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Regularitätseigenschaften der Streuamplitude im Fall
der Potentialstreuung

von Walter Hunziker
Physikalisches Institut der ETH Zürich

(1. III. 1961)

Einleitung
Im Zusammenhang mit den Dispersionsrelationen und denMandelstam-

schen Darstellungen haben verschiedene Autoren am Beispiel der
Potentialstreuung die Frage untersucht, wie weit sich die Streuamplitude zu
komplexen Werten der Streuparameter analytisch fortsetzen lasse. In
einer grossen Zahl von Arbeiten zu diesem Thema wurden die analytischen

Eigenschaften der Partialwellen diskutiertu), aber aus den Ergebnissen

kann man nicht leicht Schlüsse ziehen über das Verhalten der

ganzen Streuamplitude. Zur Untersuchung dieser Grösse ist es

zweckmässiger, wenn man die Wellengleichung nicht separiert. Die
Integralgleichung (Streugleichung), die sich in diesem Fall ergibt, wurde von
Jost und Pais12) mit Hilfe der Fredholmschen Formeln gelöst. Auf
Grund dieser Lösung haben einige Autoren Regularitätseigenschaften der
Streuamplitude hergeleitet 13~18).

In der vorliegenden Arbeit gehen wir einen andern Weg. Wir fassen die
Streugleichung auf als Funktionalgleichung im Raum der stetigen und
beschränkten Funktionen. Der Integraloperator GV, der in der
Streugleichung auftritt, erweist sich dann als vollstetig und als analytische
Funktion der Energie. Indem wir diese Eigenschaften ausnützen, erhalten

wir alle Informationen über die Wellenfunktion, die wir zur Diskussion

der Streuamplitude brauchen. Es wird gezeigt, dass die Streuamplitude

regulär ist in den Variablen Energie und Impulsübertrag in einem
Gebiet, das die bisher bekannten Regularitätsgebiete als Spezialfälle
enthält. Wir beschränken die Untersuchung auf die Schrödingergleichung.
Die Methoden sind aber auch anwendbar im Fall der Dirac- oder der
Klein-Gordon-Gleichung, was wir gelegentlich andeuten.

Ich danke meinem Lehrer, Herrn Professor R. Jost, für die Anregung
zu dieser Arbeit und für die freundliche Unterstützung, die er mir
während, der Ausführung gewährte.

38 H. P. A. 34, 6/7 (1961)
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1. Die Schrödingergleichung

Die Schrödingergleichung für ein Teilchen der Masse m in einem
Potentialfeld lautet :

(A + k2) y> V ip (1)

k2 und V stehen für die mit 2 m\%2 multiplizierte totale resp. potentielle
Energie und haben die Dimension (Länge) ~2. Im Fall des 2-Teilchen-
problems gilt (1) im Schwerpunktssystem, wenn man für m die reduzierte
Masse setzt.

Wir suchen die Lösung von (1) im Raum C der stetigen und beschränkten

Funktionen ip(x). Als Norm von ip definieren wir:

|| y || sup j ip(x) I (2)
X

Eine wichtige Eigenschaft von C ist die Vollständigkeit, das heisst die

Gültigkeit des Cauchyschen Konvergenzkriteriums:

ipn sei eine Folge in C. Falls j| xpn — ipm |[ gegen Null strebt, wenn n
und m simultan gegen Unendlich wachsen, so gibt es ein ipe C derart,

dass

lim X — y>„ || 0 (3)
n^oo

Diese Konvergenz im Sinne der Norm bedeutet in unserem Fall
gleichmässige Konvergenz; wir bezeichnen sie im folgenden mit einem Pfeil.
Vollständige Normierte Vektorräume pflegt man als Banachsche Räume
zu bezeichnen1).

Der A -Operator sei zunächst nur auf dem Teilraum D2 derj enigen
Funktionen cp(x) definiert, die zweimal stetig differenzierbar sind und für
welche

/ ô2 d2 ö2 \
A<P fa + w + -gf)

beschränkt ist.
Diesen Operator setzen wir fort durch Abschliessung : Falls cpn -> ip,

cpn e D2 und Acpn -> pt, so definieren wir

A%p=fx. (4)

Den so erweiterten Definitionsbereich von A nennen wir D. Die Elemente
von D sind stetig differenzierbare Funktionen, und ihre Ableitungen
gehören zu C (siehe Appendix I).

Die Schrödingergleichung fassen wir auf als Funktionalgleichung in C:

ip soll zu D gehören, und es soll (1) gelten. Über das Potential setzen wir
vorläufig voraus, dass
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V(x) eC
(x=\x\) (5)

lim V(x) 0
x—>00

Allgemeinere Fälle betrachten wir später. Multiplikation mit V ist eine
Operation, die C in C abbildet.

Die Schrödingergleichung ist ein Eigenwertproblem für den Parameter
E k2, der in der ganzen komplexen Ebene variieren soll, k selber
beschränken wir auf die Halbebene Im k > 0. Für reelle k > 0 soll die
Lösung von (1) ein Streuexperiment beschreiben. Wir stellen daher die
zusätzliche Forderung, dass sich diese Lösung in grosser Entfernung vom
Streuzentrum verhält wie eine ebene Welle plus eine auslaufende Kugelwelle

:

ip(x) elkx + cp(x)

lim cp(x) 0
ar—*oo

lim X \-~ ¦— i k cp) — 0

Wie sich zeigen wird, machen diese Bedingungen die Lösung eindeutig.

