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Eine verallgemeinerte Störungstheorie
für quantenmechanische Mehrteilchenprobleme

von H. Primas
(Laboratorium für physikalische Chemie, Eidg. Technische Hochschule, Zürich)

(3. XI. 1960)

Summary. A generalized form of a perturbation theory for a (nonrelativistic)
quantum mechanical many body Hamiltonian is given that can be useful for problems

of quantum chemistry and other problems with a moderate number of
particles. A modification of Watson's ^-Operator allows a perturbational development
of a many body problem in terms of simpler subproblems. Some examples of such
cluster approximations are given. The whole theory is formulated in oprator form,
no recourse is made to a representation in terms of state vectors and there are no
assumptions about the degeneracy of the Hamiltonian. The given approximations
to the level shift transformation are both unitary and Lie functions in every order
of the development. Every step of the calculation can be done in the domain of
a Lie algebra and it is recommended that, full advantage be taken of this fact in
practical calculations. The use of the diagramm technique is avoided and there are
no explicit partial summations of the perturbation series, but similar results are
gained by the systematic use of the unitary conditions, of the Lie character and
the use of a modified ^-Operator.

1. Einleitung
Diese Arbeit beschäftigt sich mit analytischen Approximationsmethoden

für das Eigenwertproblem eines V-Teilchen-Hamiltonoperators der
Form

N NN NN N

H=ZHj+ZZHjk+ZZZHjklA-- (LI)
)' -1 j < k j < k < l

Hj 1-Teilchenopcrator,

H, k 2-Teilchenoperator, etc.

Dabei sei N eine massig grosse Zahl (N > 2, N <4 oo). Im allgemeinen
sind solche Probleme nicht in einer analytisch bequem zugänglichen Form
lösbar, so dass man Approximationsmethoden anwenden muss. In allen
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Formen einer Störungsrechnung wird vom Hamiltonoperator H ein
Störoperator V abgespalten

H KA-V. (1.2)

Natürlich sollte die Störung V «klein» sein, praktisch ist jedoch das
Kriterium für die Aufspaltung von H in K und V im allgemeinen eine
hinreichend einfache mathematische Struktur des Operators K. Um die
Formeln der Rayleigh-Schrödingerschen Störungsrechnung praktisch
auszuwerten, ist man beispielsweise oft gezwungen, den Operator K als
Summe von 1-Teilchenoperatoren zu wählen, was dann allerdings vielfach

eine schlechte Konvergenz der Reihenentwicklung verursacht.
Zwar sind verschiedene Modifikationen der Rayleigh-Schrödingerschen
Störungstheorie mit verbessertem Konvergenzverhalten bekannt1), doch
sind die damit verbundenen Schwierigkeiten bei komplizierteren
Problemen oft untragbar. In neuerer Zeit wurden die Störungstheorie und
ähnliche Approximationsmethoden eingehend untersucht, und es wurden
beachtliche Fortschritte bei ihrer Anwendung auf das Mehrteilchenproblem

des Atomkerns und der statistischen Mechanik erzielt*). Von
wichtigen Resultaten sind beispielsweise zu erwähnen :

a) die Abwesenheit von «unlinked clusters» in gewissen störungstheoretischen

Entwicklungen der Energie (vgl. 2) bis 12).

b) Einführung des ^-Operators. Partielle Aufsummierung
störungstheoretischer Entwicklungen. Clusterentwicklungen (vgl. 9), 13) bis 26)).

Diese Methoden sind meist für die Berechnung der Energie des
Grundzustandes von Atomkernen oder für die Anwendung auf Probleme der
statistischen Mechanik (N -> oo) entwickelt worden. Anwendungen der
in diesen Arbeiten enthaltenen Ideen auf Probleme der Quantenchemie
(das heisst auf die Struktur und das Verhalten einzelner Moleküle) sind
uns bisher nicht bekannt geworden**). Das mag damit zusammenhängen,
dass diese Theorien in ihrer Originalform nicht direkt auf die Probleme
der Quantenchemie anwendbar sind, auch ist die übliche Beschränkung
des Formalismus auf die Berechnung der Energie des Grundzustandes
für viele Anwendungen der Quantenchemie und der Molekülspektroskopie

nicht hinreichend.
Wir geben im folgenden eine verallgemeinerte Störungstheorie des

Eigenwertproblems eines Hamiltonoperators vom Typus der Gl. (1.1).
Dabei wurden einige der Resultate der erwähnten neueren Arbeiten
berücksichtigt ; andererseits wurde im Formalismus auf die Bedürfnisse

*) Eine vollständige Aufzählung aller wichtigen Arbeiten würde hier zu weit
führen. Man vergleiche die Arbeiten 2) bis 26). Weitere Literaturzitate finden sich
in27), 28) und 29).

**) Man vergleiche etwa die Referate 29) bis 33).
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einer auf chemische Probleme anwendbaren Theorie der Moleküle Rücksicht

genommen. Es wird eine Entwicklung des Levelshiftoperators und
der dazugehörigen unitären Transformation angegeben, bei welcher
Kenntnisse über lösbare Subprobleme weitgehend mitberücksichtigt
werden können. Die Idee der Methode wird in Kapitel 2 skizziert. Die
mathematische Behandlung ist durchwegs in Operatorenform
durchgeführt, was die Übersichtlichkeit ausserordentlich erleichtert. Da diese
Form der Darstellung nicht sehr üblich zu sein scheint, geben wir in
einem Anhang eine Zusammenstellung der benützten mathematischen
Hilfsmittel. Anwendungen dieser Methoden auf Probleme der
Molekülspektroskopie und der Quantenchemie sollen an anderer Stelle diskutiert
werden.

