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Phase Shifts and Model Potentials

By Mario Verde, Istituto di fisica, Universitä di Torino, Italy

1. Introduction
We wish to present a brief discussion of the problem, of fundamental

interest in nuclear physics, concerning the correspondence of a set of
measured phase shifts as function of the energy in an elastic scattering,
to a possible potential which may serve as model to describe a nuclear
collision.

There is of course a large choice of experimental situations and we
have to restrict ourselves to very simple cases in order to elucidate
without too involved mathematics the type of information which can be
derived from such a model potential1).

If, for instance, we assume knowledge of the dependence of the scattering

amplitude for a certain ränge of values of energy in a s-wave non-
relativistic scattering of a Spinless particle by an external field, our aim
is to find the spatial dependence of the corresponding model potential in
the appropriate space region.

It is manifest, from very simple physical considerations, that a knowledge

of the scattering amplitude at low energies would enable us to
reproduce the behaviour of the potential at large distances only. Con-

versely a more refined knowledge of the potential at smaller distances
should involve information regarding cross sections at high energies.

We wish to anticipate here, as will quantitatively be demonstrated
below, the conclusion that the asymptotic behaviour of the potential at
large distances is very sensitive to the position and the nature of singu-
larities of the scattering matrix S(E), as function of the energy E2). On
the other hand, any knowledge of the potential at small distances, if
deduced from s-eigenwaves only, is insensitive to the analytical properties

*) It is a pleasure to acknowledge here the many stimulating discussions on
kindred problems, held with Prof. P. Scherrer during my unforgettable period of
studies in his famous Institute. I apologize for not being able to treat here the type
of nuclear collisions which have lately been of special interest to Professor Scherrer.

Yet many of the facts appearing in our present discussion are essential to
the mastering of more complex situations.

2) The connection between the singularities of the S matrix and the behaviour
of the potential at large distances, in absence of bound states, has been elucidated
by R. Jost [1]. Numbers in brackets refer to References, page 241.
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of S(E) at low energies. In fact, it is determined by the analytical be-
haviour of a Green's function near its spectrum and for fixed spatial
points (Wigner's R(E) function), for large values of E.

It is a difficult task to extract such information from s-wave experi-
ments, and, therefore, it is preferable to avail oneself to high energy
collision data. Since a largc number of partial waves are involved in such

casus, it becomes necessary to generali/,c our considerations in order to
establish a correspondence between a model potential and the analytical
behaviour of the total scattering amplitude as function of the scattering
angle at a fixed energy. It is, however, also instructive to consider the
problem of the internal region when R(E) is known. This problem will
be discussed in section 2.

The mathematical tool necessary to reach the conclusions mentioned
above in the most straightforward manner, consists in relating the model
potential U(x) to some appropriate kernels Ke(x, x') and K{(x, %')

CO X

Ke(x,x)=~ J U(x') dx', Kt{x, ,v) ~ J U{x')dx' (1)
v 0

Ke and K{ will respectively be called the kernels of Marchenko and of
Gel'fand and Levitan. The Marchenko kernel Ke gives a very good
approximation for large x, when S(E) is known, and is therefore well
suited for representation of U(x) in the external region, whereas Kt
serves as an approximation for small x, when R(E) is known, and hence

can yield the model potential in the internal region.

2. The Model Potential in the Internal Region
We begin with a discussion of the determination of the potential at

small distances. Here it is the kernel Ki which plays the important role.
K{ can be defined in several ways, for instance by means of the fol-

lowing integral representation
CO

Kt[x, x') I [do0(E') — do(E')] 0(E', x) 0O(E', x'); x' ] x (2)
— CO

the integration taking place along the entire energy spectra belonging
to the hermitian hamiltonians H and H0. 0 and 0O respectively corre-
spond to the eigenwaves of H, and of 7f0, which may be termed the
hamiltonian of the free motion3).

