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Eine verallgemeinerte Storungstheorie
fiir quantenmechanische Mehrteilchenprobleme

von H. Primas
(Laboratorium fiir physikalische Chemie, Eidg. Technische Hochschule, Ziirich)

(3. XI. 1960)

Summary. A generalized form of a perturbation theory for a (nonrelativistic)
quantum mechanical many body Hamiltonian is given that can be useful for prob-
lems of quantum chemistry and other problems with a moderate number of par-
ticles. A modification of WaTson’s ¢-Operator allows a perturbational development
of a many body problem in terms of simpler subproblems. Some examples of such
cluster approximations are given. The whole theory is formulated in oprator form,
no recourse is made to a representation in terms of state vectors and there are no
assumptions about the degeneracy of the Hamiltonian. The given approximations
to the level shift transformation are both unitary and Lie functions in every order
of the development. Every step of the calculation can be done in the domain of
a Lie algebra and it is recommended that, full advantage be taken of this fact in
practical calculations. The use of the diagramm technique is avoided and there are
no explicit partial summations of the perturbation series, but similar results are
gained by the systematic use of the unitary conditions, of the Lie character and
the use of a modified #-Operator.

1. Einleitung

Diese Arbeit beschéftigt sich mit analytischen Approximationsmetho-
den fiir das Eigenwertproblem eines N-Teilchen-Hamiltonoperators der

Form

N N

N
ZEH;'M"”'” (1.1)
1

i<k <

l\'ﬂz

N N
o= HJ+22Hik+
k

i<

e

i=

H; = 1-Teilchenoperator,

H k= 2-Teilchenoperator, etc.
Dabei sei N eine missig grosse Zahl (N > 2, N € o0). Im allgemeinen
sind solche Probleme nicht in einer analytisch bequem zuginglichen Form
losbar, so dass man Approximationsmethoden anwenden muss. In allen
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Formen einer Stérungsrechnung wird vom Hamiltonoperator H ein Stor-
operator V' abgespalten
H=K+V. (1.2)

Natiirlich sollte die Stérung V «klein» sein, praktisch ist jedoch das
Kriterium fiir die Aufspaltung von H in K und V im allgemeinen eine
hinreichend einfache mathematische Struktur des Operators K. Um die
Formeln der Rayleigh-Schrédingerschen Stérungsrechnung praktisch
auszuwerten, ist man beispielsweise oft gezwungen, den Operator K als
Summe von 1-Teilchenoperatoren zu wihlen, was dann allerdings viel-
fach eine schlechte Konvergenz der Reihenentwicklung verursacht.
Zwar sind verschiedene Modifikationen der Rayleigh-Schrodingerschen
Stoérungstheorie mit verbessertem Konvergenzverhalten bekannt?), doch
sind die damit verbundenen Schwierigkeiten bei komplizierteren Pro-
blemen oft untragbar. In neuerer Zeit wurden die Stérungstheorie und
dhnliche Approximationsmethoden eingehend untersucht, und es wurden
beachtliche Fortschritte bei ihrer Anwendung auf das Mehrteilchen-
problem des Atomkerns und der statistischen Mechanik erzielt*). Von
wichtigen Resultaten sind beispielsweise zu erwdhnen:

a) die Abwesenheit von «unlinked clusters» in gewissen stérungstheo-
retischen Entwicklungen der Energie (vgl. 2) bis 12).

b) Einfithrung des #-Operators. Partielle Aufsummierung stérungs-
theoretischer Entwicklungen. Clusterentwicklungen (vgl. 9), 13) bis 26)).

Diese Methoden sind meist fiir die Berechnung der Energie des Grund-
zustandes von Atomkernen oder fiir die Anwendung auf Probleme der
statistischen Mechanik (N - oo) entwickelt worden. Anwendungen der
in diesen Arbeiten enthaltenen Ideen auf Probleme der Quantenchemie
(das heisst auf die Struktur und das Verhalten einzelner Molekiile) sind
uns bisher nicht bekannt geworden**). Das mag damit zusammenhingen,
dass diese Theorien in ihrer Originalform nicht direkt auf die Probleme
der Quantenchemie anwendbar sind, auch ist die iibliche Beschrinkung
des Formalismus auf die Berechnung der Energie des Grundzustandes
fiir viele Anwendungen der Quantenchemie und der Molekiilspektro-
skopie nicht hinreichend.

Wir geben im folgenden eine verallgemeinerte Stérungstheorie des
Eigenwertproblems eines Hamiltonoperators vom Typus der Gl (1.1).
Dabei wurden einige der Resultate der erwihnten neueren Arbeiten be-
riicksichtigt; andererseits wurde im Formalismus auf die Bediirfnisse

*) Eine vollstindige Aufzihlung aller wichtigen Arbeiten wiirde hier zu weit
fithren. Man vergleiche die Arbeiten 2) bis 26), Weitere Literaturzitate finden sich
in 27), 28) und 29).

