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Quantum Theory in Real Hilbert Space III :

Fields of the 1st kind (Linear Field Operators)

by E. C. G. Stueckelberg, M. Guenin, C. Piron and H. Ruegg*)
(Universities of Geneva and Lausanne)

(3. V. 1961)

Abstract: The method of RHS (real Hilbert space, see1)2)) is applied to the free
scalar and spinor fields. We remark, that two kinds of fields exist:

Fields of the 1st kind commute with J (-> i ]/— 1 in CHS (complex Hilbert space)).
In CHS, they are linear operators.

Fields of the 2nd kind anti-commute with J. In CHS, they are anti-linear operators.
The general formulas of this article are valid for both cases. In this publication,

only the fields of the 1st kind are explicitly discussed. The relation between statistics
and strong time reflection (CT) are clarified. Furthermore, a concise formulation of
contragredientfour-spinors is given. Some well known formulas are explicitly restated
in RHS in order to show the difference between fields of the 1st kind and fields of
the 2nd kind3).

§ 1. Field Operators

We consider the scalar field w(x) (4= wT(x)) and the N-component spinor
field ipA(x) 4= rpTA(x), AB... 12... N). Field operators satisfy the wave

equation

- M2) w(x) - M2) y>A (x)=0, (1.1)

D - sig(g-») g«ß dadß A- d],

A=£(di)2; d n-l; dn dt. (1.2)
i

Observables Fa---(x) are bi-linear forms in w(x) and wT(x) (or y>A(x) and

ipTA(x)) and their derivatives (involving numbers or /-dependent operators)

:

wa(x) daw(x) ; y,A(x) =dxy>A(x). (1.3)

There exist two kinds of observables, Fm*---(x) and F^a—(x), depending
on whether the transposed field operator operates after (F(1)) or before (F(2))

*) Supported by the Swiss National Research Fund.
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the untransposed operators. Observables are symmetric operators in RHS

(FT F), which commute with /. From

[A B,C] A [B, C]T ± [A, C]T B (1.4)*)

follows, that fields either commute (fields of the 1st kind)

[J,w(x)] 0; [/VW]=0 (1.5, l«k.)

or anti-commute (fields of the 2nd kind) with /.
(J,w(x)) 0; (J,y>A(x)) 0. (1.5,2ndk.)*) **)

Using the operators

/ 7xl, K kxl, 1 1x1 (1.6)

where /, k and / are the pseudoquaternions (see I A-4.9), one concludes
from (we write w, for w and tpA)

w l x wM A- ] x wU) + kx w(k) A-1 x wU) (1.7)

(a form analogous to (I A-2.3)) and its transposed, that only

w — 1 X w{r) A- j x w{i) (1.8, lstk.)
or

w k x wm + I x wU) (1 x w{k) A- j x wU)) (k x 1) w K (1.8, 2ndk.)

can occur in the bilinear forms defining observables. The present article
is essentially restricted to fields of the 1st kind. However some formulas,
valid for either kind of fields are included. The discussions of fields of the
2nd kind is reserved to a later publication (see 3)).

For either kind of field, a phase transformation

'w(x) X w(x) ; 'wT(x) wT(x) e~XJ (1.9)

leaves the observables invariant.

§ 2. Quantization of the scalar field

We look for an observable 6a^(x), from which 77 and M may be
constructed (see (I 0.25), (I 0.27)). In principle, bilinear observables, foi
example the scalar

FW(x) wT(x) w(x) (2.1)

*) [A, B] [A, B]_ AB-BA; (A, B) [A, B]+ AB + BA.

**) Operators with a ~ (K, L, w, anti-commute with /.
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transform according to

'^(1) ('*) [Oy wT('x) 0(L)) (0^ w('x) 0(L))

F™ (L-i 'x) F®(x) (2.2)

if
'w('x) 0^ w('x) 0m e'^w (L-1 'x). (2.3)

For infinitesimal transformations, the phase A must be zero. The proper
Lorentz-group (Xont)}. is therefore generated in RHS by (I 5.6) with

[//T w(x)} - wß(x) (2.4)

[JM/li,,w(x)] -[xß,dv-\w(x). (2.5)

Thus, fields of the 1st kind transform like scalar observables. (For fields

of the 2nd kind, it is essential that / is inside of the commutators (2.4)
and (2.5) For pseudochronous and pseudochorous transformations, a
phase factor may occur.

We have, for the most general 00"3, the form:

0«" a10<1)o"' + aa0<2>"'», (2.6)

ßWzß(x) (wTa wß _|_ wßT wa _ g*ß(wT we + m2 wT w)) (x), (2.7<«)

Q(2)«-ß(x) (w« wTß + wß wt* _ g-ß(Wo wtq+ m2 w wT)) (x) (2.7®)

and (2.4) takes the form

- [//7 w(y')]

- J da*(y) K [J(wTa *%) (y), w(y')] A- a2 [J(w* X) (y), w(y')]

+ «i [Jiwl ™*) (y). MY)] + «-2 [/(% Xa) (y), w(y')]}

*V(y) K [/« v>*) (y), My')] + «2 UK wl) (y), œ>(y')]}

+ M2 y ^(y) {ot! [/(X a>) (y), w(y')] + a2 [/(> X) (y), w(y')]}

^(y'). (2.8)

