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Regularitiitseigenschaften der Streuamplitude im Fall
der Potentialstreuung

von Walter Hunziker
Physikalisches Institut der ETH Ziirich

(1. III. 1961)

Einleitung

Im Zusammenhang mit den Dispersionsrelationen und den Mandelstam-
schen Darstellungen haben verschiedene Autoren am Beispiel der Poten-
tialstreuung die Frage untersucht, wie weit sich die Streuamplitude zu
komplexen Werten der Streuparameter analytisch fortsetzen lasse. In
einer grossen Zahl von Arbeiten zu diesem Thema wurden die analyti-
- schen Eigenschaften der Partialwellen diskutiert!), aber aus den Ergeb-
nissen kann man nicht leicht Schliisse ziehen iiber das Verhalten der
ganzen Streuamplitude. Zur Untersuchung dieser Grosse ist es zweck-
miissiger, wenn man die Wellengleichung nicht separiert. Die Integral-
gleichung (Streugleichung), die sich in diesem Fall ergibt, wurde von
Jost und Pais'?) mit Hilfe der Fredholmschen Formeln gelost. Auf
Grund dieser Losung haben einige Autoren Regularititseigenschaften der
- Streuamplitude hergeleitet13-18),

In der vorliegenden Arbeit gehen wir einen andern Weg. Wir fassen die
Streugleichung auf als Funktionalgleichung im Raum der stetigen und
beschrinkten IFunktionen. Der Integraloperator GV, der in der Streu-
gleichung auftritt, erweist sich dann als vollstetig und als analytische
Funktion der Energie. Indem wir diese Eigenschaften ausniitzen, erhal-
ten wir alle Informationen iiber die Wellenfunktion, die wir zur Diskus-
sion der Streuamplitude brauchen. Es wird gezeigt, dass die Streuampli-
tude reguldr ist in den Variablen Energie und Impulsiibertrag in einem
Gebiet, das die bisher bekannten Regularitidtsgebiete als Spezialfdlle ent-
hilt. Wir beschrinken die Untersuchung auf die Schrédingergleichung.
Die Methoden sind aber auch anwendbar im Fall der Dirac- oder der
Klein-Gordon-Gleichung, was wir gelegentlich andeuten.

Ich danke meinem Lehrer, Herrn Professor R. Josrt, fiir die Anregung
zu dieser Arbeit und fiir die freundliche Unterstiitzung, die er mir wih-
rend der Ausfithrung gewihrte.

38 H.P. A 34, 6/7 (1961)
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1. Die Schrodingergleichung

Die Schrédingergleichung fiir ein Teilchen der Masse # in einem Poten-
tialfeld lautet:

(A+B)p=Vy. 1)

k? und V stehen fiir die mit 2 m/h? multiplizierte totale resp. potentielle
Energie und haben die Dimension (Ldnge)~2. Im Fall des 2-Teilchen-
problems gilt (1) im Schwerpunktssystem, wenn man fiir # die reduzierte
Masse setzt.

Wir suchen die Lésung von (1) im Raum C der stetigen und beschrank-
ten Funktionen y(x). Als Norm von y definieren wir:

|| =sup |y ]|. (2)

Eine wichtige Eigenschaft von C ist die Vollstindigkeit, das heisst die
Giiltigkeit des Cauchyschen Konvergenzkriteriums:

, sei eine Folge in C. Falls || g, — y,, | gegen Null strebt, wenn »
und m simultan gegen Unendlich wachsen, so gibt es ein pe C der-
art, dass '

lim |y — ] = 0. 8)
n— 00

Diese Konvergenz im Sinne der Norm bedeutet in unserem Fall gleich-
massige Konvergenz; wir bezeichnen sie im folgenden mit einem Pfeil.
Vollstindige Normierte Vektorriume pflegt man als Banachsche Raume
zu bezeichnen?).

Der A-Operator sei zundchst nur auf dem Teilraum D, derjenigen Funk-
tionen @(x) definiert, die zweimal stetig differenzierbar sind und fiir
welche

0? 02 0?
_ i = (Oxz T dy? * 022) ¢
beschrinkt ist.
Diesen Operator setzen wir fort durch Abschliessung: Falls ¢, - v,
¢, € Dy und A, = u, so definieren wir

Ay =pu. (4)

Den so erweiterten Definitionsbereich von A nennen wir D. Die Elemente
von D sind stetig differenzierbare Funktionen, und ihre Ableitungen ge-
héren zu C (siehe Appendix I).

Die Schrédingergleichung fassen wir auf als Funktionalgleichung in C:
 soll zu D gehéren, und es soll (1) gelten. Uber das Potential setzen wir
vorldufig voraus, dass
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V(i) eC
(x = |*]) (5)
lim V(x) =0.
Allgemeinere Fille betrachten wir spiater. Multiplikation mit 7 ist eine
Operation, die C in C abbildet.

Die Schrédingergleichung ist ein Eigenwertproblem fiir den Parameter
E = k2, der in der ganzen komplexen Ebene variieren soll. & selber be-
schrinken wir auf die Halbebene Im k& > 0. Fiir reelle 2 > 0 soll die
Losung von (1) ein Streuexperiment beschreiben. Wir stellen daher die
zusidtzliche Forderung, dass sich diese Losung in grosser Entfernung vom
Streuzentrum verhilt wie eine ebene Welle plus eine auslaufende Kugel-
welle:

p(®) = " + (&),

lim ¢(x) =0,

x—>00

1imx(g?f——_ik(p):().

x—>00 0¥

Wie sich zeigen wird, machen diese Bedingungen die Losung eindeutig.