**¥) Man vergleiche etwa die Referate 29) bis 33).
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einer auf chemische Probleme anwendbaren Theorie der Molekiile Riick-
sicht genommen. Es wird eine Entwicklung des Levelshiftoperators und
der dazugehérigen unitiren Transformation angegeben, bei welcher
Kenntnisse iiber losbare Subprobleme weitgehend mitberticksichtigt
werden konnen. Die Idee der Methode wird in Kapitel 2 skizziert. Die
mathematische Behandlung ist durchwegs in Operatorenform durch-
gefithrt, was die Ubersichtlichkeit ausserordentlich erleichtert. Da diese
Form der Darstellung nicht sehr iiblich zu sein scheint, geben wir in
einem Anhang eine Zusammenstellung der beniitzten mathematischen
Hilfsmittel. Anwendungen dieser Methoden auf Probleme der Molekiil-
spektroskopie und der Quantenchemie sollen an anderer Stelle diskutiert
werden,

2. Skizzierung der Methode

Der Hamiltonoperator sei ein hermitescher Operator endlicher Dimen-
sion*), von dem wir (in vorldufig willkiirlicher Weise) einen hermiteschen
Operator K abspalten,

H=K+V, H=H', K=K (2.1)

Sowohl H als auch K diirfen einen beliebigen Entartungsgrad aufweisen.
Vom Operator K nehmen wir an, dass seine Spektralzerlegung bekannt
sei*¥),

K =2xn K, (per def. ist x, + #x,, fiir n + m) (Z2.2)

%, = reelle Zahlen (Eigenwerte von K)
K,K,=96,,K,, ZK,,= 1. (2.3)

Gemdss den im Anhang genauer dargelegten Methoden ordnen wir jedem
Operator X einen «Diagonalteil» <X > beziiglich K zu,

X>=YEK,XK,. (2.4)

Diese Definition ist auch fiir entartete Operatoren K eindeutig.

*) Die Voraussetzung der endlichen Dimension machen wir lediglich der Ein-
fachheit halber. Alle Begriffsbildungen sind so gewihlt, dass sie ohne wesentliche
Schwierigkeiten auf Operatoren aus dem Operatorenbereich eines Hilbertschen
Raumes iibertragen werden konnen (vgl. dazu 34) und 35)).

**) Iiirdie praktische Auswertung der Schlussresultate benotigt man die Spektral-
zerlegung nicht, dafiir geniigen die im Anhang gegebenen Lie’schen Darstellungen
der Operatoren <¢...> und 1/k.
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Wir suchen nun einen unitdren Operator U, der den Hamiltonoperator
H auf die «Levelshift-Darstellung» bringt:

UK+V)Ul=K+W (UUt=UtU=1). (2.5)

Dabei ist W der sogenannte Levelshiftoperator (vgl. 3¢)), definiert durch
W= <W>. (2.6)

Folgende Normierung des unitiren Operators U,
An(U)> =0 (2.7)

ist mit (2.5) und (2.6) vertriglich und definiert U eindeutig (vgl. 37)).

Unser Ziel ist nun, Reihenentwicklungen der Operatoren U und W zu
erhalten. Die gewohnliche Rayleigh-Schrédinger Stérungsrechnung setzt
nun

H=K+4+ ¢V,
U:ZS”Un,
W=28"Wn

und berechnet die Operatoren U, und W,, wobei man praktisch die
Reihenentwicklung nach einer endlichen Zahl von Termen abbricht.
Gegen ein solches Verfahren kann man folgende Einwinde erheben:

a) Der Niherungsoperator K + eW; 4 ---+ -+ 4 "W, wird aus
K + ¢V durch eine nichtunitidre Transformation erhalten. Denn obwohl
U unitdr ist, ist 1 + U, + - - - + e"U,, nicht unitdr. In vielen Problemen
der Spektroskopie, Problemen von Linienverbreiterungen (vgl. 38)) usw.
ist es aber unumgénglich notwendig, dass die Approximation der Trans-

formation auf die Levelshift-Darstellung exakt unitér ist.

b) Der Operator 14 ¢U, + ++++¢" U, kann nicht als Lie-Funktion*)
dargestellt werden. Zwar kann die Entwicklung des Levelshiftoperators
W =K+ eW,+ -+ e"W, als Lie-Funktion dargestellt werden, doch
wird in den meisten Formulierungen der Stérungstheorie von dieser be-
deutsamen Moglichkeit keinen Gebrauch gemacht.

c) Die Darstellung von H als H = K + ¢V ist eine wesentliche Ein-
schrinkung der Flexibilitit der Storungsrechnung und kann zu einem

*)} Vgl. Anhang.
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schlechten Konvergenzverhalten der Stérungsreihen fiithren. Seit der
Einfiihrung des #-Operators durch WATsoN %) weiss man, dass ¢} durch-
aus nicht der zweckmissigste Entwicklungsoperator sein muss. Weiter
versperrt man sich durch die Darstellung H = K + ¢V oft die Beriick-
sichtigung von explizite bekannten Losungen von Subproblemen in der
Storungsrechnung.

Der ganze Fragenkomplex des Auftretens von «linked clusters» (vgl. %),
%)) hdngt auf das engste mit den Einwinden a) und b) zusammen (vgl.
dazu 8)). Wir verlangen daher von unserer Entwicklung, dass U in jeder
Ordnung der Storumgsrechnung exakt wnitdr und eine Lie-Funktion 1st.
Unseres Wissens fithren nur Exponentialansitze fiir U zu einer automa-
tischen Erfiillung dieser beiden Forderungen.

Ob man den Ansatz

U=exp{e G+ & Gy+ -}
oder
U=.--exp (€2 Gy) exp (¢ ()

wihlt, ist unwesentlich. Im folgenden setzen wir immer
U=expG, G=—-Gt) <G>=0 (2.8)

wobei <G> = 0 aus Gl. (2.7) folgt.