2. Die Streugleichung

Über V(x) setzen wir weiter folgendes voraus :

\V(x)\<F(x),
oo

/ x F(x) dx y oo (6)

o

Mit Hilfe der Greenschen Funktion

1 eik\*-y\
G(x, y) An |*-.y|

können wir dann das Problem als Integralgleichung stellen. Das geschieht
in der üblichen Weise, indem man um den Punkt x zwei Kugeln Kr, KR
mit Radien r, R (r < 7?) legt und auf das Zwischengebiet V den Greenschen

Satz anwendet (siehe Appendix I) :

f (G -^ - u ~\ dO f (G Au - u AG) d3y f GV ip d3y
ÒV V V

(ÒV Rand von V)
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mit u — ip, falls Im k > 0 und u cp für relie k. Das Volumenintegral
konvergiert absolut, wenn man es über den ganzen Raum erstreckt :

f r x
I \GVip\ d3y < j)ip|| / dy y2 F(y) ——

dû
\*-y\

0

Allgemein gilt:
x+y

-^ f dQ f (\x - y\) -L- frf(r)dr, also: (7)

\*-y\

1 l ,^> 1

4tj iß —J—- Min (—, —) < — und (8)
\x-y\ \x y J — y

oo

GV ip\ d3y < || ip jj j dy y F(y) < oo (9)

Die Grenzübergänge 7? -> oo, r ->- 0 lassen sich nach dem unter (4)
Bemerkten auch für die Oberflächenintegrale leicht ausführen. Man findet
als Resultat:

Im k > 0: ip(x) - J_ | i»y ^*^' 7(y) v(y) (10)

Im k 0: v(«) e'k* - -^ J d3y e-!^l V(y) ip(y) (11)

Als Funktionalgleichungen in C schreiben wir diese Gleichungen kurz

ip GVip, (12)

ip ip0+GVip, (13)

wobei GV(k) ein Integraloperator ist, der von der Variablen k abhängt.
Wir nennen (10) die homogene, (11) die inhomogene Streugleichung.

Im relativistischen Fall ist k2 E2 — m2, und die Gleichungen (10) und
(11) gelten unverändert, wenn man V(x) durch einen Ausdruck U(x)
ersetzt :

U 2 EV - V2 (Klein-Gordon-Gleichung),

U 2 EV - V2 - i ak 4^ (Dirac-Gleichung).

Im zweiten Fall ist U eine 4 X 4-Matrix, die aA. sind die Diracschen
Matrizen15). Das Folgende gilt im wesentlichen unverändert auch im
relativistischen Fall, wenn man nur U(x) den Bedingungen unterwirft, die
wir für V(x) stellen.
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3. Diskussion der Streugleichung

Für die Zwecke dieses Abschnittes genügen die folgenden
Voraussetzungen :

V(x) soll messbar sein und majorisiert durch eine Funktion (14)

F(x), für welche xF(x) im Intervall 0 < x < oo summierbar

ist.

Für alle ip e C und alle k in Im k > 0 gilt dann die Ungleichung (9), oder,
in der Schreibweise (12) :

oo

|| GV ip || < || ip [| x F(x) dx
o

Das bedeutet, dass der Operator GV beschränkt ist: er besitzt eine
endliche Norm im Sinne von

\GV\= sup \\GVip\\ (15)
IMI-i

und es gilt
00

| GV(k) \< f x F(x) dx (16)
o

für alle k in Im k > 0. Wenn die (dimensionslose) rechte Seite von (16)
kleiner ist als 1, so ist die inhomogene Gleichung (11) für alle ip0e C durch
Iteration lösbar, während die homogene Gleichung (10) nur die triviale
Lösung besitzen kann. In der Sprache der Wellenmechanik heisst das,
dass die Bornsche Reihe für alle Energien konvergiert und dass es keine
gebundenen Zustände gibt.

Der Operator GV ist aber nicht nur beschränkt, sondern sogar
vollstetig2) für alle k in Im k > 0. Das bedeutet, dass GV jede beschränkte
Menge von C in eine kompakte Menge abbildet. Wir verschieben den
Beweis auf später und ziehen zuerst einige Folgerungen :

Für jede Funktionalgleichung der Art (13) in einem Normierten
Vektorraum gilt, falls der Operator GV vollstetig ist, die Fredholmsche
Alternative3) :

— Entweder existiert die Resolvente

R=(l-GV)-\ |7?j<oo, (17)
— oder die homogene Gleichung (12)

besitzt eine nichttriviale Lösung.

Entsprechend zerfällt die Halbebene Im k > 0 in zwei komplementäre
Teile: in die Resolventenmenge, welche diejenigen Ä-Werte umfasst, für
die die erste Alternative zutrifft, und in das Spektrum, das aus den k-
Eigenwerten des Operators GV besteht. Die Fredholmsche Alternative
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weist einen Weg, auf dem man Existenz und Eindeutigkeit der Lösung
von (13) beweisen kann: Man hat nur zu zeigen, dass das Spektrum keine
reellen Punkte enthält.

Den Beweis der Vollstetigkeit führen wir zuerst für die folgenden
speziellen Potentiale:

| V(x) \<M,
V(x) =0 für x > R (18)

Wir haben zu zeigen, dass die Menge

E {cp \ cp GV xp, || xp\ < 1}

kompakt ist. Hinreichend dafür sind die folgenden Bedingungen4): Alle
cp(x) e E sollen (a) gleich beschränkt, (b) gleichgradig stetig und (c) gleich
majorisiert sein durch eine Funktion f(x), für welche

lim f(x) 0
x—>oo

(a) ist trivialerweise erfüllt, da GV beschränkt ist. (c) ergibt sich, wenn
man in (8) Min (x*1, y~x) durch x"1 abschätzt, es folgt dann :

^. MR*
k(*)|<-37- =/(*)¦

Zum Beweis von (b) benützen wir den Hilfssatz (20a). Danach sind alle
cp (x) e E stetig differenzierbar, und ihre Ableitungen dürfen durch
Differentiation unter dem Integral gebildet werden. So findet man, dass für
alle cp g E und alle x eine Ungleichung der folgenden Art gilt :

dx,- <(1+ \k\)N.

N ist eine Konstante, die nur von M und 7? abhängt. Das ist aber weit
mehr als nur gleichgradige Stetigkeit. Für Potentiale der Art (18) ist
damit die Vollstetigkeit von GV bewiesen.

Nun benützen wir die Tatsache, dass der Grenzwert einer (bezüglich
der Norm) konvergenten Folge vollstetiger Operatoren wieder vollstetig
ist. Zu einem gegebenen Potential, V, das den am Anfang dieses
Abschnitts gestellten Voraussetzungen genügt, bilden wir die Folge V„
gemäss Appendix II. Nach dem eben bewiesenen ist GVn vollstetig. Das
gleiche gilt daher für GV, da ja

lim | GV - GVn | 0 (19)
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4. Streugleichung - Schrödingergleichung

Wir wollen beweisen, dass die Lösungen der Streugleichung auch die

Schrödingergleichung lösen. Es gilt der folgende Hilfssatz:

V(x) sei eine summierbare Funktion mit den Eigen- (20a)
schaffen: \V(x)\<M und V(x) 0 für x>R.
Dann ist für jedes ip e C

cp GV ip

eine stetig differenzierbare Funktion, deren Ableitungen

durch Differentiation unter dem Integral gebildet
werden dürfen.