We chose x(y) r(y') 0 i.e. y and y' are events on the same hyper-
w ^ w WW

surface with a time like normal va(y) (^"(y) va(y) da(y); (vava) (y)
sig(&""))• w> w«» w1, and w7" being linearily independent, all terms, except
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the first and fourth terms, have to cancel out. In particular, the last
integral proportional to M2 has to vanish. This leads to:

«! [J(wT w) (y), w(y')] A- ol2 [J(w wt) (y), w(y')] 0, (2.9)

- «i [J(wTa Wp) (y), w(y')} - a2 [J(wjl wToL) (y), w(y')]

hyy')w/l(y). (2.10)

Where ôx(y y') is the (pseudochronous) d-function on the surface x(y) 0 :

ô«(y y>) Pty y) ; f dax(y) *»(/ y) f(y) f(y'). (2.11)

In order that the 2nd and 3rd term cancel against the second integral, the

symmetry condition, compatible with (2.11)

/ daß(y) \(y y') fly) sigfe"") (r„ va) ly') f(y') (2.12)

must be satisfied. (2.9) and (2.10) are necessary conditions for (2.4). We

may integrate these two conditions, using the pseudochronous invariant
number, defined by

D°(x y) D°(x - y) D°(yx) (2.13)

(Ux-M2)D°(xy) 0, (2.14)

D°(y y') 0 ; d>a D°(y y') - da(y y') (2.15) *)
obtaining

a, [/ wT(x) w(z), w(y')] 4- a2 [/ w(z) wT(x), w(y')] D°(xy') w(z). (2.16)

A somewhat lengthy calculation shows, that (2.16) is a sufficient condition

for (2.5). The CR (commutation relation) (2.16) (although more
general) is analogous to the CR proposed by Green4) and Volkov5) for
spinor fields (see (8.8)).
Let us consider fields of the 1st kind. Applying (1.4), we find:

J ccx{wT(x) [w(z), w(y)]^ Az [wT(x), w(y)]^ w(z)} +

+ / a2 {w(z) [wT(x), w(y)]T ± [w(z), w(y)]T wT(x)}

D°(xy) w(z) (2.17, 1stk.)

*) The particular choice r(y) yn — y'n 0, daa(y) (00.. .0 ddy) ; ôx(yy')

(00.. .0 ò(y — y')) leads to the usual definition of D°(xy) (metric (6.14)).
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The most simple solution is

[w(x), w(y)] 0

/ [wT(x), w(y)] D°(x y)

± a.x A- a2

679

(2.18, lstk.)

(2.19, Pk.)

(2.20, lstk. Ä?)

It will be more convenient to write (2.19) in the more usual form:

/ [w(x), wT(y)y ± D°(x y) (2.19,lstk.

§ 3. The Charge Operator for Scalar Fields

The observables

/<i>«(*) ((/ wf w* A- wTa(Jw)) (x),

f.2)*(x) _ tj w wTx + w«. (Jw)Tj (^

satisfy the continuity equation. We form:

/"(*) ßJa)a(x) + ftPW
defining thus a x(y) -independent scalar

Xftv(XftÇ'2»= fdaa(y)f(y)

(3.1«1»)*)

(3.1«>) *)

(3.2)

(3.3)

called the charge Q. If we require, that the phase transformation (1.9) is
an orthogonal transformation in RHS

'w(x) 0-\7) w(x) 0(X) el] w(x)

0(1) „JtQ

(3.4)

(3.5)

We need the CR:

-[/<?. My')ì

- j dax(y) {ß1[{J{JMTw^) (y), w(y')} + ßx [(]wT«J w) (y), w(y')] +

+ ß2 [(wwT«) (y), w(y')] - ß2[{J w«(J w)T) (y), w(y')]} J w(y'). (3.6)

*) The signes have been chosen so as to give, for fields of the 1st kind:

/Ó>«(*) /-1 (wT w^-wT"- w) (x) (3.10), 1st k.)

/(2)(X^) _ J-l (ww*T_wawT) (*) (3.K2), 1st k.)
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For fields of the 1st kind, this condition reduces to

- VQ, My')]

j daa(y) {ßx [J(wT ur*) (y), w(y')] - ßt [J(w* wT) (y), w(y')] -
- ßx U(wT« w) (y), w(y')] + ß2 [J(w wT«) (y), w(y')]

f daa(y) i*{y y') w(y) w(y'). (3.6,1st k.)

Comparison with (2.16) shows, that the first two terms do not contribute
if ßx X <zx and /?2 — X a2, while the second two terms equal the integral
in the third member, if

ß1 a1, ß2=-x2. (3.7,l*'k.)

Thus, even for the general CR (2.16), Q defined by (3.7) is the generator of
the infinitesimal phase transformation for fields of the 1st kind.

