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Zur thermodynamischen Theorie irreversibler Prozesse

von W. Czaja
(Institut für angewandte Physik der Universität Basel)

(5. IX. 1961)

Summary. It is the aim of this paper to show that an unequivocal formulation
of a thermodynamic theory of irreversible processes is possible. The conditions to
be imposed on entropy and internal energy are given and discussed. It is shown that
with the assumptions made, only linear equations between forces and fluxes are
possible. Invariance of entropy against transformations of forces and fluxes as well
as Onsager-Casimir-Relations are necessary and sufficient to determine the matrix
of phenomenological coefficients. In this formulation the theory is shown to apply
to a kind of general rearrangement processes. As an application, the minimum
condition for the entropy production is solved using variational methods. The
corresponding Euler-Lagrange-equations appear to be the initial equations specialised
to the stationary case.

1. Einleitung
Trotz unbestreitbarer Erfolge und einer zunehmenden Zahl von

Anwendungen, welche die Thermodynamik der irreversiblen Prozesse
aufzuweisen hat1)2)3)7), ist an der bestehenden Theorie verschiedentlich
Kritik geübt worden4)5)6).

Es soll im folgenden versucht werden, mindestens einigen Einwänden
Rechnung zu tragen und eine thermodynamische Theorie irreversibler
Prozesse so zu formulieren, dass sowohl die Beziehungen dieser Theorie
zur Thermodynamik des Gleichgewichts in Ordnung sind als auch das

Vorgehen eindeutig ist.
Dabei müssen wir eine Einschränkung der Anwendungsmöglichkeiten

in Kauf nehmen. Immerhin ist der verbleibende Anwendungsbereich der
Theorie noch gross, was unsere Untersuchungen als genügend interessant
erscheinen lässt.

Viele Überlegungen und Sätze können wir aus der bisherigen Theorie
übernehmen (vgl. besonders Meixner und Reik7)).

Dem Ziel unserer Untersuchungen entsprechend lässt es sich nicht
immer vermeiden, dass sich manches, was zuerst neu erscheinen mag, bei

genauerer Betrachtung als bereits von anderen Autoren mitgeteilte
Überlegungen mit etwas verschiedener Akzentuierung herausstellt. Wir haben
uns bemüht, durch genaue Zitate die Situation zu klären.
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2. Entropie-Erzeugung
Die Probleme im Zusammenhang mit der Existenz der thermodynami-

schen Grössen bei Abweichungen vom Gleichgewicht sind oft behandelt
worden; wir verweisen auf Meixner und Reik7) und die dort
angegebene Literatur. Auf den Ergebnissen dieser Untersuchungen fussend,
nehmen wir im folgenden an, dass sich die Entropie, innere Energie,
Temperatur etc. auch bei Abweichungen vom Gleichgewicht definieren
lassen.

Die Entropie eines abgeschlossenen Systems *) als Funktion der extensiven

Variabein U, V, M, besitzt im Gleichgewicht ein Maximum (2.

Hauptsatz). Es bedeuten U innere Energie, V Volumen und Mj
die Massen der Komponenten /. Die Abgeschlossenheit hat zur Folge,
dass dU 0 und dV 0.

S muss ferner eine homogene lineare Funktion der Variablen U, V und

Mj sein. Führt man spezifische Grössen

M (1)

(2)

u
M ' -X L-AA X.~AA y m

K 1

ein, so folgt aus

dS ^dU + ^rdV-Z^Y dMj **)

mit dem Eulerschen Satz über homogene Funktionen

1.U-L. P A_ vnT T q ^ TE-% xi > (3)

und es gilt weiter

ds — du A- AA d E ^r dx> ' ^
Führt man «Dichten» anstelle der spezifischen Grössen ein,

S' QS, U' =QU Q{ Q X; (5)

*) Abgeschlossen ist ein System dann, wenn es mit der Umgebung weder Energie
noch Materie austauscht. Man vergleiche dazu E. A. Guggenheim, Thermodynamics,
North Holl. Pubi. Co., Amsterdam 1950, S. 26. In den dort verwendeten Bezeichnungen

ist unser abgeschlossenes System durch «adiabatic changes in a closed
system with rigid walls» charakterisiert. Man beachte, dass «closed system» hier
im Sinne von «closed phase» (vgl. ebenda S. 16) verwendet wird, d. h. ein System
mit festgehaltener Zusammensetzung.