Falls V(x) und ip(x) ausserdem noch stetig differenzier- (20b)
bar sind, so ist cp(x) zweimal stetig differenzierbar, und
es gilt überall:

(A A-k2)<p=Vip.

Wir verzichten auf einen Beweis dieses Satzes, da er völlig gleich verläuft
wie derjenige eines analogen Satzes der Potentialtheorie5).

Falls V(x) lediglich den Voraussetzungen (5) und (6) genügt, so können
wir die in (19) auftretende Folge V„ derart wählen, dass die Funktionen
Vn(x) alle Bedingungen des Hilfssatzes (20) erfüllen und überdies gleich-
massig gegen V(x) konvergieren (siehe Appendix II). Es sei nun ip eine

Lösung der homogenen oder inhomogenen Streugleichung : ip ip0 4- GVip,
xp0 0 oder ip0 exp(ikx). Wir definieren:

Wn Wo + GK ip

<t>n:=Wo + GVn ip„

Aus (20 a) folgt, dass ipn stetig differenzierbar ist. Somit ist nach (20b) cf>n

sogar zweimal stetig differenzierbar, und es gilt überall :

(A+k2)cßn=VnWn.

Die Folge <f>n hat daher die folgenden Eigenschaften :

<f>n^W' <f>n^F>2 und

Acf>n -> Vip — k2 ip

Nach der Definition (4) gehört also ip zu D und es gilt

(A A- k2) xp V xp
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5. Das Verhalten der Lösungen in grosser Entfernung vom
Streuzentrum

Soweit nichts anderes bemerkt ist, machen wir über V(x) nur die
Voraussetzung (14). Zuerst betrachten wir wieder ein abbrechendes Potential :

V(x) 0 für x > R

ip sei ein Element von C. Wir definieren:

<p(x) è/^i^r™*).

(21)

(22)

9H*)
3 i k X — 1

x An d3y e -ik' y V(y) ip(y)

Q i k X

m ?)« (23)

k' k (¦&, cp) Polarwinkel von x

Wir wollen die Differenz (cp — cp°°) abschätzen im Gebiet x~> R. Zu
diesem Zweck entwickeln wir | x — y | im Nenner von (22) bis zu Gliedern
zweiter, im Exponenten bis zu Gliedern dritter Ordnung in y. So ergibt
sich:

ßik \x-y | eik x
A(x,y) \*-y\

\*-y\

e-i*y

(9*)'
e 2 f V f -1 yn

X 7]

Dabei bedeuten ^ und rj Mittelwerte von X — y aus dem Bereich y < R.
Es ist

(yÇY0<y2 < y2 < R2,

ez - 11 < I z I für Re z < 0

Somit gilt für a Im k > 0 :

\A(x,y)\ <

<

e-a(Ar-R) / \k\B*
x-R \ 2 (x-R)

e-a (x-R)

I).
2 (x-Rf k\R2 + 2R).
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Für die Differenz (cp — cp°°) findet man damit die folgende Ungleichung :

\cp(x) - tp°°(x) | < '~l^t {\k\R2 + 2R) ~fd3y F(y) \ip(y) \ (24)

(für alle x > R und a s Im k > 0)

Eine zweite Ungleichung betrifft die erste radiale Ableitung von cp(x).
Für x > 7? darf man cp unter dem Integral differenzieren, und es ergibt
sich in gleicher Weise :

dx ifl' ^ \x-RY (2 I k I R + l) 4X / d3y F{y) ^(y) ¦ (25)

(für alle x > R und a s Im k > 0)

Wir lassen nun die Voraussetzung (21) fallen und untersuchen zuerst
das asymptotische Verhalten der Lösungen der inhomogenen
Streugleichung für reelle k. Zusätzlich zu (14) verlangen wir :

oo

f x2 F(x) dx<oo. (26)
J
0

Dann existiert cp°°(x). Wir führen ein 7? ein, das in einer später
präzisierten Weise so von x abhängen soll, dass stets R(x) < x. V(y) zerlegen

wir in ein abbrechendes Potential VR(y) und einen Rest V(y) :

vR(y)
V(y) für y < R

0 sonst.

V(y) V(y) - VR(y) (27)

Wenn man diese Zerlegung in (22) und (23) einsetzt, so zerfallen auch cp

und cp00 in zwei Terme :

cp =cpR+c}

Es gilt :

<Pr + X

ï(*)\<~- [y*ny)dy (S.8), (28)
X

R(x)

\q>°°(*) I < ^1 f Y2 F(y) dy (s. 23) (29)
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lim x | cp — cp"0 | < lim x | cpK — cpR |

x—>oo X—> oo

+ lim X çX
nr—>oo

+ lim x |<p°°|
AT—*00

Für den ersten Term gilt die Ungleichung (24), das darin auftretende
Integral ist für alle 7? kleiner als

|X y2 F(y) dy

Aus (24), (28) und (29) folgt daher, dass

lim x | q>(x) - <p°°(x) | 0, (30)

falls man R(x) so wählen kann, dass

lim R(x) — oo
x—>oo

lim x g!W 0
x^oo (x-R)*

Das ist aber möglich, wie das Beispiel R(x) X3 zeigt.
Auf gleiche Weise kann man verfahren mit der radialen Ableitung von

cp (x). Unter der zusätzlichen Voraussetzung

lim y2 F(y) 0 (31)

findet man :

lim x -~- — i k<p°
x—±cc> OX

0 (32)

Wir wollen schliesslich noch das Verhalten der Lösungen der homogenen
Streugleichung untersuchen für alle k in Im kyO. Vorläufig setzen wir
dabei über V(x) nur (14) voraus. Zuerst beweisen wir einen Hilfssatz :

Alle ip e C, die eine Abschätzung der Art (33a)

\iplx) I < A (a Im k)
I r I x i

erlauben, bilden einen linearen Teilraum T von C, der
durch GV in sich abgebildet wird.
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Alle Lösungen der homogenen Streugleichung liegen (33b)
in T.

Beweis: Es sei cp GV ip, ip e T. Unter Benutzung von (8) folgt:

I / \l ^ A f i* e-*\x-y\ e-a-y
?(x) < i— / d3y —, j— F(y)1Tv ' ' An j I*—yl y

oo

<e—AjdyyF(y)^JJ^,
0

oo

< ^X A f y F(y) dy
o

Damit ist (33a) bewiesen.

