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Zur thermodynamischen Theorie irreversibler Prozesse

von W. Czaja
(Institut fiir angewandte Physik der Universitidt Basel)

(5. 1X.1961)

Summary. It is the aim of this paper to show that an unequivocal formulation
of a thermodynamic theory of irreversible processes is possible. The conditions to
be imposed on entropy and internal energy are given and discussed. It is shown that
with the assumptions made, only linear equations between forces and fluxes are
possible. Invariance of entropy against transformations of forces and fluxes as well
as Onsager-Casimir-Relations are necessary and sufficient to determine the matrix
of phenomenclogical coefficients. In this formulation the theory is shown to apply
to a kind of general rearrangement processes. As an application, the minimum con-
dition for the entropy production is solved using variational methods. The corre-
sponding Euler-Lagrange-equations appear to be the initial equations specialised
to the stationary case.

1. Einleitung

Trotz unbestreitbarer Erfolge und einer zunehmenden Zahl von An-
wendungen, welche die Thermodynamik der irreversiblen Prozesse auf-
zuweisen hat1)?)?)7), ist an der bestehenden Theorie verschiedentlich
Kritik geiibt worden?)5)$).

Es soll im folgenden versucht werden, mindestens einigen Einwdnden
Rechnung zu tragen und eine thermodynamische Theorie irreversibler
Prozesse so zu formulieren, dass sowohl die Beziehungen dieser Theorie
zur Thermodynamik des Gleichgewichts in Ordnung sind als auch das
Vorgehen eindeutig ist.

Dabei miissen wir eine Einschrankung der Anwendungsmaéglichkeiten
in Kauf nehmen. Immerhin ist der verbleibende Anwendungsbereich der
Theorie noch gross, was unsere Untersuchungen als geniigend interessant
erscheinen lisst.

Viele Uberlegungen und Sitze kénnen wir aus der bisherigen Theorie
ibernehmen (vgl. besonders MEIXNER und REIK?)).

Dem Ziel unserer Untersuchungen entsprechend ldsst es sich nicht
immer vermeiden, dass sich manches, was zuerst neu erscheinen mag, bei
genauerer Betrachtung als bereits von anderen Autoren mitgeteilte Uber-
legungen mit etwas verschiedener Akzentuierung herausstellt. Wir haben
uns bemiiht, durch genaue Zitate die Situation zu kldren.
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2, Entropie-Erzeugung

Die Probleme im Zusammenhang mit der Existenz der thermodynami-
schen Grossen bei Abweichungen vom Gleichgewicht sind oft behandelt
worden; wir verweisen auf MEIXNER und REIK?) und die dort ange-
gebene Literatur. Auf den Ergebnissen dieser Untersuchungen fussend,
nehmen wir im folgenden an, dass sich die Entropie, innere Energie,
Temperatur etc. auch bei Abweichungen vom Gleichgewicht definieren
lassen.

Die Entropie eines abgeschlossenen Systems*) als Funktion der exten-
siven Variabeln U, V, M; besitzt im Gleichgewicht ein Maximum (2.
Hauptsatz). Es bedeuten U = innere Energie, IV = Volumen und M; =
die Massen der Komponenten j. Die Abgeschlossenheit hat zur Folge,
dass dU = 0 und 4V = 0.

S muss ferner eine homogene lineare Funktion der Variablen U, V und
M; sein. Fithrt man spezifische Grossen

U S 1 v M,
U= ST w g T M 2 M= M 1)
ein, so folgt aus
1 p M
dS=TdU+TdV--§j T’de**) (2)

mit dem Eulerschen Satz iiber homogene Funktionen

g p 1 i
S_TM+T"E ;’fzij, (3)

und es gilt weiter

1

p 51 Iz

Fithrt man «Dichteny anstelle der spezifischen Grossen ein,

’ !

s'=ps, w =pu, 0; =0%;, (5)

*) Abgeschlossen ist ein System dann, wenn es mit der Umgebung weder Energie
noch Materie austauscht. Man vergleiche dazu E. A. GuUGGENHEIM, Thermodynamics,
North Holl. Publ. Co., Amsterdam 1950, S. 26. In den dort verwendeten Bezeich-
nungen ist unser abgeschlossenes System durch «adiabatic changes in a closed
system with rigid walls» charakterisiert. Man beachte, dass «closed system» hier
im Sinne von «closed phase» (vgl. ebenda S. 16) verwendet wird, d. h. ein System
mit festgehaltener Zusammensetzung.

**) Es bedeutet p = Druck und p; = chemisches Potential der Komponente j.
Wir sehen von dusseren Kriften ab. Sie lassen sich, solange sie konservativ sind,
mit den u; zu neuen Potentialen zusammenfassen, vgl. z. B. das Vorgehen in 1).
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so ergibt sich fiir die Entropieinderung aus (3) und (4)

dos) = - dlo v Z“’ do; (6)

eine (3) entsprechende Beziehung lisst smh nicht aufstellen.
Wir bezeichnen die spezifischen Variablen (1) im folgenden mit &;, die
Dichten (5) mit {;; (3), (4) bzw. (6) lauten dann

= s(&;) =Z_§§iz & ds —Z ()51 7

os=5"=5(), ds'=2~a§—; az, (®)

Besteht das System aus » Komponenten, so ist die Zahl der {; #» + 1 und
die der &; #+ 2, wobei die &; nicht unabhingig sind, sondern }' ;= 1zu

beriicksichtigen ist. Die {; sind hingegen voneinander unabhjéingig. Wir
nehmen im folgenden an, dass iiberzdhlige Variable eliminiert wurden,
die {; wie die &, als voneinander unabhingig zu betrachten sind.