Um den Einwand c) zu beriicksichtigen, lassen wir uns eine beliebige
Potenzreihenentwicklung von V offen,

V=XV, (0Kjde=0). (2.9)

n=1

Die Raygleigh-Schrédinger Stérungsrechnung ist dann der Spezialfall
V,= 0 fiir » > 1. Im folgenden Kapitel 3 geben wir eine allgemeine
formale Stérungsrechnung fiir eine beliebige Zerlegung des Operators V/
gemdss Gl (2.9), das heisst explizite Formeln zur Berechnung der Opera-
toren G, und W, in den Entwicklungen von G und W nach Potenzen
von g,

G=§£" G,, W=fe"m. (2.10)
n=1 n=1

Durch eine Verallgemeinerung des Watsonschen #-Operators, kénnen die
verschiedensten Entwicklungen des Operators V' gemiss Gl. (2.9) ge-
wonnen werden, die zu praktisch niitzlichen Clusterentwicklungen von G
und W fithren. Auf diese Frage wird im Kapitel 4 und 5 eingegangen.
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3. Verallgemeinerte unitire und Lie’sche Storungsrechnung

Setzt man GIl. (2.8) in Gl. (2.5) ein und beriicksichtigt die Haussdorff-
sche Formel (A.18), so erhilt man

K+W=¢ (K+V)e©

=K+ V+[GK+V]+ 5 [6[6K+V]+
+ 57 (G, [G [G K + VI ++-- 3.1)

oder mit Hilfe der Potenzreihenentwicklungen (2.9) und (2.10):
K+eW,+2Wy+ W, + 0% =
=K +¢e{Vy+ (G, KT}

+ &V + (G, Vil + 7 [Gu, [G1, K1) + [y, K}

1
+ 6 Vs + Gy, Vil + (G, Vil + Gy, K] + 5 [Gy, [Go VIl +

1

+ - [y [Go KT] + 5 [Ga, [Gy, K] + =[Gy, [y, [Gy, K] +

4 0(54)}. (3.2)
~ Es ist bequem, einen Operator F einzufiihren, definiert durch
F=[K,G], F,=IK G,. [3.3]

Wegen <G> = 0, Gl. (2.8), folgt mit Gl. (A.33) die Umkehrung

1
3

1

G=%(F), G,=+(F) (3.4)

wobei 1/k der im Anhang definierte Superoperator ist Gl. (A.31).
Damit ergibt sich durch Koeffizientvergleich in Gl. (3.2):

W1+F1=V1:
Wyt Iy = V2+'%"[G1:V1+W1]:

1 1
W3+F3=V3+7[G1»V2+W2] +”2“[G2»V1+ Wil +

+ = [Gy, [Go, Vo — W1, (3.5)
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Diese Gleichungen kénnen durch Anwendung der Operationen <...>
resp. 1/k (. ..) rekursiv gelost werden, da <W,> = W,, <G,> = <F,>=0
und 1/k (W) =0, 1]k (F,) = G,. Beachtet man ferner die Gleichungen
(A.20) bis (A.26) und (A.35) bis (A.41), so folgen nach kurzer, einfacher
Rechnung folgende Resultate:

Wl = <V1>:.

W= V> + -;— <[% V1, VID )

Wo= >+ ([ Vo Va]) + 5 ({5 Vo [5 Vo 2Va+ W),

G=2 Vi (3.6)

G- trr b E T

Gi= 3 Vst o H;Vl, Vet Wy o3 [%Vz, Vit Wi+
o PR RN

Mit Hilfe von Relation (A.41) kdnnen die Ausdriicke fiir W, scheinbar
einfacher geschrieben werden, zum Beispiel

Wy+ W —(V, _"; Vy), etc. (3.7)

in welcher Form die konventionelle Stérungstheorie (V, =V, V, = 0 fiir
n > 1) oft formuliert wird (vgl. etwa 2),?)). Die Lie’sche Schreibweise in
der Form (3.6) hat aber gegeniiber der konventionellen (3.7) betricht-
liche Vorteile (insbesondere, da 1/k (...) und <...> Lie’sche Operatoren
sind. Vgl. Anhang). So muss zur Berechnung von W, nur der Kommu-
tator von 1/k (V,) und ¥V, bekannt sein. Vielfach ist dieser Kommutator
wesentlich einfacher zu berechnen als das gewhnliche Produkt V, 1/k(V,).
Die Berechnung in der Form (3.7) fithrt oft auf nichtphysikalische Terme,
die sich dann zwar gegenseitig wieder kompensieren, aber doch die Rech-
nung unndétig komplizieren. Solche Schwierigkeiten werden in Kommu-
tatorform von Gl. (3.6) automatisch vermieden.