Zum Beweis von (33b) betrachten wir eine Lösung der homogenen
Gleichung ip GV ip. V(y) zerlegen wir gemäss (27), dann ist

ip GVR ip + GV ip ip0 + GV ip (34)

7? wählen wir fest und so gross, dass | GV | < 1. Aus (23) und (24) folgt,
dass ip0 zu T gehört, deshalb kann man (34) als Funktionalgleichung
sowohl in C als auch in T auffassen. In beiden Fällen trifft wegen | GV \ < 1

die erste der Alternativen (17) zu, das heisst (34) hat sowohl in C wie in
T genau eine Lösung, die wegen C e T zusammenfallen. Da ip eine Lösung
ist, folgt ip e T.

Das asymptotische Verhalten von ip(x) findet man in derselben Weise
wie früher, nur kommt man jetzt dank der Ungleichung (33a) mit schwächeren

Voraussetzungen über V(x) aus. Falls nur (14) gilt, so existiert
cp°°(x), und es ist

lim x e*x \<p(x) - cp°°{x) | 0. (35)
x—>oo

Wenn ausserdem noch
lim y F (y) 0 (36)

y^oo
ist, so gilt auch :

lim xe«x X- -ikcp°

6. Diskussion des Spektrums

(37)

Zuerst untersuchen wir denjenigen Teil des Spektrums, der in Im k> 0

liegt. Unter den Voraussetzungen (5), (6) und (36) gilt dann:
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Die Eigenwerte liegen in einem endlichen Intervall der (38a)
imaginären Ä-Achse, das nach unten durch den
Nullpunkt begrenzt ist. Sie können sich in diesem Intervall
nirgends häufen ausser vielleicht bei k 0.

Zu jedem Eigenwert gibt es nur endlich viele linear un- (38b)
abhängige Eigenfunktionen.

Die Eigenfunktionen sind quadratintegrierbar und (38c)
können daher als gebundene Zustände interpretiert
werden.

Es sei cp eine Eigenfunktion zum Eigenwert k0, Im (38d)
k0 > 0, und xp eine beliebige Lösung der homogenen
oder inhomogenen Streugleichung für ein k #= k0.

Dann gilt die Orthogonalitätsrelation :

d3xcp*{x) xp(x) 0

(b) ist eine direkte Folge der Vollstetigkeit von GF6) und gilt deshalb
auch für reelle k schon unter der Voraussetzung (14) allein. Im Fall Im
k > 0 sind die Eigenfunktionen Lösungen der Schrödingergleichung, die
im Unendlichen samt ihren radialen Ableitungen exponentiell verschwinden.

Eine unmittelbare Folge davon ist (c). In bekannter Weise kann man
damit auch die Orthogonalitätsrelation (d) beweisen sowie die Tatsache,
dass die 7?-Eigenwerte reell, die Ä-Eigenwerte also rein imaginär sind.
Es ist leicht zu zeigen - zum Beispiel mit Hilfe der Approximation (19),
dass

lim | GV(k) | 0.
Im ft—> 4- oo

Sobald aber | GV(k) | < 1 ist, kann k nicht mehr Eigenwert sein, daher
sind die Imaginärteile der Eigenwerte beschränkt. Dass sich die Eigenwerte

in Im k > 0 nirgends häufen können, ergibt sich aus folgender
Überlegung :

Es sei kn eine Folge von Eigenwerten, die gegen k strebt, Im k > 0, und
cpn eine Folge zugehöriger Eigenfunktionen, die wir auf || cpn || 1

normieren. GV(k) ist - wie wir in Appendix III beweisen - eine stetige Funktion

von k, somit ist

lim \\(GV(kn)-GV(k))cpn\\
n—>oo

hm \\cpn-GV(k)cpn\\=0. (39)
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Da GV(k) vollstetig ist, kann man aus den cpn eine Teilfolge ipm derart
auswählen, dass GV(k) xpm gegen eine Funktion xp konvergiert. Nach (39)

gilt dann:
lim Hv» —Vll 0 (40)

und folglich :

xp GV(k) xp, || xp [[ 1,

das heisst k ist ebenfalls Eigenwert. Da Im k > 0 ist, gilt wegen der
Orthogonalitätsrelation (38d) :

xp* xp d3x / d3x xp* (ip — fm)

< \\w~Wm\\ J d3x Ivi

\\xp\%cPx
|| V — Wm || >- X > 0

\y>\ dzx

im Widerspruch zu (40). (Es sei darauf hingewiesen, dass das letzte Argument

im Fall k 0 versagt!) Die Eigenwerte können sich somit in
Im k > 0 nirgends häufen, und bei Null auch höchstens dann, wenn Null
selber Eigenwert ist.

Für den Fall des Zentralpotentials hat Bargmann 7) bewiesen, dass es

unter den Voraussetzungen (14) nur endlich viele Eigenwerte gibt. Wir
vermuten, dass dasselbe in unserem Fall zutrifft - der obige Beweis lässt
aber diese Frage offen.

Wir wenden uns jetzt dem reellen Teil des Spektrums zu. Das Ziel dabei
ist natürlich der Beweis, dass ein reelles k 4= 0 nicht Eigenwert sein kann
(für k 0 kann man das nicht erwarten, da es einfache Gegenbeispiele
gibt), denn ein solcher Beweis würde die eindeutige Lösbarkeit der
inhomogenen Streugleichung sichern. Leider können wir den Beweis nur
in zwei speziellen Fällen führen: für abbrechende Potentiale und für
Zentralpotentiale19).

Es sei xp GV xp, k reell, und V genüge den Voraussetzungen (14) und
(36). Für jede Kugel KR mit Radius 7? um 0 gilt einerseits:

/V IT - y ¥) d0=f (W*Af-V>Axp*) dV 0

ÖKR KR

und andererseits nach (23), (35) und (37):

dKR
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Da f(&, cp) stetig ist, folgt, falls k 4= 0:

M <P)=0. (41)

Wenn V ein abbrechendes Potential ist, so ist xp(x) für x> R eine
Ausstrahlungslösung der kräftefreien Wellengleichung, welche wegen (35)
und (41) rascher abnimmt als l\x. Eine solche Lösung verschwindet aber
nach einem allgemeinen Satz8) für x > R identisch. Für jede Kugel Kr
mit r > R wäre dann k eine Lösung des Eigenwertproblems

(A + k2)xp Vxp

mit der Randbedingung xp 0. Das ist aber ein Widerspruch, denn man
weiss, dass die Eigenwerte dieses Problems mit wachsendem r monoton
abnehmen9).