**) Es bedeutet p Druck und /ij chemisches Potential der Komponente j.
Wir sehen von äusseren Kräften ab. Sie lassen sich, solange sie konservativ sind,
mit den /i, zu neuen Potentialen zusammenfassen, vgl. z. B. das Vorgehen in x).
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so ergibt sich für die Entropieänderung aus (3) und (4)

d(es) ±rd(QU)-£^dQJ, (6)
i

eine (3) entsprechende Beziehung lässt sich nicht aufstellen.
Wir bezeichnen die spezifischen Variablen (1) im folgenden mit £u die

Dichten (5) mit f;; (3), (4) bzw. (6) lauten dann

s ^)=27jj-x ds=EÌri<%i> (7)

ss s' s'(Q, M Eletti- (g)

Besteht das System aus n Komponenten, so ist die Zahl der f, m + 1 und
die der fi n 4- 2, wobei die £t nicht unabhängig sind, sondern £ Xj 1 zu

7

berücksichtigen ist. Die ff sind hingegen voneinander unabhängig. Wir
nehmen im folgenden an, dass überzählige Variable eliminiert wurden,
die f j wie die £( als voneinander unabhängig zu betrachten sind.

Wir fragen nun nach der zeitlichen Änderung der gesamten Entropie
S eines Systems, das weder abgeschlossen sei noch sich im Gleichgewicht
befinde, s und die £4 bzw. s' und die ff sind im allgemeinen Funktionen
des Ortes und der Zeit, d. h. Feldgrössen. Wegen

ò7s Atfsdm l>ìfesdv

ergibt sich eine Bilanzgleichung für die Entropiedichte *)

d

dt (q s) + div Js •# (9)

dm bedeutet ein Massenelement.
Die zeitlichen Änderungen der Variablen ft werden durch Bilanzgleichungen

der Form x Ci + div jt rt (io)

beschrieben. Ist in (10) die «Quelldichte» /^ 0, so spricht man von
einem Erhaltungssatz**).

Durch (10) sind die den f, zugeordneten Quellen rt und Ströme J,-

definiert, die Ströme allerdings nur bis auf einen quellenfreien Anteil
' rot J,- rot rot i;. (10a)

*) Vgl. etwa Truesdell and Toupin5), S. 468, Meixner und Reik7), S. 419 ff.

dt**) Formal liesse sich (9) als -r- Co + div J9 ro, C„ s', J0 Js, ro & schreiben.
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Die Wirbel (10a) der Ströme Jt werden durch die im nächsten Abschnitt
zu behandelnden linearen Gleichungen festgelegt, sind also nicht
willkürlich vorgebbar. Mit andern Worten: die Jt sind durch (10) und die
linearen Gleichungen (14) eindeutig bestimmt.

Die Bilanzgleichungen (10) der Variablen £. sind gegeben, die Entropiebilanz

(9) ist gesucht. Insbesondere sollen Entropieerzeugung und
Entropiestrom durch die für die ablaufenden Prozesse charakteristischen
Ströme und Quellen ausgedrückt werden. Aus (8) lässt sich die zeitliche
Änderung von s' berechnen :

AA vXX cm
dt 4* dL dt ¦ K i

Dieser Beziehung liegt nun aber die Voraussetzung zu Grunde, dass die
Entropie auch beim Ablaufen irreversibler Prozesse ein vollständiges
Differential bleibt. Dabei ist die Zahl der zur Beschreibung des Zustandes
notwendigen skalaren Zustandsvariabeln J; stets gleich gross wie die,
welche zur Beschreibung des betrachteten Systems im Zustand des
gehemmten Gleichgewichts ausreicht (Davies4), S. 328-329).

Aus (11) ergibt sich mit (10)

x^-sxx^x^xr (iia»

Durch Vergleich von (IIa) mit (9) lassen sich nun Entropiestrom und
Entropieerzeugung durch die Grössen Jt bzw. /*, und grad ds'/()£; bzw.
ds'/dCi ausdrücken, wobei wir als Quellen der Entropie bzw. als

Entropieerzeugung den Anteil an der zeitlichen Änderung von s' bezeichnen, der
sich nicht in einen reinen div-Ausdruck umformen lässt. Dies ist bei einer

Integration über das Volumen des gesamten Systems der Anteil, der
nicht durch einen Strom durch die Oberfläche zustande kommt und mit
geeigneten Randbedingungen zum Verschwinden gebracht werden kann.

Von Interesse für unsere weiteren Untersuchungen ist die aus (IIa) zu
entnehmende Tatsache, dass sich ê als bilineare Form in den Grössen Ft
und Ji einerseits und ds'/dÇ { und grad ds'/dd andererseits ergibt

^{X^ + Xgrad-gl}. (Hb)

Wir wollen zunächst noch bemerken, dass Gleichung (IIa), die für alles
weitere von grundlegender Bedeutung ist, kovariant gegenüber
Transformationen des Koordinatensystems ist. Gehen wir von einem systemfesten

zu einem mit dem Schwerpunkt des betrachteten Mediums
mitbewegten Koordinaten-System über (Schwerpunktgeschwindigkeit t>),
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so bedeutet dies gleichzeitig eine Transformation i'i -> £{. Durch
Ausrechnen überzeugt man sich leicht, dass aus (IIa) für einen mit dem

Schwerpunkt mitbewegten Beobachter

ds

*¦ i

ds 1 Xf^X'* ds 1 x d

'dt + o, grad

(11c)

wird. Dabei ist der Wert der Entropieerzeugung &

In (11c) bedeutet J* den Strom im mitbewegten
definiert durch

wegen (7) invariant.
Koordinatensystem,

„f + div/;- rt. (10b)

(10b) folgt aus (10) durch Umrechnung unter Berücksichtigung des

Erhaltungssatzes für die gesamten Masse

-A + div(eo) 0 bzw. q Ä! - divo 0

Zwischen den Strömen gilt der Zusammenhang

jT J.-ßiiV.