2. Skizzierung der Methode

Der Hamiltonoperator sei ein hermitescher Operator endlicher Dimension*),

von dem wir (in vorläufig willkürlicher Weise) einen hermiteschen
Operator K abspalten,

H K+V, H W, K K*. (2.1)

Sowohl H als auch K dürfen einen beliebigen Entartungsgrad aufweisen.
Vom Operator K nehmen wir an, dass seine Spektralzerlegung bekannt
sei**),

K JJx„ Kn (per def. ist xn 4= %m für n =t= m) (2.2)
n

nn reelle Zahlen (Eigenwerte von K)

KnKm ònmKn, ZKn=l. (2.3)
n

Gemäss den im Anhang genauer dargelegten Methoden ordnen wir jedem
Operator X einen «Diagonalteil» <X> bezüglich K zu,

<X>=£KnXKn. (2.4)
n

Diese Definition ist auch für entartete Operatoren K eindeutig.

*) Die Voraussetzung der endlichen Dimension machen wir lediglich der
Einfachheit halber. Alle Begriffsbildungen sind so gewählt, dass sie ohne wesentliche
Schwierigkeiten auf Operatoren aus dem Operatorenbereich eines Hilbertschen
Raumes übertragen werden können (vgl. dazu 34) und 35)).

* *) Für die praktische Auswertung der Schlussresultate benötigt man die
Spektralzerlegung nicht, dafür genügen die im Anhang gegebenen Lie'schen Darstellungen
der Operatoren <. .> und 1/fe.
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Wir suchen nun einen unitären Operator U, der den Hamiltonoperator
H auf die «Levelshift-Darstellung» bringt:

U(K A- V) W K A- W (UW=WU=1). (2.5)

Dabei ist W der sogenannte Levelshiftoperator (vgl. 36)), definiert durch

W=<W>. (2.6)

Folgende Normierung des unitären Operators U,

<ln(<J)> 0 (2.7)

ist mit (2.5) und (2.6) verträglich und definiert U eindeutig (vgl. 37)).

Unser Ziel ist nun, Reihenentwicklungen der Operatoren U und W zu
erhalten. Die gewöhnliche Rayleigh-Schrödinger Störungsrechnung setzt
nun

H^KA-eV,

U=]Te*Un,

W=2Js"Wn

und berechnet die Operatoren Un und Wn, wobei man praktisch die
Reihenentwicklung nach einer endlichen Zahl von Termen abbricht.
Gegen ein solches Verfahren kann man folgende Einwände erheben:

a) Der Näherungsoperator K + bW1 + •••+••• + e" Wn wird aus
K + eV durch eine nichtunitäre Transformation erhalten. Denn obwohl
U unitär ist, ist 1 + eU^ + • • • + e"Un nicht unitär. In vielen Problemen
der Spektroskopie, Problemen von Linienverbreiterungen (vgl. 38)) usw.
ist es aber unumgänglich notwendig, dass die Approximation der
Transformation auf die Levelshift-Darstellung exakt unitär ist.

b) Der Operator 1 + eL7a + • • • + e" U„ kann nicht als Lie-Funktion*)
dargestellt werden. Zwar kann die Entwicklung des Levelshiftoperators
W K + eW1 +••• + £" Wn als Lie-Funktion dargestellt werden, doch
wird in den meisten Formulierungen der Störungstheorie von dieser
bedeutsamen Möglichkeit keinen Gebrauch gemacht.

c) Die Darstellung von H als H K + eV ist eine wesentliche
Einschränkung der Flexibilität der Störungsrechnung und kann zu einem

*) Vgl. Anhang.
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schlechten Konvergenzverhalten der Störungsreihen führen. Seit der

Einführung des ^-Operators durch Watson13) weiss man, dass eV durchaus

nicht der zweckmässigste Entwicklungsoperator sein muss. Weiter
versperrt man sich durch die Darstellung H K + eV oft die
Berücksichtigung von explizite bekannten Lösungen von Subproblemen in der

Störungsrechnung.
Der ganze Fragenkomplex des Auftretens von «linked clusters» (vgl.2),

9)) hängt auf das engste mit den Einwänden a) und b) zusammen (vgl.
dazu 8)). Wir verlangen daher von unserer Entwicklung, dass U in jeder
Ordnung der Störungsrechnung exakt unitär und eine Lie-Funktion ist.
Unseres Wissens führen nur Exponentialansätze für U zu einer automatischen

Erfüllung dieser beiden Forderungen.
Ob man den Ansatz

U exp {e Gx + £2 G2 + • • •}
oder

U • • ¦ exp (e2 G2) exp (e Gj)

wählt, ist unwesentlich. Im folgenden setzen wir immer

U exp G G=-<X <G> 0 (2.8)

wobei <G> 0 aus Gl. (2.7) folgt.
Um den Einwand c) zu berücksichtigen, lassen wir uns eine beliebige

