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Paramagnetic Resonance Intensity of Anisotropic Substances
and Its Influence on Line Shapes

by F. K. Kneubiihl and B. Natterer
Laboratorium fiir Festkorperphysik ETH, Zurich

(10, VI. 1961)

Zusammenfassung. Fiir paramagnetische, anisotrope Substanzen wird eine ein-
fache Formel fiir die Abhédngigkeit der epr-Intensitit von den Richtungen des sta-
tischen und des oszillierenden Magnetfeldes abgeleitet. Dabei wird das Fehlen von
Hyperfeinstruktur-Termen vorausgesetzt. Als Anwendung werden Pulver-Linien-
formen berechnet und verglichen mit solchen, die unter Vernachldssigung der
Intensitidtsanisotropie bestimmt wurden. Der Einfluss des Feinstrukturterms wird
fiir den axialsymmetrischen Fall studiert.

1. Introduction

Anisotropic paramagnetic centers with a random distribution of orien-
tations are found in a great number of substances- polycrystalline material,
powders, glasses?!), biological samples?), matrices containing free radi-
cals?), highly viscous solutions®)®). Paramagnetic resonance applied to
these substances can provide valuable information. However, the line
shapes observed (powder line shapes) can be very complicated. Several
papers have been published about this subject?)?)5)?). For the calcula-
tion of the shape functions, the angular dependence of the absorption in-
tensity arising from one individual paramagnetic center has usually been
neglected and some objections concerning this procedure have been made.
Recently, BLEANEY®) determined for an axially symmetric g-tensor the
variation of the transition probability with the orientations of the static
and the oscillatory magnetic field. He has proved for this case, that
the absorption intensity is largest if the two magnetic fields are orthog-
onal. In this paper, we wish to present a simpler and more general equa-
tion for the transition probability and its influence on powder line shapes.
In addition, we shall demonstrate the effect of the fine structure term in
the Hamiltonian on the intensity and the shapes. We shall neglect
hyperfine interactions, spin-spin and spin-lattice broadening by referring
to previous publications?)3)$).
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2. Paramagnetic Resonance Intensity

Assuming a spin Hamiltonian

H= 5D + gst + ¢t 5osc , ‘
— % 18SDS+BH,GS+ e H_GS (1)
we shall neglect j, in a first approximation. $p, 9, and H,, represent
components of the Hamiltonian arising from the fine structure, the static

and the oscillatory magnetic field respectively. $,, has the following
eigenvalues and eigenfunctions:

5st¢M:EM¢Mr
EM=ﬁﬁ}Gﬁst|M=hﬁgHstM,
M=S§5S-1...,—S+1-S. (2)

The transition probability between two of these states, Py, ,p, is related
to the matrix (M | $.,.| M">

Py oo | <M | Do | M 2. (3)

The calculation of (M |$..| M'>, which we shall describe below, gives
the following result:

(G ﬁosc’ G ﬁst)
| G Hstl

<M |5osc| M,> = ﬁﬂMaiM, M’

+ 2 BB (Y S (S+1) = M (M +1) 8y 0 +

IGHosc X GHstI
IGHst‘

4o g T IO |/S (S+1) =M (M +1) 6y 4 ) ()

~ The angle ¢ depends on the choice of the coordinate system and is not
of importance. Equation (4) shows that the only allowed transitions are
those with AM = 4- 1. Their frequency and intensities are

w=ﬂ1Gﬁst}’

(G Hygo X G Hyy)?
G Hy)?

()

Py o< [S(S+1)—M (M +1)]

The absorption intensity I, 5, is determined by the probability Py a1
and the population of the levels E,;and E,; ;. Neglecting saturation ef-
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fects, we can take the latter into account by introducting the Boltzmann
factor1?)

Iy yii=PyyaNolhow,o/2S+1)kRT. (6)

Iy ar411s a measurable quantity only if the spin S equals 1/2. Otherwise
Iy a1 Tepresents a first approximation to the Hamiltonian including
fine structure or hyperfine interactions. The diagonal elements

<M | 5OSC| M>

are important for the evaluation of forbidden transition intensities and
distortions of the transition probability given by equation (5).

