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Quantum Theory in Real Hilbert Space II
(Addenda and Errats)

by E. C. G. Stueckelberg and M. Guenin*)
(Universities of Geneva and Lausanne)

(15. II. 1961)

Abstract: A more concise demonstration of the necessity of the thermodynamic
c_^

signature of the metric gfv and of the pseudo-chronous character of /
(corresponding to i y — 1) is given (§4 of I1)). Furthermore, the anti-unitary operator
(Annex 3 of I) is wrong. A more concise demonstration in terms of observables is
given, showing the perfect correspondence between RHS (Real Hilbert Space) and
CHS (Complex Hilbert Space).

A more conoise demonstration for the thermodynamic signature and the

pseudo-chronous character of J is :

§ 4bis. The Thermodynamic Signature of g/"' and the
Pseudo-Chronous Character of J J

For a local scalar observable, we have the identity (oc ß... 12... n) :

'F('x) F(x) i^L-1 'x) 0-1 F('x) 0

L^O: 'x L x {'X L\(x* A- 77)},

g^ t%t\r- (4bis,l)

We form the bilocal observable

G(xy) J[F(x),F(y)] (4 bis. 2)

appearing in the UP :

<AF(x)2yv <AF(y)2yv > ì <G(xy)>%. (4 bis. 3)

*) Supported by the Swiss National Research Fund.
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The hypothesis, that an L-invariant vacuum state W° exists

v^ w w
<G(x y)>y0 f(x y) - f(y x) (4 bis. 4)

requires that

'/('* 'y) c(L) ){x y) c(L) /(I-1 'x Z.-1 'y) (4 bis. 5)

»s the same function in every frame, i.e.

7C* 'y) /X 'y) (4 bis- 6)

because vacuum is a frame-invariant concept.
c(L) is a (real) number, satisfying the representation condition

c(L2) C(LX) c(L2 Lx) (A bis. 7)

From the identity, following from (4 bis. 5) and (4 bis. 6)

c(L) /(L-1 'x L-1 'y) /('* 'y) - /('y '*) (4 bis. 8)

follows, that f(xy) is, except for the factor c(L), an invariant anti-symmetric

function. Such a function exists certainly, if we choose a metric

signât (g0^) ± (11 1 - 1) (4 bis. 9)

We call {#«'} x (ik... 12.. .d, d n — 1) space and #n £ time and
define

f(x y) sig (x" - y") ¦ f((x - y)2) - f(y x) (A bis. 10)

f(z2) 0 for z x — y spatial.

We have therefore

c(L) /(L-1 'x L-1 •y) c(L) Ag (L-l\('x'n - 'yn)) ¦ f(('x - 'x)2)

c(L) sig(L'»„) • sig ('X - 'y'») • /(('* - 'y)«)

c(L) sig(L\) ¦ /('* 'y) /('* 'y), (A bis. 11)

i.e.

c(L) sig(r»„). (4 bis. 12)

This means, that /(#y) is a pseudo-chronous number, caracterising the

vacuum. Therefore G(xy) must be a pseudochronous observable i.e.
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'G('x 'y) sig(X„) G(x y) sig(L\) G(£-* 'x L"1 'y)

0-1 G('x 'y) 0 (O-t-Jo) [0-1 F('x) 0, 0~x F('y) 0]

(O-1 / 0) ['F('x), 'F('y)] (O-1 J 0) [F(x), F(y)]

(O-1 J O /-1) J[F(x), F(y)] (O-1 J O /-1) G(x y)

(4 bis. 13)

where we have made use of (4 bis. 1). Comparing the second and the last

member, we have O""1 /0/_1 sig(7X„).l

0-1/0 sig(L'"n)/='/ (4 bis. 14)

which is equation (4.14) of I. / is thus a pseudochronous operator. Writing
Xxrur) «- O(ochr) and L(p?hl) ^ 0(pchr) for ortho-chronous {sig(L\) + 1) and
pseudo-chronous (sig(L'M„) — 1) Lorentz-transformations, we have

[0(ochr),/] [0(ochr),/]_ 0, (4bis.l5_)

(0(pchr),/) [0(pchr),/]+ 0. (4bis.l5+)

We are left to show, that (4 bis. 9) are the only two possible signatures
of gi". To show this, let us assume a metric, in which z {za} has d n — r
space components and r < 1/2 n time components t {f} {z°} (ik...
12... n — r, a b... (n — r + 1) (n — r + 2)... n).