Potenzreihenentwicklung von V offen,

oo

V=£e»Vn, (dKlds 0). (2.9)
»-1

Die Raygleigh-Schrödinger Störungsrechnung ist dann der Spezialfall
Vn 0 für n > 1. Im folgenden Kapitel 3 geben wir eine allgemeine
formale Störungsrechnung für eine beliebige Zerlegung des Operators V
gemäss Gl. (2.9), das heisst explizite Formeln zur Berechnung der Operatoren

Gn und Wn in den Entwicklungen von G und W nach Potenzen
von e,

oo oo

G=2>X> W=£e"Wn. (2.10)
n=1 «=1

Durch eine Verallgemeinerung des Watsonschen /(-Operators, können die
verschiedensten Entwicklungen des Operators V gemäss Gl. (2.9)
gewonnen werden, die zu praktisch nützlichen Clusterentwicklungen von G

und W führen. Auf diese Frage wird im Kapitel 4 und 5 eingegangen.
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3. Verallgemeinerte unitäre und Lie'sche Störungsrechnung

Setzt man Gl. (2.8) in Gl. (2.5) ein und berücksichtigt die Haussdorff-
sche Formel (A.18), so erhält man

K + W eG (K + V) e~G

K + V + ± [G, K + V] A- jj [G, [G, K + V]] +

+ ^[G, [G, [G,i?+F]]] + (3.1)

oder mit Hilfe der Potenzreihenentwicklungen (2.9) und (2.10) :

K + eW1 + e2W2A- e3 W3 + 0(e4)

K + e{V1+[G1,K]}

+ e2 JX + [Gi, X] + i [Gj, [Gx, ä]] + [G„ X}

+ £3 {X + [G* X] + [Gl UJ + [G3, iv] + Ì [Gx, [^, 7J] +

+ | [Glf [G2, K]] + | [G2, [Gl K] + Ì [Gl [Gl [Gl K]]] +

+ 0(£*)}. (3.2)

Es ist bequem, einen Operator F einzuführen, definiert durch

F=[K,G], F„=[K, G„]. [3.3]

Wegen <G> 0, Gl. (2.8), folgt mit Gl. (A.33) die Umkehrung

G =-1(F), G„ i-(F„) (3.4)

wobei 1/fe der im Anhang definierte Superoperator ist Gl. (A.31).
Damit ergibt sich durch Koeffizientvergleich in Gl. (3.2) :

^!+X=X>
W% + F2 V2 A- \ [Gx, X + W,],

Ws + F3 Vs + Ì [Gl F2 + WJ + | [G2, Fx + TTJ +

+ -jV [X [X. X - WJ] ¦ (3-5)
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Diese Gleichungen können durch Anwendung der Operationen <... >

resp. 1/fe rekursiv gelöst werden, da <Wn> Wn, <G„> <Fn> 0
und 1/fe (Wn) 0, \jk (Fn) Gn. Beachtet man ferner die Gleichungen
(A.20) bis (A.26) und (A.35) bis (A.41), so folgen nach kurzer, einfacher
Rechnung folgende Resultate :

w± -<yx>,

w2 -<V*>+2-([ìV»Vi])>

w3 - <X> + ([iv,, V2]) + A ([I Fl [|X, 2 Vx + Wl]]),

x - | X (3-6)

G2 'tVjUt^^ + IFJ,

G3 4F3+ll[lF^2+^]+H[iF2-F1+^] +

+ü[i^[t^-^]]+Hft&^+
+ W1),V1A-W1]\.

Mit Hilfe von Relation (A.41) können die Ausdrücke für W„ scheinbar
einfacher geschrieben werden, zum Beispiel

W.2 " <X>-(X|X). etc. (3.7)

in welcher Form die konventionelle Störungstheorie (Vx V, Vn 0 für
n > 1) oft formuliert wird (vgl. etwa 2),9)). Die Lie'sche Schreibweise in
der Form (3.6) hat aber gegenüber der konventionellen (3.7) beträchtliche

Vorteile (insbesondere, da 1/fe und <... > Lie'sche Operatoren
sind. Vgl. Anhang). So muss zur Berechnung von W2 nur der Kommutator

von 1/Jfe (Vj) und V1 bekannt sein. Vielfach ist dieser Kommutator
wesentlich einfacher zu berechnen als das gewöhnliche Produkt Vx IjkVV^.
Die Berechnung in der Form (3.7) führt oft auf nichtphysikalische Terme,
die sich dann zwar gegenseitig wieder kompensieren, aber doch die Rechnung

unnötig komplizieren. Solche Schwierigkeiten werden in
Kommutatorform von Gl. (3.6) automatisch vermieden.

