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Phase Shifts and Model Potentials

By Mario VerpEe, Istituto di fisica, Universita di Torino, Italy

1. Introduction

We wish to present a brief discussion of the problem, of fundamental
interest in nuclear physics, concerning the correspondence of a set of
measured phase shifts as function of the energy in an elastic scattering,
to a possible potential which may serve as model to describe a nuclear
collision.

There is of course a large choice of experimental situations and we
have to restrict ourselves to very simple cases in order to elucidate
without too involved mathematics the type of information which can be
derived from such a model potential?).

If, for instance, we assume knowledge of the dependence of the scatter-
ing amplitude for a certain range of values of energy in a s-wave non-
relativistic scattering of a spinless particle by an external field, our aim
is to find the spatial dependence of the corresponding model potential in
the appropriate space region.

It is manifest, from very simple physical considerations, that a knowl-
edge of the scattering amplitude at low energies would enable us to
reproduce the behaviour of the potential at large distances only. Con-
versely a more refined knowledge of the potential at smaller distances
should involve information regarding cross sections at high energies.

We wish to anticipate here, as will quantitatively be demonstrated
below, the conclusion that the asymptotic behaviour of the potential at
large distances is very sensitive to the position and the nature of singu-
larities of the scattering matrix S(£), as function of the energy £2). On
the other hand, any knowledge of the potential at small distances, if
deduced from s-eigenwaves only, is insensitive to the analytical properties

1) It is a pleasure to acknowledge here the many stimulating discussions on
kindred problems, held with Prof. P. ScHERRER during my unforgettable period of
studies in his famous Institute. I apologize for not being able to treat here the type
of nuclear collisions which have lately been of special interest to Professor SCHER-
RER. Yet many of the facts appearing in our present discussion are essential to
the mastering of more complex situations.

2) The connection between the singularities of the S matrix and the behaviour
of the potential at large distances, in absence of bound states, has been elucidated
by R. Jost [1]. Numbers in brackets refer to References, page 241.
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of S(E) at low energies. In fact, it is determined by the analytical be-
haviour of a GREEN’s function near s spectrum and for fixed spatial
points (WIGNER’s R(E) function), for large values of E.

It is a difficult task to extract such information from s-wave experi-
ments, and, therefore, it is preferable to avail oneself to high energy
collision data. Since a large number of partial waves are involved in such
cases, it becomes necessary to generalize our considerations in order to
establish a correspondence between a model potential and the analytical
behaviour of the total scattering amplitude as function of the scattering
angle at a fixed energy. It is, however, also instructive to consider the
problem of the internal region when R(FE) is known. This problem will
be discussed in section 2.

The mathematical tool necessary to reach the conclusions mentioned
above in the most straightforward manner, consists in relating the model
potential U(x) to some appropriate kernels K,(x, x") and K,(x, x")

K, (%,%) = %] Ulx)dx', K(x,x)= %/ U(x') dx’ (1)

x 0
K, and K, will respectively be called the kernels of MARCHENKO and of
GEL’FAND and LeviTAN. The Marchenko kernel K, gives a very good
approximation for large x, when S(E) is known, and is therefore well
suited for representation of U(x) in the external region, whereas K,
serves as an approximation for small x, when R(E) is known, and hence

can yield the model potential in the internal region.

2. The Model Potential in the Internal Region

We begin with a discussion of the determination of the potential at
small distances. Here it is the kernel K; which plays the important role.

K, can be defined in several ways, for instance by means of the fol-
lowing integral representation

-+ 00

Ki(x, ) = [ [doo(E) — do(E)] B(E', ) By(E', ¥); ¥’ <x  (2)

—00

the integration taking place along the entire energy spectra belonging
to the hermitian hamiltonians H and H,. @ and @, respectively corre-
spond to the eigenwaves of H, and of H,, which may be termed the
hamiltonian of the free motion?).