22 H.P. A, 34,4 (1961)
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4. Entwicklung nach dem T-Operator

Zur storungstheoretischen Behandlung singuldrer oder grosser Stor-
operatoren V' wurde von WATsON13) der sogenannte {-Operator einge-
fithrt, der in unserer Operatorenschreibweise durch die Integralgleichung

1
b=V +V 2

mit den 2-Teilchen-Potentialen V und dem Propagator 1/k definiert ist.
Die Stérungstheorie wird dann in Potenzen von ¢ (und nicht in Potenzen
der Potentiale) durchgefiihrt, was zu erheblichen Konvergenzverbesse-
rungen fithren kann. ToBocMAN??) hat diesen Ansatz verallgemeinert und
zeigte, dass die Integralgleichung*)

1

zu einem {-Operator fiihrt, dessen Diagonalteil gerade gleich dem Level-
shiftoperator W ist, <¢) = W. Dadurch erreicht Tobocman eine Kom-
pensation der unphysikalischen «unlinked clusters». Wir glauben nun,
dass es zweckmassiger ist, den #-Operator etwas anders zu definieren. In
Anschluss an ToBocMAN verlangen wir von diesem Operator, den wir
T-Operator nennen wollen, dass der Diagonalteil von 7" den Levelshift-
operator W ergeben soll. Dagegen soll der Nichtdiagonalteil von 7" die
Information iiber die Erzeugende G der Levelshifttransformation er-
geben. Die Struktur der in Kapitel 3 entwickelten Stérungstheorie legt
nun folgenden Ansatz nahe (vgl. Gl. 3.5):

T=W+F, (F=[K G]), (4.1)
so dass dann gilt:
W=<T>, G=1(T). (4.2)

Wenn man also den Operator 7" kennt, sind die Operatoren W und G
ohne Schwierigkeiten zu berechnen (K ist ja voraussetzungsgemdss ein
Operator einfacher Struktur), so dass wir den Operator 7" durchaus als
«Losung» des gesuchten Problems betrachten kénnen. Im Gegensatz zu
dem Watsonschen #-Operator scheint es keine einfache Gleichung fiir den
T-Operator zu geben, doch bedeutet dies keineswegs eine Schwierigkeit.

*) Die Ubertragung auf eine Operatorenschreibweise ist nicht eindeutig. Von

unserem Standpunkt aus wire es natiirlicher zu definieren: ¢ = VU (vgl. Gl. 2.5).
Dann ist automatisch W = {¢> und aus Gl. 2.5 folgt dann fiir ¢ die Integralgleichung

1 1
] = V+?(t)—-V?{V—1t<t>}.
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Eine Moglichkeit, eine Entwicklung des Stéroperators V' gemiss Gl.
(2.9) zu erhalten, besteht in der Aufteilung des Mehrkoérperproblems in
losbare Subprobleme. Beispiele fiir solche Aufteilungen geben wir im
folgenden Kapitel. Sind diese Subprobleme explizite 16sbar, so sind auch
die entsprechenden T-Operatoren bekannt. Wir werden zeigen, dass der
T-Operator des Gesamtproblems nach den 7-Operatoren der Sub-
probleme entwickelt werden kann. Wir nehmen also an, dass der Stér-
operator V' des Hamiltonoperators H = K + V irgendwie aufgeteilt
werden konne

V=2V, (4.3)
so dass die Losungen der Subprobleme mit dem Hamiltonoperator
K+ V®

explizite losbar seien. Das heisst in der Levelshift-Darstellung der Sub-
probleme
exp (G*) (K + V%) exp(— G*) = K 4 W* (4.4)

sollen die Operatoren G* und W*bekannt sein und damit der Operator7*)

e T=W*+ F* mit F*=[K,GY. (4.5)
We=e<T%, G*=eo (T9). (4.6)

Um das Mehrteilchenproblem nach den Operatoren T* zu entwickeln,
driicken wir zundchst den Operator V* durch den Operator 7% aus. Dazu
schreiben wir Gl. (4.4) um als

Koo exp(_' el Ta) (K + & <T%) exp(a = :r“) . @)
Mit
Voc :Zen V:: (4'. 8)
#n=1

und der Hausdorffschen Formel (A.18) folgt dann aus (A.17) durch Ver-
gleich gleicher Potenzen in ¢:

v SN L (g, ] - P TL (1, 7w

LY n (n—1)! i

*) ¢ ist lediglich ein Entwicklungsparameter, den wir spiter wieder gleich eins
setzen.
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Wegen [K. 5 (7] = T2 = T =1 P

folgt [% (T%), K] =—¢"[GY F*),_,,

n

[& (T, <T)],_ =16 W,

und somit
—\n
e VE = — % [G*, F* +n W%, _,. (4.9)

Mit Gl. (2.9), (4.3) und (4.8) folgt damit fiir die ersten Ordnungen:

eVy=+ Y {F*+ W%,

2V, = —2[(;@, 5 Fwe, (4.10)

o

Setzt man diese Relationen in die Gl. (3.6) ein, so folgt bei Beriicksichti-
gung der Gl. (A.20) bis (A.26) und (A.35 bis (A.41) folgende Entwick-
lung:

W=D W=,

Wy=7 3 S <G F),

o+ B

W, =X X X6 [ 5 P + 7))

o fBFy (411)

-2 X(e [ 5 F ez W),

a=f

G, =2G,,
=g X X[z W]

o=+ p

In erster Ndherung setzt sich also sowohl der Levelshiftoperator W
als auch die Erzeugende G der Levelshifttransformation additiv aus den
entsprechenden Gréssen der Subprobleme zusammen. Diese Tatsache
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ist von Bedeutung fiir eine Begriindung der empirisch oft beobachteten
Additivitdt von Molekiileigenschaften (wie magnetische Suszeptibilitit,
chemical shift usw.). In den hoheren Ordnungen beachte man die Summa-
tionsbeschrinkungen, welche besagen, dass die Entwickiung bei der
ersten Ordnung abbricht, falls das Mehrteilchenproblem: mit dem a-ten
Subproblem identisch ist.