§ 4. Charge Conjugation for the Scalar Field of the 1st kind

For fields of the 1st kind and for the most simple CR's (2.18_) and
(2.19J), follows that:

•w(x) 0-2 w(x) 0[C) wT(x) (4.1)

'wT(x) OA wT(x) 0(C) w(x) (AA)T

is an orthogonal transformation in RHS. The CR's lead to BE-statistics.
In other words: 0^-covariance requires BE-statistics. We have further:

Or] 0W«ß(x) 0(C) 0<2>aX) (4.2«)

OA 6{2)afl(x) 0(C) dm«ß(x) (4.2<2>)

Thus, chosing a.x a2 1/2 in (2.20„), we find, that

eaP(x) ~ (d{1)aß A- 0(2)X (x) (4.3)

is invariant with respect to 0(C). Furthermore, from

Xq/(1)X) 0(C) XXX (4-4'«)

0(cfî(2,"WX )(1,X (4.4<2>)
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follows, that on account of (3.7) and (3.3)

0(C)1 Q 0(o =- Q (4-5)*)

i.e. /" and Q change sign under 0(C).
We may now define two kinds of time reversal

(1) T -> Ojr), weak time reversal (T)

'w('x) Oz] w('x) 0m w(T^ '%) (4.7) **)

with respect to which ja(x) is a pseudochronous vector, and 0 a scalar;
(2) T -> 0(C) Om 0(CT), strong time reversal (CT)

'w('x) 0rAT) w('x) 0(CT) wT(T^ 'x) (4.8)

with respect to which ja(x) is an (ortho)vector and Q a pseudochronous
scalar.

The second definition seems more appropriate because classical particle
theory (see Stueckelberg8)) defines

f(x) /* jiXa(A)<5(*-^)).

z*(X) ~z*(X); (z>)(A)=sig(g»»),

5 / <*i(y) fX) sig(z»(A)).

Täws O^-covariance or strong time reversal (0(c T^)-covariance decide for
BE-statistics in the case of scalar fields (see Schwinger6) and Pauli7)).

§ 5. The Development of the Scalar Field (1st kind) in Terms of
Positive Frequency Wave Packet Operators

Let us define integral operators Ü and Q1/2, operating on space functions

f(x) which vanish sufficiently strong for | x j -> oo:

Qf(x) (M2 - A)1'2 f(x) f ddyQ(\lc-y\)f&), (5.1)

Q1'2 /(*) (M2 - zl)1'4 /(*) f ddy QW{\x - y\) f(y). (5.2)

*) O^1 /«(*) 0(c) - /«(*) (4.6)

**) 'at ?>->¦ {V #'; 'xn —x"}. T-1 T. The arbitrary phase factor may
be left out.
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The kernels Q(\ z |) are essentially Hankel functions decreasing oc

exp (— IM II z |) for | z | > j M |_1. We note especially

f ddx g(x) ¦ Û/(*) f ddxg(x) Q ¦ f(x~) f ddx (Q1'2 g) (ß1'2f) (x). (5.3)*)

In terms of ß, we define two denumerable sets {u', u", w(e', ...} and
{v', v", vie), ...} of positive frequency wave packet operators (PFWP's)

depending but on the operator / and vanishing for \x\ -> oo. They
satisfy :

- d, u'(x, t) d" u'(x) / ß u'(x, t). (5.4)

These sets are normalised in terms of 'matrix elements'

/"(«', v') (x) - ja(v', u') (x) — /-1 («' (.<)a - da.) v') (x), (5.5)*)

Q(u\ v') =J{doa />', v')) (y) i- J-iJd*y («' (.&• - d».) v') (y)

i- /" ^y (m' (.ß - ß.) v') (y, t) 0, (5.6)

Q(u"T, «') - Ç(«', w»T) =A.fddy (u"T (.ß + ß.) «') (y, *)

^y ((ß*<2 «»*) (ßi/2 «')) (y, t) <X„, 3> 0 (5.7)

Furthermore, each set is complete if the / dependent operators :

S «'(*) M'r(y) £>+(* y) D+(x - y) (5.8+)

S/'r(X'(y) £>-(* y) D-(x-y) =D+(a;y) i;+r(^y) (5.8-)

depend but on x — y and are invariant with respect to the subgroup
{L(OChr)}. A PF-solution f+(x) of the wave equation may be expanded in
terms of one of the sets :

f+(x) Suy'(x) /+ \ /-1f daa(y) D+(x y) (A°y - d«y.) /+(y). (5.9+)

For NF-solutions :

/"(*) S.,yT(x) fP - vX1 ftoJy) D'(xy) i-dy-àay-)fAy) (5.9-)

*) Operators .da, .Q (with point on the left) operate, in the usual way, to the right.
Operators ôa., Q. (with point on the right) operate to the left.
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holds. The general solution of the wave equation may be written as

w(x) 2-1'2 (Su,au, u'(x) A- S,.# X(*))

- / £jy) D°(* V) (-à;- d«y.) w(y)

f d°M (- àax D°(x y) ¦ w(y) - D°(x y) w"(y)) (5.10)

with

D»(x y)=~J{D+- D-) (x y) - D°(y x) D°(x y). (5.11)

A comparison, for x y', shows, that the pseudochronous number (5.11)
is identical with the number defined by (2.13), (2.14) and (2.15).

The CR's, resp. ACR's (2.18) and (2.19) imply

[«.». <V]T VbA £]T [au„ #]T 0, (5.12)

K'. a«TX ± K'u« ; Vtf" K"]t t <W;

KX„X °- (5-13)

As a„< «J and a£ aM- are positive operators, (5.13+) contains an algebraic
contradiction. This is Pauli's9) argument for excluding ACR's and FD-
statistics for scalar fields.