Wir fragen nun nach der zeitlichen Anderung der gesamten Entropie
S eines Systems, das weder abgeschlossen sei noch sich im Gleichgewicht
befinde. s und die &, bzw. s’ und die {; sind im allgemeinen Funktionen
des Ortes und der Zeit, d. h. Feldgrossen. Wegen

0
at S = 5 sdm—%fgsdv
ergibt sich eine Bilanzgleichung fiir die Entropiedichte *)
%(gs)mivJs:ﬁ, (9)

dm bedeutet ein Massenelement.
Die zeitlichen Anderungen der Variablen {; werden durch Bilanzglei-

chungen der Form 5

beschrieben. Ist in (10) die «Quelldichte» I"; = 0, so spricht man von
einem Erhaltungssatz **).

Durch (10) sind die den (; zugeordneten Quellen I'; und Stréme J,;
definiert, die Strome allerdings nur bis auf einen quellenfreien Anteil

rot i,
! rot J; = rot rot i, . (10a)

*) Vgl. etwa TRUEsSDELL and Tourin®), S. 468, MEIXNER und RE1k7), S. 419 ff,

i)
**) Formal liesse sich (9) aIs Co +divJy=1I,, {,=5s", Jy,=J,, I'y="% schrei-

ben.
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Die Wirbel (10a) der Strome J; werden durch die im nédchsten Abschnitt
zu behandelnden linearen Gleichungen festgelegt, sind also nicht will-
kiirlich vorgebbar. Mit andern Worten: die J; sind durch (10) und die
linearen Gleichungen (14) eindeutig bestimmt.

Die Bilanzgleichungen (10) der Variablen £, sind gegeben, die Entropie-
bilanz (9) ist gesucht. Insbesondere sollen Entropieerzeugung und Entro-
piestrom durch die fiir die ablaufenden Prozesse charakteristischen
Strome und Quellen ausgedriickt werden. Aus (8) ldsst sich die zeitliche
Anderung von s’ berechnen:

os’ os” 0C
ot 41\? oL ot

Dieser Beziehung liegt nun aber die Voraussetzung zu Grunde, dass die
Entropie auch beim Ablaufen irreversibler Prozesse ein vollstindiges
Differential bleibt. Dabei ist die Zahl der zur Beschreibung des Zustandes
notwendigen skalaren Zustandsvariabeln {; stets gleich gross wie die,
welche zur Beschreibung des betrachteten Systems im Zustand des ge-
hemmten Gleichgewichts ausreicht (DAviEs4), S. 328-329).

Aus (11) ergibt sich mit (10)

%eriv{ZJ, ()C} Z‘{F 5 + i grad - g} (11a)

(11)

Durch Vergleich von (11a) mit (9) lassen sich nun Entropiestrom und
Entropieerzeugung durch die Grossen J; bzw. I'; und grad 0s’/0f; bzw.
0s’'[0{; ausdriicken, wobei wir als Quellen der Entropie bzw. als Entropie-
erzeugung den Anteil an der zeitlichen Anderung von s’ bezeichnen, der
sich nicht in einen reinen div-Ausdruck umformen lisst. Dies ist bei einer
Integration iiber das Volumen des gesamten Systems der Anteil, der
nicht durch einen Strom durch die Oberfliche zustande kommt und mit
geeigneten Randbedingungen zum Verschwinden gebracht werden kann.

Von Interesse fiir unsere weiteren Untersuchungen ist die aus (11a) zu
entnehmende Tatsache, dass sich # als bilineare Form in den Gréssen [
und J; einerseits und 0s’/0{; und grad 0s’/0{; andererseits ergibt

P = Z{ ; 05; +J,,grad C} (11b)

Wir wollen zundchst noch bemerken, dass Gleichung (11a), die fiir alles
weitere von grundlegender Bedeutung ist, kovariant gegeniiber Trans-
formationen des Koordinatensystems ist. Gehen wir von einem system-
festen zu einem mit dem Schwerpunkt des betrachteten Mediums mit-
bewegten Koordinaten-System iiber (Schwerpunktgeschwindigkeit b),
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so bedeutet dies gleichzeitig eine Transformation {; - &,. Durch Aus-
rechnen iiberzeugt -man sich leicht, dass aus (11a) fiir einen mit dem
Schwerpunkt mitbewegten Beobachter

* OS s * 0s d 0
_+d1V{ZJ1’ ()5} ;‘{P,a—&u—l—.]z,gradsg—z},E—=¥+D,g1‘ad
(11c)

wird. Dabei ist der Wert der Entropieerzeugung ¢ wegen (7) invariant.
In (11c) bedeutet J} den Strom im mitbewegten Koordinatensystem,
definiert durch

0%t pdiv =T, (10D)

(10b) folgt aus (10) durch Umrechnung unter Beriicksichtigung des Er-
haltungssatzes fiir die gesamten Masse

0 . _ alfe) _ g:ion
_T+d1v(gn)_0 bzw. g divp=0.