5. Beispiele fiir Clusterentwicklungen

Wir geben nun einige Beispiele, wie der Storoperator V' gemiss Gl
(4.3) zerlegt werden kann. Nur um ein bestimmtes Beispiel vor Augen
zu haben, nehmen wir an, dass der Hamiltonoperator H folgende Struk-
tur aufweise:

N N N
H=)H,+) }H,, (5.1)
n=1 n<m

wobei H, 1-Teilchen-Operatoren und H,, 2-Teilchen-Operatoren seien.

Entwicklung nach 2- Teilcheh-Wechselwirkungen

Der einfachste Fall einer Clusterentwicklung ist eine Entwicklung nach
2-Teilchen-Wechselwirkungen. Aus rechnerischen Griinden ist es immer
angenehm, K als Summe von 1-Teilchen-Operatoren zu wihlen, im ein-
fachsten Fall als

K =ZH" (5.2

und damit 3
V=) )H,,. (5.3)

n << m

Als 16sbares Subproblem betrachten wir das reine 2-Teilchen-Problem
H,+H,+H,,. (5.4)

Gemiss Gl. (4.3) teilen wir hier den Stéroperator V in eine Summe von
2-Teilchen-Operatoren V* auf, mit
Ve = H

nm?

(5.5)

wobei hier nun der Index « ein Teilchenpaar (n, m) bedeutet (n < m).

Da K eine Summe von 1-Teilchen-Operatoren ist, sind die Operatoren
G und W fiir die Probleme

K+ Ve o = (n, m) (5.6)
und '
H,+H,+H,, (5.7)
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identisch, das heisst es gilt

exp(G*) (K + V*) exp(— G%) = K + W*, (5:8)

eXP(Gnm) (Hn “+ Hm -+ Hnm) GXP(— Gnm) = Hn + Hm -+ IVnm) (59)

wobei
=G, W=W,. (5.10)
Ist somit die Losung des reinen 2-Teilchen-Operators (5.7) bekannt,
so sind gemiss Gl. (5.9) die Operatoren G,,, = G*und W,,, = W* bekannt
und damit kénnen mit den allgemeinen Formeln (4.11) die Zweiercluster-
Entwicklungen des Levelshiftoperators W und der Erzeugenden G der
Levelshifttransformation erhalten werden. Diese Entwicklung hat fol-
gende bemerkenswerte Eigenschaften:

a) Die Approximationen ersfer Ordnung nach Gl. (4.11) geben genau
dann das exakte Resultat, wenn jedes Teilchen nur mit einem einzigen
anderen Teilchen gekoppelt ist. In diesem Spezialfall verschwinden alle
héheren Niherungen*).

b) Fir den Fall sehr kleiner Kopplungskonstanten zwischen zwei Teil-
chen reduziert sich die #-te Ordnung dieser Clusterentwicklung genau auf
die n-te Ordnung der Rayleigh-Schrédingerschen Stérungsrechnung.

c) Die Konvergenz Clusterentwicklung ist immer besser als diejenige
der entsprechenden Rayleigh-Schrédingerschen Stérungsrechnung.

Diese 2-Teilchen-Entwicklung ist dann sinnvoll und gut konvergent,
wenn je zwei stark gekoppelte Teilchen nur schwach an andere stark
gekoppelte Teilchenpaare gebunden sind.

Entwicklung nach n-Terlchen-W echselwirkungen

Die obige 2-Teilchen-Clusterentwicklung kann leicht verallgemeinert
werden. Es sei nur der Fall einer 3-Teilchen-Clusterentwicklung kurz dis-
kutiert. In diesem Falle steht der Index « fiir ein Triplett von Teilchen,

o= (nml) mit n<<m<Il.
Fiir den Operator V'* wihlen wir den 3-Teilchen-Operator
Ve=H,.+H,, +H,. (5.11)

*) Wiirde man fiir die Levelshifttransformation U einen anderen als einen
Exponentialansatz gemacht haben, so wiirden physikalisch nicht sinnvolle Kreuz-
terme auftreten.
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Somit lautet die Zerlegung von V

2
V=—2D37 (5.12)
N

3 _
(5)
Der Operator K ist wiederum eine Summe von 1-Teilchen-Operatoren,

K=)H,

und somit reduziert sich das Auffinden der Operatoren W* und G* auf
die Losung des reinen 3-Teilchen-Problems.

Hn+Hm+Hl+Hnm+Hml+Hnl' (513)

Alle Bemerkungen, die bei der 2-Teilchen-Entwicklung gemacht wurden,
gelten mutatis mutandis auch fiir die 3- und n-Teilchen-Entwicklungen.
Die Kombination von verschiedenartiger Clusterentwicklungen kann in
praktischen Anwendungen von Wichtigkeit sein. Beispielsweise kann das
4-Teilchen-Problem

H=K+VT,
K=H1+H2+H3+H4,
V=Hj,+ Hy+ Hyy+ Hyy + Hyy + Hyy

nach einem 3-Teilchen-Problem ¥ * und drei 2-Teilchen-Problemen V#,
V7, V4 entwickelt werden, wobei

V =Ve+VE4L VY + 19,
VG=H12+H13‘|‘H23:

Vﬁ: H14,
V7=H24,
Vé = H34.