Die Gleichung (9) bzw. (IIa) bestimmen die Änderungen der Entropie,
und es muss daher notwendig mit ihnen die Aussage des 2. Hauptsatzes
der Thermodynamik, dass die Entropie eines abgeschlossenen Systems
nur zunehmen kann, formuliert werden können. Zunächst untersuchen
wir die Randbedingungen für ein abgeschlossenes System. Ein derartiges
System tauscht mit der Umgebung weder Energie noch Materie aus (vgl.
S. 894), es verschwinden somit sämtliche Ströme J{ an der Oberfläche.
Damit ist die Erhaltung der gesamten Masse des Systems garantiert
sowie die Bedingung dV 0 bezogen auf das gesamte System erfüllt.
Hingegen bleibt die innere Energie U des gesamten Systems im
allgemeinen nicht konstant, auch wenn der Energiestrom an der Oberfläche
verschwindet, da wir im Quellterm Fu die Umwandlungen von z. B.
kinetischer Energie in innere Energie (z. B. durch Reibungseffekte) berücksichtigt

haben. Man vergleiche dazu die von Meixner und Reik7) S. 422
sowie von De Groot9) S. 134 angegebenen Ausdrücke für die Quellen
der inneren Energie. Um die für das Maximum von 5 im Gleichgewicht
notwendige Bedingung konstanter innerer Energie (dU 0) zu erfüllen,
ist daher

X 0 (12a)

57 H. P. A. 34, 8 (1961)



898 W. Czaja H. P.A.

zu verlangen. Die innere Energie aller von uns betrachteten Systeme
muss also erhalten bleiben*). Erst dann liefert die Randbedingung

JA =0 (i=l,2,...), (12b)'/ Norm., Ofl. v ' ' ' v '

die wir soeben für ein abgeschlossenes System formuliert haben, auch die
in der gewöhnlichen Thermodynamik notwendigen Voraussetzungen für
das Maximum von S im Gleichgewicht (vgl. S. 894).

Wir integrieren nun (9) über das gesamte Volumen G eines im
obenstehenden Sinn abgeschlossenen Systems mit der Oberfläche B, das der
Bedingung (12a) genügt. Die Rechnung ist natürlicherweise in einem
systemfesten Koordinatensystem auszuführen. Man erhält, da aus (12b)
mit

% *

folgt, dass die Normalkomponente von Js an der Oberfläche verschwindet :

— S= /*#<&. (12c)
G

Nun erst liefert (12c), wenn S nur zunehmen soll,

f&dv >0^ê>0, (12d)
G

d. h. die Aussage des 2. Hauptsatzes in der Formulierung der thermo-
dynamischen Theorie irreversibler Prozesse.

Im Rahmen der hier betrachteten thermodynamischen Theorie irreversibler

Prozesse können also ausschliesslich nur solche Vorgänge behandelt
werden, bei denen die innere Energie erhalten bleibt. Wir wollen hier
keine genaue Diskussion der physikalischen Konsequenzen von (12a)
durchführen. Immerhin sei soviel bemerkt, dass die schwerwiegendste
Folge von (12a) der Verzicht auf die Beschreibung sämtlicher Reibungseffekte

ist. Im Gegensatz zu den Reibungseffekten liefern z. B. Diffusion,
Wärmeleitung und innere Umwandlungen keinen Beitrag zu den Quellen
der inneren Energie.

Die Voraussetzungen, welche zur Aufstellung der Gleichung (11) von
wesentlicher Bedeutung sind, können zusammen mit der Erhaltung der
inneren Energie (12b) so interpretiert werden, dass die hier dargelegte

*) Man könnte hier daran denken, als Variable statt der inneren Energie die
gesamte Energie einzuführen, die erhalten bleibt. Dem stehen jedoch die zur
Ableitung von (11) notwendigen Voraussetzungen entgegen, die verlangen, dass die
Funktion S im Gleichgewicht wie bei Abweichungen vom Gleichgewicht dieselbe ist.
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Theorie in einem allgemeinen Sinn Umordnungserscheinungen beschreibt.
Diese Annahmen bedeuten nämlich, dass wir die Nichtgleichgewichts-
zustände durch Einführen einer geeigneten Anzahl von Hemmungen
zu einem gehemmten Gleichgewicht «einfrieren» können. Der tatsächliche
Ablauf der Vorgänge, bis das Gleichgewicht erreicht wird, erscheint dann
als Folge der Beseitigung der Hemmungen, vergleiche dazu Davies4),
S. 329. Das thermodynamische Gleichgewicht stellt sich ein, wenn bei
konstanter innerer Energie passende Umordnungen stattgefunden haben.
Damit scheint uns diese Theorie in einer befriedigenden Weise
charakterisiert zu sein.