Den andern Spezialfall, das Zentralpotential, behandeln wir in
Abschnitt8).

7. Allgemeinere Potentiale

Wir lassen alle Annahmen über V(x) fallen ausser den Voraussetzungen
(14), die wir für die Diskussion der Streugleichung allein verwendet
haben.

Für so allgemeine Potentiale können wir natürlich (1) nicht mehr als

Funktionalgleichung in C auffassen, und der in den Abschnitten (2) und
(4) hergestellte Zusammenhang zwischen Streugleichung und
Schrödingergleichung geht verloren. Auf diesen Zusammenhang haben wir uns
aber gestützt beim Beweis der Orthogonalitätsrelation (38d) und beim
Beweis, dass die komplexen A-Eigenwerte rein imaginär aind. Wir wollen
jetzt zeigen, dass diese Resultate - und damit alle Ergebnisse des letzten
Abschnitts - auch unter den viel allgemeineren Voraussetzungen (14)
bestehen bleiben.

Es sei xp GV ip eine Lösung der homogenen Streugleichung, Im
k a > 0. Mit der in Appendix II definierten Folge U„(x) bilden wir

Wn= GUnip,

<f>n G U„ v„ -

ip gehört zu T siehe (33), es folgt daher wie im Beweis von (33a), dass alle
Funktionen xpn(x) und cf>n(x) gleich majorisiert werden durch eine Funktion

A fZll (42)
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Wie in Abschnitt (4) zeigt sich, dass cf>n(x) zweimal stetig differenzierbar
ist, und dass überall gilt :

(AA-k2)cf,n=Unipn.
Daraus folgt :

£ Acf>„ - cf>„ Afn (7s* - E) £ cpn + U„ (v„ £ - Wl fa) ¦

Wenn man beide Seiten dieser Gleichung über den ganzen Raum
integriert, so ergibt die linke Seite keinen Beitrag, wie man durch Anwendung
des Greenschen Satzes erkennt (dies ist erlaubt, da Un alle Voraussetzungen

des Abschnitts (5) erfüllt und für <f>n und seine radiale Ableitung
demzufolge die asymptotischen Formeln (35) und (37) gelten). Es ist also

0=(E*-E)J d3x fncf>n + f d»x Un (ipn £ - wl <f>n) ¦

Aus ipn -> ip, cfjn -> ip und (42) folgt nun leicht, dass diese Gleichung im
Grenzfall n -> oo übergeht in

0 (E* - E) f d3x ip* ip

woraus sich ergibt, dass E reell, k also rein imaginär ist. Auf genau
dieselbe Weise beweist man die Orthogonalitätsrelation (38d).

Es lässt sich noch eine weitere Verallgemeinerung angeben, für welche
unsere Resultate gültig bleiben: V(x) kann eine endliche Summe von
Potentialen der Art (14) sein. Die Zentralpotentiale, durch welche die
einzelnen Summanden majorisiert werden, dürfen dabei verschiedene
Zentren besitzen. Der wesentliche Grund dafür ist der, dass eine endliche
Summe vollstetiger Operatoren wieder vollstetig ist.

8. Das Zentralpotential

Eine zusammenfassende Darstellung zahlreicher Arbeiten über das

Zentralpotential findet man bei n). Wir wollen nur so weit darauf
eingehen, als es für unsere Zwecke notwendig ist, und auch das nur in
Stichworten.

Es sei k ein Eigenwert der Streugleichung, Im £ > 0. Alle zugehörigen
Eigenfunktionen bilden einen endlichdimensionalen Unterraum U von
C. Mit ip(x) ist auch ip(D x) ein Element von U, wenn D irgendeine
Drehung bedeutet. Auf diese Weise wird in U eine endlichdimensionale Dar-
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Stellung der Drehgruppe erzeugt. Daraus folgt, dass es in U eine Basis der
folgenden Art gibt:

WneM ^ Y:(x) (43)

Die Ym stehen für eine orthonormierte Basis der Kugelfunktionen. Man
kann auch die Greensche Funktion in eine Reihe nach Kugelfunktionen
mit dem Argument y entwickeln, die bezüglich der Winkel für y 4= x
gleichmässig konvergiert11). Wenn man diese Entwicklung und (43) in
die Gleichung xpnem GV ipnem einsetzt, so darf man deshalb die Integration

über die Winkel gliedweise ausführen. Man findet als Resultat:
X

Unsi*) K(k x)~ f dy ie(k y) V(y) une(y) + (44)

i.{k %)jrj dy he(k y) V(y) une(y)

je(z) und he(z) sind die mit (-jrz/2)1'2 multiplizierten Besselschen resp. zweiten

Hankelfunktionen zum Index e + 1/2. Es ist wohlbekannt, dass die

Gleichung (44) für reelle k 4= 0 unter der Voraussetzung (14) nur die
triviale Lösung besitzt11). In der Tat bedeutet (41) in diesem Fall:

oo

f dyie(ky)V(y)une(y)^0.
o

Man kann damit das erste Integral in (44) umschreiben in ein Integral
über das Intervall x < y < oo. (44) wird dann zu einer homogenen
Integralgleichung vom Volterraschen Typ ; eine solche Gleichung kann aber

nur die triviale Lösung besitzen.

KAPITEL II

Regularitätseigenschaften der Streuamplitude

Für ein Zentralpotential, das der Voraussetzung
oo

/ x | V(x) | dx < oo
0

genügt, besitzt die inhomogene Streugleichung für jedes reelle k 4= 0

genau eine stetige und beschränkte Lösung ip, die sich unter der weiteren
Bedingung

/ x2 | V(x) | dx < oo
0
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für grosse x asymptotisch verhält wie eine ebene Welle plus eine auslaufende

Kugelwelle:
e l k x

ip(x) ~etkxA- —- / (E, cos ê)

/ (E, cos #) - ~ f d3y X*» V(y) ip(y)

k' k — ; & <£ (fe', k) ; E k2.

Wir wollen das analytische Verhalten der Streuamplitude f(E, cos &) als
Funktion von E und cos # oder anderer geeigneter Streuparameter
diskutieren. Zu diesem Zweck werden wir im folgenden Abschnitt zuerst das
Verhalten von xp (fe, x) als Funktion von fe untersuchen.