Zwischen den Strémen gilt der Zusammenhang
J'=J,—0&m.

Die Gleichung (9) bzw. (11a) bestimmen die Anderungen der Entropie,
und es muss daher notwendig mit ihnen die Aussage des 2. Hauptsatzes
der Thermodynamik, dass die Entropie eines abgeschlossenen Systems
nur zunehmen kann, formuliert werden kénnen. Zunichst untersuchen
wir die Randbedingungen fiir ein abgeschlossenes System. Ein derartiges
System tauscht mit der Umgebung weder Energie noch Materie aus (vgl.
S. 894), es verschwinden somit simtliche Strome J; an der Oberfliche.
Damit ist die Erhaltung der gesamten Masse des Systems garantiert
sowie die Bedingung dV = 0 bezogen auf das gesamte System erfiillt.
Hingegen bleibt die innere Energie U des gesamten Systems im allge-
meinen nicht konstant, auch wenn der Energiestrom an der Oberflidche
verschwindet, da wir im Quellterm I”, die Umwandlungen von z. B. kine-
tischer Energie in innere Energie (z. B. durch Reibungseffekte) beriick-
sichtigt haben. Man vergleiche dazu die von MEIXNER und REIK?) S. 422
sowie von DE GrooT?®) S. 134 angegebenen Ausdriicke fiir die Quellen
der inneren Energie. Um die fiir das Maximum von S im Gleichgewicht
notwendige Bedingung konstanter innerer Energie (U = 0) zu erfiillen,
ist daher

r,=0 (12a)

57 H.P.A. 34, 8 (1961)
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zu verlangen. Die innere Energie aller von uns betrachteten Systeme
muss also erhalten bleiben *). Erst dann liefert die Randbedingung

J,-/Norm”Oﬂ- = {} t=21,2:::], (12b)
die wir soeben fiir ein abgeschlossenes System formuliert haben, auch die
in der gewohnlichen Thermodynamik notwendigen Voraussetzungen fiir
das Maximum von S im Gleichgewicht (vgl. S. 894).

Wir integrieren nun (9) iiber das gesamte Volumen G eines im oben-
stehenden Sinn abgeschlossenen Systems mit der Oberfliche B, das der
Bedingung (12a) geniigt. Die Rechnung ist natiirlicherweise in einem
systemfesten Koordinatensystem auszufithren. Man erhilt, da aus (12b)

mit

os’
J, ZZ‘I{ 3T

7

folgt, dass die Normalkomponente von J, an der Oberflache verschwindet :

0
3;5=/bdv. (12¢)
G

Nun erst liefert (12c), wenn S nur zunehmen soll,

fﬂ@20+ﬁ20, (12d)
G %

d. h. die Aussage des 2. Hauptsatzes in der Formulierung der thermo-
dynamischen Theorie irreversibler Prozesse.

Im Rahmen der hier betrachteten thermodynamischen Theorie irrever-
sibler Prozesse kénnen also ausschliesslich nur solche Vorgdnge behandelt
werden, bei denen die innere Energie erhalten bleibt. Wir wollen hier
keine genaue Diskussion der physikalischen Konsequenzen von (12a)
durchfithren. Immerhin sei soviel bemerkt, dass die schwerwiegendste
Folge von (12a) der Verzicht auf die Beschreibung sdmtlicher Reibungs-
effekte ist. Im Gegensatz zu den Reibungseffekten liefern z. B. Diffusion,
Wirmeleitung und innere Umwandlungen keinen Beitrag zu den Quellen
der inneren Energie.

Die Voraussetzungen, welche zur Aufstellung der Gleichung (11) von
wesentlicher Bedeutung sind, kénnen zusammen mit der Erhaltung der
inneren Energie (12b) so interpretiert werden, dass die hier dargelegte

*) Man konnte hier daran denken, als Variable statt der inneren Energie die
gesamte Energie einzufiihren, die erhalten bleibt. Dem stehen jedoch die zur Ab-
leitung von (11) notwendigen Voraussetzungen entgegen, die verlangen, dass die
Funktion S im Gleichgewicht wie bei Abweichungen vom Gleichgewicht dieselbe ist.
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Theorie in einem allgemeinen Sinn Umordnungserscheinungen beschreibt.
Diese Annahmen bedeuten ndmlich, dass wir die Nichtgleichgewichts-
zustinde durch Einfiithren einer geeigneten Anzahl von Hemmungen
zu einem gehemmten Gleichgewicht «einfrieren» kénnen. Der tatsiachliche
Ablauf der Vorginge, bis das Gleichgewicht erreicht wird, erscheint dann
als Folge der Beseitigung der Hemmungen, vergleiche dazu DAvVIES?),
S. 329. Das thermodynamische Gleichgewicht stellt sich ein, wenn bei
konstanter innerer Energie passende Umordnungen stattgefunden haben.
Damit scheint uns diese Theorie in einer befriedigenden Weise charak-
terisiert zu sein.