2. Die Streugleichung

Uber V(x) setzen wir weiter folgendes voraus:

V)| < F@),

fo(x)dfx<oo. (6)

0

Mit Hilfe der Greenschen Funktion

1 eikla—ygl|
4r  |x-y]|

Gix, y) = —

konnen wir dann das Problem als Integralgleichung stellen. Das geschieht
in der iiblichen Weise, indem man um den Punkt x zwei Kugeln K,, K
mit Radien 7, R (» < R) legt und auf das Zwischengebiet V' den Green-
schen Satz anwendet (siche Appendix I):

0 0G
[(65s—uSS)do= [(Gau—uaGyaw= [GVyay,
oV v 4

(0V = Rand von V)
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mit u = v, falls Im 2 > 0 und » = ¢ fiir relle .. Das Volumenintegral
konvergiert absolut, wenn man es iiber den ganzen Raum erstreckt:

’ r 1 iQ
jIGleﬁy<ﬂWMj2WJ@F@04n‘/lx_yl.
i |

Allgemein gilt:

xty
oz [ 4QHIs =y =5 [ ri)dr, alo: (7)
-yl
1 1 . (1 1 i
4x -y Min (7’ 7) = y und ®)
[16velay<|v] [ vy Py <oo. ©

Die Grenziibergdnge R — oo, v = 0 lassen sich nach dem unter (4) Be-
merkten auch fiir die Oberflichenintegrale leicht ausfithren. Man findet
als Resultat:

. o B 1 etklx-g|

Im &> 0: (&) = e ﬂymﬁﬂfwmww, (10)
; 1 & tk|x—ygl

Im k= 0: yls) =ik — = [ay S V) pl) . (1)

Als Funktionalgleichungen in C schreiben wir diese Gleichungen kurz

y=GVy, (12)
v=y,+GVwyp, (13)

wobei GV (k) ein Integraloperator ist, der von der Variablen %2 abhidngt.
Wir nennen (10) die homogene, (11) die inhomogene Streugleichung.

Im relativistischen Fall ist 42 = E? — m?, und die Gleichungen (10) und
(11) gelten unverdndert, wenn man V(x) durch einen Ausdruck U(x)

ersetzt:
U=2EV -T2 (Klein-Gordon-Gleichung) ,

U=2EV V2 —ia 2/ (Dirac-Gleichung).
k

Im zweiten Fall ist U eine 4 x 4-Matrix, die «; sind die Diracschen Ma-
trizen%). Das Folgende gilt im wesentlichen unverdndert auch im rela-
tivistischen Fall, wenn man nur U(x) den Bedingungen unterwirft, die
wir fiir V(x) stellen.



Vol. 34, 1961 Regularititseigenschaften der Streuamplitude 597

3. Diskussion der Streugleichung

Fiir die Zwecke dieses Abschnittes geniigen die folgenden Voraus-
setzungen:

V(x) soll messbar sein und majorisiert durch eine Funktion  (14)
F(x), fiir welche xF(x) im Intervall 0 << x < oo summier-
bar ist.

Fiir alleyp € C und alle 2 in Im k& > 0 gilt dann die Ungleichung (9), oder,
in der Schreibweise (12):

|67yl <yl [ = Pl dx.

Das bedeutet, dass der Operator GV beschrankt ist: er besitzt eine end-
liche Norm im Sinne von

|GV | = sup |GV ], | (15)

und es gilt -
|GV (k)| < / x F(%) dx (16)

0

fiir alle 2 in Im £ > 0. Wenn die (dimensionslose) rechte Seite von (16)
kleiner ist als 1, so ist die inhomogene Gleichung (11) fiir alle y, € C durch
Iteration l6sbar, wihrend die homogene Gleichung (10) nur die triviale
Losung besitzen kann. In der Sprache der Wellenmechanik heisst das,
dass die Bornsche Reihe fiir alle Energien konvergiert und dass es keine
gebundenen Zustiande gibt.

Der Operator GV ist aber nicht nur beschrinkt, sondern sogar .voll-
stetig?) fiir alle £ in Im % > 0. Das bedeutet, dass GV jede beschrinkte
Menge von C in eine kompakte Menge abbildet. Wir verschieben den
Beweis auf spiter und ziehen zuerst einige Folgerungen:

Fiir jede Funktionalgleichung der Art (13) in einem Normierten Vek-
torraum gilt, falls der Operator GV vollstetig ist, die Fredholmsche
Alternative?®):

— Entweder existiert die Resolvente

R=(1-GV), |R|< o, (17)
— oder die homogene Gleichung (12)

besitzt eine nichttriviale Losung.

Entsprechend zerfillt die Halbebene Im % >0 in zwei komplementire
Teile: in die Resolventenmenge, welche diejenigen 2-Werte umfasst, fiir
die die erste Alternative zutrifft, und in das Spektrum, das aus den -
Eigenwerten des Operators GV besteht. Die Fredholmsche Alternative
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weist einen Weg, auf dem man Existenz und Eindeutigkeit der Losung
von (13) beweisen kann: Man hat nur zu zeigen, dass das Spektrum keine
reellen Punkte enthilt.
Den Beweis der Vollstetigkeit fithren wir zuerst fiir die folgenden spe-
ziellen Potentiale:
Vi®)| <M,

Vix) =0 fir x> R. (18)
Wir haben zu zeigen, dass die Menge

E={p|lep=GVy,

p| <1}

kompakt ist. Hinreichend dafiir sind die folgenden Bedingungen?): Alle
@(x) € E sollen (a) gleich beschriankt, (b) gleichgradig stetig und (c) gleich
majorisiert sein durch eine Funktion f(x), fiir welche

lim f(x) =0.

X —00

(a) ist trivialerweise erfiillt, da GV beschrinkt ist. (¢) ergibt sich, wenn
man in (8) Min (x~1, y~1) durch ! abschitzt, es folgt dann:

M R3

@) < 28 = ).

Zum Beweis von (b) beniitzen wir den Hilfssatz (20a). Danach sind alle
@ (x) € E stetig differenzierbar, und ihre Ableitungen diirfen durch Dif-
ferentiation unter dem Integral gebildet werden. So findet man, dass fiir
alle € £ und alle x eine Ungleichung der folgenden Art gilt:

[ 090
| 0%,

<@+ [R)N.

N ist eine Konstante, die nur von M und R abhingt. Das ist aber weit
mehr als nur gleichgradige Stetigkeit. Fiir Potentiale der Art (18) ist
damit die Vollstetigkeit von GV bewiesen.

Nun beniitzen wir die Tatsache, dass der Grenzwert einer (beziiglich
der Norm) konvergenten Folge vollstetiger Operatoren wieder vollstetig
ist. Zu einem gegebenen Potential, 7/, das den am Anfang dieses Ab-
schnitts gestellten Voraussetzungen gentigt, bilden wir die Folge V, ge-
madss Appendix II. Nach dem eben bewiesenen ist GV, vollstetig. Das
gleiche gilt daher fiir GV, da ja

lim |GV — GV,| =0. (19)

n—- 00
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4. Streugleichung — Schrodingergleichung

V(x) sei eine summierbare Funktion mit den Eigen-
schaften: |V (x)| <M und V(x)=0 fiir x> R.
Dann ist fiir jedes p € C

p=GCVy

eine stetig differenzierbare Funktion, deren Ableitun-
gen durch Differentiation unter dem Integral gebildet
werden diirfen.