The CR's can be satisfied in terms of the creation- (aT) and
annihilation-(a)-operators :

'0 1 0 0

[0 01/2 0.1 T I 1 0 o \
AT Ta ~ „ X rx ; « — j- _ ; N=a a

0 0 0 |/3 0|/2 0

0 0 0

0 10.
0 0 2

5.14

(5.15)

writing

«M(e) 1 x (1 x 1) x (1 x 1) x • • • x (a x 1) x (1 x 1) x • • •

Kiel 1 x (1 x 1) x (1 x 1) x ••• x (1 x a) x (1 x 1) x ¦¦¦

The eigenvalues of Nu, a%, au, are the non-negative integers and the
charge has the form

Q S„. K +1) - S, (*, + i) - SMxM, - S„.x- • (5.16)

No 'zero-point charge' appears because a 1 to 1 correspondance between
the sets {«'} and {?/} can be established.
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Charge conjugation can be written explicitly, if the sets {u'} and {v'}
are chosen identical:

X °[q %• 0(C) K- >

% OA bv, 0{C) au, (5.17)
from which :

0(C) 0(-c; 0{C) (5.18)
follows. The operator is

°(0 Tin e'"12 (""' '•' " ^ v) e± '*N"' ¦ (5-19>

In order to quantize explicitly IT denumerable sets, satisfying

dau'(x) g^Jk'au'(x),

k^k'«A-M2 0; k'"^\M\ (5.20)

have to be chosen. Taking in account some additional orthogonality
relations, one finds

n* ~ Su, (x, +1) *'" + Sv, (X +1) *"¦ • (5.21)

(5.21) is symmetric for particle and antiparticle states. Aside from the
infinite 'zero-point contribution', the energy spectrum has a lower limit:
Thus, thermo-statistics with a positive absolute temperature can be

applied10).

§ 6. Dual Spin-Spaces

In this section we deal exclusively with real and complex numbers : we
distinguish between cpA contravariant (ctr) and 1a covariant (cov) spinors.

cpA and Xa are two dual, N-dimensional spin spaces (SS). We shall
distinguish between (real) RSS and (complex) CSS. The general case

being CSS, all symbols cpA, %A, should be written as cpA, %A,...
For any complex number

Q Qm + * 9u) 5* e QU) Qm + / Qw (6-l) *)

gives the relation between the complex number q and the /-dependent

operator Q q (J) (see I, Annex 2).

*) We shall use q, a,... for complex numbers (resp. for /-dependent operators)
and A, /A,, for real numbers.
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SS or A -space is related to physical space-time or a-space by a mixed
A-space bi-spinor a-space vector yaAB, satisfying

y«AcYßCB+YßAcrCB^2tßy<>AB (6-2)

or, in matrix notation
(y,yß) 2gaßy°, (6.2 M) *)

where y0AB= òB is the identity bi-spinor. (6.2) with yBA is an algebraic

equation and, with yaAB, it is an operator equation depending but on /. Two
contragredient spinors allow to define a scalar % cp %A cpA and a vector
1 Ya<P Xa YaAB <PB in a-space.

We resume, without proof and references, a number of well known
theorems :

(1) Theringr= {yr}, r=0,a, [a.x a2], [04 a2... a„] 1,2,..., 2" is
formed from the totally antisymmetric a-space tensors

y«i.--«, y[«i..-a,] (V{)-l£p (-1)P P(y«K yav)

ya'... yav if all a.x... oc„ are different. (6.3 M) **)

The subsets F^ {ya' • • ¦ "»} contain (") independent elements.
(2) Two irreducible representations of (6.2) 'ya and ya are related by

y S S y* (6.4 M)

where S is either the zero matrix or a non-singular square matrix. In
particular, tor n 2m (even), all irreducible representations are equivalent

i.e. we have

y=Sy«S-1; S {S'AA}; 'N N. (6.5 M)

For n 2 m A- 1, two non equivalent representations exist. A matrix S

commuting with the n ya's of an irréductible representation is always of
the form:

[S, ya] 0 ; S oy°. (6.6 M)

Furthermore if S and S' satisfy (6.5 M), we have

S' qS. (6.7 M)

*) Matrix multiplication is always a contraction over contragredient spinor
indices. Formulas with M) are matrix identities.

**) Up implies summation over all v\ permutations P of 04 a, with (— l)p
+ —)1 for even (odd) permutations.
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(3) For n 2m, the 2" elements of the ring F {yr} are linearily
independent.

(4) The relation

yrys ersy'; t t(r s) ; srs ± 1 (6.8 M)
holds.

(5) If an irreducible representation of (6.2) for n 2 m is found, we
may form

yn+1 ey12-n, e ior/ (6.9 M)

and thus obtain an irreducible representation for 'n n + l 2m+l,
because

(n + i.7a) 0; a=12...2m; (y„ + 1)2=A (6.10 M)

(6) The number £r in

(w. s.) yr yr f y° |w y° (6.11 M) *)

depends but on the set _rw and takes the values

jW (__l)*/2 for v=2pt, (6.12)

|W (_ i)(v-1)/2 for v 2 p + (613)
if

signât fe0"*) + (11 1 - 1) (6.14)

tion S(L)

(7) If the representation is given, to each L corresponds a transforma-

L -*¦ e V); s "* L(i) (6-15)

(defined up to a factor q) leaving yaAB invariant:

y'«AB=L\S{i)Ay«ABSA\, (6.16)

y'«=L\S<L)y«SA. (6.16 M)