Es sei noch darauf hingewiesen, dass wegen der Erhaltung der inneren
Energie nun gewisse Schwierigkeiten, die bei der Formulierung des Ener-
giesatzes auftreten und die von TRUESDELL und TouPIN®) S. 613 hervor-
gehoben wurden, verschwinden. Als Beispiel erwidhnen wir hier die von
MEIXNER stammende Behandlung der thermoelektrischen Erscheinungen
in Metallen, wie sie in Band 5 der Vorlesung von A. SOMMERFELD wieder-
gegeben ist*). Setzt man dort als Energiesatz

2 fow +divw=0,

so liefert jetzt die Theorie von selbst den richtigen Ausdruck fiir den
Energiestrom W. Gleichzeitig tritt dann der Peltierkoeffizient zusammen
mit dem elektrochemischen Potential auf, und die durch eine Trennfliache
zwischen zwei Metallen transportierte Energie wird automatisch gleich:
Differenz der Peltierkoeffizienten mal elektrische Stromstarke.

3. Beziehungen zwischen Kriften und Stromen

Aus Griinden der bequemeren Schreibweise fithren wir zunéchst einige
Abkiirzungen ein. Es ist {iblich, die in der Entropieerzeugung # (11b)
stehenden Grossen I'; und J,, die man wegen (10) bzw. (10b) als «dyna-
mische Parameter» bezeichnen kann, verallgemeinerte Stréme zu nennen.
Die zu ihnen konjugierten «statischen Parameter» 0s’/0(; bzw. grad ds'/0¢;
nennt man verallgemeinerte Krifte. '

Man hat zwischen skalaren und vektoriellen Kriften und Strémen zu
unterscheiden

]i:Fi’ i—oci:

- 13)
s
Jizji’ X1=grad_acz

*) Gleiches gilt fiir das Vorgehen in 1),
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Die Entropieerzeugung ¢ als positiv definite bilineare Form in den Kraif-
ten und Strémen wird mit (13)

ﬂzZ{]iXi+Ji1Xi}'

Aus der Existenz dieser bilinearen Form ¢ in den Kréiften und Strémen
folgen, wie im Anhang bewiesen wird, homogen lineare Gleichungen zwi-
schen diesen Strémen und Kriften. Diese Gleichungen liefern die not-
wendigen Aussagen dafiir, dass beim Verschwinden der Krifte im thermo-
dynamischen Gleichgewicht ebenfalls alle Strome null sind*). Ferner
spiegeln sich in diesen Gleichungen die Eigenschaften der betrachteten
Materie wieder, essind sogenannte constitutive equations, vgl. TRUESDELL
and Toupin®) S.700. Die Tatsache, dass nur lineare Abhingigkeiten
zwischen Kriften und Stromen moglich sind, hingt mit den Bedingungen
zusammen, die wir im 2. Abschnitt fiir die Entropie als Funktion der
Zustandsvariablen bei Abweichungen vom Gleichgewicht ausgesprochen
haben.

Die Zuordnung linearer Gleichungen zu einer bilinearen Form ist nun
aber nicht eindeutig im Gegensatz zum umgekehrten Fall: Jedem linearen
Gleichungssystem ist eindeutig eine bilineare Form zugeordnet (vgl. z. B.
CouranT-HIiLBERT?) Bd. 1, S. 10ff.) Im restlichen Teil dieses Abschnittes
befassen wir uns mit der Beseitigung dieser Willkiir bei der Bestimmung
der Koeffizienten-Matrix der homogenen linearen Beziehungen zwischen
Stréomen und Kriften. Dies geschieht in zwei Schritten. Zunachst werden
wir anstreben, dass sich die Symmetrie der Koeffizienten-Matrix beim
Ubergang von einem zu einem zweiten gleichwertigen System von Kréften
und Stromen nicht dndert. Anschliessend werden wir zeigen, wie die
Symmetrieeigenschaften selbst der Koeffizientenmatrix festgelegt sind.
Damit sind dann die linearen Gleichungen zwischen Kriften und Strémen
eindeutig, d. h. die Koeffizienten mit ihren Vorzeichen aus Experimenten
eindeutig bestimmbar.

Das der Bilinearform & zugehorige lineare Gleichungssystem, der
«lineare phanomenologische Ansatz», zwischen Kriften und Strémen

laute
]i:ZZikax Ji=2Lika-**) (14)
k k

Dabei haben wir bereits beriicksichtigt, dass in einem isotropen Medium
Skalare nicht linear von Vektoren und umgekehrt abhingen kénnen (vgl.

*) Es sei darauf hingewiesen, dass diese Aussage aus (10) bzw. (10b) alleine nicht
folgt.