Falls V(x) und y(x) ausserdem noch stetig differenzier-
bar sind, so ist ¢(x) zweimal stetig differenzierbar, und

es gilt iberall:
A+~ o=Vy.

599

Wir wollen beweisen, dass die Losungen der Streugieichung auch die
Schrédingergleichung 16sen. Es gilt der folgende Hilfssatz:

(20a)

(20D)

Wir verzichten auf einen Beweis dieses Satzes, da er vollig gleich verlduft

wie derjenige eines analogen Satzes der Potentialtheorie5).

Falls V(x) lediglich den Voraussetzungen (5) und (6) geniigt, so konnen
wir die in (19) auftretende Folge V, derart wihlen, dass die Funktionen
V,(x) alle Bedingungen des Hilfssatzes (20) erfiillen und iiberdies gleich-
maéssig gegen V(x) konvergieren (siehe Appendix II). Es sei nun y eine
Losung der homogenen oder inhomogenen Streugleichung: vy = y,+GVy,

y, = 0 oder y, = exp(i kx). Wir definieren:

Y=+ GV, v,
¢n:’w0+ GVn'IPn'

Aus (20a) folgt, dass y, stetig differenzierbar ist. Somit ist nach (20b) ¢,

sogar zweimal stetig differenzierbar, und es gilt tiberall:

A+ 5) ¢, =V,
Die Folge ¢, hat daher die folgenden Eigenschaften:
b, —~v, $.cD, und
Ad, —Vy — B2y .
Nach der Definition (4) gehort also v zu D und es gilt

A+R)p=Typ.
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5. Das Verhalten der Losungen in grosser Entfernung vom
Streuzentrum

Soweit nichts anderes bemerkt ist, machen wir iiber V(x) nur die Vor-
aussetzung (14). Zuerst betrachten wir wieder ein abbrechendes Potential:

Vi) =0 fir x> R. (21)

w sei ein Element von C. Wir definieren:

P8) == 4 [ @ ST V) v), (22)
7o) = S G [ @y eI V) pi)
=2 10, 9), (23)

K=k —; , (¥, @) = Polarwinkel von « .

Wir wollen die Differenz (p — ¢™) abschdtzen im Gebiet x > R. Zu
diesem Zweck entwickeln wir | x — y | im Nenner von (22) bis zu Gliedern
zweiter, im Exponenten bis zu Gliedern dritter Ordnung in y. So ergibt
sich:

etk |x—g| etkx

A(x, y) = - ety

|-y E7

»

xiky [ 5F (e @8
_ poeiwg | oo Ry s .vul
|#—y]| xn

Dabei bedeuten § und # Mittelwerte von x — y aus dem Bereich y < R.
Es ist

2
0<y2— (yéf) <y < R,

lee —1|<|z| fuir Rez<0.

Somit gilt fiir « = Im 2> 0:

e-a(-®) [ |k|R® | R
4@ 9| < ——% (zw—R)%‘xJ’
e-a (- R)
éw(l“RZJFZR)-
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Fiir die Differenz (p — ¢*) findet man damit die folgende Ungleichung:

e—o (x—R)

9(9) — %) | < S pr (B R2+2R) o [ @y FO) [yy)] . (@9

(firallex > Rund @« = Im & > 0)

Eine zweite Ungleichung betrifft die erste radiale Ableitung von ¢(x).
Fiir x > R darf man ¢ unter dem Integral differenzieren, und es ergibt
sich in gleicher Weise:

e—a (x— R

52 —ikg| < IR @B RN L [ ey P pe)] . (29)

(fir allex > Runda = Im % > 0)

Wir lassen nun die Voraussetzung (21) fallen und untersuchen zuerst
das asymptotische Verhalten der Losungen der inhomogenen Streu-
gleichung fiir reelle k2. Zusatzlich zu (14) verlangen wir:

[ 2 F(x) dx < oo (26)
0
Dann existiert ¢*(x). Wir fithren ein R ein, das in einer spiter prizi-
sierten Weise so von x abhingen soll, dass stets R(x) < x. V(y) zerlegen
wir in ein abbrechendes Potential V(y) und einen Rest V(y):

Viy) fir y<<R

Ve(y) = ,
0 sonst.

Viy) = V(y) — Vi) - (27)

Wenn man diese Zerlegung in (22) und (23) einsetzt, so zerfallen auch ¢
und ¢> in zwei Terme:

@ =@r + 95 ’
9™ =% + 9%,
Es gilt:
5@ < 2L (2 Frpyay  9), (28)
R{)
52| < L [y Fo)ay  (.23), (29)

R(x)
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lim x @ — ¢®| < lim «x @, — % |,
X — 00 xX— 00

+ lim % |¢],
+ lim x [@*].

Fiir den ersten Term gilt die Ungleichung (24), das darin auftretende
Integral ist fiir alle R kleiner als

Iyl [ o2 P dy.
0
Aus (24), (28) und (29) folgt daher, dass

lim x |p(x) — ¢™(®)| =0, (30)

X — 00

falls man R(x) so wéahlen kann, dass

lim R(x) = oo,

xX—00

lim * Rz(x)r_ —0
X —>00 (xﬁR)z -

Das ist aber méglich, wie das Beispiel R(x) = x'* zeigt.
Auf gleiche Weise kann man verfahren mit der radialen Ableitung von
@(x). Unter der zusitzlichen Voraussetzung

lim y2 F(y) =0 (31)
J—> 00
findet man:
. 0 * w
xgngox %—tk(p 7= i (32)

Wir wollen schliesslich noch das Verhalten der Loésungen der homogenen
Streugleichung untersuchen fiir alle £ in Im % >> 0. Vorldufig setzen wir
dabei iiber V(x) nur (14) voraus. Zuerst beweisen wir einen Hilfssatz:

Alle y € C, die eine Abschitzung der Art (33a)
[y | < A= (@=1Im#k)

erlauben, bilden einen linearen Teilraum 7 von C, der
durch GV in sich abgebildet wird.
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Alle Losungen der homogenen Streugleichung liegen  (33b)
in 7.

Beweis: Es sei ¢ = GV, p € T. Unter Benutzung von (8) folgt:

A —-al|lx—g| —a
|<P(x)‘<“4?/d3yi—ip(y) sy

|%—y| y
awg I 1 i
<e 4 [dyyFb) o= [ mr »
0
o A_,/ y F(y) dy .

X
0

Damit ist (33a) bewiesen.