This relation in SS is perfectly analogous to (I, 3.9) in RHS; instead of

the arbitrary phase factor in (I, 3.12), the arbitrary q appears in (6.15).
(8) To the infinitesimal transformation

*) (w. s.) means 'without summation over indices in contragredient positions'.
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corresponds

S{L)=y° + \à^y^v. (6.18 M)

(9) To the transformations L (P, T, PT)*) corresponds, for n 2m

(d=n- 1)**)

Sp Qy"; ST Qy12-d; SPT Qyn+x;

S^-Q-1?«: S^ o-iyd...2X; S^-r1/"1- (6.19 M)

(10) If the Dirac-equations are written as

if-AB Òa + M y0AB) cpB(x) (ya da A- M y°) cp(x) 0 (6.20 ctr)

Xa(x) (7aAB àa.-M y0AB) X(x) (y* da - M y«). 0, (6.20 cov)

the momentum-energy-density tensor is

e«ß(x) Taß(x) + Ydo sSXß(x) • (6-21)

de Se«ß(x) (X* - Taß) (x) (6.22)

TV*) y (xyA-àfl - dß.) cp) (x), (6.23)

daT"p(x) 0, (6.24)

saßy(x) i (Xy«t>rcp)(x) (6.25)

and the current-charge-density vector

f(x) (Xy«<p)(x), (6.26)

f (*) /("convection)**) " ^ «'»(*) (6-27)

/?convectioo)(*) ~ (2 M)~* (X (.d* - d«.) <p) (x) (6.28)

»»«/>(*) - (2 M)-1 (x y"ß cp) (x). (6.29)

In order that cpA(x) and %A(x) satisfy the wave equation (1.1), M must be

a real number and the signature must have the form (6.14).

*) P-> {V -#', '*" x"}, T-> (V x', 'xn -xn).
PT^- {'x" -x*} for n 2 m.

**) For « 2 mA-1, only S(pt) can be defined. As we require the full /.-group,
our discussion is limited to n 2m even, d n— 1 odd.



688 E. C. G. Stueckelberg et al. H. P.A.

In addition to these well known theorems, we add the two following
theorems which follow from a theorem of Frobenius and Schur11)12)
(given in Annex) :

(11) For n 2 m, the number of dimensions of an irreducible
representation is

N 2"'2 2m (6.30)

(12) For
n 2,4 (mod 8) 2, 4; 10, 12; (6.31)

all representations are equivalent to a real representation. For

n 6,8 (mod 8) 6, 8; 14, 16; (6.32)

all representations are necessarily complex. However a matrix C, the
Pauli-Matrix9), exists, relating

Ç*r=cÇrQ-i or yTr CyrC-A (6.33)

(13) Every IMG (irreducible matrix group, see Annex) {Az 'yr} is

equivalent to a unitary representation {Az yr}- In RHS, this implies for every
{Az 'yr}> there exists an S

Y=SyrS-1 (6.34 M)

so as to have
y~T, =yxr±(yr)-l= (w.s.)?yr. (6.35 M)*)

(14) For n 2,4 (mod 8), where {'yr} may be chosen real, the unitary
representation may be chosen real and orthogonal:

y~rA{yr)~1= (w.s.)Çryr. (6.36 M)*)

*) î signifies 'equal in a particular representation'.
~ is the transposed matrix in SS (T being reserved for transposed operator in RHS,

see I),
yirB yrBA- (6-37)

~ interchanges the spinor-indices 'left zt right', leaving their covariance
unchanged

x is the hermitian conjugate matrix in CSS

yyB y*rBA. (6.38)

To it corresponds, in a /-dependent representation, the operator relation in RHS

rYB yT,BA. (6-39)
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§ 7. The fundamental spinors r\AB and r\AB

In order to form observables daß, Taß, saßv and f ((6.21)-(6.25)) from
a contravariant field operator \pA (x), we need a non-singular fundamental
spinor r\AB from which we may form a covariant operator fA(x) rjABipTB(x)

V-1ACr,cB riBCrlCA=y<'AB, (7-1)

r]'1 rj r] r]~x y°. (7.1 M)

We shall assume a real representation of yxAB i.e. restrict our considerations

ton 2,4 (mod. 8). However the theory can also be written for /-dependent

yaAB (thus for n 6,8 (mod. 8), but the calculations are much longer*).
Analogous to (6.16), we require invariance of r] with respect to the

group S(i) (i.e. c(L) 1 or sig (det (L'\) or sig(I>„))

V'A'B c(L)rJABSAAAS-L]B,B, (7.2)

V c(L)SA~riSA. (7.2 M)

For i(cont) (cf. (6.18)) we have

y~"vrj + rjyuv 0, (7.3 M)

which allows the two possibilities:
^J W CJ w

y~a= A ny*^1 i-e- X"X rf »?ya. (7.4 MX)

^ /^
We shall now show that rj is pseudochronous while rj is pseudochorous.
From (7.2), with (6.19 M) (q X), follows

W \-J w w
ÎJ c(P) X-2 y~ r]nVn=T c(P) X^2 r)(yn)2 ± c(P) X~2 r). (7.5 M)

\j r\ yj
Thus we have X2 1 and c(P) A- (—) 1 for rj (rj). rj is thus ortho-

chorous and rj is pseudochorous. Further

7? c(T)2-2y~ ..lrjyd...i

T AT) A-2 q (yd)2 • • • (ri)2 T o(T) X-2 r) (7.6 M)

\j r, w
leads again to A2 1, and c(T) — (+) 1 for rj (rj). rj is thus pseudo-

chronous and rj orthochronous.