We have to build a function f(z) f(x, t) which is invariant under
homogeneous continuous transformations L(cont) proper Lorentz-transforma-
tions) and changes sign under reflections ('x (PT) x — x). Thus, we
look for a vector ,z0 {z%}, which changes sign under the transformation
L PT but does not change sign under any continuous transformation.
If r > 1, it is evident, at least for space-like and time-like vectors z, that
no such vector z0 exists, because every vector z (t, z) can be

transformed into — z by rotations in z-space and fj-space. For null-vectors
(gag z* z® 0) we use the theorem2), that in n dimensional space time
with r < 1/2 n, there exist exactly r two-by-two orthogonal linearly
independent null vectors z. Therefore, for r > 1, a rotation of this /-dimensional

'frame', transformes z into — z (for instance z on the 'frame'). Thus
only in the case r 1, time-like vectors and null vectors (on the light
cone) exist, which change signe under L PT.
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The text of I is correct, if we write, on page 748, under b) :

'We pose..." instead of 'We try, posing..." and leave out, on p. 749,
the text following (A-3.20). (A-3.20) is the correct formula, the text following

(A-3.20) is erroneous. However, a more logical deduction, using only
observables Fx FXT Faß-- (xy...) (X {xß... xy...}) shall be

given below in :

Annex 3bis. Unitary (U) and Anti-Unitary (V) Operators in CHS

We rewrite the operator identity of (I 3.9) in RHS

*?-» L'Xx 0.aaFah 0Tb,b; Fxb Fxb). (A-3 bis. 1)

For:

a) Orthochronous Lorentz Transformations

We decompose the RHS («-space) in the direct product of a two-
dimensional ((r) (i)-space) and a%= (1/2) coR dimensional />-space, using
the two-dimensional matrices (in (r) (rj')-space)

(A-3 bis. 2)
A 0\ ._ /0-1
0 1/'

1 ~ \1 0

On account of (4 bis. 15_), we have (0 0{ochr)) :

p'X i y, p'X .• y p'Xr 'a'b X X r(r)'p'gr I X r (i) 'p 'q

L'xx (1 x 0(rypp + / x 0{l),pp) (1 x Ffr)pq A- j x Ffl)pg) ¦

¦ AxOfr}q,q-ixOfl)q,q,

pX _ pX pX pX l\o t^j o\
r(r)pq — 1 i.r)(pq) ' * (») P q ~ L(f) IP q] yn. J Uli,. 3)

formula, which, may be rewritten in CHS, using the correspondence

RHS y CHS, A^A given in (I A-2.3) y. (I A-2.5) in the form

F',x,„ L'X O, .„ Fx Ot ,„ L'xx X Fx Ut ,„ (A-3 bis. 4)p q Xpppqqq X p p p q q q \ I

with:

X=F=X* Xr,

U 0; Xc7=c7X=l; UÌ=U~1 (A-3 bis. 5)
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where A* is the complex conjugate operator {(AB)* A*B*) and A^

A*T AT* is the%ermitian conjugate operator ((A By B^ AT) in CHS.
Explicitly written, and omitting the indices pq... 12... wc referring
to a frame in coc-dimensional CHS, the identity

F'a'ß-('x'y...) =c(L) L'aaL'ßß... U F«ß- (L-ì'xL-ì'y U-1

holds, withe (L) 1, sig(det(7X)) and sig(det(L\)) for ortho (F), pseudo-

chronous (F), pseudochorous (F) and pseudo-(F) observables. The
transformed operators are given by

'F'«'*- ('x •y c(L) L;o«chr)a 7L£hr), F"- (L"1 '* L"1 'y

U-1F'a'ß--('x'y...) U. (A-3 bis. 6)

They lead to the identity, for expectation values :

<.V,'F«-- ('x...)Wy c(L) L,*a...Sr,Fx-(L-1'x...)W>

<'W, F'a-- ('*...) '£> (A-3 bis. 7)

with

TP=£y; L(octe)«-tf(octo). (A-3bis. 8)

b) Pseudo-Chronous Lorentz-Transformations

We need an operator

jï ixl; TX 7? TT-1; Tf2 1 (A-3 bis. 8)

which transformes

7 7v-1/7v -/; / /xl. (A-3 bis. 9)*)

Such an operator can be given in terms of the pseudoquaternions
(I A-4.8). We chose, for exemple, the two-dimensional matrix in (r) (i)-
space

T _
1 Oi m—ihTk kT " 1 ; £2 1, F k, (k, j) 0. (A-3 bis. 10)

*) In CHS K^K :Ki K -i (A-3 bis 9*).