Zum Beweis von (33b) betrachten wir eine Lésung der homogenen
Gleichung w = GV y. V(y) zerlegen wir gemaiss (27), dann ist

w=GVew+ GVoy=p,+GVy. (34)

R wahlen wir fest und so gross, dass | GV | < 1. Aus (23) und (24) folgt,
dass g, zu T gehort, deshalb kann man (34) als Funktionalgleichung so-

wohlin C als auch in T auffassen. In beiden Fillen trifft wegen | GV | <1
die erste der Alternativen (17) zu, das heisst (34) hat sowohl in C wie in
T genau eine Losung, die wegen C € T zusammenfallen. Da ¢ eine Lésung
ist, folgt p € 7.

Das asymptotische Verhalten von y(x) findet man in derselben Weise
wie frither, nur kommt man jetzt dank der Ungleichung (33a) mit schwé-
cheren Voraussetzungen iiber V(x) aus. Falls nur (14) gilt, so existiert
@>(x), und es ist

lim xe*” |p(«) — @) | =0. (35)

x— 00

Wenn ausserdem noch

lim v F(y) =0 (36)
y—> 00 :
ist, so gilt auch:
2 aAx 0 y
lim xe %—quom'=o. (37

6. Diskussion des Spektrums

Zuerst untersuchen wir denjenigen Teil des Spektrums, der in Im 2> 0
liegt. Unter den Voraussetzungen (5), (6) und (36) gilt dann:
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Die Eigenwerte liegen in einem endlichen Intervall der (38a)
Imagindren k-Achse, das nach unten durch den Null-

punkt begrenzt ist. Sie konnen sich in diesem Intervall

nirgends hdufen ausser vielleicht bei 2 = 0.

Zu jedem Eigenwert gibt es nur endlich viele linear un-  (38b)
abhidngige Eigenfunktionen.

Die Eigenfunktionen sind quadratintegrierbar und (38¢c)
konnen daher als gebundene Zustinde interpretiert
werden.

Es sei ¢ eine Eigenfunktion zum Eigenwert %2,, Im  (38d)
ko> 0, und p eine beliebige Losung der homogenen

oder inhomogenen Streugleichung fiir ein % =+ &,

Dann gilt die Orthogonalitdtsrelation:

f d3x p*(x) p(x) = 0

(b) ist eine direkte Folge der Vollstetigkeit von GV ¢) und gilt deshalb
auch fiir reelle £ schon unter der Voraussetzung (14) allein. Im Fall Im
k > 0 sind die Eigenfunktionen Lésungen der Schrodingergleichung, die
im Unendlichen samt ihren radialen Ableitungen exponentiell verschwin-
den. Eine unmittelbare Folge davon ist (¢). In bekannter Weise kann man
damit auch die Orthogonalitdtsrelation (d) beweisen sowie die Tatsache,
dass die E-Eigenwerte reell, die k-Eigenwerte also rein imaginir sind.
Es ist leicht zu zeigen — zum Beispiel mit Hilfe der Approximation (19),
dass
lim |GV(k)|=0.

ImAR—+ o0

Sobald aber | GV (k) | < 1 ist, kann % nicht mehr Eigenwert sein, daher
sind die Imagindrteile der Eigenwerte beschriankt. Dass sich die Eigen-
werte in Im %2 > 0 nirgends hdufen koénnen, ergibt sich aus folgender
Uberlegung:

Es sei k, eine Folge von Eigenwerten, die gegen % strebt, Im 2 > 0, und
@, eine Folge zugehoriger Eigenfunktionen, die wir auf | ¢, | = 1 nor-
mieren. GV (k) ist — wie wir in Appendix III beweisen — eine stetige Funk-
tion von k%, somit ist

lim || (GV (k) — GV(F)) @,

n— 00

= lim || g, — GV(¥) g, = 0. (39)
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Da GV (k) vollstetig ist, kann man aus den ¢, eine Teilfolge y,, derart aus-
wihlen, dass GV (k) y,, gegen eine Funktion ¢ konvergiert. Nach (39)
gilt dann:

lim [y, —y[ =0 (40)
und folglich:
y=GVRy, |[v[=1,

das heisst % ist ebenfalls Eigenwert. Da Im k& > 0 ist, gilt wegen der
Orthogonalitdtsrelation (38d):

/ﬁﬁwd%=zfﬂxW%w—wM
<lv=wal [ @xlol,

[ lvP @

Hw-%ﬂ2~fid%

im Widerspruch zu (40). (Es sei darauf hingewiesen, dass das letzte Argu-
ment im Fall 2= 0 versagt!) Die Eigenwerte koénnen sich somit in
Im % > 0 nirgends hdufen, und bei Null auch héchstens dann, wenn Null
selber Eigenwert ist.

Fiir den Fall des Zentralpotentials hat BARGMANN7) bewiesen, dass es
unter den Voraussetzungen (14) nur endlich viele Eigenwerte gibt. Wir
vermuten, dass dasselbe in unserem Fall zutrifft — der obige Bewels lasst
aber diese Frage offen.

Wir wenden uns jetzt dem reellen Teil des Spektrums zu. Das Ziel dabei
ist natiirlich der Beweis, dass ein reelles £ + 0 nicht Eigenwert sein kann
(fiir £ = 0 kann man das nicht erwarten, da es einfache Gegenbeispiele
gibt), denn ein solcher Beweis wiirde die eindeutige Losbarkeit der in-
homogenen Streugleichung sichern. Leider konnen wir den Beweis nur
in zwei speziellen Fillen fiihren: fiir abbrechende Potentiale und fiir
Zentralpotentiale19).

Es seip = GV o, k reell, und V geniige den Voraussetzungen (14) und
(36). Fiir jede Kugel K mit Radius R um 0 gilt einerseits:

f(y) g;'v y)o dO / (w* Ay — p Ap*) dV = 0

oK p
und andererseits nach (23), (35) und (37):
. 0 Ooy* .
lim (w*%—qp%)dO:szfdQ|]’(19',(p)[2.

R—00
R
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Da f(#, @) stetig ist, folgt, falls & + 0:
(9, ¢) =0. (41)

Wenn V ein abbrechendes Potential ist, so ist (&) fiir x > R eine Aus-
strahlungslosung der kriftefreien Wellengleichung, welche wegen (35)
und (41) rascher abnimmt als 1/x. Eine solche Loésung verschwindet aber
nach einem allgemeinen Satz®) fiir x > R identisch. Fiir jede Kugel K,
mit » > R wire dann % eine Losung des Eigenwertproblems

d+r)y=Vy

mit der Randbedingung ¢ = 0. Das ist aber ein Widerspruch, denn man
weiss, dass die Eigenwerte dieses Problems mit wachsendem # monoton
abnehmen?).