1. Die Regularitätseigenschaften der Resolvente

Wir setzen vorläufig nur voraus, dass die Bedingung (14) erfüllt ist. Es

gilt:
ip(k) R(k) Vo(*) • (45)

Wenn wir wüssten, dass R(k) und ip0(k) analytische Funktionen von fe

wären, so könnten wir vielleicht schliessen, dass das gleiche für ip(k)
zutrifft, denn die rechte Seite von (45) ist eine Art Produkt. Was aber der
Begriff «analytisch» hier bedeuten soll, müssen wir zuerst definieren,
denn R, ip0 und ip sind ja nicht komplexe Zahlen, sondern Elemente eines
Banachschen Raumes*).

Zu diesem Zweck betrachten wir Funktionen einer komplexen
Variablen mit Werten in einem (komplexen) Banachraum. Da wir für die
Funktionswerte einen Konvergenzbegriff haben - nämlich die Konvergenz

bezüglich der Norm - können wir einen grossen Teil der gewöhnlichen

Analysis auf solche Funktionen übertragen. Die Übertragung der
Begriffe geschieht einfach dadurch, dass man an Stelle des Absolutbetrages

von Funktionswerten deren Norm setzt. So nennen wir zum
Beispiel /Xo) die Ableitung von f(z) an der Stelle z0, falls

lim AfLXW _ m 0.

Wie zu erwarten ist, bleiben dann viele Sätze der Analysis unverändert
gültig. Einige davon übertragen sich in völlig trivialer Weise - wie zum
Beispiel die Aussage, wonach jede in einem abgeschlossenen Intervall

*) Alle beschränkten Operatoren auf einem Banachraum bilden wieder einen
Banachraum.

39 H. P. A. 34, 6/7 (1961)
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stetige Funktion dort auch gleichmässig stetig ist. In anderen Fällen
spielt die Vollständigkeit des Banachraums eine fundamentale Rolle. Als
Beispiel betrachten wir den Satz, nach dem jede stetige Funktion
integrierbar ist :

Man bildet wie üblich eine Folge T„ von Einteilungen des Intégrations-
intervalles, deren Feinheit gegen Null strebt. Da f(z) gleichmässig stetig
ist, erfüllen die Summen

Sn=Ef£k) (h-h-i)
T„

das Cauchysche Konvergenzkriterium. Dank der Vollständigkeit des

Banachraumes existiert daher der Grenzwert, und er ist auch unabhängig
von der speziellen Wahl der Tn und der £,..

Weiter soll eine Funktion regulär heissen in einem Gebiet G, falls sie
überall in G eine Ableitung besitzt. Für solche Funktionen gelten die
meisten Sätze der Funktionentheorie: der Cauchysche Integralsatz und
seine Umkehrung (Satz von Morera), die Cauchysche Integralformel, die
Sätze über die Entwicklung regulärer Funktionen in Potenzreihen, der
Satz vom Maximum und der Identitätssatz. Die Analogie hat zum
Beispiel dann ein Ende, wenn in den entsprechenden klassischen Sätzen oder
Begriffen die Division durch Funktionswerte wesentlich verwendet wird.

Wir beweisen in Appendix III, dass in diesem nun klar definierten Sinn
GV(k) stetig ist in k in der Halbebene Im k > 0 und regulär in k für
Im k > 0. Es folgt dann, dass die Resolvente R(k) regulär ist in einer
Umgebung jedes Punktes (in Im k > 0), in dem sie existiert (siehe

Appendix VI). Da wir aber über die Existenz der Resolvente bereits
Bescheid wissen, können wir das Ergebnis wie folgt zusammenfassen :

R(k) ist regulär in der Halbebene Im k > 0 bis auf
endlich viele Singularitäten auf der imaginären Achse,
die den gebundenen Zuständen entsprechen.

GV(k) ist stetig für Im k > 0, und R(k) existiert auch für reelle k 4= O.
Daher ist R(k) stetig für Im k > 0 bis auf die oben genannten Singularitäten,

zu denen unter Umständen noch der Punkt k 0 hinzukommt.
Das garantiert uns, dass die später diskutierten analytischen Funktionen
wirklich Fortsetzungen der Streuamplitude sind.

Für komplexe fe ist e'kx nicht mehr beschränkt, und der Raum C wird
für die Behandlung der inhomogenen Streugleichung zu eng. Wir
betrachten deshalb den Raum C aller stetigen Funktionen ip'(x), für welche
die folgende Norm endlich ist :

Iv'H sup e~ax \ip'(x) |
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oc ist eine feste, positive Zahl, über die wir später verfügen. Die Zuordnung

ip(x) e-«xip'(x) (46)

vermittelt eine isometrische Abbildung von C auf C" und umgekehrt. Wir
fassen nun die Streugleichung auf als Funktionalgleichung in C und
bilden mit (46) die entsprechende Gleichung in C:

f{x) eiH*-a* _f_lljdsy XXXX V(y) e«> ip(y) (47)

Alles Bisherige gilt offenbar auch für diese neue Gleichung, falls wir nur
V'(y) V(y) eay derselben Bedingung unterwerfen wie früher V(y), falls
also

oo

f yeay \V(y)\ dy<oo.

Das ist nun unsere Voraussetzung über V(y) und oc. Die Resolvente R(k)
von (47) in C hat wieder die bereits bekannten Regularitäts- und
Stetigkeitseigenschaften, und dasselbe gilt dann wegen der Isometrie von (46)
für die Resolvente R'(k) der Streugleichung in C.

v„(ft) ****

ist eine reguläre Funktion von k mit Werten in C im Gebiet | Im k \ < oc.

Daher ist auch
V'(fe) R(k) xp'0(k) (48)

regulär im Gebiet
| Im k | < <x

Im k > 0 (49)

k 4= Eigenwert,

denn die Ableitung der rechten Seite von (48) etwa nach kx darf man nach
Produkt- und Kettenregel bilden. Wir setzen:

V' vi + Vi • (50)

Das Ergebnis unserer Untersuchung können wir dann wie folgt zusammenfassen

:

ip'x(x, fe) ist bei festem x regulär in fe im Gebiet (49) (51)
und für jedes feste fe aus diesem Gebiet als Funktion

von x stetig und beschränkt.
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Die erste Aussage ergibt sich aus der Tatsache, dass die Konvergenz
bezüglich C'-Norm punktweise Konvergenz nach sich zieht. Wenn also

f(z) als Funktion mit Werten in C eine Ableitung besitzt, so besitzt f(x,z)
für jedes x eine Ableitung nach z.