*) The statement given in a previous communication13), that only real representations

can be used, is therefore erroneous

44 H. P. A. 34, 6/7 (1961)



690 E. C. G. Stueckelberg et al. H. P.A.

Transposing (7.4), we find

y« =f:^-l~y~«î-}~; y~ « If ^~ y« ^~ " x (7.7 M)

(7.4) and (7.7 M) are both changes of representation of the type (6.5 M)
(because 'ya — ya is a change of representation). Thus, on account of
(6.7 M), we have ^ w

r] Xr). (7.8 M)

Transposing this equation, we find X2 1 ; rj and rj are either symmetric or
antisymmetric matrices. Furthermore we have

n-1 v Xr) ± r12-" ± y.+i - (7-9 M)

In order to find the symmetry of we choose an orthogonal representation

(6.36) :

y~i ^{yiV1 yi yi, (7.10 M)

y-n^^nyi yn= -y». (7.11 M)

From the ACR's (6.2 M) follows that rj ± X y" satisfies (7.4 Mw), rj is therefore

an anti-symmetric matrix in this particular representation. Now, in
analogy to (6.34 M), we have in a general representation

A'A'B VABS-*A,AS-iB,B (7.12)

conservation of this antisymmetry: rjAB is, in all (real) representations,
antisymmetric:

v7b vba -vaB; ï~ - v ¦ f7-") ; (7-13 M)

We choose, in particular

Vab^yV (7.14)

in order to have for the charge-density

f»> yTrW yl y"cB yjB yAA (~^AcynCB) WB S

WTA WB (- yA B)±ZAWTAyA>0; -yAB± ÒA (7.15)

a positive operator. We may now determine the symmetries of the
pseudochronous covariant bi-spinors :

YAB VACy,CB> Xcov» ^y'. (7.16); (7,16M)
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We have, on account of (7.4 M),

This gives the following table :

y~a,...a.v _ y y" a' rj" y~ ai rj 1)" rj ya-... y°"

(7.17)

sym.

antisym. y° rj

ya,c

ya, a2 a3

i/tXi a2 a3 a4 a5

(7.18)

From (7.9 M) and (7.17) follows:

rf~ Az rj for n
2 (mod 8)

4 (mod 8)
(7.19)

§ 8. Quantization of the Spinor Field

If ipA(x) satisfies (6.20 ctr), it follows from the symmetries of yAB
W KJ Kj

yUb) and yab y^ s]- that

^/.X) Va b WB(x) - WB(X) Vba (8-l)

satisfies (6.20 cov). The same is true for xpTA(x) andy>A(x), because we
consider but real representations (n 2,4 (mod 8)). We form the tensors
Taß(x) and saßv(x), either posing

Xa (JWa)T- <pA=yA:

TW«ß(x) \ {(Ji?y« Vß - (Jvp)Ty« W)

~(fTAJTWBA-y)jBJWA)(x)(-yAB) (8.2<«)

or, posing

Xa Wa >
WA (/ 9^)r :

r(2,y*) 4 CffUwßY - wßyAJw)T)

- i to* v£B /r + / v* wa t) (*) (- y?, B)) .2(2))

The second form of both equations shows a) that T(1X and T{2)a-ß are
\j

observables (on account of the symmetry of y(X)) and b) that they are
orthochronous, if we define:
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VX*) OA XY*) OiL) J* S'A)A yA(L~i 'x). (8.3) *)

The same is true for s(1)a<3y and s(2,aX on account of the antisymmetry
°f y^AB Y[ABy Thus, 0(1)a,J and fl*2'0"3 are orthochronous observables.

It can be shown, using the Dirac-equations and partial integrations,
that one may write

n{;] j' daa(y){ (J W)T Y« W,) (V), (8.4'1»)

Û? -f dajy) (w yAJwY) M ¦ (8-4<2>)

With
nß *xii?Ar*2nfK

the relation
w

-[/X-vB'(X]=vf(y') (8-5)
is satisfied, if

- «i [(/ (/v)V v„) (X wB'(y')] + «2 [{Jw.yAJwV) (X vBV)]

£a(y' y) wB'(y) • (8.6)

This relation can be integrated, using the invariant pseudochronous (real)
number (function)

S0AB(x y) (-y«AB dl A- y0AB M) D»(x y) (8.7) **)
in the form w ww

- ^ [/ (/ Vi4)T (x) y«AB rpB(z), rpB\y')] +

+ «2 [/£,(*) yaAB(JwB)T (*).<X(y') a s0ß>'*) y°X yBW • (8-8)

In order to verify (8.6), we operate on (8.8) with d* and pose x z y.
Further we use (2.15)

S0B'A(y'y) yßB'Adß(y'y) (8.9)
and (2.12)

JdoAy)dß{y'y) (yV)BXB(y) -sigfej &„) (/) (yXTXV)

/B'(y') / daa(y) hv' y) f'(y) ¦ (8.10) * **\

*) We may, as in (2.3), introduce the arbitrary phase factor for pseudochorous
and for pseudochronous transformations.