H0 E0, H0 0q E 0q, H - H0 lI(x)
3) It is not necessary for H0 to be merely the Operator of the kinetical energy:

it may correspond to a motion in a given potential whose Solutions are known.
Some restrictions must be imposed upon the difference H — H0 U(x) in order

X

that equation (2) be meaningful. It is sufiicient that J U{x') dx' exists.
ü
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0 and 0O are normalized in such a way that they behave like x for x -> 0.

dg and dg0 are the differentials of the spectral functions g(E) and g0[E)
which enter into the well-known integral representation of Green's func-
tion

+ oo

G(E, x, x') f dg(E') *<©©^©©1 (3)

— oo

The kernel K{(x, x') is part of the Operator which links the 0's to the 0o's.
X

0(E, x) 0O(E, x) + I Kf(x, x') 0o(Ej x') dx' (4)

i)

This important equation, known in the literature as the Gel'fand and
Levitan integral equation [2], will be derived in section 5 4).

It is now clear, as consequence of equations (4) and (2), that
-foo

Kf\>x,x')= I d(g0 - g) 0{E', x) 0O{E', x') (5)

— OO

approximates the kernel Kt for small x, and that better approximations
can be obtained by iteration of equation (2), using equation (4).

Green's function equation (3) may also be written as an integral along
a complex path of integration Cjt in the plane of E, which excludes its
spectrum as in figure 1:

G{E, x, x') -L /' K(E') dE' 0(E' X']
; -v < x' (6)

C, ©
E En E 0 E r oo

Figure 1

R(E), called a Wigner function, is characterized by simple analyt-
ical properties [4].

R[E) is regulär for Im E ^ 0 and has possible simple poles (bound
states) for negative values of E, such as the point E En in Figure 1, with
negative residues

*(*> — •/;••'/>© for£near£«-

N0n is the norm of the bound state eigenfunction: @(En, x).

4) Our derivation in section 5 is slightly different from the usual approach and
it is based essentially on the existence and the analytical properties of the Green
functions. It serves also to generalize the Gel'fand and Levitan equation in more
complex cases. We refer to our recent paper [3], and take this opportunity to
clarify the unfortunate formulation employed therein.
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Since Im R(E) has the same sign as Im E and since R(E*) R*[E),
it follows from the two equivalent representations, equation (3) and

equation (6), of Green's lunction that

— Im RIE) > 0 for E real and positive
7i dE

R(E) itself can be expressed as an integral along the energy spectrum
+ oo

R(E) - »(£.) +/ (§24 _ MSI
— OO

where dp is a step function for E' negative with jumps 1 l(N<Pn) at the
bound states.

For large E', @ and q0 have the same asymptotic behaviour, so that
-fco

R0(E)-R(E)= j dQ°{E^E'] (7)

— OO

It is obvious that an integral form of the kernel Kt equivalent to
equation (2) reads:

Kt{x, x') -EJ[R0(E') - R(E') dE' 0(E', x) 4>0(E', x') (8)

Ci
Therefore the behaviour of R(E) and R0{E) near their spectra is essen-

tial to the evaluation of U(x) in the internal region [see equation (1)].

3. The Model Potential in the External Region
The discussion of the behaviour of the model potential at large distances

can be carried out in complete analogy with that given in section 2 for
the internal region.

One has to introduce the Marchenko kernel

Ke(x, x') ~ jdp'[S(p') - S0(p')] foui(p', x) /0out(/>', x') (9)

Ce

In this instance the scattering matrices S(p) and S0(p) (where E p2)

corresponding to the hamiltonians H and Hg, play the dominant role.
/out is the outgoing wave normalized to have the behaviour of eivx

as x —> oo.
The path of integration Ce is along all the real values of the momentum^»

(with a small positive imaginary part) and in addition avoids those
singularities of S and S0 which correspond to bound states (see Figure 2).

o
ipn

p - oo p 0 p + oo

Figure 2
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In the complex p half-plane 77 (which corresponds to the complex E
plane considered in section 2 with a cut along the positive real axis) the
eigenwaves /out and /Oout are analytical functions of pb).