Den andern Spezialfall, das Zentralpotential, behandeln wir in Ab-
schnitt?®).

7. Allgemeinere Potentiale

Wir lassen alle Annahmen iiber V' (#) fallen ausser den Voraussetzungen
(14), die wir fiir die Diskussion der Streugleichung allein verwendet
haben.

Fiir so allgemeine Potentiale kénnen wir natfirlich (1) nicht mehr als
Funktionalgleichung in C auffassen, und der in den Abschnitten (2) und
(4) hergestellte Zusammenhang zwischen Streugleichung und Schrédin-
gergleichung geht verloren. Auf diesen Zusammenhang haben wir uns
aber gestiitzt beim Beweis der Orthogonalitdtsrelation (38d) und beim
Beweis, dass die komplexen k-Eigenwerte rein imagindr aind. Wir wollen
jetzt zeigen, dass diese Resultate — und damit alle Ergebnisse des letzten
Abschnitts — auch unter den viel allgemeineren Voraussetzungen (14)
bestehen bleiben.

Es sei 9 =GV y eine Losung der homogenen Streugleichung, Im
k = o> 0. Mit der in Appendix II definierten Folge U, (&) bilden wir

wn::(;l]nw’
¢, =GU,p,.

w gehort zu T siehe (33), es folgt daher wie im Beweis von (33a), dass alle
Funktionen v,(#) und ¢,(x) gleich majorisiert werden durch eine Funk-
tion

e—ax

A (42)

X
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Wie in Abschnitt (4) zeigt sich, dass ¢,(x) zweimal stetig differenzierbar
ist, und dass tiberall gilt:

A+ 5 ¢, = Uy, -
Daraus folgt:

¢:A¢n - ¢nd¢: = (E* - E) ¢: ¢n+ Un (Tpnqb: _T/’: ¢n) ¢

Wenn man beide Seiten dieser Gleichung iiber den ganzen Raum inte-
griert, so ergibt die linke Seite keinen Beitrag, wie man durch Anwendung
des Greenschen Satzes erkennt (dies ist erlaubt, da U, alle Vorausset-
zungen des Abschnitts (5) erfiillt und fiir ¢, und seine radiale Ableitung
demzufolge die asymptotischen Formeln (35) und (37) gelten). Es ist also

0= (E*—E) [ @x gl 4+ [ U, (s, 6% — v ).

Aus p, >y, ¢, >y und (42) folgt nun leicht, dass diese Gleichung im
Grenzfall » - oo tibergeht in

= (E*—E)fd%zp*qp,

woraus sich ergibt, dass E reell, & also rein imagindr ist. Auf genau die-
selbe Weise beweist man die Orthogonalititsrelation (38d).

Es ldsst sich noch eine weitere Verallgemeinerung angeben, fiir welche
unsere Resultate giiltig bleiben: V(%) kann eine endliche Summe von
Potentialen der Art (14) sein. Die Zentralpotentiale, durch welche die
einzelnen Summanden majorisiert werden, diirfen dabei verschiedene
Zentren besitzen. Der wesentliche Grund dafiir ist der, dass eine endliche
Summe vollstetiger Operatoren wieder vollstetig ist.

8. Das Zentralpotential

Eine zusammenfassende Darstellung zahlreicher Arbeiten iiber das
Zentralpotential findet man bei ). Wir wollen nur so weit darauf ein-
gehen, als es fiir unsere Zwecke notwendig ist, und auch das nur in
Stichworten.

Es sei & ein Eigenwert der Streugleichung, Im % 2> 0. Alle zugehorigen
Eigenfunktionen bilden einen endlichdimensionalen Unterraum U von
C. Mit p(«) ist auch w(D #) ein Element von U, wenn D irgendeine Dre-
hung bedeutet. Auf diese Weise wird in U eine endlichdimensionale Dar-
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stellung der Drehgruppe erzeugt. Daraus folgt, dass es in U eine Basis der
folgenden Art gibt:

Poen(®) = 222y (43)
Die Y” stehen fiir eine orthonormierte Basis der Kugelfunktionen. Man
kann auch die Greensche Funktion in eine Reihe nach Kugelfunktionen
mit dem Argument y entwickeln, die beziiglich der Winkel fiir y + x
gleichmissig konvergiert!!), Wenn man diese Entwicklung und (43) in
die Gleichung v,,,=GV v,, . einsetzt, so darf man deshalb die Integra-
tion iiber die Winkel gliedweise ausfithren. Man findet als Resultat:

o 8) = bk 2) o [ Ay ik ) V) ) + (44)

k) 75 [ Ay k) V) )

7,(2) und &,(z) sind die mit (x z/2)'”* multiplizierten Besselschen resp. zwei-
ten Hankelfunktionen zum Index e + 1/2. Es ist wohlbekannt, dass die
Gleichung (44) fiir reelle £ + 0 unter der Voraussetzung (14) nur die tri-
viale Losung besitzt1). In der Tat bedeutet (41) in diesem Fall:

[ ayidkes) Vi) ) = 0.

Man kann damit das erste Integral in (44) umschreiben in ein Integral
iiber das Intervall x <<y < co. (44) wird dann zu einer homogenen In-
tegralgleichung vom Volterraschen Typ; eine solche Gleichung kann aber
nur die triviale Lésung besitzen.

KAPITEL II
Regularititseigenschaften der Streuamplitude

Fiir ein Zentralpotential, das der Voraussetzung
fx[V(x)|dx<oo
0

geniigt, besitzt die inhomogene Streugleichung fiir jedes reelle 2 = 0
genau eine stetige und beschrdnkte Losung v, die sich unter der weiteren
Bedingung 5

fx2|V(x)¢dx<oo

[1]
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fiir grosse x asymptotisch verhilt wie eine ebene Welle plus eine auslau-
fende Kugelwelle:

1 -
FE, cos #) = — - [ dy e 5 V() (),
K=k D= (K F; E=F.

Wir wollen das analytische Verhalten der Streuamplitude f(E, cos#) als
Funktion von E und cos # oder anderer geeigneter Streuparameter disku-
tieren. Zu diesem Zweck werden wir im folgenden Abschnitt zuerst das
Verhalten von p (R, x) als Funktion von k untersuchen.