HO — ED, Hy®Dy— E®, H  H,— U
%) It is not necessary for I, to be merely the operator of the kinetical energy:

it may correspond to a motion in a given potential whose solutions are known.
Some restrictions must be imposed upon the difference H — H; = U(x) in order

x
that equation (2) be meaningful. It is sufficient that f U(x') dv" exists.
0
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@ and @, are normalized in such a way that they behave like x for x = 0.
do and dg, are the differentials of the spectral functions p(E) and py(E)
which enter into the well-known integral representation of Green'’s func-
tion

G(E, x, &) = [ do(E)

—00

The kernel K;(x,x") is part of the operator which links the @'s to the @;'s.

D(E, x) D(E, &)

®(E, x) = B,(E, x) + /;Ki(x, V) Bo(E; ') d’ )

This important equation, known in the literature as the Gel’fand and
Levitan integral equation [2], will be derived in section 5 4).
It is now clear, as consequence of equations (4) and (2), that
KO(x, ') = [ dlog— o) B(E', 2) By(E', x') (5)
approximates the kernel K, for small », and that better approximations
can be obtained by iteration of equation (2), using equation (4).
GREEN’s function equation (3) may also be written as an integral along
a complex path of integration C;, in the plane of E, which excludes its
spectrum as in figure 1:
1

GIE, %, %) = 5 [ R(E)aE PELPED) ()
Ci
g © ( i
E=E, E=0 E= t+oo

Figure 1

R(E), called a Wigner function, is characterized by simple analyt-
1cal properties [4].

R(E) is regular for Im E # 0 and has possible simple poles (bound
states) for negative values of £, such as the point £ = E in Figure 1, with
negative residues
1 1
RE) ~=Ne, 55,
N®, is the norm of the bound state eigenfunction: @(E,, x).

n

for E near F,, .

4 Our derivation in section 5 is slightly different from the usual approach and
it is based essentially on the existence and the analytical properties of the Green
functions. It serves also to generalize the Gel’fand and Levitan equation in more
complex cases. We refer to our recent paper [3], and take this opportunity to
clarify the unfortunate formulation employed therein.
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Since Im R(E) has the same sign as Im E and since R(E*) = R¥*(E),
it follows from the two equivalent representations, equation (3) and
equation (6), of GREEN’s function that

1 _ ‘e o Yy -
— Im R(E) = 5 0 for E real and positive.

R(E) itself can be expressed as an integral along the energy spectrum

-+ 00

R(E) = R(E,) + / (ZO(_F]) - ggé,c)o)

—o00
where dp is a step function for E’ negative with jumps 1/(N®,) at the
bound states.
For large E’, p and p, have the same asymptotic behaviour, so that

+o0
; T dpy(E) —do(E’) '
Ry(E) — R(E) = [ Sl0=ge) (7

—00
It is obvious that an integral form of the kernel K, equivalent to
equation (2) reads:

K;(2 / [Ry(E') — R(E") dE'®(E’, x) Dy(E’, &) . (8)

Therefore the behawour of R(E) and Ry(E) near their spectra is essen-
tial to the evaluation of U(x) in the internal region [see equation (1)].

3. The Model Potential in the External Region

The discussion of the behaviour of the model potential at large distances
can be carried out in complete analogy with that given in section 2 for
the internal region.

One has to introduce the Marchenko kernel

K6, %) = oo [dp1S@) — Sa@ 148", 2) fe(p, x) . (9)
Ce
In this instance the scattering matrices S(p) and Sy(p) (where E =4?)
corresponding to the hamiltonians / and H,,, play the dominant role.
fout is the outgoing wave normalized to have the behaviour of e*
as ¥ — oo,
The path of integration C,is along all the real values of the momentum ¢
(with a small positive imaginary part) and in addition avoids those
singularities of S and S, which correspond to bound states (see Figure 2).

g @

P =1Pn
p=-00 P = 0 P =+oc0
Figure 2
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In the complex p half-plane /7 (which corresponds to the complex E
plane considered in section 2 with a cut along the positive real axis) the
eigenwaves fout and f,°ut are analytical functions of $%).

Therefore K, and U(x) in the external region [equation (1)] are essen-
tially determined by the behaviour of S(p) and S,(p) near their singula-
rities, in the // half-plane, which are not bound states.