22 H. P. A. 34, 4 (1961)
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4. Entwicklung nach dem T-Operator
Zur störungstheoretischen Behandlung singulärer oder grosser

Störoperatoren V wurde von Watson13) der sogenannte ^-Operator eingeführt,

der in unserer Operatorenschreibweise durch die Integralgleichung

t v + vL(t)

mit den 2-Teilchen-Potentialen V und dem Propagator 1/fe definiert ist.
Die Störungstheorie wird dann in Potenzen von t (und nicht in Potenzen
der Potentiale) durchgeführt, was zu erheblichen Konvergenzverbesserungen

führen kann. Tobocman17) hat diesen Ansatz verallgemeinert und
zeigte, dass die Integralgleichung*)

t V + V-L(f)-<t>V±(V-H)

zu einem ^-Operator führt, dessen Diagonalteil gerade gleich dem Level-
shiftoperator W ist, <ty W. Dadurch erreicht Tobocman eine
Kompensation der unphysikalischen «unlinked clusters». Wir glauben nun,
dass es zweckmässiger ist, den ^-Operator etwas anders zu definieren. In
Anschluss an Tobocman verlangen wir von diesem Operator, den wir
T-Operator nennen wollen, dass der Diagonalteil von T den Levelshift-
operator W ergeben soll. Dagegen soll der Nichtdiagonalteil von T die
Information über die Erzeugende G der Levelshifttransformation
ergeben. Die Struktur der in Kapitel 3 entwickelten Störungstheorie legt
nun folgenden Ansatz nahe (vgl. Gl. 3.5) :

T=W+F, (F=[K,G]), (4.1)

so dass dann gilt:
W=<Ty, G i(T). (4.2)

Wenn man also den Operator T kennt, sind die Operatoren W und G

ohne Schwierigkeiten zu berechnen (K ist ja voraussetzungsgemäss ein
Operator einfacher Struktur), so dass wir den Operator T durchaus als

«Lösung» des gesuchten Problems betrachten können. Im Gegensatz zu
dem Watsonschen ^-Operator scheint es keine einfache Gleichung für den

T-Operator zu geben, doch bedeutet dies keineswegs eine Schwierigkeit.

*) Die Übertragung auf eine Operatorenschreibweise ist nicht eindeutig. Von
unserem Standpunkt aus wäre es natürlicher zu definieren: t VU (vgl. Gl. 2.5).
Dann ist automatisch W <f} und aus Gl. 2.5 folgt dann für t die Integralgleichung

t= v + i(t)-v-y{v-u<,t>}.
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Eine Möglichkeit, eine Entwicklung des Störoperators V gemäss Gl.
(2.9) zu erhalten, besteht in der Aufteilung des Mehrkörperproblems in
lösbare Subprobleme. Beispiele für solche Aufteilungen geben wir im
folgenden Kapitel. Sind diese Subprobleme explizite lösbar, so sind auch
die entsprechenden F-Operatoren bekannt. Wir werden zeigen, dass der
F-Operator des Gesamtproblems nach den F-Operatoren der
Subprobleme entwickelt werden kann. Wir nehmen also an, dass der
Störoperator V des Hamiltonoperators H K + V irgendwie aufgeteilt
werden könne

V=£Va, (4.3)
a

so dass die Lösungen der Subprobleme mit dem Hamiltonoperator

K + V«

explizite lösbar seien. Das heisst in der Levelshift-Darstellung der
Subprobleme

exp (Ga) (K + Va) exp (- Ga) K + Wa (4.4)

sollen die Operatoren Ga und Wa bekannt sein und damit der OperatorT" *)

g ja W« + pa mit pa [^ £a] _ (4.5)

W" e<T*>, Ga e A (Ta). (4.6)

Um das Mehrteilchenproblem nach den Operatoren Fa zu entwickeln,
drücken wir zunächst den Operator Vx durch den Operator Fa aus. Dazu
schreiben wir Gl. (4.4) um als

K + V« exp(- e -1 tA (K + s <Fa» exp(£ i. F<j (4.7)

Mit
OO

V«=Ze"Vl (4.8)
ji= i

und der Hausdorffschen Formel (A.18) folgt dann aus (A.17) durch
Vergleich gleicher Potenzen in g :

v« ^r [Ì W Kl - (~xr [i^ <ra>]„-i •

*) e ist lediglich ein Entwicklungsparameter, den wir später wieder gleich eins
setzen.
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Wegen

folgt

und somit

H. Primas H.P.A.

\k, i (Ta)l Ta - <Fa> e-1 Fa

[i(T-),K]n=-e-nG,Fin_l,

[i (T-), <T«y]n_x e- [P, r],_,

e" F? - (-)" [Ga, Fa + «IFa]„_1. (4.9)

Mit Gl. (2.9), (4.3) und (4.8) folgt damit für die ersten Ordnungen:

eV^+ZiF^A-W«},

?2v2 -£\g,ìf* + w«]
OC

£3 V, + X [G". tG*. i F« + y r]] •

(4.10)

Setzt man diese Relationen in die Gl. (3.6) ein, so folgt bei Berücksichtigung

der Gl. (A.20) bis (A.26) und (A.35 bis (A.41) folgende Entwicklung:

wx -Zw*,
a

w2 -tZZwa*ß
X]>,

ws -ZZZ{[<*
a /3*y L ,[^1 F* + i Wr]])

-ZZ{[g*
a #=/3

XL
¦K-e- X + -1 W>]]),

Gi-=ZG«>
a

G2--ÌZZ[&-
a + ß L

iFß+ TP']

(411)

In erster Näherung setzt sich also sowohl der Levelshiftoperator W
als auch die Erzeugende G der Levelshifttransformation additiv aus den

entsprechenden Grössen der Subprobleme zusammen. Diese Tatsache
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ist von Bedeutung für eine Begründung der empirisch oft beobachteten
Additivität von Moleküleigenschaften (wie magnetische Suszeptibilität,
chemical shift usw.). In den höheren Ordnungen beachte man die Summa-
tionsbeschränkungen, welche besagen, dass die Entwicklung bei der
ersten Ordnung abbricht, falls das Mehrteilchenproblem mit dem oc-ten

Subproblem identisch ist.