40 H. P. A. 34, 6/7 (1961)
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The operator 0(pchr) 0 can now be given in terms of

0 0'K; 0T 0-1 KT0'T K0'T; \0', /] 0,

0'T0' 0'0'T 1 (A-3 bis. 11)

and the identity (A-3 bis. 1) can be written, using the decomposition

p'x _ i y p'x 4- s y p'xr'a'b — 1 X r{r)'p'qr ] X r(i)'p'q

L'xx (1 x 0(V, + / x 0'{iypp) (k x 1) (1 x F* „ + j x F* „) •

¦(^i)(ixo;;f,r,'xo;,[,,,)
i'X (1 x 0\rypp A- j x 0(V„) (1 x Fx)pq - j x Fx)pq) -

¦(lxCrî'x0«'J' (A-3 bis. 12)

We have the correspondence RHS ;± CHS.

1 x iX„„ - / x FX „ 5* F* - » X X*. '(A-3 bis. 13)vipq ' {')pq pq pq Pi iv '

Now, using again the RHS *± CHS correspondence (I ÎA-2.3) +z (I A-2.5),
we may write (A-3 bis. 12) in CHS, omitting again the -/>-space indices,

F'x F'x A- i F'x L'xxO' Fx*0'-i

L'xx U' Fx* U'-1; U'-1 cX (A-3 bis. 14)

or, explicitly

F'«'fl---('x'y...) c(L) Erl0LEßß... U' F«ß-* (L-1 'x Z.-1 'y LT'"1

(A-3 bis. 15)

The transformed operator is defined by

X— ('x C(L(pchr)) L£chr)a F«- (TL"1 'x

X-1* Fa--* ('*...)'Ì7'*. (A-3 bis. 16)

The identity for expectation values takes the form

<W, 'F'x-('x...)iF> c(L) L\ <W,Fa- (L^'x...)Wy

i'W, F'«- ('*...) "F>. (A-3 bis. 17)
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Defining the anti-unitary operator V by

'W=VW=UW*^'W,p=u:ppW;; Tl(pchr)^F, (A-3 bis. 18)*)

we have

i'W, F'a-"('*...) 'Wy c(L) L\... <W, Fa-(L-1'x...)Wy

% U'p'p* F'p'qW K *7 X V'Jq fyp*™ U'p*p %

$, tX* F'a-T('x) Û'* Wy. (A-3 bis. 19)

By definition, Fa--' (x...) is an observable. Therefore it follows, from
(A-3 bis. 5), that in (A-3 bis. 19), we have

F'«-T ('x...) F'a-* ('*...) (A-3 bis. 20)

and, from (A-3 bis. 16) (tH U'-1)

U't*F'a~T('x...) U'* c(L) L'aa...F°-(L-x'x...). (A-3 bis. 21)

Thus, formula (A-3 bis. 19) is identical with the second equation (A-3 bis.
17) and with (A-3 bis. 16).

In order to show the physical significance of (A-3 bis. 16) let us
consider the 'real' scalar free field**) considered as an observable:

w(x) wT(x); w(x) w\x), (A-3 bis. 22)

expanded in plane waves (signât (gaß) (11.. 1 — 1)).

w(x) (2)-1'2 (2 ?r)-<"2 f da(k) (a(k) X*'*> + X(Â) *-»'<*•*>),

k2 A- M2 0 ; k" > | M |,

da{k) (k")-1 ddk; dd^k JJdk1, (A-3 bis. 23)***)
i-l

*) '¥*= v K V U' ¥*.
**) 'Field Quantization in Real Hilbert Space' will be the object of a forthcoming

paper in this journal (referred to as III).
***) The surface integral is to be extended over the positive shell of the hyper-

boloid k2A-M2 0. k {A01} is therefore a pseudochronous vector (see III).
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where, if the sum over plane waves is made denumerable, a(k) and aï(k)

are the usual annihilation and creation operators of quanta in a state k.

Using (A-3 bis. 16) for the transformation L PT

'x (PT) x - x ; 'X - X (A-3 bis. 24)

we have (A-3 bis. 16) :

'w('x) w(x) — w(—'x)

(2)-1'2 fin)-*2 f daik) (a(k) «?-'<*¦'*> + 1\k) e*<*•'*')

cT*-1* w*('x) U'*

(2)-1'2(2jr)-<i'2 f da(k) {(U'*~x «*(*) £7'*) «-«*•'*) +

+ t7'*-1af*(Ä) (7'*) e<Ä'*)) (A-3'bis. 25)

Thus, we have

Û'-1* a*(k) U'* a(k), (A-3 bis. 26)

U'-1* 2*(k) U'* a^(k) (A-3 bis. 26)
As the relations

[a(k), rf(k')] ô(k, k') ; ô(k, k') k"ò(k- %'), (A-3 bis. 27)

[«(*), «(*')] 0, (A-3 bis. 28)

are invariant, if we go over to the conjugate complex operators, an

unitary matrix U'* exists always, satisfying (A-3 bis. 26). In particular, if
the annihilation and creation operators are chosen real, U'* 1 is the
unit operator.
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