K, (¢, x') enters in the integral equation

P b, ) = f %) + [ K x) b, o) d (10)

as it will be proved in section 5, together with the form given by equa-
tion (9) of the Marchenko kernel K,.
Now, a first approximation of K,(x, x") valid for large x is

’ 1 i ’ ’ ’ u ’ ou Pt
EO(,x) = 5 [ apIS@) — S ™) i), (1)
Ce
as follows from the equations (9) and (10). Better approximations for
large x are obtained by the iterative procedure already mentioned for
the case of the internal region. As we shall discuss in the next section,
one can in certain special cases even evaluate K,(x, x’) exactly.

4. Simple Examples

H, is chosen to be the operator of the kinetical energy with the required
eigenfunctions

ou ipx sin/E x

Ifl) t(?! ’x) 26[) [@O(E’ JC) =] _V*,

VE

O<arg E<2m
] So(?) =1 ] RO(E) = ﬁl/E
We consider now an S matrix with two distinct simple poles at the points
p =i and p = iff of the half-plane I7(Im p > 0). Of these two poles,
one only, for instance p = 1a, is a bound state.
+in Ptz
S(p) = %;_i; 'P—ig_ and B>« . (12)
For a first approximation of the model potential at large distances,
we have to evaluate the kernel given by equation (11)
N1 [pria pHiB N\ ipex) g op BT i
KO %) =55 (P_iam 1)e ap= —285%0 (13)

c

from this
d + <
UO(x) = —2 % KO, x) =8 2 Z_g ¢-207 (14)

- [o 9]
5) A sufficient condition for the existence of K, is that f,-v] Ux)| dx < oo .

0
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The simple form, equation (12), we have chosen for the S matrix permits
an exact determination of the model potential. In fact, from equations
(10) and (11) one deduces an integral equation for the kernel K, itself

[o¢]

K,(x, %) = KO, x') + /'Ke(x, x") KO(x", x) dx". (15)

It is now clear that if K (x, ") degenerates into the product of two
functions of x and x’, as in our case [see equation (13)], a solution

K %% = K Wz, x’)/ (1 —ng(O)(x, x') ci’x’) (16)

x

exists. Substituting equation (13) in equation (16), we get

K (%, %) = 28 (a+ B) e 2842 [ [(@— B) — (o + f) e2P%).
The corresponding potential is
-2 8%
Ulx) = _p @ _ZBletpeir
4% (o= f)— (a+f) e2P*
of which equation (14) is a first asymptotic approximation, valid for
large x.

The extension of these considerations to the case of S matrices with
any finite number of simple poles is straightforward and leads always
to an exact determination of the potential®).

The value of U(x), equation (17), for x = 0 is

U(0) = 2 (a2 — ). (18)

This value can be found using the first approximation of the Gel’fand and
Levitan kernel, equation (8). One has

(17)

o0
1 “ at—p2 [ pdE  sinpx
O)( 5 = (0) x) - s = o
I(g (2, %) NP (g, x) (2 (o, x) + - Etod 5o
0
The first term can be neglected, being of order x2, and the second term
yields
af—-pt =

= (1—e2%) ~ (02— B x.

T 2

From this and equation (1)

() | ;
UuoQ) = 2 an X, X) =2 («* — f7)

el -

which coincides with the value equation (18) derived from the exact
form of the potential.

For a hermitian hamiltonian, the singularities of the corresponding S
matrix must lie symmetrically with respect to the imaginary axis in the

) Such potentials are known in the literature as Bargmann potentials.
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half-plane 77, or in particular cases on it. To S matrices with poles
outside the imaginary axis correspond oscillating potentials in the external
region. An infinite number of poles or even branch points may occur in
correspondence with potentials having but relatively simple spatial
behaviour. The S matrix of an exponential potential, for example, has an
infinite number of simple poles on the imaginary p axis. Among these
poles the one with the smallest imaginary part is identical to the unique
pole of the potential considered above, provided the potentials have the
same slope at infinity.