5. Beispiele für Clusterentwicklungen

Wir geben nun einige Beispiele, wie der Störoperator V gemäss Gl.
(4.3) zerlegt werden kann. Nur um ein bestimmtes Beispiel vor Augen
zu haben, nehmen wir an, dass der Hamiltonoperator H folgende Struktur

aufweise :

N NN
H=ZHn+ZZHnm (5-1)

n= 1 n < m

wobei Hn 1-Teilchen-Operatoren und Hnm 2-Teilchen-Operatoren seien.

Entwicklung nach 2-Teilchen-Wechselwirkungen

Der einfachste Fall einer Clusterentwicklung ist eine Entwicklung nach
2-Teilchen-Wechselwirkungen. Aus rechnerischen Gründen ist es immer
angenehm, K als Summe von 1-Teilcben-Operatoren zu wählen, im
einfachsten Fall als

K=ZHn (5-2)
n

und damit

y=ZZHnm- (5-3)
n < m

Als lösbares Subproblem betrachten wir das reine 2-Teilchen-Problem

Hn + Hm + Hnm. (5.4)

Gemäss Gl. (4.3) teilen wir hier den Störoperator V in eine Summe von
2-Teilchen-Operatoren V* auf, mit

V1 H (5.5)

wobei hier nun der Index oc ein Teilchenpaar (n, m) bedeutet (n < m).
Da K eine Summe von 1-Teilchen-Operatoren ist, sind die Operatoren
G und W für die Probleme

K+V« oi=(n,m) (5.6)
und

HnA-HmA-Hnm (5.7)
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identisch, das heisst es gilt

exp (Ga) (K A- Va) exp (- G«) K + W« (5.8)

exp(G„J (Hn + Hm + Hnm) exp(- Gnm) =Hn + HmA- Wnm, (5.9)

wobei

G«=Gnm, W«=Wnm. (5.10)

Ist somit die Lösung des reinen 2-Teilchen-Operators (5.7) bekannt,
so sind gemäss Gl. (5.9) die Operatoren Gnm Ga und Wnm W* bekannt
und damit können mit den allgemeinen Formeln (4.11) die Zweiercluster-
Entwicklungen des Levelshiftoperators W und der Erzeugenden G der
Levelshifttransformation erhalten werden. Diese Entwicklung hat
folgende bemerkenswerte Eigenschaften :

a) Die Approximationen erster Ordnung nach Gl. (4.11) geben genau
dann das exakte Resultat, wenn jedes Teilchen nur mit einem einzigen
anderen Teilchen gekoppelt ist. In diesem Spezialfall verschwinden alle
höheren Näherungen*).

b) Für den Fall sehr kleiner Kopplungskonstanten zwischen zwei
Teilchen reduziert sich die «-te Ordnung dieser Clusterentwicklung genau auf
die «-te Ordnung der Rayleigh-Schrödingerschen Störungsrechnung.

c) Die Konvergenz Clusterentwicklung ist immer besser als diejenige
der entsprechenden Rayleigh-Schrödingerschen Störungsrechnung.

Diese 2-Teilchen-Entwicklung ist dann sinnvoll und gut konvergent,
wenn je zwei stark gekoppelte Teilchen nur schwach an andere stark
gekoppelte Teilchenpaare gebunden sind.

Entwicklung nach n-Teilchen-Wechselwirkungen

Die obige 2-Teilchen-Clusterentwicklung kann leicht verallgemeinert
werden. Es sei nur der Fall einer 3-Teilchen-Clusterentwicklung kurz
diskutiert. In diesem Falle steht der Index a für ein Triplett von Teilchen,

<x (n, m, l) mit n <C m < l.
Für den Operator Va wählen wir den 3-Teilchen-Operator

V« HnmA-HmlA-Hnl. (5.11)

*) Würde man für die Levelshifttransformation U einen anderen als einen
Exponentialansatz gemacht haben, so würden physikalisch nicht sinnvolle Kreuz-
terme auftreten.
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Somit lautet die Zerlegung von V

V =X_V,T/«. (5.12)

Der Operator K ist wiederum eine Summe von 1-Teilchen-Operatoren,

K=ZH„
n

und somit reduziert sich das Auffinden der Operatoren TP" und Ga auf
die Lösung des reinen 3-Teilchen-Problems.

Hn + Hm + Hl + HnmA- Hml + Hnl. (5.13)

Alle Bemerkungen, die bei der 2-Teilchen-Entwicklung gemacht wurden,
gelten mutatis mutandis auch für die 3- und «-Teilchen-Entwicklungen.
Die Kombination von verschiedenartiger Clusterentwicklungen kann in
praktischen Anwendungen von Wichtigkeit sein. Beispielsweise kann das

4-Teilchen-Problem

H KA-V,

K HX + H2 + H3 + Hi,
V H12 + H13 + Hxi + H2Z + H2i A- H3i

nach einem 3-Teilchen-Problem Fa und drei 2-Teilchen-Problemen Vß,

Vy, Ve entwickelt werden, wobei

V =Va+Vß+VyA-V\
V- H12 + HX3 + H23,

Vß Hu,

W H2i,

Vò H3i.