Es sei noch darauf hingewiesen, dass wegen der Erhaltung der inneren
Energie nun gewisse Schwierigkeiten, die bei der Formulierung des
Energiesatzes auftreten und die von Truesdell und Toupin5) S. 613
hervorgehoben wurden, verschwinden. Als Beispiel erwähnen wir hier die von
Meixner stammende Behandlung der thermoelektrischen Erscheinungen
in Metallen, wie sie in Band 5 der Vorlesung von A. Sommerfeld
wiedergegeben ist*). Setzt man dort als Energiesatz

-^- (g u) + div W 0

so liefert jetzt die Theorie von selbst den richtigen Ausdruck für den

Energiestrom W. Gleichzeitig tritt dann der Peltierkoeffizient zusammen
mit dem elektrochemischen Potential auf, und die durch eine Trennfläche
zwischen zwei Metallen transportierte Energie wird automatisch gleich:
Differenz der Peltierkoeffizienten mal elektrische Stromstärke.

3. Beziehungen zwischen Kräften und Strömen

Aus Gründen der bequemeren Schreibweise führen wir zunächst einige
Abkürzungen ein. Es ist üblich, die in der Entropieerzeugung ¦& (IIb)
stehenden Grössen rt und Jit die man wegen (10) bzw. (10b) als «dynamische

Parameter» bezeichnen kann, verallgemeinerte Ströme zu nennen.
Die zu ihnen konjugierten «statischen Parameter» Òs'/dC, bzw. grad ds'/dd
nennt man verallgemeinerte Kräfte.

Man hat zwischen skalaren und vektoriellen Kräften und Strömen zu
unterscheiden

Ji X, xi ~-,
(13)

Ji Ji, Xt grad -A-

*) Gleiches gilt für das Vorgehen in x).
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Die Entropieerzeugung ¦& als positiv definite bilineare Form in den Kräften

und Strömen wird mit (13)

#=${J,Xi + J,.Xt}-
i

Aus der Existenz dieser bilinearen Form ê in den Kräften und Strömen
folgen, wie im Anhang bewiesen wird, homogen lineare Gleichungen
zwischen diesen Strömen und Kräften. Diese Gleichungen liefern die
notwendigen Aussagen dafür, dass beim Verschwinden der Kräfte im thermo-
dynamischen Gleichgewicht ebenfalls alle Ströme null sind*). Ferner
spiegeln sich in diesen Gleichungen die Eigenschaften der betrachteten
Materie wieder, es sind sogenannte constitutive equations, vgl. Truesdell
and Toupin5) S. 700. Die Tatsache, dass nur lineare Abhängigkeiten
zwischen Kräften und Strömen möglich sind, hängt mit den Bedingungen
zusammen, die wir im 2. Abschnitt für die Entropie als Funktion der
Zustandsvariablen bei Abweichungen vom Gleichgewicht ausgesprochen
haben.

Die Zuordnung linearer Gleichungen zu einer bilinearen Form ist nun
aber nicht eindeutig im Gegensatz zum umgekehrten Fall : Jedem linearen
Gleichungssystem ist eindeutig eine bilineare Form zugeordnet (vgl. z. B.

Courant-Hilbert8) Bd. 1, S. lOff.) Im restlichen Teil dieses Abschnittes
befassen wir uns mit der Beseitigung dieser Willkür bei der Bestimmung
der Koeffizienten-Matrix der homogenen linearen Beziehungen zwischen
Strömen und Kräften. Dies geschieht in zwei Schritten. Zunächst werden
wir anstreben, dass sich die Symmetrie der Koeffizienten-Matrix beim
Übergang von einem zu einem zweiten gleichwertigen System von Kräften
und Strömen nicht ändert. Anschliessend werden wir zeigen, wie die

Symmetrieeigenschaften selbst der Koeffizientenmatrix festgelegt sind.
Damit sind dann die linearen Gleichungen zwischen Kräften und Strömen
eindeutig, d. h. die Koeffizienten mit ihren Vorzeichen aus Experimenten
eindeutig bestimmbar.

Das der Bilinearform -& zugehörige lineare Gleichungssystem, der
«lineare phänomenologische Ansatz», zwischen Kräften und Strömen
laute

Jt=ZltkXk, J,=ZLtkXk.**) (14)
k k

Dabei haben wir bereits berücksichtigt, dass in einem isotropen Medium
Skalare nicht linear von Vektoren und umgekehrt abhängen können (vgl.

*) Es sei darauf hingewiesen, dass diese Aussage aus (10) bzw. (10b) alleine nicht
folgt.