Assuming an S matrix regular everywhere with the exception of a cut
from p = 2 m/2 to p = 7 co on the imaginary p-axis, the kernel

1

K, O(x, ') = ey (S(p) — 1) e?*+¥)dp
becomes
100 +-€
L[, ip(x -+’
it s e,

L7
2
where use has been made of the property S(— $*) = S*(p). Choosing
Im S(z ) = 22 C, one obtains

g—2px | P =00 "
KO%%) =—C - for large x =~ C -
X p=mfz x

which corresponds to a Yukawa potential in the external region.
The approximation of the wave function itself, can be reached at the
same time as that of the model potential. For s-waves and f,°ut = eit+
1 N out (g7 ip'x’ ’
gt | (S8 = 1) () 4 ap
¢
and equation (10) becomes

K. (%5 =

[

1 FS(p
271 f)+P
&

e

) = eits — L) v ap . (19)

This can be solved immediately if S has isolated poles only. We shall
illustrate it, taking for S the same form, equation (12), as considered
before.

Putting eib¥ ot (p, x) = p(p, %)
equation (19) reads

o(p, %) = 1+21ﬁ‘”§ Pjiﬂ 285 (i B, ) . (20)

@ x)=1 / [] _ Ztg 6—213;;]

Therefore
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and from equations (20) and (19) one deduces
out ipy Q o+ 18 e2px
[, x) = et {1 il p+if (- — (@+p) 2P }
which is the exact form of the outgoing wave function corresponding
to the potential given by equation (17).
The extension to S matrices with a finite number of poles is straight-
forward and will not be reported here.

5. On the Derivation of the Integral Equations
[equations (4) and (10)]

We wish to indicate briefly in this final section how the Gel’fand and
Levitan equation [equation (4)] and the corresponding equation (10) for
the outgoing waves can be derived. We treat the case of s-waves and
consider potentials whose Schrédinger equation possesses a unique
Green function.

Let us call @(E, x) and @ (E, x) the two independent solutions of the
wave equation H® = E® which satisfy the boundary conditions
O(E,0)=0 D (E,0) =1
D(E,0)=1 @'(E,00=0
@, @, and their derivatives with respect to x are entire functions?) of E.
A square integrable solution

(21)

F(E, x) = D(E, x) + R(E) D(E, x) (22)
is obtained if
. Bs(E, %)
= xlin:o OE, %)

R(E) is well defined for Im £ # 0 and is a meromorphic function of E.
Green’s function reads then

D(E, x) I(E, x') el
D(E, x') F(E, %) X
We shall again introduce the same quantities, defined above for the
hamiltonian H,, in the corresponding case of the wave equation
HD, =EdD,.

For the derivation of equation (4) we begin by writing

1 dE’ R , ,
fﬁ B BB, 2) Fy(E', %) — B(E' x) F(E', )}

G(E, %, %) = { (23)

2mi
— @(E, x) F(E, ) — D(E, x) F(E, ) 24
1 dE’ ! ’ ! ’ { 2 ’
e fﬁ A D(E, %) Fy (B, ) — Oy (E', x) F(E', %) + 1}

= 1+@PE, x) IJ(E, x) — D, (E, x) F(E, %)
where 0 < arg £ <C 2 and E does not belong to the spectra of H and H,,.
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The integration in the complex E plane is carried counterclockwise
around the point £. One must now enlarge the path of integration so that
it reaches the vicinity of the spectra of H and H, while avoiding them.
This path will be called C; and is of the type illustrated in figure 1. For
the shift of the integration line, the point £ = co is harmless, since the
eigenwaves of H and H, which enter in equation (24) have a common
limit for large E. No contribution to the integral will thus result from the
arc at infinity. Noting equation (22), one obtains,

D(E, x) Fy(E, x) — Dy(E, x) F(E, %)

h ZiifEiif’E [Ro(E") — R(E")] D(E", x) Dy(E", x)
C

14 @(E, x) F)(E, x) — @ (E, x) F(E, x)
1 : dE’ ’ ’ ‘ ’ ’ ’
= 2mi | pr- g RelE) - RIE) BE, %) By(E',x).
Cq¢
Taking into account that

D) (E, x) Fo(E, x) —Dy(E, x) F)/(E, x) =1 [see equations (21), (22)]
one deduces furthermore

1 ¥ dE’ , _
DE, x) = By(E, x) + 5 ] T O ) (25)
Ci

D(E’, %) B (E, x) — D'(E', x) Dy(E, 7)) .