1. Die Regularitidtseigenschaften der Resolvente

Wir setzen vorldufig nur voraus, dass die Bedingung (14) erfiillt ist. Es
gilt: , ‘
(k) = R(R) yo(k) - (45)

Wenn wir wiissten, dass R(k) und y,(R) analytische Funktionen von k
wiren, so konnten wir vielleicht schliessen, dass das gleiche fiir p(R) zu-
trifft, denn die rechte Seite von (45) ist eine Art Produkt. Was aber der
Begriff «analytisch» hier bedeuten soll, miissen wir zuerst definieren,
denn R, p, und % sind ja nicht komplexe Zahlen, sondern Elemente eines
Banachschen Raumes*).

Zu diesem Zweck betrachten wir Funktionen einer komplexen Va-
riablen mit Werten in einem (komplexen) Banachraum. Da wir fiir die
Funktionswerte einen Konvergenzbegriff haben — nidmlich die Konver-
genz beziiglich der Norm — kénnen wir einen grossen Teil der gewdhn-
lichen Analysis auf solche Funktionen iibertragen. Die Ubertragung der
Begriffe geschieht einfach dadurch, dass man an Stelle des Absolut-
betrages von Funktionswerten deren Norm setzt. So nennen wir zum
Beispiel f'(z,) die Ableitung von f(z) an der Stelle z,, falls

lim

z—> 2,

}1 1(2) — 1(2p) . f’(zo) l —-0.

i FT 4

Wie zu erwarten ist, bleiben dann viele Sdtze der Analysis unverdndert
giiltig. Einige davon iibertragen sich in véllig trivialer Weise — wie zum
Beispiel die Aussage, wonach jede in einem abgeschlossenen Intervall

*) Alle beschrinkten Operatoren auf einem Banachraum bilden wieder einen
Banachraum. '

39 H.P.A. 34, 6/7 (1961)
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stetige Funktion dort auch gleichmissig stetig ist. In anderen Fillen
spielt die Vollstindigkeit des Banachraums eine fundamentale Rolle. Als
Beispiel betrachten wir den Satz, nach dem jede stetige Funktion inte-
grierbar ist:

Man bildet wie iiblich eine Folge T, von Einteilungen des Integrations-
intervalles, deren Feinheit gegen Null strebt. Da f(z) gleichmissig stetig
ist, erfiillen die Summen

Sa zzf(fk) (2 — 2—1)
Ty

das Cauchysche Konvergenzkriterium. Dank der Vollstindigkeit des
Banachraumes existiert daher der Grenzwert, und er ist auch unabhingig
von der speziellen Wahl der 7', und der &,.

Weiter soll eine Funktion reguldr heissen in einem Gebiet G, falls sie
iberall in G eine Ableitung besitzt. Fiir solche Funktionen gelten die
meisten Sdtze der Funktionentheorie: der Cauchysche Integralsatz und
seine Umkehrung (Satz von Morera), die Cauchysche Integralformel, die
Sitze iiber die Entwicklung reguliarer Funktionen in Potenzreihen, der
Satz vom Maximum und der Identitdtssatz. Die Analogie hat zum Bei-
spiel dann ein Ende, wenn in den entsprechenden klassischen Sitzen oder
Begriffen die Division durch Funktionswerte wesentlich verwendet wird.

Wir beweisen in Appendix III, dass in diesem nun klar definierten Sinn
GV (k) stetig ist in % in der Halbebene Im £ >0 und regulir in % fiir
Im %2 > 0. Es folgt dann, dass die Resolvente R(k) reguldr ist in einer
Umgebung jedes Punktes (in Im %2> 0), in dem sie existiert (siehe
Appendix VI). Da wir aber iiber die Existenz der Resolvente bereits Be-
scheid wissen, konnen wir das Ergebnis wie folgt zusammenfassen:

R(k) ist reguldr in der Halbebene Im % > 0 bis auf
endlich viele Singularitdten auf der imagindren Achse,
die den gebundenen Zustinden entsprechen.

GV (k) ist stetig fir Im 2 > 0, und R(k) existiert auch fiir reelle 2 + O.
Daher ist R(k) stetig fiir Im 2 > 0 bis auf die oben genannten Singulari-
titen, zu denen unter Umstinden noch der Punkt %2 = 0 hinzukommt.
Das garantiert uns, dass die spiter diskutierten analytischen Funktionen
wirklich Fortsetzungen der Streuamplitude sind.

Fiir komplexe R ist ¢! ¥* nicht mehr beschriankt, und der Raum C wird
fiir die Behandlung der inhomogenen Streugleichung zu eng. Wir be-
trachten deshalb den Raum C’ aller stetigen Funktionen y’(x), fiir welche
die folgende Norm endlich ist:

ly'| = S e |y'(%) ] .
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« ist eine feste, positive Zahl, iiber die wir spdter verfiigen. Die Zuord-
nung

P(¥) = e " y'(x) (46)

vermittelt eine isometrische Abbildung von C auf C’ und umgekehrt. Wir
fassen nun die Streugleichung auf als Funktionalgleichung in C’ und
bilden mit (46) die entsprechende Gleichung in C:

ikx—ax % ikix-gl o
plo) = e remer— L8 [ay ST VG et ply) . (@)

Alles Bisherige gilt offenbar auch fiir diese neue Gleichung, falls wir nur

V'(y) = V(y) e*¥ derselben Bedingung unterwerfen wie frither V(y), falls
also

fye“”lV(y)ldy<00-
0

Das ist nun unsere Voraussetzung iiber ¥ (y) und «. Die Resolvente R(k)
von (47) in C hat wieder die bereits bekannten Regularitidts- und Stetig-
keitseigenschaften, und dasselbe gilt dann wegen der Isometrie von (46)
fiir die Resolvente R’(k) der Streugleichung in C'.

(k) = o'
ist eine regulire Funktion von 2 mit Werten in C' im Gebiet | Im k| < «.
~ Daher ist auch

' (k) = R(k) yo(k) (48)
reguldar im Gebiet
[Im k| < o,
Imk> 0, | (49)

k + Eigenwert,

denn die Ableitung der rechten Seite von (48) etwa nach %, darf man nach
Produkt- und Kettenregel bilden. Wir setzen:

Y=y + ;- (50)

Das Ergebnis unserer Untersuchung kénnen wir dann wie folgt zusammen-
fassen:
v, (x, R) ist bei festem x reguldr in R im Gebiet (49) (51)
und fiir jedes feste k aus diesem Gebiet als Funk-
tion von x stetig und beschrankt.
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Die erste Aussage ergibt sich aus der Tatsache, dass die Konvergenz
beziiglich C’-Norm punktweise Konvergenz nach sich zieht. Wenn also
f(2) als Funktion mit Werten in C’ eine Ableitung besitzt, so besitzt f(x, 2)
fiir jedes x eine Ableitung nach z.