**) Wir setzen stets stillschweigend voraus, dass die Reziproken der von uns
verwendeten Matrizen existieren.
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Meixner und Reik7) S. 427, Truesdell und Toupin5) S. 644, De
Groot9) S. 156).

Da die Zuordnung der linearen Gleichungen (14) zu & nicht eindeutig
ist, sind die Beziehungen (14) mit allen aus diesen durch lineare
Transformationen (mit konstanten Koeffizienten)

J'l=EaiiJi' X'm EbmnXn,
i * (15)

Jl E ^~u J* ' Xm= 2*1 Bmn Xn
j n

hervorgehenden gleichberechtigt. Aus den allgemeinen Transformationen
(15) sind nun aber bestimmte «Zulässige» durch die Forderungen

1. Es muss die Entropieerzeugung invariant bleiben (Meixner und
Reik7) S. 432).

2. Es muss die Entropie s' invariant bleiben (Davies4) S. 334, Hooy-
man et al.10), Coleman und Truesdell6)).

auszusondern.
Während die erste Forderung trivialerweise erfüllt sein muss, ist die

Notwendigkeit der zweiten nicht ganz so offensichtlich. Man erkennt
jedoch sofort anhand von (10) und (10b), dass Transformationen (15)
ebenfalls die £,- bzw. f{transformieren und damit wegen (11) die Entropie
beeinflussen. Es ist daher notwendig zu verlangen, dass jede beliebige
Wahl von Kräften und Strömen weder den Wert der Entropie verändert
noch auf neue Variable Ct bzw. if führt, in denen bei einem abgeschlossenen

System mit (12b) entsprechenden Randbedingungen die Entropie
im Gleichgewicht kein Maximum ist.

Man zeigt mit (IIa) bzw. (11c) und (15a), dass in der Invarianzbedingung

für die Entropie diejenige für die Entropieerzeugung enthalten ist.
Es muss die zweite, schärfere der beiden Bedingungen erfüllt sein, d. h.
die Entropie bei Transformationen (15) unverändert bleiben. Dies hat
für die Koeffizienten der Transformationsbeziehungen (Davies4) S. 334,
Hooyman et al.10), Coleman und Truesdell6))

a =6-i, A B-1 (15a)

zur Folge*), wenn &-1 die reziproke der transponierten Matrix b bedeutet.
Mit der Nebenbedingung (15a) haben nun die Transformationen (15)

die wichtige Eigenschaft, dass sie die Symmetrie der Koeffizienten-
Matrizen / und L nicht ändern (Meixner und Reik7) S. 434, Coleman
und Truesdell6)). D. h. eine einmal vorgegebene Symmetrie der Matrizen

l und L bleibt auch bei Transformationen (15) wegen (15a) erhalten.

*) Sogenannte Meixner-Bedingung, vgl. Davies4) S. 334.
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Um auch die restliche Willkür bei der Festlegung der linearen
Gleichungen zu beseitigen, argumentieren wir wie folgt :

Mit (13) und den linearen Gleichungen (14) lässt sich die
Entropieerzeugung ê als quadratische Form in den Kräften schreiben. Nun ändert
sich bekanntlich der Wert der quadratischen Form nicht, wenn man zu
den Koeffizienten-Matrizen l und L beliebige schiefsymmetrische Anteile
addiert. Transformationen, welche die Symmetrieeigenschaften der
Matrizen l und L ändern, sind, wie wir gesehen haben, durch die Bedingungen

(15a) ausgeschlossen. Die Symmetrieeigenschaften von / und L bleiben

erhalten. Damit ist jedoch noch nichts über die Symmetrieeigenschaften

selbst ausgesagt. I und L sind nur bis auf additive schiefsymmetrische

Anteile bestimmt, also nicht eindeutig gegeben*).
Diese letzte Unbestimmtheit wird nun durch die Onsager-Casimir-

Beziehungen (oder entsprechende Bedingungen) beseitigt. Sie verlangen
von den Matrizen / und L, dass sie je nach den Symmetrieeigenschaften
bezüglich Zeitumkehr der zugehörigen Kräfte symmetrisch oder
antisymmetrisch sind und antisymmetrische bzw. symmetrische
Untermatrizen haben (vgl. z. B. Meixner und Reik7) S. 426). Nunmehr sind
die linearen Gleichungen (14) eindeutig gegeben.

Es ist bemerkenswert, dass die thermodynamische Theorie irreversibler
Prozesse auf Symmetrie-Aussagen von der Art der Onsager-Casimir-
Beziehungen nicht verzichten kann, solange sie Anspruch auf Eindeutigkeit

erhebt.
Die Gültigkeit der Onsager-Casimir-Beziehungen sehen wir unter Hinweis

auf die Untersuchungen von Miller11) als durch die Erfahrung
bestätigt an. Neben den Onsager-Casimir-Beziehungen treten weitere
Symmetriebedingungen auf, wie sie zum Beispiel bereits zur Aufstellung der
Gleichungen (14) verwendet wurden.