Hence from
;; (DY(E", x) D(E, x) — Dy (E', x) Dy(E, %)] = (E'— E) By(E, x) Dy(E’, x)

it finally follows
B(E, x) = B(E, ) + / K (v, x) By(E, ') d’
0
K, 3) = 4o f AE' [Ry(E) — R(E)| B(E", ) Bo(E’, v'),
C;

quod erat demonstrandum.
Employing considerations of the same nature, we shall now derive
equation (10)7). For x large and 0 < arg £ << 2z we shall write

®(E, x) = A(E) e~VE #

26
®(E, x) ~ A(E) e—iVE (20)

) This type of equations has been found by V. A. MARCHENKO [5].




240 MARIO VERDE

Then equation (23) becomes
R(E) = — A,(E) | A(E)
A(E) and 4 (E) are analytical functions of E in the plane /7, with a cut

along the positive real E axis. If fout(E, x) be a solution of the wave
equation which for large x and in // behaves like

fOUt(E, x) ~ eiVE x, (27)
an independent solution is
]‘m(E, k)= YO, %) = eiVE , where @ = e 2", (28)
Then
@(E, x) = A(wE) ["(E, x) + A(E) ["(wE, x), (29)

since @(E, x) = P(wkE, x) for every x and since equation (26) must hold
for large x.
Similarly

D,(E, x) = A (wE) ["(E, x) + A(E) ["(0E, ), (30)
furthermore

D(E,2)D'(E, x) —D/(E,x)DE,x)=1
fOUt(Cl)E, X) fOUt(E, x) o ]zout(E, x) ]cout(wE, ¥) - 2 L VE
[cf. equations (21), (27) and (30)]. From the equations (29) and (30) it

follows
1

21 yE

["(E, x) = 20 E[A,(E) D(E, x) — A(E) D(E, x)]
which shows the analiticity of fout(E, x) and f' °u*(E, x) in the cut plane
I1. We finally need the function

A(E) A(E) — A (wE) A(E) =

DE,x 1 ou n
WE, %) = — 5t = v [SIE) Y(E, ) — (B, 6] (31)
where
S(E) = — A(wE) | A(E) is the S matrix.

y(E, x) is analytical in the cut plane //, with exception of the bound
states [4(E) = 0] where simple poles appear.
In analogy with equation (24) we write

1 dE, 7 ou P & ’ ou ’
st o WE ) 1 ) — yo(E, 2) P4, 2]
= y(E, %) f™"(E, x) — wo(E, %) *YE, %)
1 dE, v /7 ou ’ ’ ’ ou ’
zm“gg g L+ p(EL ) f, YE', %) — o' (E', x) "Y(E", %)] (32)
= 1+ p(E, %) fy " (E, x) — y,/(E, x) ["(E, %)
for E not belonging to the spectra of H and H. One proceeds as before.
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The shifting of the integration line to the vicinity of the spectra of H
and H,1s here also permissible, since no contribution comes from the arc
at infinity. Furthermore the terms which contain fi"(F, x) are missing
(cf. equations (31), (28)]. One obtains:

]_ dE, 1 ’ ’ Ol ’ (e]1} ’
2ar | Eom aiye (SE) = SoE) PUE 5 fE x)
Ce
= p(E, x) fe™(E, x) — po(E, %) [*"(E, %)
1 / dE’ 1 S. F, S F\; out Et rout El 33
i | ToE ziye (SE) — SIE)) UEL 0 [ONEL Y (33)
Ce

= 1 p(E, ) fy (B, 2) — ' (E, x) (E, ).
The elimination of y and the trivial equation

foom(E, x) fO,OM(E’, ’V) - fo’out(E: x) foout(Ef’ x)

(B B [ PE ) PE ) a

leads to the proof of equation (10). At the same time the integral form
equation (9) of the Marchenko kernel is thus established.
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