Therefore Ke and U(x) in the external region [equation (1)] are essen-

tially determined by the behaviour of S(p) and S0(p) near their singula-
rities, in the II half-plane, which are not bound states.

Ke(x, x') enters in the integral equation
OO

r\p, x) fr\p, x) +f Ke(x, x') r\p. *') ^ (io)
X

as it will be proved in section 5, together with the form given by equation

(9) of the Marchenko lcernel Ke.
Now, a first approximation of Ke(x, x') vahd for large x is

K<%v,x') h j df[S(p') - S0(p')} fr(P'x) /0°"\p'x), (11)

Ce

as follows from the equations (9) and (10). Better approximations for
large % are obtained by the iterative procedure already mentioned for
the case of the internal region. As we shall discuss in the next section,
one can in certain special cases even evaluate Ke(x, x') exactly.

4. Simple Examples

H0 is chosen to be the Operator of the kinetical energy with the required
eigenfunctions

sinpß Xfr\p, x) e#*

S0(P) 1

f0(E, X)

R0{E) i/E
Je

0 < arg E < 2 it

We consider now an S matrix with two distinct simple poles at the points
p ia. and p iß of the half-plane 77(Im p > 0). Of these two poles,
one only, for instance p ia, is a bound State.

S(P) 4^ V~% and ß>« (12)vr' p — ja p — iß

For a first approximation of the model potential at large distances,
we have to evaluate the kernel given by equation (11)

'> -s /'(r-£->)t- -Wj.x'""1"(>3»
cc

from this

L/<»>(.v) —2 f KW{x,x)= 8ß*
a + t'

(14)
(XX cc — p

5) A sufficient condition for the existence of Ke is that J x | U(x) | dx < >

0
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The simple form, equation (12), we have chosen for the S matrix permits
an exact determination of the model potential. In fact, from equations
(10) and (11) one deduces an integral equation for the kernel Ke itself

OO

K,(x, x') KeW(x, x') + / K,(x, x ") K®\x", x') ix". (15)

X

It is now clear that if Ke(x, x') degenerates into the product of two
functions of x and x', as in our case [see equation (13)], a Solution

K ,{x, x') KJ®{x, x') / I 1 -Jk.W(x, x1) dx' I (16)

exists. Substituting equation (13) in equation (16), we get

Ke(x, x') =- 2,ß (a + ß) e~2ß 6+*') J [ (a — ß} — (a q. ß) e

The corresponding potential is

u(x) —2
d

- (17)
dx (a — ß)— (ai + ß) e ß"

of which equation (14) is a first asymptotic approximation, valid for
large x.

The extension of these considerations to the case of S matrices with
any finite number of simple poles is straightforward and leads always
to an exact determination of the potential6).

The value of U(x), equation (17), for x 0 is

17(0) 2 (oc2 - ß2). (18)

This value can be found using the first approximation of the Gel'fand and
Levitan kernel, equation (8). One has

2 00

r.»"M - ''ff
i)

The first term can be neglected, being of order x2, and the second term
yields

f. *-»'•
From this and equation (1)

,,-im
2 (oc2 - ß2)

dx(u)
U<">(0) 2 dKdx- (.v, x)

x-0
which coincides with the value equation (18) derived from the exact
form of the potential.

For a hermitian hamiltonian, the singularities of the corresponding S
matrix must lie symmetrically with respect to the imaginary axis in the

6) Such potentials are known in the literature as Bargmann potentials.
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half-plane 77, or in particular cases on it. To S matrices with poles
outside the imaginary axis correspond oscillating potentials in the external
region. An infinite number of poles or even branch points may occur in
correspondence with potentials having but relatively simple spatial
behaviour. The S matrix of an exponential potential, for example, has an
infinite number of simple poles on the imaginary p axis. Among these

poles the one with the smallest imaginary part is identical to the unique
pole of the potential considered above, provided the potentials have the
same slope at infinity.

