, kycos 0) 717wt
kn

5 (/i’d—f— kp — lTS) —1+iny+ing (kd'— kp . I-s)fl-‘,- ing |

. (kpm kd;_,t's)—lfi*‘i']d {}’ (\/Y—Z)
24 (R, — k)2 : ; ;
{-} = {{s—+ (kg y) (L4 e, + i) (R, + &, +105) (R — k) +

st (ky— k)2

5 (1 by — 1 ly) + 1 (ky — Ra) (1 + 7y k)| B+

oy B
2k, kgsin? =
+ 2 [(kp k,— kyk,) + (k=)
<5 (k= k) + (b, — k) (y + k)] F|, (V=3)
where:
_ ‘ — 4k ky sin? g)
Foeply (=i — i 15 C(hy— kst )
and
, 1
Fr= ;;; (uF, (a, b, ¢; x)). (V—4)

Although this integral is hardly simple, nonetheless it does present
certain information. For example, when |k,| = |k,| there are but two
combinations of the vectors k, and k, that enter: (k, —k,) and
(n, k; — 1, k,). From this one sees that the polarization varies as
(ne — 1n,) (R, *k,) and is thus dominated by the deuteron distortion. (The
special case where k, = &, is amenable to further reduction, but these
results will be given elsewhere.)

Since the integral M decreases essentially exponentially as %, in-
creases, it is clear also that the integration over s is in effect only the
definition of an average value of k,. Qualitatively then, one may simply
dispense with the integral and take s = <k,>. Next one notes that
I ~ y? while F' &~ 1 so that{...} may, for small s, be approximated by
the first [...] bracket. With these simplifications one obtains for the
polarization:
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2 ~(1/2) . B2 (B — k)2
P~ n{ /1} sind (— at (Ba= k) 2 e L -
= R4 (hg= )2+ 4 ky kysint o ) 10

- [k2 (g — ”,) + (ki — k) (e + )] (V-5)

(small » approximation)

(the bracket { ... }in (V-3) is the same as in (V-3); for k, = k,and § - 0,
the terms () must be kept in the denominator).

One sees from this approximate result that the polarization is positive
(parallel to k, xk,) for k, ~ k,, but can become negative as &, gets suf-
ficiently greater than %,. In general, one would expect this approximate
result to be qualitatively valid in the forward direction, and the ex-
amples discussed seem to bear this out.
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