Self-Consistent Methode fiir die 1-Teilchen-W echselwirkungen

Der Levelshiftoperator W kann in 1-Teilchen-Operatoren W, , 2-Teil-
chen-Operatoren W, usw. zerlegt werden,
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Wihlt man nun als ungestdrten Operator K statt dem naheliegenden
Ansatz Gl. (5.2) den Operator

N
KZ”Z_IWH

so erhilt man eine wesentlich verbesserte Konvergenz. Gemiss Gl. (5.1)
ist dann V = H — K gegeben durch

N N N
V=22Hnm+Z(Hn—Wn)
n<m n=1
oder mit
£ __ H'n_“W'n Hm'_W'm __
14 _Hnm+ N—-1 -+ N—1 (d— (71/, m))
ist

V=V,

Das zugeordnete 2-Teilchen-Problem K + V' * reduziert sich wiederum
auf dasjenige von W, + W, + V", Da die Operatoren W, nicht bekannt
sind, muss das Problem iterativ gelost werden. Man beginnt mit H, +
H, + V™ berechnet (in einer gewissen Naherung) den Levelshiftoperator

W' mit w =YW, + W,

und beniitzt W,, als nichste Ndherung fiir W, usw. Man setzt das Ver-
fahren so lange fort, bis W® x~ W@+, Vielfach ist diese Iteration vor-
ziiglich konvergent.

Andere Methoden

Der Formalismus von Kapitel 3 und 4 ist sehr allgemein und lisst eine
Unzahl von Varianten zu. In den obigen Beispielen wurde der ungestorte
Operator K immer als Summe von 1-Teilchen-Operatoren gewihlt. Eine
solche Wahl ist nicht notwendig, aber im allgemeinen fiithrt ein anderer
Ansatz auf erhebliche rechnerische Schwierigkeiten. So ist dann beispiels-
weise das Problem GI. (5.6) wesentlich komplizierter als dasjenige von
Gl. (5.7), ebenso die Berechnung von <X und 1/k(X).

Alle obigen Entwicklungen sind fiir beliebige Entartungsgrade des
Hamiltonoperators H und K giiltig. Bei Problemen mit Symmetrie wird
natiirlich eine gruppentheoretische Reduktion wesentliche Vereinfa-
chungen bringen. In Clusterentwicklungen wird man die Subprobleme
der Symmetrie angepasst wihlen. Auf diese gruppentheoretischen Fragen
werden wir an anderer Stelle zuriickkommen.

Ich danke dem Schweizerischen Nationalfonds zur Férderung der Wissenschaften
und der Firma HorrMANN-LA RocHE AG., Basel fiir die Unterstiitzung dieser
Arbeit.
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Anhang: Mathematische Hilfsmittel

Operatoven und Supevoperatoven eines unitiren Raumes
(vgl. %), 49), 41))

U sei der durch die Zustandsvektoren eines qﬁantenmechanischen Systems auf-
gespannte unitire Raum. Die Dimension von I nehmen wir der Einfachheit halber
als endlich an. 4, B, C,... seien die zu dem unitiren Raum 1 assoziierten Opera-
toren. Die durch alle Operatoren iiber ) aufgespannte Algebra heisse die Operatoren-
algebra U (oder der Operatorenbereich ) des unitiren Raumes . Durch die Metrik
von [ ist zu jedem Operator A € U in der iiblichen Weise der zu A adjungierte
Operator At € A definiert.

Die Operatorenalgebra 9 ist ein linearer Raum iiber dem es wieder lineare Ope-
ratoren — sogenannte Superoperatoren @, b, c,. .. gibt, derart dass:

a(X) definiert ist fiir alle X € U,
a(X)eqN fiir alle X € U,
a(@X+pY) =a-a(X)+p-a(Y) (x f = komplexe Zahlen) .

Die durch diese Operatoren @, b, c,... aufgespannte Algebra heisse die Super-
algebra © des unitiren Raumes 1[. Hat 1l die Dimension #, so hat Y die Dimension
»n? und & die Dimension #4.

Durch Einfithrung eines Skalarproduktes in 9 kann die Operatorenalgebra 2
metrisiert werden. Als Metrik in 9[ wihlen wir die sogenannte Spurmetrik, definiert
durch:

{4, B) = Sp {4t B}, (4, BeN). (A1)

Wie iiblich ist (4, B) eine komplexe Zahl mit folgenden Eigenschaften:

(4, B)* = (B, 4), (A.2)
(4, A) = 0 mit (4, A) = 0 genau dann, wenn 4 = 0, (A.3)
(x4 + BB, C) = a*(4, C)+ p*(B, C), (A4)
(C,ad +BB) = «(C, A)+B(C, B) . (A.5)

Nun kénnen wir in der iiblichen Weise den (im Sinne der Spurmetrik) zu einem
Superoperator @ adjungierten Operator at definieren:

(@X,Y) = (X, atyY) (@, ateS; X, Ye. (A.6)

Somit sind hermitesche (at = @), unitire (@at = ata = 1), etc. Superoperatoren
definiert.