**) Wir setzen stets stillschweigend voraus, dass die Reziproken der von uns
verwendeten Matrizen existieren.
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MEIxNER und REi1k?) S. 427, TruesDELL und ToupIin®) S. 644, DE
Groot?) S. 156).

Da die Zuordnung der linearen Gleichungen (14) zu 9 nicht eindeutig
ist, sind die Beziehungen (14) mit allen aus diesen durch lineare Trans-
formationen (mit konstanten Koeffizienten)

]l’=2a!3"]i’ X:aa,:mean’
f n

-L,:ZAlijl XQZZanXn
7 n

hervorgehenden gleichberechtigt. Aus den allgemeinen Transformationen
(15) sind nun aber bestimmte «Zulissige» durch die Forderungen

(15)

1. Es muss die Entropieerzeugung invariant bleiben (MEIXNER und
REIK?) S. 432).

2. Es muss die Entropie s’ invariant bleiben (Davies*) S. 334, Hooy-
MAN et al.19), COLEMAN und TRUESDELLS)).

auszusondern.

Wihrend die erste Forderung trivialerweise erfiillt sein muss, ist die
Notwendigkeit der zweiten nicht ganz so offensichtlich. Man erkennt
jedoch sofort anhand von (10) und (10b), dass Transformationen (15)
ebenfalls die £, bzw. £; transformieren und damit wegen (11) die Entropie
beeinflussen. Es ist daher notwendig zu verlangen, dass jede beliebige
Wahl von Kriften und Stromen weder den Wert der Entropie verdndert
noch auf neue Variable ] bzw. & fiihrt, in denen bei einem abgeschlos-
senen System mit (12b) entsprechenden Randbedingungen die Entropie
im Gleichgewicht kein Maximum ist.

Man zeigt mit (11a) bzw. (11c) und (15a), dass in der Invarianzbedin-
gung fiir die Entropie diejenige fiir die Entropieerzeugung enthalten ist.
Es muss die zweite, schirfere der beiden Bedingungen erfiillt sein, d. h.
die Entropie bei Transformationen (15) unverdndert bleiben. Dies hat
fiir die Koeffizienten der Transformationsbeziehungen (Davies?) S. 334,
HoovyMAN et al.1?), CoLEMAN und TRUESDELL ¢))

a=>51, A=B1 (152)

zur Folge*), wenn b-1die reziproke der transponierten Matrix b bedeutet.

Mit der Nebenbedingung (15a) haben nun die Transformationen (15)
die wichtige Eigenschaft, dass sie die Symmetrie der Koeffizienten-
Matrizen [ und L nicht dndern (MEIXNER und REIK7) S. 434, COLEMAN
und TRUESDELL®)). D. h. eine einmal vorgegebene Symmetrie der Matri-
zen / und L bleibt auch bei Transformationen (15) wegen (15a) erhalten.

*) Sogenannte Meixner-Bedingung, vgl. Davies?) S. 334.
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Um auch die restliche Willkiir bei der Festlegung der linearen Glei-
chungen zu beseitigen, argumentieren wir wie folgt:

Mit (13) und den linearen Gleichungen (14) lisst sich die Entropie-
erzeugung ¥ als quadratische Form in den Kriften schreiben. Nun dndert
sich bekanntlich der Wert der quadratischen Form nicht, wenn man zu
den Koeffizienten-Matrizen / und L beliebige schiefsymmetrische Anteile
addiert. Transformationen, welche die Symmetrieeigenschaften der Ma-
trizen / und L dndern, sind, wie wir gesehen haben, durch die Bedingun-
gen (15a) ausgeschlossen. Die Symmetrieeigenschaften von / und L blei-
ben erhalten. Damit ist jedoch noch nichts iiber die Symmetrieeigen-
schaften selbst ausgesagt. / und L sind nur bis auf additive schiefsym-
metrische Anteile bestimmt, also nicht eindeutig gegeben *).

Diese letzte Unbestimmtheit wird nun durch die Onsager-Casimir-
Beziehungen (oder entsprechende Bedingungen) beseitigt. Sie verlangen
von den Matrizen / und L, dass sie je nach den Symmetrieeigenschaften
beziiglich Zeitumkehr der zugehérigen Krifte symmetrisch oder anti-
symmetrisch sind und antisymmetrische bzw. symmetrische Unter-
matrizen haben (vgl. z. B. MEIXNER und REIK?) S. 426). Nunmehr sind
die linearen Gleichungen (14) eindeutig gegeben.

Es ist bemerkenswert, dass die thermodynamische Theorie irreversibler
Prozesse auf Symmetrie-Aussagen von der Art der Onsager-Casimir-
Beziehungen nicht verzichten kann, solange sie Anspruch auf Eindeutig-
keit erhebt.

Die Giiltigkeit der Onsager-Casimir-Beziehungen sehen wir unter Hin-
weis auf die Untersuchungen von MiLLER!) als durch die Erfahrung be-
statigt an. Neben den Onsager-Casimir-Beziehungen treten weitere Sym-
metriebedingungen auf, wie sie zum Beispiel bereits zur Aufstellung der
Gleichungen (14) verwendet wurden.