**) The function S B(xy) is not to be confounded with the transformation matrix
S'AA °rXX-
***) (yßya)B'Boß(y'y) y» B'Böa(y'y) ¦ (810a)



Vol.34, 1961 Quantum Theory ip Real Hilbert Space III 693

So far, all relations are valid for fields of the 1st and of the 2nd kind.
Leaving the discussion of fields of the 2nd kind for a later publication3),
we rewrite (8.3) for fields of the 1st kind ([/, yA] 0) using (1.4) :

- «t{&(«) yaX iVX), wB'(y')h ± !&(*)¦ wB'(y')h raAB wB(z)} +

a- *2(pA(z) y«AB [f™(x), fB'(y')]T ± [fA(z),wB'(y')h yaAB wTB(x)}

s°X(y'*)yaW(X (s.u. ist k.)

This is a generalised form of the CR's discussed by Green4) and Vol-
kov5). The most simple solution is

[/(*). wB (y)]T o (8.12, 1st k.;

and

A Vwa(x). wB'(y')h 5°B>' *) (8-13>lst k-)

which give to the 1st term the right kind of structure. In the 2nd term,
we use the identity, following from (8.1) and (7.4 M)

vu(*) raAB wTB(*) wB(z) yaX^I(*) •

Using again (8.13) and (8.12), we find that (8.11) holds, provided

«1 T a2 l •

We may rewrite (8.13) in the more usual form

VwA(x),wB(y)h s0AB(xy)-

(8.14, 1st k. =f=)

(8.13, 1st k.)

§ 9. The Charge Operator for Spinor Fields

The two expressions for /" (6.26) are

/<"«(*) (vTy*y>) (x) (y>TA VB) (x) (-yAB)

5»-W (v>y-vr) {x) {y!A y)TB) {x) (_ ^ab)
_

(9.1«)

(9.1<2>)
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Forming again Q ßx Qw + ß2 Ç<2) (see (3.2)), we have, for fields of the
1st kind, analogous to (3.6, 1st k.),

- VQ. wB'(y')]

-/dajy) {ßx [(Xyaw) (y). wB'(y')] + ß* V(wy*X) (v). ws'(y')]}

j daa(y) ò«(y' y) wB'(y) wB\y') ¦ (9-2, ist k.)

kj
For fields of the 1st kind, we compare (9.2) with (8.6), (the /'s cancel out
and we omit the index of differentiation*)). (9.2) results, if we pose
again (3.7, 1st k.) i.e.

|Si «i; ß2= -«2- (9-3, 1st k.)

§ 10. Charge Conjugation for the Spinor Field (1st kind)

We see at once, rising the index of (8.13)

[y>A(x),y>TB(y)]T S<>AB(xy) (10.1)

that the invariant number (function)

S0AB(xy) (-y*ABdxaA-y'IAB M) D°(xy)

S0BA(yx) =^-1BC S0Ac(xy) (10.2)**)

is symmetric with respect to A, x ;± B, y. Therefore the substitution

y(x) 0yyiA(x)0{C) WTA(x),
(10.3)

YA(x) 0yrpTA(x)0(C)=WA(x)

is again an orthogonal transformation, if we choose the ACR's (8.12+),
(8.13+), (10.1+). Thus FD-statistics for spinor fields is a consequence of

0(C)-covariance or of 0[CT)-covariance (in perfect analogy to § 4). Furthermore

we have, on account of (8.2), again the relations (4.2). Using (8.14+),
we have again, with ax a2 1/2, the expression (4.3) : Qaß(x) is in-

*) Omitting the index means, that we use the integrated equation (8.8)

KJ ^J KJ KJ KJ

**) yrAB r.-lBDyrA __ ~- 1 A C jj- 1 BD yr (10.4)

KJ KJ KJ KJ KJ

yJ-(ctr) _ _yr ^-1 _ _ ^-1 y,-(cov) fj~x (10.4 M)
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variant with respect to 0(C)*). The equations (4.4) are also valid. Therefore,

using again (3.7, 1st k.) (9.3, 1st k.)) we have again (4.5) and
KJ

(4.6)*) : ja and Q change sign under 0(C). The rest of the discussion is
analogous to § 4.

§ 11. The Development of the Spinor Field in Terms of Positive
Frequency Wave Packet Operators

We introduce again two denumerable sets of PFWP's {cp'A,cp"A,.. .ç9(s) A...}
and {x'A, x"A---X(e)A ¦¦•} satisfying the Dirac equation (6.20) and (5.4).
The sets are normalised in terms of

XX X') (*) fix'.?') (*) (<rV ï) (*) WA X'B) (*) {-Va b) ¦ (H-l)**)

On account of the decomposition (6.27), one verifies that the normalisation

QW, X') 0; Q(cp'T, cp") Q(cp", cp'A òv,v„ > 0 (11.2)

KJ

is possible. Completness is assured, if the /-dependent operators

S+AB(x y) ee S^X*) iïrfiy) S+AB (x-y), (11.3+) **)

s-AB(xy) ee S„.<p'TA(x) v'B(y) s~ab (* - y). (11-3-)**)

S'AB(xy) S+TAB(xy) S+BA{yx) (11.4)

are invariant with respect to {L{ochl)}. Again a PF-solution f+A(x) oi (6.20)

may be written in the form

/+-X) S,.<P'A(*) fP / dajy) S+AB(xy)y«Bc /+c(y) (11.5+)

and

rA(*) S„.x'TA(*)/;-= [doAy)s-AB(xy)y«Bcf-c(y). (H-5")

