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Zur Frage der Vorzeichenumkehr des Magnetfeldes
beim Meissnereffekt

II. Diffuse Oberflächenstreuung

von R. Sommerhalder und H. Thomas
IBM Forschungslaboratorium, Zürich

(20. XI. 1960)

A bstract. Our recently published calculations of the penetration of a longitudinal
magnetic field through the wall of a superconducting hollow cylinder, according to
Pippard's non-local theory with specular reflection of the electrons at the surfaces
have been extended to cover the case of diffuse scattering of the electrons at the
surfaces.

It is shown by numerical analysis that the wall thickness, above which the
magnetic fields inside and outside the hollow cylinder have different signs, is about
750 Â larger, and the maximum field attenuation ratio available for experimental
detection of the sign reversal, about twice as low for diffuse as for specular surface
scattering. Both results do not depend upon the value of the coherence length.

Because of the strong similarity between the BCS and Pippard kernels, these
results should also be fairly representative for the BCS-theory.

I. Einleitung
In einer vorausgegangenen Arbeit (Sommerhalder und Thomas 1961)

haben wir zur Prüfung der nichtlokalen Theorie der Supraleitung Experimente

mit supraleitenden Hohlzylindern vorgeschlagen. An lange
Hohlzylinder soll aussen ein homogenes longitudinales Magnetfeld Ha angelegt

werden, und es soll das in den Hohlraum eindringende Feld H{ als
Funktion der Wandstärke D des Hohlzylinders bestimmt werden. Dieser
Feldverlauf, insbesondere die minimal notwendige Wandstärke für negatives

Verhältnis Hi/Ha (kritische Wandstärke), sowie die Wandstärke für
maximales negatives Verhältnis HijHa (optimale Wandstärke) wurden
für den Fall des Pippardschen Kernes berechnet unter der Voraussetzung
spiegelnder Reflexion der Elektronen an den Oberflächen.

Auf Grund der bisherigen Erfahrungen (Reuter und Sondheimer
1948) sollen die speziellen Reflexionsbedingungen an den Oberflächen
keinen wesentlichen Einfluss auf den Feldverlauf haben. Es ist aber
qualitativ leicht einzusehen, dass im Fall diffuser Oberflächenstreuung die
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kritische wie auch die optimale Wandstärke nach grösseren Wanddicken
verschoben werden. Da bereits verhältnismässig geringe Änderungen dieser

Werte zu experimentell unangenehm kleinen negativen Abschwäch-
ungsverhältnissen Hi\Ha führen könnten, schien uns die Ausdehnung der
Berechnungen der ersten Arbeit auf den Fall diffuser Streuung der
Elektronen an den Oberflächen angezeigt.

II. Berechnung der Feldabschwächung

Wir führen die gleichen Symbole und Koordinaten ein wie in der ersten
Arbeit. Das Vektorpotential A(x) ist eine Lösung der Integro-Differen-
tialgleichung

D

A"(x) f K(\x-x'\) ¦ A(x') -dx' (2.1)
o

und genügt den Randbedingungen

A'(0)=Ha A'(D)=Ha. (2.2)

Die Voraussetzung diffuser Oberflächenreflexion kommt in den
Integrationsgrenzen von (2.1) zum Ausdruck. Die gesuchte Verknüpfung
zwischen H{ und Ha erhält man aus der Bedingung

A(0) RH1I2. (2.3)

Die Rechnungen sollen hier für den Pippardschen Kern

oo

K(\*\) ^-1* -[(-T-i)-^xm-*t (2-4)

durchgeführt werden.
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ein, so transformieren sich (2.1) bis (2.4) in

A

F"(s) -a- f k(\s-s'\) ¦ F(s') -ds' 0, (2.6)
o

F'(0) 1; F(zl) i-, (2.7)

F(0) -| (2.8)

und

*(M)=/(4--•?)¦«-""•*¦ (2-9)
i"

^(s) muss linear von den Randwerten abhängen :

F(s)= <p(s) + ±f(s). (2.10)

Dabei sind y(s) und y(s) Lösungen von (2.6) und genügen den
Randbedingungen

ç>'(0) 1, <p'(A) 0
(2.11)

y'(0) 0 y>'(A) 1.
Daraus folgt

<p(s) -w(A-s) (2.12)

und somit lässt sich F(s) durch yj(s) allein darstellen.
Für das Feldstärkenverhältnis h findet man

V(0)

e/2 + yj(2l)
(2.13)

Zur numerischen Berechnung der Lösungsfunktion %p im Intervall
0 < s < A approximieren wir y durch einen Polygonzug mit n gleichen
Intervallen der Länge l Ajn: Die Funktionswerte an den Stellen
s k • l (k 0,1,...,n) sind ip(k ¦ l) =y>k; dazwischen wird linear
interpoliert. Ferner setzt man an allen inneren Punkten k 1, 2,...,n — 1

V* TT (V*+i - 2 % + y*-i) • (2-14)

A

Zur Darstellung von /" k( | s — s' | • yi(s') • ds' durch die Werte ^ führt
o

man folgende Funktionen ein*) :

*) Wir verdanken diese Idee Herrn Prof. Dr. Rutishauser, Inst, für angew.
Mathematik ETH.
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y(x) -y(-x) / k(\t\) dt
ò

X

z(x) + z{- x) /" y(<) • <ft (2.15)

2 1 r i 5 *2 *3 /at2 *" \ _, aA-e-X-[-A+T2X + UÄ-^Ä-(-2--ZÄ)- E^\

für x > 0, wobei

o

Dann ist überall ß(s) y'(s) 2"(s).