CoLEMAN und TRUESDELL®) heben hervor, dass fir jede Wahl von
Kriften und Strémen bewiesen werden miisste, dass sie «Onsagersch»
ist, d. h. dass die Onsager-Casimir-Beziehungen auf die entsprechenden
Koeffizienten angewendet werden kénnen. In unserem Fall miisste der
Beweis nur fiir die X;, X; und J;, J; gefiihrt werden. Fiir alle mit (15)
und (15a) daraus ableitbaren Variablen ist diese Forderung dann von
selbst erfiillt. Wir wollen hier diesen Beweis nicht erbringen, vermuten
jedoch, dass unsere Krifte und Stréme (13) die Forderung von COLEMAN
und TRUESDELL erfiillen.

Die in diesem Abschnitt erfolgte formale Begriindung der linearen
Beziehungen zwischen Kréften und Stromen steht im Gegensatz zur iib-
lichen anschaulichen Einfiihrung dieser linearen Zusammenhinge. Sie
bedeutet jedoch nicht die allgemeine Giiltigkeit derartiger linearer Be-

*) Eine dhnliche Bemerkung findet sich bereits bei Casimir1?) S. 347.
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ziehungen. Vielmehr lassen sich andere als lineare Beziehungen zwischen
Kriften und Strémen nicht sinnvoll in dieser Theorie behandeln, und
daraus folgt eine Beschrankung des Anwendungsbereichs des gesamten
Formalismus.

Wir weisen darauf hin, dass die soeben behandelten Fragen nichts mit
der Eindeutigkeit der Definition der Stréme (Bedingung fiir rot J, siehe
Abschnitt 2) zu tun hat. Eine derartige Bedingung wird bereits durch die
Eigenschaften der Krifte selber festgelegt und nicht erst durch die Sym-
metrieeigenschaften der Koeffizienten-Matrix, solange wir konstante oder
vom Ort héchstens schwach abhingige Koeffizienten annehmen. In vie-
len Fillen sind die Krifte Gradienten skalarer Potentiale. Aus den line-
aren Gleichungen (14) folgt dann bei ortsunabhingigen Koeffizienten
rot J; = 0. Das Verschwinden der Wirbel von J, ist somit keine freie Be-
dingung mehr.

Abschliessend untersuchen wir als Beispiel fiir die Bedeutung der Be-
dingung (15a), welche fiir lineare Transformationen zwischen Kriften und
Strémen gelten muss, die in einer fritheren Arbeit!) verwendeten Trans-
formationen. Durch Ausrechnen kann man zeigen, dass nur die erste
Transformation in !) S. 10 von den Kriften — 1/T grad T, X,, X, auf
neue Kréfte — 1/7 grad T, 1/2 (X, + X,), 1/2 (X, — X,) zu der hier be-
handelten «erlaubten» Klasse gehort. Die beiden anderen Transformatio-
nenin!) S. 10 und S. 14 sind in unserem Sinne nicht zulédssig. Obwohl sie
die Entropie-Erzeugung invariant lassen, erfiillen sie nicht die Bedin-
gung der Invarianz der Entropie. Dies hat zur Folge, dass die Symmetrie
der Koeffizientenmatrix der transformierten linearen Beziehungen auf
Grund thermodynamischer Prinzipien nicht vorausgesagt werden kann.
Selbstverstindlich sind die ausgefiihrten Transformationen als Rechen-
operationen maglich, und insofern dndern die hier gemachten Feststel-
lungen nichts an den Ergebnissen von 1). Allerdings bedarf die in ) S. 4
gedusserte Behauptung: «unter Kriften verstehen wir allgemein die einem
bestimmten Problem angepassten unabhingigen Variabeln» einiger Ein-
schrinkungen im Hinblick auf die Ergebnisse dieses Abschnittes.

4. Stationire Zustinde

Als eine Anwendung der thermodynamischen Theorie irreversibler Pro-
zesse untersuchen wir im folgenden die Eigenschaften stationdrer Zu-
stinde. Insbesondere werden wir uns mit dem Zusammenhang der Zu-
stinde minimaler Entropie-Erzeugung mit den stationiren Zustinden
eines Systems befassen.

Derartige Untersuchungen sind aus der Literatur bekannt (vgl. die
Darstellung in MEIXNER und REIK7) S. 455).
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Das von uns verwendete Beweisverfahren ist bereits frither von THOR
A. Back'®) auf eindimensionale Diffusionsprobleme angewandt worden.
Spiter hat BRown14) (vgl. besonders S. 778) im Rahmen einer Thermo-
dynamik stationirer Zustinde aus dem Variationsprinzip (16) fiir die von
ihm verwendeten Planckschen Potentiale Gleichungen in der Form von
(18) erhalten. Diese Rechnungen erlangen jedoch ihre volle Tragweite
erst dann, wenn der im 2. Abschnitt aufgestellte allgemeine Formalismus
verwendet wird. Ferner sei erwihnt, dass GLANSDORFF %) und KIRKALDY?¢)
ebenfalls Extremalprobleme untersucht haben, die mit dem Minimum
der Entropie-Erzeugung verkniipft sind.