Es ist bemerkenswert, dass die die Transformation eines Operators 4 € A mit
einem (beziiglich der Metrik von ) unitirem Operator U

A=UAUt (UUI=UIU=1) (A7)

eine im Sinne der Spurmetrik unitire Transformation darstellt, das heisst es exi-
stiert ein unitdrer Superoperator ¢, derart dass )

A=1td), (@t =tt=1). (A.8)
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Dagegen sind natiirlich nicht alle unitidren Transformationen vom Typus der Gl. (A.8)
in der Form (A.7) darstellbar; dafiir wire noch die Forderung notwendig, dass ¢
in U einen Automorphismus erzeugt,

HXY) = t(X) £(Y). (A.9)

Da die Algebra % mit der Spurmetrik ein unitirer Raum ist, gelten alle Sitze
aus der Theorie der unitiren Riaume. Gegeniiber einem gewdshnlichen unitiren

Raum unterscheidet sich die Operatorenalgebra dadurch, dass zusitzlich noch
definiert sind:

— die Operation des Adjungierens (aus 4 € A folgt At € A)
— die Multiplikation der Elemente aus (aus 4, B € Y folgt A B € V).

Aus der Moglichkeit einer multiplikativen Verkniipfung der Elemente aus der
Operatorenalgebra 9 ergibt sich eine kleine schreibtechnische Komplikation: Die
Superoperatoren aus dem Operatorenbereich & von 9 sind im allgemeinen nicht
distributiv beziiglich der Multiplikation der Elemente von 9, das heisst

a(XY)# a(X)-Y im allgemeinen.

Zur Vereinfachung der Schreibweise sollen immer folgende Konventionen einge-
halten werden:

aXYZ... =a(XYZ...) (a€S, X, Y, Z,...eN), (A.10)
[aX, bY] = a(X) b(Y)—b(Y) a(X) . (A.11)

Derivationsoperatoven
(vgl. 18), 44))

Der Derivationsoperator k (beziiglich einem K € ) ist ein Superoperator, de-
finiert durch

k(X) = [K, X] (firalle Xe), (A.12)

k hat Derivationseigenschaften: (A.13)
R(XY) =RX)Y+X R(Y),

E(XYZ) =kR(X)YZ+ X R(Y)Z+ XY k(Z), etc. (A.14)

In bekannter Weise konnen Funktionen des Superoperators R definiert werden,
zum Beispiel mit Hilfe von Projektionsoperatoren. In unseren Anwendungen ist
der Operator K immer normal (K Kt = Kt K) und damit spektral zerlegbar,

K =2Xux, K, (perdef.istx, # 2, firn# m,

#n

= Eigenwerte von K , (A.15)

KoKy =6y Kn» 2XK,=1.

nm-"n?

Fir K, XK, # 0 sei f(x,— %,,) definiert und endlich. Dann gilt

JR) X = X X f (%= %) K, XK, (X €N). (A.16)
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Die Poienzen von k reprisentieren die sukzessiven Kommutatoren mit K
k(X) =[K, X], (XeN), (A.17)
mit
[H; X] =X

[K, X], = [K, X] = KX- XK,
[K: X]-n: {K; [K: X]n—-l] s

Die Exponentialfunktion von k ist fiir alle X € 9 eindeutig definiert und gegeben

durch

[e.0) n

erk(x) = 5 BF
n=0 7!

= eaK XpaK (A.18)

(X) = X+o[K, X]+ i‘; K, [K, X]]+...

Dagegen ist der inverse Operator zu k nicht eindeutig definiert. Die allgemeine Lo-
sung der Gleichung k(X) = Y (X, Y € A) kann mit den unten definierten Opera-
toren <...> und 1/k leicht angegeben werden.

Der Superoperator der Diagonalteilbildung {...>

Mit der Spektralzerlegung (A.15) kann ein idempotenter Superoperator dg wie
folgt definiert werden

dg(X) = ¥ K, XK, (fiir alle X €9),
n

2
dK =dK.

Fiir alle normalen K ist der Superoperator dg beziiglich der Spurmetrik hermitesch.
Der Operator dg hat alle formalen Eigenschaften einer Mittelwertsbildung (vgl. Gl.
A.20 bis A.24), welche bequemerweise mit eckigen Klammern dargestellt wird. Wir
definieren daher:
Xy =)' K, XK, (tiralleXe¥). (A.19)
"

Die Operation <. . .) soll immer beziiglich dem Operator K verstanden werden. Der
Operator (X ist immer eindeutig definiert, auch fiir entartetes K. Ist aber K nicht
entartet, so ist (X genau der Diagonalteil des Operators X in der Matrixdarstel-
lung der Eigenbasis von K. Allgemein gelten fiir die durch den Superoperator dg
darstellbare Operation <...> folgende Relationen (X, Y beliebige Operatoren
aus )

(K> = K, (A.20)
D> = 1 (1 = Einheitsoperator) , (A.21)
(aX+BY> = alX>+{Y>, (A.22)
KX = (X5, (A.23)
{XLYD) = WUXY) = (X5 (¥, (A.24)
[K, (X>] =0, (A.25)

[(XD, ¥YC(¥>] =0. (A.26)
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Nur fiir den Fall, dass K nicht entartet ist, gelten zusitzlich noch folgende Rela-
tionen:
[(X>, <Y>] = 0 (falls K nicht entartet) , (A.27)

{[X,<Y>]> = 0 (falls K nicht entartet) . (A.28)
Fiir den speziellen Fall, dass K eine Summe von 1-Teilchen-Operatoren I, ist,

K = 2;‘2 &y LIjy (mit [Ljy, I,] = 0 fiir j # &), (A.29)
1, ¥
®j» = komplexe Zahlen

gilt die fiir die praktische Rechnung angenehme Relation:

<I;fv Ik,u Ilg-o-) = <Ijv> <Ik,u> <Ilg>--- (A.30)

Der Superoperator 1k
Mit der Spektralzerlegung (A.15) definieren wir einen Superoperator 1/k wie folgt:

%(X) = 22%1{” (e OO Ry, = B B X, TR (A.31)

n— %m nEm Hp T Xy
(fiir alle X € Y) .