Self-Consistent Methode für die 1 -Teilchen-Wechselwirkungen

Der Levelshiftoperator W kann in 1-Teilchen-Operatoren W„, 2-Teil-
chen-Operatoren Wnm usw. zerlegt werden,

N NN
W=ZWn+ZZWnm+---

1 — n n< m
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Wählt man nun als ungestörten Operator K statt dem naheliegenden
Ansatz Gl. (5.2) den Operator

K=ZWn
»=i

so erhält man eine wesentlich verbesserte Konvergenz. Gemäss Gl. (5.1)
ist dann V H — K gegeben durch

NN N

V=ZZH™+Z(Hn~Wn)
n < m n= 1

oder mit

ist

v=ZV* ¦

Das zugeordnete 2-Teilchen-Problem KA- Va reduziert sich wiederum
auf dasjenige von Wn + Wm + Vnm. Da die Operatoren Wn nicht bekannt
sind, muss das Problem iterativ gelöst werden. Man beginnt mit Hn +
Hm + Vnm, berechnet (in einer gewissen Näherung) den Levelshiftoperator
*"mit w-ZK+ZK.
und benützt W'n als nächste Näherung für W„ usw. Man setzt das
Verfahren so lange fort, bis W(p) m Wlp+1'1. Vielfach ist diese Iteration
vorzüglich konvergent.

Andere Methoden

Der Formalismus von Kapitel 3 und 4 ist sehr allgemein und lässt eine
Unzahl von Varianten zu. In den obigen Beispielen wurde der ungestörte
Operator K immer als Summe von 1-Teilchen-Operatoren gewählt. Eine
solche Wahl ist nicht notwendig, aber im allgemeinen führt ein anderer
Ansatz auf erhebliche rechnerische Schwierigkeiten. So ist dann beispielsweise

das Problem Gl. (5.6) wesentlich komplizierter als dasjenige von
Gl. (5.7), ebenso die Berechnung von <X> und \jk(X).

Alle obigen Entwicklungen sind für beliebige Entartungsgrade des

Hamiltonoperators H und K gültig. Bei Problemen mit Symmetrie wird
natürlich eine gruppentheoretische Reduktion wesentliche Vereinfachungen

bringen. In Clusterentwicklungen wird man die Subprobleme
der Symmetrie angepasst wählen. Auf diese gruppentheoretischen Fragen
werden wir an anderer Stelle zurückkommen.

Ich danke dem Schweizerischen Nationalfonds zur Förderung der Wissenschaften
und der Firma Hoffmann-La Roche AG., Basel für die Unterstützung dieser
Arbeit.
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Anhang: Mathematische Hilfsmittel

Operatoren und SuperOperatoren eines unitären Raumes

(vgl. 39), 4°), «))

U sei der durch die ZustandsVektoren eines quantenmechanischen Systems
aufgespannte unitäre Raum. Die Dimension von U nehmen wir der Einfachheit halber
als endlich an. A, B, C,. seien die zu dem unitären Raum lt assoziierten Operatoren.

Die durch alle Operatoren über U aufgespannte Algebra heisse die Operatorenalgebra

31 (oder der Operatorenbereich 3t) des unitären Raumes U. Durch die Metrik
von U ist zu jedem Operator A e 31 in der üblichen Weise der zu A adjungierte
Operator A\ e 31 definiert.

Die Operatorenalgebra 31 ist ein linearer Raum über dem es wieder lineare
Operatoren - sogenannte SuperOperatoren a, b, c,.. gibt, derart dass :

a(X) definiert ist für alle X e 3t,

a(X) e 3t für alle X e 3t,

a(ocXA-ßY) a • a(X) A-ß ¦ a(Y) (a, ß komplexe Zahlen)

Die durch diese Operatoren a, b, c,. aufgespannte Algebra heisse die Super-
algebra S des unitären Raumes H. Hat U die Dimension », so hat 31 die Dimension
m2 und S die Dimension n4-.

Durch Einführung eines Skalarproduktes in 3t kann die Operatorenalgebra 31

metrisiert werden. Als Metrik in 3t wählen wir die sogenannte Spurmetrik, definiert
durch :

(A,B) SV{A\B}, (A,Be%). (A.l)

Wie üblich ist (A, B) eine komplexe Zahl mit folgenden Eigenschaften :

(A, B)* (B,A) (A.2)

(A, A) :> 0 mit (A, A) 0 genau dann, wenn A 0 (A.3)

(«AA-ßB, C) =a*(A, C)A-ß*(B, C) (A.4)

(C, ocA + ßB) =<x(C,A) + ß(C,B). (A.5)

Nun können wir in der üblichen Weise den (im Sinne der Spurmetrik) zu einem
Superoperator a adjungierten Operator at definieren:

(aX, Y) (AT, at Y) («,oteg; X, Y e 3t). (A.6)

Somit sind hermitesche (at a), unitäre (aat at a 1), etc. SuperOperatoren
definiert.