*) Q"-ß and /a can be expressed in terms of commutators:

T*ß(x) ^J-1 (iwTA, vp+[yA, vjBì) M (-Vab>) ¦ (10-6)

«"''W 4"^_1 [X^ X] W (-ygfy • (10-7)

/aW y CX-4. vBl W (-yji B)) • (10.8)

KJ KJ

**) The pseudochronous sign in cp' and S+^„does not imply any covariancepro-
pert}' but only indicates lowering of the index.
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The general solution of (6.20) may be written as

wA(k) Sp,%.<p'a{x) + SXATX'X,TA(X)

fdaa(y)S0AB(xy)y«Bcfc(y) (H-6)

With
KJ KJ

S0AB(xy) (S+ABA-S-AB)(xy). (11.8)

If x y' is chosen on r(y') r(y) 0, it follows that

s°X(y'y)yaCB=y0B'>Xy). (n.9)

Now, this is exactly the condition (8.9), (8.10). Thus S0AB(xy), defined by
(11.8) is identical with (8.7).

From the development (11.6) and (8.12), (8.13), follow the CR's or
ACR's:

[VVX^^X^«^0' (n-10T'

[a aT,y 0 .: [bT,, b „"L ô ,r, [a,,by 0. (11.11,)L ç, ' 9>*J=F V <f ' L X » * Jcf XZ ' L
<P ' XÀA- \ =F'

Taking the ACR's (on account of 0(C)-covariance), (10.8) leads to

- S>, - |) - S>, - i)= S,», - S,», (11-12)

with iV^ «J ay. The ACR's (11.10) and (11.11) are satisfied in terms
of the pseudo-quaternions (I, A-4.8)

rX „, /0 0\. l „ /0 1

tf «r« (° °) i-(l-A) (11.13)

with

*y»> 1 x (Ä x j%) x (Ä x A) x • • • x (a x 1) x (1 x 1) x • • •

&(8) 1 x (k x k) x (k x k) x ¦•• x (k x a) x (1 x 1) x ¦¦¦
(11.14)

The eigenvalues are {A^<} {0,1} i.e. FD-statistics holds. The explicit
form of 0iC) is again given by (5.19), if the sets {cp1} and {x'} are chosen

to be identical. Quantization of 77 leads to

n> S, K< -1) *'" + Sx, (x< -1) ï' > d1-15)
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if the PFWP's satisfy (5.20). Thus, the energy is, apart from the negative

infinite 'zero point contribution' (which is again symmetric for
particle and anti-particle states), a positive définit operator : the spectrum
has a lower limit, and statistical thermodynamics with a positive absolute
temperature may be applied10).

The CR's (11.10_) and (11.11_) lead, whatever ax and a2 (satisfying
(8.14,1st k._)) we choose, to an energy spectrum without lower or upper
limit : thus statistical thermodynamics cannot be applied. This is Pauli's9)
reason for excluding BE-statistics for spinor fields.

Annex I: The Theorem of Frobenius and Schur11)12),

states that an irreducible matrix group (IMG) {D{} (ik. 12... h) of
order h belongs to one of the three kinds :

An IMG is of the 1st, 2nd or 3rd kind, depending on wether

f-l| |lst
l2Ji MA2) { + | for an IMG of the { 2nd

0 3rd

kind. (A-l.l)

(1) An IMG is of the 1st kind, if it is equivalent to a group of real matrices,

i.e. if for all representations {£>,} a matrix S exists, satisfying

{'Di} {SDiS-i} with 'D* 'D{. (A-1.2)

(2) An IMG is of the 2nd kind, if it is equivalent to its conjugate complex

group, i.e. if for all representations a matrix C exists, satisfying

{'£,} {C D{ X1} with 'D{ D*. (A-1.3)

NB. : For an IMG of the 1st kind, a matrix C exists a fortiori (C S*-1 S).
(3) An IMG is of the 3rd kind, if it is not equivalent to its complex

conjugate group i.e. if no matrix C satisfying (A-1.3) exists.
Now the set {Az 7"1} {Az yr} forms, for n 2 m, on account of (6.8 M)

an IMG of order 2 X 2". In order to find out to which kind it belongs, we
have to evaluate

(2 x 2*)-1 Zr 27<±>tr ((± yr)2) 2'n Zrtr ((y)2) • (A-L4)

To evaluate this sum, we decompose each subset P1"' into two parts

{y».-".}={yi.-i.} + {yic-V.»}| (A-1.5)



698 E. C. G. Stueckelberg et al. H. P.A.

each having (d n — 1)

C)-(XX) <A-'-6>

elements. Using (6.12) and (6.13), we have

l)-/2

i:.^irrrs{OAA)}\l_iy.yi^-
-»*<£.[0-U'-i)]*-*'"-

ANRe[(lA- XX 2("+1)/2 N cos((n - 3) A\ (A-1.7)

Me remark first, that our condition (A-l.l), (A-l.4) has the periodicity
'n n (mod 8) n — 8, n, n + 8,... In particular, we find,on account
of cos (jr/4) 2~X AT 2nß i.e. (6.30) and furthermore that our IMG is

of the 1st kind for n 2,4 (mod 8) (6.31) and of the 2nd kind for n 6,8
(mod 8) (6.32).
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