Wir betrachten

0s’

[ Sdv=Min.,  §=19 (g—z ,grad 5 ) (16)

als Variationsproblem. Die Integration erstrecke sich auf ein Gebiet G
mit der Berandung B. Auf dem Rand B sind die Werte von (0s'/0Z;) und/
oder grad (0s’/0¢;) vorgeschrieben. Bei dem Extremalproblem (16) werden
alle im Volumen G erkliarten Funktionen (0s'/0{;) — als Funktionen von
x, v, z — zugelassen, welche bei gleichen Randwerten auf B das Integral
zu einem Minimum machen. Da als Randbedingungen praktisch nur Vor-
schriften iiber (0s’/0;) oder/und grad (0s’/0(;) bzw. iiber deren Linear-
kombinationen in Frage kommen, wird das Variationsproblem stets 16s-
bar sein (vgl. dazu etwa CouranT-HILBERT?®) Bd. I, S. 179).

Als fiir das Bestehen von (16) notwendige Bedingung muss ¢ den
Euler-Lagrangeschen Gleichungen geniigen. Dazu tritt als hinreichende
Bedingung fiir die Existenz des Minimums hinzu, dass die mit der Matrix
sdamtlicher 2. Ableitungen von ¢ nach (0s’/0¢;) und grad (0s'/0;) gebildete
quadratische Form positiv definit ist*), und diese Bedingung ist wegen
des 2. Hauptsatzes (12d) erfiillt. Somit machen die Losungen der Euler-
Lagrangeschen Gleichungen mit den vorgeschriebenen Randwerten das
Integral tatsdchlich zu einem Minimum.

Wir schreiben nun mit (11a) und (13) unter ausdriicklicher Voraus-
setzung der linearen Gleichungen (14) und der Onsager-Casimir-Bezie-
hungen # als quadratische Form in den Kriften

25
19:;’%‘{ "5 a; + Ly grad o5 C_ _, grad ack} (17)

Die (16) unter Beriicksichtigung von (17) zugeordneten Euler-Lagrange-
schen Gleichungen lauten:

*) Fir die Existenz des Minimums geniigen auch noch schwichere Bedingungen,
vgl. dazu CouranT-HILBERT?®), Bd. 1, S. 184 ff,
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dhr{ i }_m ¥ ___o, (=12..) (18

0 |grad 0s’[0g; | 9(9s’(0C,)
woraus man mit den linearen Gleichungen (14)

givJ,—I';=0, i=1,2,..) (18a)

erhilt. Offenbar sind aber die Gleichungen (18a) die auf stationidre Ver-
hiltnisse (0/0t = 0) spezialisierten Gleichungen (10). Damit ist bewiesen,
dass die durch (16) gekennzeichneten Zustinde stationar sind.

Wir fiigen hier die Bemerkung an, dass das Variationsproblem auch
eindeutig lésbar ist, d. h. zu vorgegebenen Randbedingungen kann sich
nur ein bestimmter stationirer Zustand einstellen.

In ') waren bei der Berechnung stationérer Zustidnde aus dem Minimum
von ¥ zusitzliche Bedingungsgleichungen zwischen einzelnen Kriften zu
beriicksichtigen. Weil hier 0s’/0¢; und grad 0s’/0; nicht als unabhidngige
Variable auftreten, werden derartige Bedingungen weitgehend iiberfliis-
sig. Im iibrigen liessen sie sich leicht beriicksichtigen, man vergleiche etwa
CouraNT-HILBERT®) Bd. 1, S. 186 ff.

Der hier angegebene Beweis und die aus ihm folgende Aussage, dass
stationdre Zustinde eines Systems durch das Minimum der Entropie-
Erzeugung charakterisiert sind, gilt selbstverstindlich nur, solange diese
stationdren Zustinde mit der thermodynamischen Theorie irreversibler
Prozesse beschrieben werden kénnen.

Bereits frither hat DENBIGH!?) und in neuerer Zeit KLEIN8) darauf
hingewiesen, dass bei grossen Abweichungen vom Gleichgewicht statio-
nire Zustidnde nicht mit den Zustinden minimaler Entropie-Erzeugung
identisch sind. Dieser Befund ist nicht tiberraschend, da alle uns bekann-
ten Beweise darauf beruhen, dass die Entropieerzeugung in der Form
(11b) darstellbar ist und zwischen Kriften und Stromen lineare Bezie-
hungen (14) gelten.

Stationidre Zustande, die sich in der Ndhe des Gleichgewichts befinden,
sind offenbar vor beliebigen stationiren Zustinden ausgezeichnet, und es
ist gerade dieses Gebiet, welches der thermodynamischen Theorie der
irreversiblen Prozesse zuginglich ist.

5. Schlussbemerkungen

Die in den vorangehenden Abschnitten dargelegte Form der thermo-
dynamischen Theorie irreversibler Prozesse ist durch 5 Voraussetzungen
charakterisierbar: .