Die zweite Aussage lässt sich aus (47) ablesen. Dort ist Vi(*. k) das
Produkt einer beschränkten Funktion mit e~ax, also ist auch xp'x(x, fe)

noch beschränkt.

2. Diskussion der Streuamplitude

An Stelle von cos & führen wir den (halben) Impulsübertrag A als
Parameter ein :

P -Ì (k' + k) P e ee' 0,

A =i- (ft'-*) =Ae' P2=E-A2.

Entsprechend zu (50) zerlegen wir die Streuamplitude in die erste Born-
sche Näherung und einen Rest :

f(E,A) /„(/!) + h(E,A),

fo(A) - ~ f d3x e-2'** V(x)

Die erste Bornsche Näherung ist die Fouriertransformierte des Potentials.
Sie ist eine gerade Funktion von A allein, regulär im Streifen

iwxf.
Um fx(E, A) zu diskutieren, üben wir auf die Streugleichung eine

Transformation aus, die noch von einem reellen Parameter X abhängt (mit dem
Zweck, den exponentiellen Abfall der Greenschen Funktion möglichst
vollständig auszunützen) :

xpx(x) =xp(x) eiXkex.

Die transformierte Streugleichung lautet :

ip'- iplA- GlV xpK,

ipl(x) e-^e'x + i(p + Xk)ex

Ç*(x v) — ßik[\x-y\ +le(x-y)]
K ' yi An \x-y\
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Alles bisherige überträgt sich unverändert auf diese neue Streugleichung,
falls der Realteil des Exponenten in G'(x, y) nicht positiv ist, falls also

-1<1< + 1.

Vo(F, A, x) ist ein Element des Raumes C, falls

(Im Af + [Im (p + X k)]2 < ce (52)

und nach bekannter, schon bei (51) angewandter Schlussweise folgt dann :

xp'x(E,A,x) ist für jedes feste x eine analytische Funktion von E
und A im Gebiet (52), abgesehen von einem Verzweigungspunkt
bei E A2, einem Schnitt längs der positiv-reellen 7:-Achse und
bis auf endlich viele negativ-reelle Singularitäten in E, die den

gebundenen Zuständen entsprechen. Für jedes Paar (E, A) aus
diesem Gebiet ist ipx(E,A,x) als Funktion von x stetig und
beschränkt.

Für fx(E, A) ergibt sich die folgende Darstellung:

fx(E,A) - J- f d3xe-^e'x-i{p+Âk)exV(x) vî (E,A,x)

Auf Grund des Vorangegangenen ist ersichtlich, dass (52) auch gerade die
Bedingung ist dafür, dass dieses Integral existiert. Der Verzweigungspunkt

des Integranden bei E A2 überträgt sich nicht auf das Integral,
da ein VorzeichenWechsel von (E — A2)1/2 durch eine einfache Transformation

der Integrationsvariablen wettgemacht werden kann.
Bis auf die schon oft erwähnten Singularitäten, die von der

Resolventen R(E) herrühren, ist also fx(E, A) regulär in der folgenden Schar

von Gebieten:

(Im A)2 + [Im Çj/E - A2 + X |/t?)]2 < a2, (53)

- 1<X< + 1.

Danach muss sicher einmal j Im A j < a sein. Es gehören dann alle Paare
(E, A) zu einem Gebiet dieser Schar, für die ausserdem

Im)/E - A2\ < |lm|/£ |

ist, denn dann lässt sich X im erlaubten Intervall so wählen, dass der
zweite Summand in (53) verschwindet. Falls umgekehrt

Imi/7i -Zl2) > jlmj/X
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ist, so nimmt dieser Summand ein Minimum an für X + 1 oder X — 1,
und dieses Minimum beträgt

(\Im^E-A2\ - llnu/X)2.

Das Ergebnis lässt sich also auch so formulieren :

fx(E, A) ist regulär in E und A im Gebiet

| Im A | < a (54)

I Im jAtT-Zi21 - I Im )/e~\ < /oc2 - (Im Zi)2

bis auf einen Schnitt längs der positiv-reellen 7s-Achse
und bis auf endlich viele negativ reelle Singularitäten
in E, die den gebundenen Zuständen entsprechen.

Wir wollen zeigen, dass in diesem Gebiet die bisher bekannten Regulari-
tätsgebiete enthalten sind.

a) Regularität in cos § bei festem reellem E > 0

Wir führen wieder den Streuwinkel & ein :

A2 ^(l- cos ê) (55)

fx(E, A) ist eine gerade Funktion von zl, und deshalb ist fx(E, cosi?) regulär

in E und cos § in einem (54) entsprechenden Gebiet, das für relie TT > 0

wie folgt charakterisiert ist:

(Im Zl)2 + (Im fE - ZI2)2 < oc2,

oder, nach (55) :

(im j/yä - cos &)f + (im J/-Ì- (1 + cos #))2 < -J

(im sin —j + (im cos -A < ™ (56)

Setzt man & cp + ip, so wird

cos § Cos v cos cp — i Sin xp sin cp

Die Bedingung (56) ist dann nur eine Einschränkung für xp, sie lautet :

Sin2X<-<t.
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Für festes xp beschreibt cos ê als Funktion von cp eine Ellipse mit
Brennpunkten Az 1. Die Grenzellipse, die das Regularitätsgebiet umschliesst,
erhält man für

Sin2 JL - —Sln 2 E •

Ihre grosse Halbachse beträgt :

Cos v 1 + 2 Sin2 JL 1 + i£
(LEHMANN-Ellipse)

b) Das Regularitätsgebiet der Dispersionsrelation

Für welche Zl darf E in der ganzen Ti-Ebene variieren, ohne (54) zu
verletzen Sicher ist notwendig, dass (54) für E 0 erfüllt ist, und das
bedeutet :

\A\ <<x.

Wir wollen zeigen, dass das auch hinreichend ist. Dazu setzen wir
Zl re19 und beweisen, dass für alle E

| Im ]/£ -Zl2| - | Im fE\ < ]jr2- (ImA)2.