Es ist bemerkenswert, dass die die Transformation eines Operators A e 31 mit
einem (bezüglich der Metrik von 31) unitärem Operator U

2 ua r/t (u ut r/t u i) (a.7)

eine im Sinne der Spurmetrik unitäre Transformation darstellt, das heisst es
existiert ein unitärer Superoperator t, derart dass

A t(A) (tft tU 1) (A.8)
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Dagegen sind natürlich nicht alle unitären Transformationen vom Typus der Gl. (A.8)
in der Form (A.7) darstellbar; dafür wäre noch die Forderung notwendig, dass t
in 3t einen Automorphismus erzeugt,

t(XY) t(X) t(Y) (A.9)

Da die Algebra 3t mit der Spurmetrik ein unitärer Raum ist, gelten alle Sätze
aus der Theorie der unitären Räume. Gegenüber einem gewöhnlichen unitären
Raum unterscheidet sich die Operatorenalgebra dadurch, dass zusätzlich noch
definiert sind :

- die Operation des Adjungierens (aus A e 31 folgt Ai e 3t)

- die Multiplikation der Elemente aus (aus A, B e 31 folgt A B e 3t).

Aus der Möglichkeit einer multiplikativen Verknüpfung der Elemente aus der
Operatorenalgebra 31 ergibt sich eine kleine schreibtechnische Komplikation: Die
SuperOperatoren aus dem Operatorenbereich S von 3t sind im allgemeinen nicht
distributiv bezüglich der Multiplikation der Elemente von 3t, das heisst

a(XY) ^ a(X) • Y im allgemeinen.

Zur Vereinfachung der Schreibweise sollen immer folgende Konventionen
eingehalten werden:

aXYZ. a(XYZ.. (ae<Z, X, Y, Z,. e 31) (A.10)

[aX, 6Y] a(X) b(Y) - b(Y) a(X) (A.ll)

Derivationsoperatoren

(vgl. «•), "))

Der Derivationsoperator k (bezüglich einem /fe3l) ist ein Superoperator,
definiert durch

k(X) [K, X] (für alle X e 31) (A.12)

fe hat Derivationseigenschaften : (A.13)

k(XY) k(X)Y+X fe(Y)

k(XYZ) k(X) YZ + Xk(Y)ZA-XY k(Z), etc. (A.14)

In bekannter Weise können Funktionen des Superoperators fe definiert werden,
zum Beispiel mit Hilfe von Projektionsoperatoren. In unseren Anwendungen ist
der Operator K immer normal (K KA KA K) und damit spektral zerlegbar,

K — 2 Hn Kn (per def. ist xn ^ xm für « ^ m,

xn Eigenwerte von K (A.15)

X Xi "ntu X ' *< X 1 •

Für Kn XKm =£ 0 seif(xn— xm) definiert und endlich. Dann gilt

f(k)X ZZf («„- *J Kn XKm (X e 31) (A.16)
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Die Potenzen von k repräsentieren die sukzessiven Kommutatoren mit K:

k»(X) [K, X]n (X e 3t) (A.17)
mit

[K, X]0 X,
[K, X\ (K, X] KX-XK
[K,X]n= [K, [K, X]n_x]

Die Exponentialfunktion von k ist für alle X e 3t eindeutig definiert und gegeben
durch

e*k(X) Z ~~ (*) X+x[K,X]+ 4r \-K- \-K> *]] + •••„-0 ri\ 2!

e*KXe~aK. (A.18)

Dagegen ist der inverse Operator zu fe nicht eindeutig definiert. Die allgemeine
Lösung der Gleichung k(X) Y (X, Y e 31) kann mit den unten definierten Operatoren

<.. .> und 1/fe leicht angegeben werden.

Der Superoperator der Diagonalteilbildung <•••)>

Mit der Spektralzerlegung (A.15) kann ein idempotenter Superoperator d/f wie
folgt definiert werden

dK(X) ZKnXKn
n

(für alle X e 3t)

.2
dK dK.

Für alle normalen K ist der Superoperator djc bezüglich der Spurmetrik hermitesch.
Der Operator d/r hat alle formalen Eigenschaften einer Mittelwertsbildung (vgl. Gl.
A.20 bis A.24), welche bequemerweise mit eckigen Klammern dargestellt wird. Wir
definieren daher:

(Xy £ Kn XKn (für alle X e 3t) (A.19)
n

Die Operation <. > soll immer bezüglich dem Operator K verstanden werden. Der
Operator (Xy ist immer eindeutig definiert, auch für entartetes K. Ist aber K nicht
entartet, so ist (X> genau der Diagonalteil des Operators X in der Matrixdarstellung

der Eigenbasis von K. Allgemein gelten für die durch den Superoperator d/c
darstellbare Operation <. > folgende Relationen (X, Y beliebige Operatoren
aus 31)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

<k> K

<1> 1 (1 Einheitsoperator)

<xXA-ßYy a<A-> + /S<Y>,

«xyy <*>,

<A-<y» «A->Y> <A-><Y>,

[K, <X>] o,

[<AT>, Y-iYy] 0.
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Nur für den Fall, dass K nicht entartet ist, gelten zusätzlich noch folgende
Relationen :

[<AT>, <Y>] 0 (falls K nicht entartet) (A.27)

<[AT, <Y>]> 0 (falls K nicht entartet) (A.28)

Für den speziellen Fall, dass K eine Summe von 1-Teilchen-Operatoren Ijy ist,

K= ZS *iv Ijv (mit [/,,, IklA 0 für j^k) (A.29)

a.jv komplexe Zahlen

gilt die für die praktische Rechnung angenehme Relation:

<Ijv hu Iie- ¦ ¦> </,>> </*„> </;e>. •. (A.30)

Der Superoperator 1/fe

Mit der Spektralzerlegung (A.15) definieren wir einen Superoperator 1/fe wie folgt :

i(X) ZS —è X {X- <Xy} Km Z S ~ K XKm (A.31)

(für alle X e 31)

Gemäss der Definition der Projektionsoperatoren Kn gilt immer xn ^ xm für
n^m. Daher existiert 1 /fe für alle X und ist eindeutig definiert, auch für entartetes K.