Die zweite Aussage ldsst sich aus (47) ablesen. Dort ist y,(x, R) das
Produkt einer beschrankten Funktion mit e ®% also ist auch y,(x, R)
noch beschrankt.

2. Diskussion der Streuamplitude

An Stelle von cos ¢ fithren wir den (halben) Impulsiibertrag A als Para-
meter ein:

P=%(k’+k):Pe ee =0,
A= (k' — k) =A¢ Pr=E A2,

Entsprechend zu (50) zerlegen wir die Streuamplitude in die erste Born-
sche Ndherung und einen Rest:

HE, 4) = fold) + L(E, 4),

f0@4)==-—.Z%;t/'d%xe—Zidx V() .

Die erste Bornsche Ndherung ist die Fouriertransformierte des Potentials.
Sie ist eine gerade Funktion von A allein, reguldr im Streifen

lImA|<w;—~.

Um f,(E, A) zu diskutieren, iiben wir auf die Streugleichung eine Trans-
formation aus, die noch von einem reellen Parameter 4 abhingt (mit dem
Zweck, den exponentiellen Abfall der Greenschen Funktion mdéglichst
vollstdndig auszuniitzen):

YH(x) = () eiFhes.

Die transformierte Streugleichung lautet:

Y =y + GV,

—ide’x+i(p+ik)ex
b

pix) =e

1 1

3ikux—y| + ie(x—g)] )
4rn |x-y|

G, y) = —
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Alles bisherige iibertrigt sich unverandert auf diese neue Streugleichung,
falls der Realteil des Exponenten in G*(x, y) nicht positiv ist, falls also

—1<A<+1.
Yo(E, A, x) ist ein Element des Raumes C’, falls
(Im A)%2 + [Im (p + A k]2 < o2, (52)

und nach bekannter, schon bei (51) angewandter Schlussweise folgt dann:

pHE, A, x) ist fiir jedes feste x eine analytische Funktion von E
und A im Gebiet (52), abgesehen von einem Verzweigungspunkt
bei E = A2, einem Schnitt ldngs der positiv-reellen E-Achse und
bis auf endlich viele negativ-reelle Singularititen in E, die den

- gebundenen Zustdnden entsprechen. Fiir jedes Paar (E, A) aus
diesem Gebiet ist w(E, 4, x) als Funktion von x stetig und be-
schriankt.

Fiir f,(E, A) ergibt sich die folgende Darstellung:
F(E, A) = — 417[ iy iA€' BTG AR e )y (B A, ) .

Auf Grund des Vorangegangenen ist ersichtlich, dass (52) auch gerade die
Bedingung ist dafiir, dass dieses Integral existiert. Der Verzweigungs-
punkt des Integranden bei E = A2 iibertrigt sich nicht auf das Integral,
da ein Vorzeichenwechsel von (E — A%)'"? durch eine einfache Transfor-
mation der Integrationsvariablen wettgemacht werden kann.

Bis auf die schon oft erwidhnten Singularititen, die von der Resol-
venten R(E) herriihren, ist also f;(E, A) reguldr in der folgenden Schar
von Gebieten:

(Im A)2 + [Im ( E — A% + AYE)]2 < o2, (53)

—1<i<+1.

Danach muss sicher einmal | Im 4 | < « sein. Es gehoéren dann alle Paare
(E, A) zu einem Gebiet dieser Schar, fiir die ausserdem

[Im]/E—Azl < ]Imel

ist, denn dann ldsst sich 4 im erlaubten Intervall so wihlen, dass der
zweite Summand in (53) verschwindet. Falls umgekehrt

Tm | E — 42| > |Im | E|
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ist, so nimmt dieser Summand ein Minimum an fiir A = + loder 4 = — 1,
und dieses Minimum betrigt

(|ImyE — 22| — |Im E |)2.
Das Ergebnis ldsst sich also auch so formulieren:
fi(E, A) ist reguldr in E und A im Gebiet
|ImA4| <« (54)
ImJE — 22| — |Im E| < a2 — (Im A)?

bis auf einen Schnitt ldngs der positiv-reellen E-Achse
und bis auf endlich viele negativ reelle Singularitdten
in E, die den gebundenen Zustdnden entsprechen.

Wir wollen zeigen, dass in diesem Gebiet die bisher bekannten Regulari-
tdatsgebiete enthalten sind.

a) Regularitit in cos & ber festem reellem E > 0

Wir fithren wieder den Streuwinkel # ein:
A2 =2 (1—cos ). (55)
f1(E, A) ist eine gerade Funktion von A, und deshalb ist f,(E, cos#) regu-

lar in £ und cos ¢} in einem (54) entsprechenden Gebiet, das fiir relle £> 0
wie folgt charakterisiert ist:

(Im 4)2 + (Im szﬁjz)z < o?,
oder, nach (55):

(Im ]/%- (1 — cos 79))2 + (Im l/% (1 —l-wcos 19))2 & %2 ,

(Im sin %)2 + (Im cos —3—)2 = —Og— . (56)

Setzt man 9 = ¢ + p, so wird
cos? = Cosycosp — 1 Sinysin ¢ .

Die Bedingung (56) ist dann nur eine Einschrankung fiir y, sie lautet:

o Y of
Sin 2<E'
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Fiir festes g beschreibt cos# als Funktion von ¢ eine Ellipse mit Brenn-
punkten 4 1. Die Grenzellipse, die das Regularititsgebiet umschliesst,

erhilt man fiir
c g Y o?
Sin ¢ aials -

Ihre grosse Halbachse betrigt:

2 o2
E

Cosy—=1+2Sin? X =1+

(LErMaNN-Ellipse)

b) Das Regularititsgebiet der Dispersionsrelation

Fiir welche 4 darf E in der ganzen E-Ebene variieren, ohne (54) zu ver-
letzen? Sicher ist notwendig, dass (54) fiir E = 0 erfiillt ist, und das
bedeutet :

4] < a.

Wir wollen zeigen, dass das auch hinreichend ist. Dazu setzen wir
A = re? und beweisen, dass fiir alle E

Im}E — 42| — | ImE| < /72 — (Im 4)2.
Wir fithren einen komplexen Parameter y ein:
VE-A2=idCosy, yg=a+if,

]/E—:id Sin ¥,

Iml/E — A% =7 (Cos & cos ff cos ¢ — Sin a sin B sin @) ,
Im l/fz 7 (Sin « cos f cos ¢ — Cos a sin § sin ¢) .
Es bleibt zu verifizieren, dass fiir alle «, § die folgende Ungleichung gilt:
| Cos & cos 8 cos ¢ — Sin asin fsin ¢ | <
< |cos ¢| + |Sin a cos B cos ¢ — Cos asin fsin ¢ | .
Oder, nach Quadrieren beider Seiten:
cos?f cos?p — sin?f sin?p < cos?p 4+ 2 |---|.