Gemiss der Definition der Projektionsoperatoren K, gilt immer s, # %, fir
n 7 m. Daher existiert 1/k fiir alle X und ist eindeutig definiert, auch fiir entartetes K.

Der Superoperator 1/k dient zur Auflésung von Kommutatorgleichungen. Not-
wendig und hinreichend dafiir, dass die Operatorengleichung

Y = k(X), dasheisst Y = [K, X] (A.32)

eine Losung hat, ist dass (Y = 0 ist; die allgemeine Losung lautet dann

1
X :—’;(Y)+<A>, (A.33)
wobei 4 ein beliebiger Operator aus 9 ist.
Der Operator 1/k ist im Falle der Existenz einer Losung der Kommutatorglei-
chung (A.32) derjenige partikuldre inverse Operator von R, der keinen «Diagonal-

teil» ergibt, das heisst

1
—(Y) =0 fiiralle Ye9[. (A.34)

k
Man beachte also, dass im allgemeinen 1/k % k™! ist, da der Operator 1/k im
Gegensatz zu k1 im ganzen Operatorenbereich U definiert ist. Die Schreibweise 1/k
wurde gewihlt, um die formale Analogie zu den Propagatoren der iiblichen Sto-
rungstheorie (vgl. 2), 9)) in Evidenz zu setzen.
Aus der Definition folgen sofort folgende Eigenschaften des Superoperators 1/k:
(X, Y, = beliebige Operatoren aus )

—;— (xX+BY) = oc% (X)+ﬁ—’1;- (Y) (o, B = komplexe Zahlen), (A.35)

% (x)) =0, (A.36)
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1

(X =0, (A.37)

1 1 1 1 | |

& EX®) = 5 (X V>, £ (DY) =X (V) (A.38)

1

k (F (X)) = e O, (A.39)

(l (X) Y> - _<Xl (Y)> (A.40)
k = 3 . :

(o] =(x b ooy (rke) =([rhea]).

Lie’sche Funktionen, Lie’sche Darstellung von (X und 1]k (X)

Wir beschrinken uns hier auf Superoperatoren sg, die durch einen einzigen
Operator K aus der Operatorenalgebra Y erzeugt werden. Die oben diskutierten
Superoperatoren k, k™, exp. (xk), 1/k und ¢...)> sind Beispiele dafiir. Von diesen
Superoperatoren sg gibt es nun solche, die sich durch eine besondere Einfachheit
auszeichnen, die sog. Lie’schen Superoperatoren (oder Lie'schen Funktionen, vgl.
45, 46)). sg(X) soll eine Lie’sche Funktion von X heissen, wenn sg(X) Element der
durch K und X erzeugten Lie’schen Algebra ist. Man bilde also den Kommutator
A = [K. X]und dann B = [K, 4], C = [X, A], D = [B, C], usw. bis der Bereich
unter der Kommutatorbildung abgeschlossen ist. Ist sg(X) als Linearkombination
von Elementen dieses Bereiches darstellbar, dann heisst sg(X) eine Lie’sche Funk-
tion von X und sk ein Lie’scher Superoperator. Evidenterweise ist jede Funktion
der Derivationsoperator k ein Liescher Superoperator, dagegen ist etwa

EHX) = KX

keine Lie’sche Funktion. Die viel beniitzte Cayleysche Darstellung einer unitiren
Transformation

14+iK P 1-:iK

1—4K 142K

tr(X) =

ist ebenfalls Aeine Lie’sche Funktion.

Es ist wohlbekannt, dass praktisch alle Probleme der klassischen Quanten-
mechanik eine Lie’sche Darstellung zulassen. Die systematische Ausniitzung dieser
Tatsache kann in praktischen Rechnungen zu erheblichen Vereinfachungen fiihren,
doch wird davon erstaunlicherweise recht wenig Gebrauch gemacht. Die sich kom-
pensierenden «unlinked clusters» der Stoérungsrechnung geben ein typisches Beispiel
fiir die Komplikationen, die bei einer Darstellung entstehen, welche den Lie’schen
Charakter des Problems nicht explizite zum Ausdruck bringt.

In den Definitionen (A.19) und (A.31) von (X} resp. 1/k(X) ist der Lie’sche
Charakter dieser Funktionen nicht in Evidenz gesetzt. Fiir die praktische Rechnung
soll man aber diese Tatsache unbedingt ausniitzen. Dies kann zum Beispiel mit Hilfe
folgender Relation geschehen:

e—iKt X giKt — (X5 + 2 C, cos(w, t) + 3 S, sin(w, ?) (w, > 0).
3 E n
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Der konstante Term ist (X ), wihrend sich 1/k(X) berechnet gemiss

1 1

—(X)=7: ¥y —3S5, .

g X =i Z S,

(Der Beweis folgt sofort durch Einsetzen der Spektralzerlegung von K.) Die Be-
rechnung von <X} und 1/k(X) gemiss dieser Darstellung mit Hilfe der durch K und
X erzeugten Lie’schen Algebra ist im allgemeinen wesentlich einfacher als mit den
Definitionsgleichungen und der Spektralzerlegung von K.
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