Der Superoperator 1/fe dient zur Auflösung von Kommutatorgleichungen.
Notwendig und hinreichend dafür, dass die Operatorengleichung

Y k(X), das heisst Y [K, X] (A.32)

eine Lösung hat, ist dass <Y> 0 ist; die allgemeine Lösung lautet dann

X T(Y)A-<Ay, (A.33)

wobei A ein beliebiger Operator aus 31 ist.
Der Operator 1/fe ist im Falle der Existenz einer Lösung der Kommutatorgleichung

(A.32) derjenige partikuläre inverse Operator von fe, der keinen «Diagonalteil»

ergibt, das heisst
1

-r (Y) 0 für alle Y e 31. (A.34)

Man beachte also, dass im allgemeinen 1/fe # fe-1 ist, da der Operator 1/fe im
Gegensatz zu fe-1 im ganzen Operatorenbereich 31 definiert ist. Die Schreibweise 1/fe
wurde gewählt, um die formale Analogie zu den Propagatoren der üblichen
Störungstheorie (vgl. 2), 9)) in Evidenz zu setzen.

Aus der Definition folgen sofort folgende Eigenschaften des SuperOperators 1/fe:
(X, Y, beliebige Operatoren aus 3t)

1 1 1

-^(aXA-ßY) =a-fe-(A')+/S-fe-(y) (a, ß komplexe Zahlen) (A.35)

(~ (X)) 0 (A.36)
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1

ft <AT> 0 (A.37)

-fe-(2C<Y»=T(X)<Y>, ~«A->Y) =<x>i-(y), (A.38)

*(i(X))= .*-<*>, (A.39)

(4-(^)Y)= -(^-fe-(y))' (A-4°)

<[x'-i(Y)])=(xi(Y))+(yi(x))^([Y4H)- (A-41)

Lie'sche Funktionen, Lie'sche Darstellung von (Xy und 1/fe (X)

Wir beschränken uns hier auf SuperOperatoren Sk, die durch einen einzigen
Operator K aus der Operatorenalgebra 31 erzeugt werden. Die oben diskutierten
Superoperatoren fe, fem, exp. (afe), 1/fe und <. .> sind Beispiele dafür. Von diesen
SuperOperatoren äjc gibt es nun solche, die sich durch eine besondere Einfachheit
auszeichnen, die sog. Lie'schen Superoperatoren (oder Lie'schen Funktionen, vgl.
45), 46)). S/((X) soll eine Lie'sche Funktion von X heissen, wenn Sfr(X) Element der
durch K und X erzeugten Lie'schen Algebra ist. Man bilde also den Kommutator
A [K. AT] und dann B [K, A], C [X, A], D [B, C], usw. bis der Bereich
unter der Kommutatorbildung abgeschlossen ist. Ist Sr(X) als Linearkombination
von Elementen dieses Bereiches darstellbar, dann heisst S/c(X) eine Lie'sche Funktion

von X und Sk ein Lie'scher Superoperator. Evidenterweise ist jede Funktion
der Derivationsoperator fe ein Liescher Superoperator, dagegen ist etwa

k+(X) KX

keine Lie'sche Funktion. Die viel benützte Cayleysche Darstellung einer unitären
Transformation

lA-iK 1-iK
*t(X) TZrir X1-iK lA-iK

ist ebenfalls keine Lie'sche Funktion.
Es ist wohlbekannt, dass praktisch alle Probleme der klassischen

Quantenmechanik eine Lie'sche Darstellung zulassen. Die systematische Ausnützung dieser
Tatsache kann in praktischen Rechnungen zu erheblichen Vereinfachungen führen,
doch wird davon erstaunlicherweise recht wenig Gebrauch gemacht. Die sich
kompensierenden «unlinked clusters» der Störungsrechnung geben ein typisches Beispiel
für die Komplikationen, die bei einer Darstellung entstehen, welche den Lie'schen
Charakter des Problems nicht explizite zum Ausdruck bringt.

In den Definitionen (A.19) und (A.31) von <X> resp. l/k(X) ist der Lie'sche
Charakter dieser Funktionen nicht in Evidenz gesetzt. Für die praktische Rechnung
soll man aber diese Tatsache unbedingt ausnützen. Dies kann zum Beispiel mit Hilfe
folgender Relation geschehen:

e-iKt XeiKt= <Xy A-SCn cos(co„ t) + Z $n sinK 0 K > °) ¦



350 H.Primas H. P.A.

Der konstante Term ist <X>, während sich \jk(X) berechnet gemäss

i(X)=iz~sn.
(Der Beweis folgt sofort durch Einsetzen der Spektralzerlegung von K.) Die
Berechnung von <X> und ljk(X) gemäss dieser Darstellung mit Hilfe der durch K und
X erzeugten Lie'schen Algebra ist im allgemeinen wesentlich einfacher als mit den
Definitionsgleichungen und der Spektralzerlegung von K.
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