Wir führen einen komplexen Parameter % ein :

\JE -A2 iA Cos^, # a+ *'/?,

fö=iASm%,
Im VE — A2 r (Cos oc cos ß cos cp — Sin oc sin ß sin cp)

Im VE r (Sin a cos /? cos cp — Cos a sin ß sin 99)

Es bleibt zu verifizieren, dass für alle oc, ß die folgende Ungleichung gilt :

| Cos a cos ß cos cp — Sin a sin ß sin cp | <
< | cos cp I + I Sin « cos ß cos cp — Cos a sin ß sin cp |

Oder, nach Quadrieren beider Seiten :

cos2ß cos2cp — sin2/? sin29? < cos2cp + 2 | • • • |

Diese Ungleichung ist offenbar richtig.
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fx(E, A) ist also regulär in E und zl im direkten Produkt des Kreises
[ Zl | < a mit der ganzen 7ï-Ebene, abgesehen von einem Schnitt längs
der positiv-reellen E-Achse und bis auf endlich viele negativ-reelle
Singularitäten in E, die von den gebundenen Zuständen herrühren.

Appendix I: Der A- Operator

Die in (4) verwendeten cpn genügen dem inhomogenen Mittelwertsatz
der Potentialtheorie: Für jede Kugel KR (Mittelpunkt P, Radius 7?)

gut10)

(dKR Rand von KR, r Abstand des Integrationspunktes von P).
Aus cpn->xp und Acpn -> Axp folgt, dass diese Gleichung auch für xp und
zlv gilt.

Die Eindeutigkeit der Definition (4) ist bewiesen, wenn wir zeigen, dass

aus

folgt pi 0

<Pn->0

<Pn^ X
â<Pn -+[i

Für pt gilt jedenfalls nach (I, 1) :

!(r~i)^dV-° (1.2)

für jede Kugel KR. Wäre pi #e 0, so gäbe es aber eine Kugel KR in der pt

définit wäre, im Widerspruch zu (I, 2).
Es sei xp ein Element von D, G eine Kugel vom Radius 1 um irgendeinen

Punkt, den wir als Nullpunkt wählen. Wir definieren :

H(x)
Axp[x) für x < 1

0 const.

Da für v der Mittelwertsatz (1,1) gilt, ist xp(x) für alle x mit x < 1/2
darstellbar durch 10) :

xp(x) K(x — y) xp(y) d3y + H (x — y) pi(y) d3y ¦
n(y) dSy

\x-y\
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K(x) und 77(x) sind bis zu einer beliebig wählbaren Ordnung stetig
differenzierbare Funktionen, die nicht von xp abhängen, ferner ist K(x) 0

für x > 1/2. Daraus folgt :

Alle ip e D sind stetig differenzierbar und es gibt
Konstanten A und B unabhängig von ip derart, dass

< A XI + B i|Zivi •

Folglich approximieren alle zur Definition von zlv verwendbaren Folgen
cpn auch die ersten Ableitungen von ip gleichmässig. Eine unmittelbare
Folge davon ist die, dass der Greensche Satz, der ja für die Funktionen
aus D2 gilt, auch noch gültig ist für die Funktionen aus D.

Appendix II : Die approximierenden Potentiale

V(x) soll den Voraussetzungen (14) genügen. Wir definieren :

f V(x) falls x < Rn und | V(x) \ < Mn

0 sonst.
Vn(x)

Dann ist

| GV - GVn | < f x F(x) dx + f x F(x) dx

Rn En

wobei En aus denjenigen Punkten x besteht, für die x < Rn und F(x) >
Mn. Wir können aber nacheinander Rn und Mn so gross wählen, dass beide

Integrale kleiner sind als ljn. Dann ist

lim \GV - GVn\ 0.
n—>oo

Vn(x) ist quadratintegrierbar und kann daher mit beliebiger Genauigkeit
ön im quadratischen Mittel approximiert werden durch eine stetig
differenzierbare Funktion Un(x), die ebenfalls durch Mn beschränkt ist und
für x > Rn identisch verschwindet. Es ist dann

| GV„ - G Un | < sup -±- J-^ I Vn(y) - U„(y) \ < (Rn «3J1'2,

wie man durch Anwendung der Schwarzsehen Ungleichung erkennt. Es

gilt daher wieder
lim \GU.-GV\ 0
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falls man nur <5„ so wählt, dass R„òn -> 0. Falls V(x) die Bedingungen (5)

erfüllt, so kann man die Un(x) so wählen, dass sie gleichmässig gegen F(x)
konvergieren. Zum Beweis kann man sich etwa auf den Weierstrasseschen
Approximationssatz stützen.

Appendix III : Regularität von GV (k)

Für Im k > 0, Im k' > 0 ist

\eikr - eik''\ < \k-k'\r
also

| GV(k) - GV(k') | < | k - k' | f x* | V(x) | dx
0

Zumindest für Potentiale der Art (18) ist daher GV(k) stetig in Im k > 0.

Da aber die Approximation (19) gleichmässig ist in k, Im k > 0, folgt die

Stetigkeit von GV(k) für alle Potentiale, welche die Voraussetzung (14)
erfüllen. Es existiert daher

A <£ GV(k) dk

für jeden geschlossenen Weg in Im k > 0. Wir beweisen, dass A für jeden
solchen Weg verschwindet : Für beliebiges xp e C gilt :

cp Axp=l<£ GV{k) dk\xp= (£ GV(k) xp dk

<p(*) - ry §dk Jd%y e\kx-~y\ V^ v(y) •

also

Da das zweite Integral absolut und gleichmässig konvergiert für alle k,
darf man die Integrationen vertauschen. Deshalb ist tp(x) s 0 und, da

V beliebig war, auch A 0. Nach dem Satz von Morera ist daher GV(k)
regulär in Im k > 0.

Appendix VI : Regularität der Resolvente

Wenn k0 kein Eigenwert der Streugleichung ist, so existiert die Resolvente

R{k0), und wegen der Stetigkeit von GV(k) gibt es um k0 eine
Umgebung U derart, dass

| GV(k) - GV(k0) | < 2[^o)| für alle keU.
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Es sei

S R(k0) {1 - GV(k)),

1 - R(k0) [GV(k) - GV(k0)]

1-K.
Für k e U ist | K | < 1/2, und S_1 lässt sich daher durch die Neumann-
sche Reihe darstellen:

S-!= 1 + K A- K2 A-K3 A- ¦¦¦

Da diese Reihe für alle k e U absolut und gleichmässig konvergiert, ist

R(k) S-^k) R(k0)

regulär in k im Innern von U.
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