Diese Ungleichung ist offenbar richtig.
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f1(E, A) ist also reguldr in E und A im direkten Produkt des Kreises
| A < o mit der ganzen E-Ebene, abgesehen von einem Schnitt lings
der positiv-reellen E£-Achse und bis auf endlich viele negativ-reelle Singu-
larititen in E, die von den gebundenen Zustdnden herrithren.

Appendix I: Der 4-Operator

Die in (4) verwendeten ¢, geniigen dem inhomogenen Mittelwertsatz
der Potentialtheorie: Fiir jede Kugel K, (Mittelpunkt P, Radius R)

gilt10)
T 7 1 1
‘Pn(P)Zm/ 99nd0+f(7 - —}}‘)A%dv
Kp

oK p

(L1)

(0Kr = Rand von Ky, » = Abstand des Integrationspunktes von P).
Aus ¢, >y und Ag, > Ay folgt, dass diese Gleichung auch fiir y und

Ay gilt.
Die Eindeutigkeit der Definition (4) ist bewiesen, wenn wir zeigen, dass
aus
@, =0 l
®, €D, folgt w=0.
Ap, — J
Fir p gilt jedenfalls nach (I, 1):
1 1
f(T_?)#dVZO (1,2)

Kg
tiir jede Kugel Kg. Wire u = 0, so gidbe es aber eine Kugel Ky in der u

definit wire, im Widerspruch zu (I, 2).
Es sei 9 ein Element von D, G eine Kugel vom Radius 1 um irgend-

einen Punkt, den wir als Nullpunkt wahlen. Wir definieren:

lA?,u(x) fir x<<1

w) = lO const.

Da fiir y der Mittelwertsatz (I,1) gilt, ist y(x) fiir alle x mit x < 1/2 dar-

stellbar durch 19):

p(x) = [ K(x—3) p(y) doy + [ H (s —y) uly) dy + [ A2V
|*—y|
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K(x) und H(x) sind bis zu einer beliebig wihlbaren Ordnung stetig dif-
ferenzierbare Funktionen, die nicht von ¢ abhéngen, ferner ist K(x) =0
fiir x > 1/2. Daraus folgt:

Alle v € D sind stetig differenzierbar und es gibt Kon-
stanten 4 und B unabhingig von y derart, dass

Oy
0x;

<Ayl + B|4y]-

Folglich approximieren alle zur Definition von Ay verwendbaren Folgen
@, auch die ersten Ableitungen von y gleichméissig. Eine unmittelbare
Folge davon ist die, dass der Greensche Satz, der ja fiir die Funktionen
aus D, gilt, auch noch giiltig ist fiir die Funktionen aus D.

Appendix I1: Die approximierenden Potentiale

V(x) soll den Voraussetzungen (14) geniigen. Wir definieren:

V(x) falls x << R, und |V(s)| < M,

0 sonst.
Dann ist

1GV—GVn1</xF(x) dx+fo(x)dx

En

wobel E, aus denjenigen Punkten x besteht, fiir die x < R, und F(x) >
M ,. Wir kénnen aber nacheinander R, und M, so gross wihlen, dass beide
Integrale kleiner sind als 1/n. Dann ist ‘

lim |GV — GV,|=0.
V,(x) ist quadratintegrierbar und kann daher mit beliebiger Genauigkeit
d, im quadratischen Mittel approximiert werden durch eine stetig diffe-
renzierbare Funktion U,(x), die ebenfalls durch M, beschrinkt ist und
fir x > R, identisch verschwindet. Es ist dann

d3y
%~y

6V, = G U, <sup - [ .20 1%0) — U,0) | < (R, 8%,

wie man durch Anwendung der Schwarzschen Ungleichung erkennt. Es
gilt daher wieder
lim |[GU,— GV|=0

n—r
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falls man nur 4, so wahlt, dass R, 4, - 0. Falls V(x) die Bedingungen (5)
erfiillt, so kann man die U,(x) so wahlen, dass sie gleichmassig gegen V(x)
konvergieren. Zum Beweis kann man sich etwa auf den Weierstrasseschen
Approximationssatz stiitzen.

Appendix III: Regularitit von GV (k)

FirIm 2 >0, Im & >0 ist

‘eikr_eik'r‘ e lkmkl|7’,
also

/xﬂvmndx.

0

Zumindest fiir Potentiale der Art (18) ist daher GV (%) stetig in Im % > 0.
Da aber die Approximation (19) gleichméssig ist in &, Im 2 = 0, folgt die

Stetigkeit von GV(k) fiir alle Potentiale, welche die Voraussetzung (14)
erfiillen. Es existiert daher

A:ﬁﬂ%wk

fiir jeden geschlossenen Weg in Im % >> 0. Wir beweisen, dass A4 fiir jeden
solchen Weg verschwindet: Fiir beliebiges yp € C gilt:

|GV(k) — GV(R)| < [k — &

mzAw=@ﬂwwwﬂw=§GW@wa

also

ik (x—g)
o) == 5z Pk [ @y V) vl
Da das zweite Integral absolut und gleichmaissig konvergiert fiir alle £,
darf man die Integrationen vertauschen. Deshalb ist ¢(x) =0 und, da
p beliebig war, auch 4 = 0. Nach dem Satz von Morera ist daher GV (k)
reguldr in Im &2 > 0.

Appendix VI: Regularitidt der Resolvente

Wenn %, kein Eigenwert der Streugleichung ist, so existiert die Resol-
vente R(k,), und wegen der Stetigkeit von GV (k) gibt es um £, eine Um-
gebung U derart, dass

1 .
|GV (k) — GV (kg) | < TR fiiralle ke U .
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Es sei

S = Rk (1 - GV(R)),
=1— R(ko) [GV (k) — GV (k)]

=1—K.

Fir ke Uist | K| <1/2, und S l4sst sich daher durch die Neumann-
sche Reihe darstellen:

S1=1+K+ K24+ K3+ ---.

Da diese Reihe fiir alle 2 € U absolut und gleichmissig konvergiert, ist

reguldr in 2 im Innern von U.

Y

ki
=1
~
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