Coleman und Truesdell6) heben hervor, dass für jede Wahl von
Kräften und Strömen bewiesen werden musste, dass sie «Onsagersch»
ist, d. h. dass die Onsager-Casimir-Beziehungen auf die entsprechenden
Koeffizienten angewendet werden können. In unserem Fall musste der
Beweis nur für die Xu X{ und /,-, J{ geführt werden. Für alle mit (15)
und (15a) daraus ableitbaren Variablen ist diese Forderung dann von
selbst erfüllt. Wir wollen hier diesen Beweis nicht erbringen, vermuten
jedoch, dass unsere Kräfte und Ströme (13) die Forderung von Coleman
und Truesdell erfüllen.

Die in diesem Abschnitt erfolgte formale Begründung der linearen
Beziehungen zwischen Kräften und Strömen steht im Gegensatz zur
üblichen anschaulichen Einführung dieser linearen Zusammenhänge. Sie
bedeutet jedoch nicht die allgemeine Gültigkeit derartiger linearer Be-

Eine ähnliche Bemerkung findet sich bereits bei Casimir12) S. 347.
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Ziehungen. Vielmehr lassen sich andere als lineare Beziehungen zwischen
Kräften und Strömen nicht sinnvoll in dieser Theorie behandeln, und
daraus folgt eine Beschränkung des Anwendungsbereichs des gesamten
Formalismus.

Wir weisen darauf hin, dass die soeben behandelten Fragen nichts mit
der Eindeutigkeit der Definition der Ströme (Bedingung für rot J, siehe
Abschnitt 2) zu tun hat. Eine derartige Bedingung wird bereits durch die
Eigenschaften der Kräfte selber festgelegt und nicht erst durch die
Symmetrieeigenschaften der Koeffizienten-Matrix, solange wir konstante oder
vom Ort höchstens schwach abhängige Koeffizienten annehmen. In vielen

Fällen sind die Kräfte Gradienten skalarer Potentiale. Aus den linearen

Gleichungen (14) folgt dann bei ortsunabhängigen Koeffizienten
rot J{ 0. Das Verschwinden der Wirbel von J{ ist somit keine freie
Bedingung mehr.

Abschliessend untersuchen wir als Beispiel für die Bedeutung der
Bedingung (15a), welche für lineare Transformationen zwischen Kräften und
Strömen gelten muss, die in einer früheren Arbeit1) verwendeten
Transformationen. Durch Ausrechnen kann man zeigen, dass nur die erste
Transformation in J) S. 10 von den Kräften — 1\T grad T, Xn, Xp auf
neue Kräfte - 1/7/ grad T, 1/2 (Xn + Xp), 1/2 (Xn - Xp) zu der hier
behandelten «erlaubten» Klasse gehört. Die beiden anderen Transformationen

in x) S. 10 und S. 14 sind in unserem Sinne nicht zulässig. Obwohl sie
die Entropie-Erzeugung invariant lassen, erfüllen sie nicht die Bedingung

der Invarianz der Entropie. Dies hat zur Folge, dass die Symmetrie
der Koeffizientenmatrix der transformierten linearen Beziehungen auf
Grund thermodynamischer Prinzipien nicht vorausgesagt werden kann.
Selbstverständlich sind die ausgeführten Transformationen als
Rechenoperationen möglich, und insofern ändern die hier gemachten Feststellungen

nichts an den Ergebnissen von *). Allerdings bedarf die in 1) S. 4
geäusserte Behauptung : «unter Kräften verstehen wir allgemein die einem
bestimmten Problem angepassten unabhängigen Variabein» einiger
Einschränkungen im Hinblick auf die Ergebnisse dieses Abschnittes.

4. Stationäre Zustände

Als eine Anwendung der thermodynamischen Theorie irreversibler
Prozesse untersuchen wir im folgenden die Eigenschaften stationärer
Zustände. Insbesondere werden wir uns mit dem Zusammenhang der
Zustände minimaler Entropie-Erzeugung mit den stationären Zuständen
eines Systems befassen.

Derartige Untersuchungen sind aus der Literatur bekannt (vgl. die
Darstellung in Meixner und Reik7) S. 455).
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Das von uns verwendete Beweisverfahren ist bereits früher von Thor
A. Back13) auf eindimensionale Diffusionsprobleme angewandt worden.
Später hat Brown14) (vgl. besonders S. 778) im Rahmen einer
Thermodynamik stationärer Zustände aus dem Variationsprinzip (16) für die von
ihm verwendeten Planckschen Potentiale Gleichungen in der Form von
(18) erhalten. Diese Rechnungen erlangen jedoch ihre volle Tragweite
erst dann, wenn der im 2. Abschnitt aufgestellte allgemeine Formalismus
verwendet wird. Ferner sei erwähnt, dass Glansdorff 15) und Kirkaldy16)
ebenfalls Extremalprobleme untersucht haben, die mit dem Minimum
der Entropie-Erzeugung verknüpft sind.