1. Die thermodynamischen Gréssen S, U, T etc. behalten ihren Sinn
auch bei Abweichungen vom Gleichgewicht.
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2. Die Entropie bleibt auch beim Ablaufen irreversibler Prozesse ein
vollstindiges Differential und die Zahl der zur Beschreibung des Zustan-
des notwendigen Zustandsvariablen ist stets gleich gross wie die, welche
notwendig ist, um das System im gehemmten Gleichgewicht zu beschrei-
ben.

3. Damit der zweite Hauptsatz der Thermodynamik in der gleichen
Form wie im Gleichgewichtsfall anwendbar bleibt, muss die innere Ener-
gie erhalten bleiben (I', = 0).

4. Die Entropiedichte ist invariant gegeniiber linearen Transformatio-
nen (mit konstanten Koeffizienten) von Kriften und Strémen.

5. Es gelten Symmetrie-Bedingungen fiir die Matrix der phdnomeno-
logischen Koeffizienten in der Form von Onsager-Casimir-Beziehungen.

Mit diesen 5 Voraussetzungen ldsst sich eine Theorie der irreversiblen
Prozesse eindeutig aufbauen. Wir wollen sie wegen ihrer starken Anleh-
nung an die Thermodynamik der Gleichgewichtszustinde «thermodyna-
mische Theorie der irreversiblen Prozesse» nennen*). Diese starke Bin-
dung an die Gleichgewichte bedeutet eine Schwiche der Theorie und
schrankt ihr Anwendungsgebiet erheblich ein. Mit dieser Bindung kommt
dieser Theorie aber ebenfalls die Einfachheit der Thermodynamik zugute.
Gerade in dieser Einfachheit liegt unseres Erachtens der Vorteil, der ihr
eine Berechtigung gibt.

Wir haben am Ende des zweiten Abschnittes dargelegt, dass die dort
aufgestellten Voraussetzungen —in der obenstehenden Zusammenstellung
die ersten drei — dahingehend interpretiert werden kénnen, dass wir eine
Theorie verallgemeinerter Umordnungsprozesse vor uns haben. Die im
Zusammenhang mit den Beziehungen zwischen Kriften und Strémen
im dritten Abschnitt einzufithrenden Voraussetzungen beeinflussen diese
Aussage nicht.

Wir kénnen somit die thermodynamische Theorie irreversibler Prozesse
als eine Art «Fortsetzung» der Thermodynamik des Gleichgewichts in
das Gebiet der Nichtgleichgewichte hinein auffassen. Dies unterstreicht,
dass man nur erwarten kann, solche Vorginge zu erfassen, die sich in der
Nihe des Gleichgewichts abspielen. Trotzdem ist die Zahl von Anwendun-
gen erstaunlich gross. Dies darf nun aber nicht als Beweis fiir die Allge-
meingiiltigkeit der thermodynamischen Theorie irreversibler Prozesse aus-
gelegt werden, sondern es scheint uns weit eher eine Folge davon zu sein,
dass grosse Abweichungen vom Gleichgewicht seltener sind, als man viel-
leicht annehmen sollte.

Diese Untersuchungen wurden durch ein von Herrn Professor Dr.
F. GRUN veranstaltetes Seminar angeregt, an dem teilzunel.men ich Ge-

*) Dies ist analog zu Meixners Definition der thermodynamischen Theorie der
Relaxationserscheinungen, vgl. 1?), S. 655.
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legenheit hatte. Fiir die Einladung und fiir manche Diskussion méchte ich
ihm herzlich danken. Mein Dank gilt ferner Herrn Professor Dr. E. BAL-
DINGER fiir seine wohlwollende Unterstiitzung dieser Arbeit.

ANHANG

Beweis fiir die lineare Beziehung (14)
Gegeben ist

3= 2 Ji X5, (A1)
wobei '
Ji= Ji(Xy) -
Offensichtlich gilt
o
Ji= DX, (A2)
und auch |
09
K= ey (A3)
Mit (A2) und (A3) erhdlt man
P = 2 X; a X (Ala)
und
0t
8=XT: 55 (A1b)

d. h. & ist sowohl homogen linear in den X, als auch in den J;, was der
Form (A1) entspricht. Mit (Ala) und (Alb) bildet man die Identitdt:

die wir nun z. B. fiir 3 Variable ausschreiben:

0% o8

In (A4a) eliminieren wir mit Hilfe der Kettenregel die Differentialquo-

tienten 04/0X; durch
0 00 Ay
aXz a ;‘ m aXi )

Man erhilt
S+ Xy gl Xy SR - T+
+§}Z {(x, 32 ‘Uz + Koyt + X5 — Jaf +
+ 5 {x 1§’§ XL +X3§§3;—fa}zo. (A5)
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Unter der Annahme, dass die 04#/0]; voneinander unabhédngig sind, was
bedeutet, dass die X, nicht voneinander abhingen, miissen in (A5) die
Klammerausdriicke einzeln verschwinden, woraus folgt, dass

_ 0/, 0/, 0/y :
f1—X1a—X1+Xaa—X2+Xsa—X3, etc. (A6)
ist. Nach dem Eulerschen Satz iiber homogene Funktionen bedeutet
(A6), dass die J, lineare homogene Funktionen von den X, sein miissen.
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