Assuming an S matrix regulär everywhere with the exception of a cut
from p i mj2 to p i oo on the imaginary />-axis, the kernel

A70)(.v, *') ~ f(S(P) - 1) e^+^dp
ce

becomes
tOO

'2i Im S(p) eiH*+*">dp,

t'oo-f e
i

2?t_
im

where use has been made of the property S(— p*) S*(p). Choosing
Im S(i p) 2 7i C, one obtains

2 px

x,MM -c x

P OO e_mxfor large x ~ C —
P ml2 X

which corresponds to a Yukawa potential in the external region.
The approximation of the wave function itself, can be reached at the

same time as that of the model potential. For s-waves and /Oout e'P*

Ke{x.x-) =J-lf{S{p')~ 1) r\p•x)ei<"df
Ce

and equation (10) becomes

r\px) e>P* - -2K I S(pPl~! rl{p'x) ei[p+p')x dp'. (19)

Ce

This can be solved immediately if S has isolated poles only. We shall
illustrate it, taking for 5 the same form, equation (12), as considered
before.

Putting e~'P' /out (p} x) <p[p, x)

equation (19) reads

<p(p, x) =1 + 2 iß -1 ß
e *P* cP(i ß, x) (20)

Therefore

V(iß,x) 1 / [l -
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and from equations (20) and (19) one deduces

x) c'l 11 + 2 iß a h

—
* 2ßX

1

' W' >

\ + Pp + iß (a-ß) - (oc + ß) e-tß* J

which is the exact form of the outgoing wave function corresponding
to the potential given by equation (17).

The extension to S matrices with a finite number of poles is straight-
forward and will not be reported here.

5. On the Derivation of the Integral Equations
[equations (4) and (10)]

We wish to indicate briefly in this final section how the Gel'fand and
Levitan equation [equation (4)] and the corresponding equation (10) for
the outgoing waves can be derived. We treat the case of s-waves and
consider potentials whose Schrödinger equation possesses a unique
Green function.

Let us call 0(E, x) and 0S(E, x) the two independent solutions of the
wave equation H0 E0 which satisfy the boundary conditions

0{E, 0) 0 0S(E, 0) 1

0'(E, 0) 1 0/(E, 0) 0

0,0S and their derivatives with respect to % are entire functions 3) of E.
A Square integrable Solution

F{E, x) 0S{E, x) + R(E) 0(E, x) (22)
is obtained if

S(E) - - lim ®s£;;>
x-> oo \ /

R(E) is well defined for Im E ^ 0 and is a meromorphic function of E.
Green's function reads then

G(E v v')=
I W *> *"(* *'> *<*' p3)>

\ <p(E, x') F(E, x) a- > x'

We shall again introduce the same quantities, defined above for the
hamiltonian Fl0, in the corresponding case of the wave equation
Ho0o=E0o.

For the derivation of equation (4) we begin by writing

Yni E'-E V) F^E'' X) ~ F^E''

0(E, x) F0(E, x) - 0O(E, x) F(E, x) ^iLi f 7*-E W' F^K'' *) ~ W- X) F(E', X) + 1 }
1 + 0{E, x) F0'(E, x) - 0O'(E, x) F(E, x)

where 0 < arg E <2 n and E does not belong to the spectra of H and H0.
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The integration in the complex E plane is carried counterclockwise
around the point E. One must now enlarge the path of integration so that
it reaches the vicinity of the spectra of H and T/"0 while avoiding them.
This path will be called C; and is of the type illustrated in figure 1. For
the shift of the integration üne, the point E oo is harmless, since the
eigenwaves of H and H0 which enter in equation (24) have a common
limit forlarge E. No contribution to the integral will thus result from the
arc at infinity. Noting equation (22), one obtains,

0{E, x) F0(E, x) - 0O(E, x) F{E, x)

~t j E*-E- Ro(E')-R(E')]0(E',X)0O(E',X)
O

1 + 0{E, x) F0'(E, x) - 0O'{E, x) F(E, x)