Wir betrachten

f & dv Min., 0 0 (~- grad -~) (16)

G

als Variationsproblem. Die Integration erstrecke sich auf ein Gebiet G

mit der Berandung B. Auf dem Rand B sind die Werte von (ds'/dC,-) und/
oder grad (Ös'/Öf,-) vorgeschrieben. Bei dem Extremalproblem (16) werden
alle im Volumen G erklärten Funktionen (ds'/dd) - als Funktionen von
x, y, z - zugelassen, welche bei gleichen Randwerten auf B das Integral
zu einem Minimum machen. Da als Randbedingungen praktisch nur
Vorschriften über (ds'/dCi) oder/und grad (ös'/Öf,-) bzw. über deren
Linearkombinationen in Frage kommen, wird das Variationsproblem stets lösbar

sein (vgl. dazu etwa Courant-Hilbert8) Bd. I, S. 179).
Als für das Bestehen von (16) notwendige Bedingung muss & den

Euler-Lagrangeschen Gleichungen genügen. Dazu tritt als hinreichende
Bedingung für die Existenz des Minimums hinzu, dass die mit der Matrix
sämtlicher 2. Ableitungen von ê nach (ds'/dÇ,¦) und grad (ds'/Öf;) gebildete
quadratische Form positiv définit ist*), und diese Bedingung ist wegen
des 2. Hauptsatzes (12d) erfüllt. Somit machen die Lösungen der Euler-
Lagrangeschen Gleichungen mit den vorgeschriebenen Randwerten das

Integral tatsächlich zu einem Minimum.
Wir schreiben nun mit (IIa) und (13) unter ausdrücklicher Voraussetzung

der linearen Gleichungen (14) und der Onsager-Casimir-Beziehungen

ê als quadratische Form in den Kräften

^ZZ^AA + C.^r-.^IL}. (1„

Die (16) unter Berücksichtigung von (17) zugeordneten Euler-Lagrangeschen

Gleichungen lauten :

*) Für die Existenz des Minimums genügen auch noch schwächere Bedingungen,
vgl. dazu Courant-Hilbert8), Bd. 1, S. 184 ff.
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divKi—Swl )- vvm =0. (» 1.2, (18)
d |grad dsfd^ \ \ d(ds'jdQ v > / v /

woraus man mit den linearen Gleichungen (14)

div Ji - rt 0 (t 1,2,...) (18a)

erhält. Offenbar sind aber die Gleichungen (18a) die auf stationäre
Verhältnisse (djdt 0) spezialisierten Gleichungen (10). Damit ist bewiesen,
dass die durch (16) gekennzeichneten Zustände stationär sind.

Wir fügen hier die Bemerkung an, dass das Variationsproblem auch
eindeutig lösbar ist, d. h. zu vorgegebenen Randbedingungen kann sich
nur ein bestimmter stationärer Zustand einstellen.

In *) waren bei der Berechnung stationärer Zustände aus dem Minimum
von ¦& zusätzliche Bedingungsgleichungen zwischen einzelnen Kräften zu
berücksichtigen. Weil hier Òs'/dd und grad ds'ldC { nicht als unabhängige
Variable auftreten, werden derartige Bedingungen weitgehend überflüssig.

Im übrigen Hessen sie sich leicht berücksichtigen, man vergleiche etwa
Courant-Hilbert8) Bd. 1, S. 186 ff.

Der hier angegebene Beweis und die aus ihm folgende Aussage, dass
stationäre Zustände eines Systems durch das Minimum der Entropie-
Erzeugung charakterisiert sind, gilt selbstverständlich nur, solange diese
stationären Zustände mit der thermodynamischen Theorie irreversibler
Prozesse beschrieben werden können.

Bereits früher hat Denbigh17) und in neuerer Zeit Klein18) darauf
hingewiesen, dass bei grossen Abweichungen vom Gleichgewicht stationäre

Zustände nicht mit den Zuständen minimaler Entropie-Erzeugung
identisch sind. Dieser Befund ist nicht überraschend, da alle uns bekannten

Beweise darauf beruhen, dass die Entropieerzeugung in der Form
(IIb) darstellbar ist und zwischen Kräften und Strömen lineare
Beziehungen (14) gelten.

Stationäre Zustände, die sich in der Nähe des Gleichgewichts befinden,
sind offenbar vor beliebigen stationären Zuständen ausgezeichnet, und es

ist gerade dieses Gebiet, welches der thermodynamischen Theorie der
irreversiblen Prozesse zugänglich ist.

5. Schlussbemerkungen

Die in den vorangehenden Abschnitten dargelegte Form der
thermodynamischen Theorie irreversibler Prozesse ist durch 5 Voraussetzungen
charakterisierbar :

1. Die thermodynamischen Grössen 5, U, T etc. behalten ihren Sinn
auch bei Abweichungen vom Gleichgewicht.
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2. Die Entropie bleibt auch beim Ablaufen irreversibler Prozesse ein

vollständiges Differential und die Zahl der zur Beschreibung des Zustandes

notwendigen Zustandsvariablen ist stets gleich gross wie die, welche

notwendig ist, um das System im gehemmten Gleichgewicht zu beschreiben.