Damit wird für s i • l (i 1, 2,..., n — 1)

A A

ds'I H j s - s' [ • ip(s') ¦ ds' y(s' - s) y>(s') - j y (s' - s) • yi'(s')
0 0 0

»-1 1

y„-i • v>n - y-.- • % -27 t (v*+x - v*) • (zt+i-i - «t-.-). (2-17)
A-0

da ip'(s') ja im Intervall k • I < s' < (& + 1) • / konstant ist. Die Singularität

von /%( | s — s' I an der Stelle s s' macht bei der partiellen
Integration wegen der Stetigkeit der Funktionen y(s — s') und z(s — $')
keine Schwierigkeiten.

Mit (2.14) und (2.17) ergeben sich aus der Integrodifferentialgleichung
(2.6) daher die « — 1 linearen Gleichungen

-rr? • [Vi+i - 2 f, + vi-J Vo • [- y-i + -j («i-« - 2-j) ] +

+ 27 T ¦ Vt • [**+i-, - 2 z4_, + **_!_,] + (2.18)
*=i

+ Vn " [y»-i - y (*»-i - *„-!-.•)] ¦
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Die Randbedingungen (2.11) werden durch

v'(°) TT" ' [- 3 Vo + 4 Vi - V«] 0

V'(^) "27 • P V» - 4 Vn-l + Vn-iJ
(2.19)

approximiert. Durch (2.18) und (2.19) ist ein lineares Gleichungssystem
für dien A- 1 Funktionswerte ip{ gegeben. Es wurde für n 25 Teilintervalle

auf der elektronischen Rechenmaschine ERMETH aufgelöst, in
einigen Beispielen zur Überprüfung der Rechengenauigkeit für n 45.

Im Gültigkeitsbereich des von Peter 1958 angegebenen Iterationsverfahrens

stimmen die Lösungen unseres Gleichungssystems sehr gut mit
seiner Formel überein.

III Resultate

Das Verhältnis HJHa des in den Hohlraum eindringenden Magnetfeldes
Ht zum äusseren angelegten Feld Ha in Abhängigkeit von der Wandstärke
D des Hohlzylinders ist in Figur 1 aufgezeichnet für die gleichen zwei
Parametersätze wie im Fall der elastischen Oberflächenstreuung:

a) Radius des Hohlzylinders R 1 cm, Eindringtiefe der London théorie
X 500 Â, Kohärenzlänge S S0 2500 A (Bardeen, Cooper und
Schrieffer 1957). Dies entspricht dem Fall einer ungestörten
Zinnschicht.

b) R 1 cm, X 500 Â, S 1000 A. Dies entspricht dem Fall einer
Zinnschicht mit einem Störungsgehalt, wie er in realen Schichten
vorhanden ist (Schawlow 1958, Jaggi und Sommerhalder 1960).

Negative Verhältnisse Hi\Ha treten in der ungestörten Schicht erstmals
für Schichtdicken D m 2150 A auf, in der gestörten für D «» 5400 Â.
Diese kritischen Wandstärken sind zu vergleichen mit den entsprechenden
Schichtdicken D sa 1400 Â resp. D rv 4650 A im Fall der spiegelnden
Reflexion der Elektronen an den Oberflächen. Es ergibt sich somit, dass

unabhängig von der Kohärenzlänge die kritische Wandstärke bei diffuser
Oberflächenreflexion um rund 750 A grösser ist als bei spiegelnder
Oberflächenreflexion

Das optimale FeldstärkenVerhältnis Hi\Ha ist in der ungestörten Schicht
Hi\Ha «s - 5 • 10"7, in der gestörten HJHa & - A ¦ 10~9. Die
entsprechenden Feldstärkenverhältnisse bei spiegelnder Oberflächenreflexion
sind HijHa «s — 1 • IO-6 resp. Hl\Ha fa — 8 • IO-9, also unabhängig von
der Kohärenzlänge etwa zweimal kleiner bei diffuser Oberflächenstreuung
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Die starke Ähnlichkeit des Pippardschen Kerns mit demjenigen der
BCS-Theorie lässt erwarten, dass die speziellen Annahmen über die
Reflexion der Elektronen in den Oberflächen auch dort nicht von grösserem
Einfluss auf den Vorzeichenwechsel des Magnetfeldes in dünnen
supraleitenden Schichten sind.
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Fig. 1

Verhältnis der inneren zur äusseren Feldstärke Hi/Ha
in Funktion der Schichtdicke D. Radius des Hohlzylinders R 1 cm.

Londonsche Theorie (A 500Â).
Pippardsche Theorie (f 10 2500 Â, A 500 Ä).
Pippardsche Theorie (£„ 2500 Â, | 1000 Â, X — 500 Â).

In Figur 2 ist die Ortsabhängigkeit des Feldverlaufs für die Schichtdicke

D 6000 Â und für die Parameterwerte £0 2500 Â; | 2500 Â
bzw. | 1000 Â aufgezeichnet. Im ersteren Fall wechselt das Magnetfeld

sein Vorzeichen grössenordnungsmässig in der Schichtmitte, im
letzteren Fall innerhalb der ersten 100 Â vom Innenrand des Hohlzylinders
aus gerechnet.

Für wesentlich dünnere Schichten kann der entsprechende Kurvenverlauf

der Formel von Peter 1958 entnommen werden.
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Fig. 2

Ortsabhängigkeit des Magnetfeldes H(x) in der Wand des Hohlzylinders. Ha
angelegtes äusseres Magnetfeld; Wandstärke D 6000 Â, Anzahl der Teilintervalle

n 45, Radius des Hohlzylinders R 1 cm.

Pippardsche Theorie (X 500 À, J |0 — 2500 À),
Pippardsche Theorie (X 500 Â, |0 2500 À, | 1000 Â).

Wir danken Herrn Prof. Dr. Rutishauser, Institut für angewandte
Mathematik ETH, für seine wertvolle Unterstützung herzlich.
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