2^7 / " /Sv [^o(£')-/?(£')] 0(E',x)0o'(E',X)
Ci

Taking into account that

0O'(E, x) F0(E, x) — 0O[E, x) F0'(E, x) 1 [see equations (21), (22)]

one deduces furthermore

0(E, x) 0O(E, x) + 1. I .J*.E 0(E', x) (25)

Ci

[0O(E', X) 0O'(E, x) - 0'(E', x) 0O(E, x)}.
Hence from

~ [0o(E't x) 0O'(E, x) - 0O'(E', x) 0O(E, x)} (£'- E) 0O(E, x) 0O(E', x)

it finally follows

X

0(E} x) &0(E, x) + / Ki(x, x') 0O(E, x') dx'

o

Kt(x,x') ^ J dE' [.R0(E') - R(E')]0(E', x)0o(E', x'),
Ci

quod erat demonstrandum.
Employing considerations of the same nature, we shall now derive

equation (10)7). For « large and 0 < arg E < 2 n we shall write

0,(E, x) A (E) e~'^E x

(20)
0[E, x) ~ A(E) e-A'i;x.

7) This type of equations has been found by V. A. Marchenko [5].
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Then equation (23) becomes

R{E) — AS(E) I A(E)

A(E) and AS(E) are analytical functions of E in the plane 77, with a cut
along the positive real E axis. If f°ut(E, x) be a Solution of the wave
equation which for largo x and in 77 behaves like

r\E, x) ~ e^E *, (27)

an independent Solution is

r(E, x) r\coE, x) ^ VWx where co e~2i". (28)

Thon

0{E, x) A(coE) r'(E, x) + A(E) f°"l(wE, x), (29)

since 0{E, x) 0(o)E, x) for every x and since equation (26) must hold
for large x.

Similarly
0S(E, x) As(coE) /°ut(£, x) f AS{E) r\coE, x) (30)

furthermore
0S(E, x) 0'{E, x) - 0S'(E, x) 0(E, x) 1

r\<oE, x) r\E, x) - r\E, X) /out(«£> %) 2 i jje
[cf. equations (21), (27) and (30)]. From the equations (29) and (30) it
follows

AS{E) A(o)E) — As(coE) A(E)
2

r\E, x) -- 2 i J/E[AS{E) 0{E, x) - A (E) 0O[E, x)]

which shows the analiticity of fout(E, x) and /' out(E, x) in the cut plane
77. We finally need the function

- »Wi«*)/•"»•«>-<*<».»» Ol)
where

S(E) — A[a>E) I A(E) is the S matrix.

xp(E, x) is analytical in the cut plane 77, with exception of the bound
states [A (E) 0] where simple poles appear.

In analogy with equation (24) we write

j ME', x) fr\E', X) - f0(E', x) r\E', x)\

\p[E, x) f0"ut(E, x) - Vo(E, x) r\E, x)

2ni $ [1 + v(E' x) /o'°ut(£'- x) - Vo'(E'. X) r\E', x)] (32)

1 + y{E, x) /„"»"(£, x) - Vo'(E, x) r\E, x)

for E not belonging to the spectra of 77 and T70. One procecds as before.
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The shifting of the Integration line to the vicinity of the spectra of H
andi/0is here also permissible, since no contribution comes from the arc
at infinity. Furthermore the terms which contain /'"(£, x) are missing
[cf. equations (31), (28)]. One obtains:

zUf Ä 2Tfr S{E']~w)nr. t«r.
<p(E, x) f«"(E, x) n(E, x) r"(F, x)

2^7 f "Ä "2 /?, ('S'(E,) - S»(E')) r\E', x) /O'out(£', .v) (33)

1 1 w(E,x) f0'°ut(E,x)-Wo'(E,x) rut(E,x).
The elimination of ip and the trivial equation

frl(E, X) f0'oat(E', X) - /O'out(£, x) /Oout(£', *)
oo

(£' - E) I Hl(E,x') rut(E', X') dx'
X

leads to the proof of equation (10). At the same time the integral form
equation (9) of the Marchenko kernel is thus established.
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