To consider the problem further, we introduce two orthonormal systems
of coordinates, (x) and (x'), (Fig. 1). (x) represents a space-fixed system
with the z-axis parallel to H o« and ﬁosc lying in the plane y = 0. (x') is a
body-fixed system with the axes parallel to the principal axes of the
g-tensor G. The two systems are related by a pure rotation (x') =
R(a, B,y) (x), where a, 8, y represent the Eulerian angles in the standard
notation described by MARGENAU and MurpHY ?). With our assumptions,
we obtain instead of equation (5)

w = ﬂ g Hst ’
g% = g} sin28 sin2y + g sin2f cos?y + g cos?f,

Py BPHL [S(S+1)-MM+1)]gegeae?.

sin? @ . gr? (sina cosy + cosa cos B siny)? +
+ g5 ° (— sina siny + cosa cos f cosy)? +

+ g5 (— cosa sin B)2 . (7a)

? denotes the angle between E’OSC and H - Equation (7a) shows directly,
that the intensity of the transition is greatest, if the static field is normal
to the oscillatory field. If the two fields are parellel, there is no transition.
The former has already been stated by BLEANEY?®) for a substance with
g1 = g = &, g3 = g- For axial symmetry of the g-tensor, equations (7a)
become

£ = gi sin?f + g|2| cos?f.
Py o< PPHL[S(S+1) — M (M +1)] & g?sin?d x

X (§|2| sin®e + g2 cos?a) . (7b)
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To prove equation (4), we diagonalize §,, by introducing a coordinate
system with the z-axis parallel to G H,. Because this system is connected
to the space-fixed system of equation (1) by a pure rotation, the Pauli

spin matrices retain their initial form. We split now G H, into two com-

osc

ponents parallel and perpendicular to G i ;- This transforms §,, into
equation (4), its first (second) term corresponding to the component
parallel (perpendicular) to G H -~

A different proof can be given by application of the following equation:

M | $0se(G H) | M's = M |$(G H)| M" (8)

(3
M- M
where

i GH,xGH

h i G ﬁst |
This relation can be found by the evaluation of

<M l‘gosc ) 5st‘ M’> T <M issst '5osc\ M,>

taking into account that for Pauli spin matrices

Sy, — 8. 8;=2he, 5

3. Powder Line Shapes
We can describe the shape function S(H) by

gE
d(g? a ;
S(H) = Nigw g0 8) s giay | dwsinfdpdy I By),  (9)

2 "
£ min

if we assume, that our spectrometer works with a constant frequency w
and a variable magnetic field H . We have evaluated S(H) before®) con-
sidering I(x, 3, ) to be constant. We wish to study the influence of the
angular dependance of I(«, 5, %) on that approximation. Because o is
fixed, the Boltzmann factor of equation (6) remains constant and I(«, 3, )
can be replaced by P(«, 8, ¢) of the equations (7a, b). The integration
of equation (9) is carried out in two steps. Because g2 is independent of
the Eulerian angle «, (7a), we start by averaging P(«, f, ) over a. By
the aid of the transformation

t = sin2y, s=(g2—g) (g —g)?
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we reduce the remaining integral into a combination of standard elliptic
integrals1?). The result is

If Hy< H,, < Hj,

H2(S(S+1)—M (M+1))
V(H3 - H}) (H*-H3)

Sy, ma(H, S, M) = N(Hy, Hy, H, S)

[l ( (2,8) £ (2.4)
+ (H2HE + H? HY) E(g k)].