3. Damit der zweite Hauptsatz der Thermodynamik in der gleichen
Form wie im Gleichgewichtsfall anwendbar bleibt, muss die innere Energie

erhalten bleiben (Pa 0).
4. Die Entropiedichte ist invariant gegenüber linearen Transformationen

(mit konstanten Koeffizienten) von Kräften und Strömen.
5. Es gelten Symmetrie-Bedingungen für die Matrix der phänomenologischen

Koeffizienten in der Form von Onsager-Casimir-Beziehungen.
Mit diesen 5 Voraussetzungen lässt sich eine Theorie der irreversiblen

Prozesse eindeutig aufbauen. Wir wollen sie wegen ihrer starken Anlehnung

an die Thermodynamik der Gleichgewichtszustände «thermodyna-
mische Theorie der irreversiblen Prozesse» nennen*). Diese starke
Bindung an die Gleichgewichte bedeutet eine Schwäche der Theorie und
schränkt ihr Anwendungsgebiet erheblich ein. Mit dieser Bindung kommt
dieser Theorie aber ebenfalls die Einfachheit der Thermodynamik zugute.
Gerade in dieser Einfachheit liegt unseres Erachtens der Vorteil, der ihr
eine Berechtigung gibt.

Wir haben am Ende des zweiten Abschnittes dargelegt, dass die dort
aufgestellten Voraussetzungen - in der obenstehenden Zusammenstellung
die ersten drei - dahingehend interpretiert werden können, dass wir eine
Theorie verallgemeinerter Umordnungsprozesse vor uns haben. Die im
Zusammenhang mit den Beziehungen zwischen Kräften und Strömen
im dritten Abschnitt einzuführenden Voraussetzungen beeinflussen diese

Aussage nicht.
Wir können somit die thermodynamische Theorie irreversibler Prozesse

als eine Art «Fortsetzung» der Thermodynamik des Gleichgewichts in
das Gebiet der Nichtgleichgewichte hinein auffassen. Dies unterstreicht,
dass man nur erwarten kann, solche Vorgänge zu erfassen, die sich in der
Nähe des Gleichgewichts abspielen. Trotzdem ist die Zahl von Anwendungen

erstaunlich gross. Dies darf nun aber nicht als Beweis für die
Allgemeingültigkeit der thermodynamischen Theorie irreversibler Prozesse
ausgelegt werden, sondern es scheint uns weit eher eine Folge davon zu sein,
dass grosse Abweichungen vom Gleichgewicht seltener sind, als man
vielleicht annehmen sollte.

Diese Untersuchungen wurden durch ein von Herrn Professor Dr.
F. Grün veranstaltetes Seminar angeregt, an dem teilzunehmen ich Ge-

*) Dies ist analog zu Meixners Definition der thermodynamischen Theorie der
Relaxationserscheinungen, vgl. 19), S. 655.
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legenheit hatte. Für die Einladung und für manche Diskussion möchte ich
ihm herzlich danken. Mein Dank gilt ferner Herrn Professor Dr. E.
Baldinger für seine wohlwollende Unterstützung dieser Arbeit.

ANHANG

Beweis für die lineare Beziehung (14)
Gegeben ist

®=EJixi- (A1)

wobei

Offensichtlich gilt

und auch

*-¦£¦ <«)
Mit (A2) und (A3) erhält man

« V Y
dX*=Zx<%r. <Ala)

und

^=EJiff <Alb)

d. h. ¦& ist sowohl homogen linear in den X{ als auch in den /,-, was der
Form (AI) entspricht. Mit (Ala) und (Alb) bildet man die Identität:

i « » •"
die wir nun z. B. für 3 Variable ausschreiben:

v d& „ de v de de d& T de k

XiAx- + X2dAA + x^Ax;-Jijrx+^w,+JsAry (A4a)

In (A4a) eliminieren wir mit Hilfe der Kettenregel die Differentialquotienten

d&fdXi durch
dû

_ y, d» djk

Man erhält
*xt V dh dxi '

Ò& (y dj1 y d/, d/,
Wir1 ^x[ + x*Ax; + X>Tx~ "•

+ dj7 r1 ôxt + •*• ô^" + Xa ~dAT3 - j2\ +

*wA**%+x*%+x*ìè-J)s0- (A5)
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Unter der Annahme, dass die dê/dJi voneinander unabhängig sind, was
bedeutet, dass die Xt nicht voneinander abhängen, müssen in (A5) die
Klammerausdrücke einzeln verschwinden, woraus folgt, dass

J*-Xtw; + X'% + X*w;- ctc- <A6>

ist. Nach dem Eulerschen Satz über homogene Funktionen bedeutet
(A6), dass die ]\ lineare homogene Funktionen von den Xk sein müssen.
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