If H < H, < H,,

H=2(S (S+1)= M (M+1))

SM,MJrl(H’ S:M):N(H11H2:H3) S) V(H2 ) (H3— H?)
3 x0T 1

) (6 (3, - £ (2,0))
+ (H2 H} + H H) E (2, k“l)]
where
(HS—H?) {(HE-H])

RE s
(H§—H3) (H*-H3) ~’
koo
H —
s ﬁg;’c ’
M=—S8—-S5+1,...,5—1. (10a)

F(n/2, k) and E(n/2, k) are the complete elliptic integrals of the first and

the second kind respectively. For an axially symmetric g-tensor, S(H, S,
M) is

(14+H2 H2) (S(S+1)— M (M+1))
) H,SSM)=NH,,H,S)- - :
M,M+1( ) ( L [ ) ]/(Hz—H?L) (H2 — H?)

(10b)

Comparison of S(H, S, M) according to (10a, b) with the equations (4)
and (7) and figure 2 of the publication already mentioned®) shows a
comparatively small difference arising from the different I(«, £, ). The
difference can be of importance if we determine g-values by the method
of SEARL ef al.%), taking spin-spin and spin-lattice interactions into
account.
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4. The Influence of the Fine Structure Term $p

The question arises whether the powder line shape of a system with
S > 1/2 and D + 0 consists of a superposition of 2 S shapes each roughly
corresponding to equations (10a, b). For simplicity, we assume axial sym-
metry and a tensor D

, 1
Di;=Dé,;=Dd, (~5+d4), (11)

i

expressed in the body-fixed system. Diagonalization of §,, is achieved
by a rotation

(") = R, ', 7) (),
o =m—7y,
B'=tan~1(g, g*tan f),
Y =7 (12)

where «, 8, y represent the Eulerian angles of Figure 1. In the new co-
ordinates (x") the total Hamiltonian has the form

$=FgH,S, 5 h DS+ 1 fDg2 g} sin?B S+ ¢ cos?f ST +
+ g, g, sinfcosB (S, S,+ S,5,] +
+ ettt H g1 g, g, sine S, + g, gcosa S, +

+ (g‘lzl — g°) sinasinfcosf S,] . : - (13)

This equation allows the calculation of forbidden transitions induced by
$p (they will not be calculated, because in most cases they do not in-
fluence our line shapes). The static components $,, and &, are in agree-
ment with those determined by BLEANEY and Low1!). We have evaluated,
to the first approximation, the energy level E,;, the transition frequency
@y, m+1 and the transition probability Py, 5. 1(D) corresponding to the
Hamiltonian of equation (13):

Ey=hpH.gM+
1 9 1 2 9 2
+7hﬁD[M —?S(S+1)] (3¢ g2cos?f — 1),

1 | .
g1 Wy pri1 = H,g+ D (M 4+ 7) (3 g|2| g-2cos?f —1). (14&)



716 F. K. Kneubiihl and B. Natterer H.P.A.

If wy pryq=constant =w,
Hyywi= g [0 —D(M+3) @ +6)) @ — )] +
M,M+1 = 8§ @ 2 N T8 \& — &L

+g® [D (M + %) 38 & (& — gi)"l] . (14b)

o o

PM,M+1 (D)/PM,M+1 (D = 0) =

) (a3 g (HEESAE) g

(averaged over o).

Fig. 1

Experimental arrangement assumed for our calculations

The distortion caused by §, of the simple shape function S(H, M, S) of
(10b) can occur in two ways: by the change of Py 5., and by the in-
fluence of the g=3 term of Hy 5, in (14b). The former introduces the

factor Py 341(D) [P a41 (D = 0) into equation (10b) and has no
serious effects on the line shape. The latter, however, can lead to dH/
d(g%) =0 for a real g-value. In this case, the correspondance between H
and g2 ceases to be one-to-one, thus introducing an additional peak in the
shape function. Figure 2 demonstrates an example of this effect, which is
absent if w und D fulfil the condition

w 1
W> 8(5_7) gfnax |g2L _gm_l (15)
derived from equation (14b). Because of the factor |g% — gfj |2, this
condition is very restrictive. Therefore, we shall quite often encounter
complicated powder line shapes if S > 1/2.
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S(H,S,M)

dS(H,S,M)
dH

1

1

|
|
\
\
\

Fig. 2
Single line shape S(H, S, M) and its derivative, which can occur if condition (15)
is not fulfilled
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