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Kernspektroskopie
Von E. Bleuler und R. M. Steffen, Purdue University, Lafayette, Indiana, USA

Bedeutung der Kernspektroskopie

Kernspektroskopie ist das älteste Gebiet der Kernphysik. Kurz nach
der Entdeckung der Radioaktivität durch Becquerel [l]1) (1896)
wurde die Frage nach der Art der emittierten radioaktiven Strahlung
und deren Energiespektren, sowie deren Beziehung zu den emittierenden
Körpern weitgehend untersucht und diskutiert [2, 3], Allerdings erst von
1911 an, als Rutherford die Kernhypothese des Atoms vorschlug, kann
man von einem selbständigen Forschungsgebiet der Kernspektroskopie
reden. Zuverlässige und genauere kernspektroskopische Messungen

begannen etwa um 1920. In neuerer Zeit hat die Kernspektroskopie eine

ungeheure Wiederbelebung erfahren durch das Entstehen quantitativer
Theorien, die es erlauben, die gemessenen Daten befriedigend zu
interpretieren. Physikalisch ausserordentlich wesentliche und fundamentale
Erkenntnisse sind durch kernspektroskopische Untersuchungen gewonnen

worden, wie zum Beispiel die Entdeckung des Neutrinos, der Kern-
isomerie und der Nichterhaltung der Parität im Betazerfall.

Kernspektroskopie befasst sich mit der Untersuchung und Klassifizierung

der charakteristischen Eigenschaften der Kernzustände. In den

meisten, jedoch nicht allen Fällen werden diese Kerneigenschaften eruiert
auf Grund von Messungen an Kernstrahlungen, die von den betreffenden
Kernzuständen emittiert werden, oder die zu den betreffenden Kernzuständen

führen. Genau so wie die präzisen atomspektroskopischen
Untersuchungen der Energiezustände der atomaren Elektronenschalen zuerst
zum Bohr-Modell führten und dann zur Entdeckung und Entwicklung
der Quantenmechanik beitrugen, so haben kernspektroskopische
Untersuchungen zu umfangreichen und genauen Kenntnissen der Kernzustände

beigetragen, so dass in vielen Fällen eine Interpretation der Daten
auf Grund gewisser Modellvorstellungen möglich ist. In neuester Zeit sind
wesentliche Fortschritte gemacht worden, diese Kernmodelle als Viel-
körperprobleme von der Nukleon-Nukleon-Wechselwirkung her zu
verstehen [4]. Eine allgemeine Theorie der Kernstruktur, die auf Grund

9 Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis,
Seite 144.
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fundamentaler Prinzipien die Eigenschaften aller Kernzustände richtig
zu beschreiben vermag, steht allerdings noch aus.

Das Ziel einer kernspektroskopischen Untersuchung eines Kernes ist
die vollständige Kenntnis der Eigenschaften aller Zustände eines Kernes
und aller Übergänge zwischen diesen Zuständen sowie die Angabe und

5/2 +

-0,5'~

Termschema des JjjTc. Alle Energiewerte sind in MeV angegeben. Die log ft-Werte
der Betaübergänge sind in Klammern angeführt.

Charakterisierung aller Übergänge zwischen den Zuständen des betreffenden

Kernes und denjenigen benachbarter Kerne. Die Zusammenfassung

dieser Grössen geschieht am praktischsten anhand eines Term-
schemas, wo jeder Kernzustand durch eine horizontale Gerade dargestellt
wird, deren Position innerhalb einer Energieskala die Anregungsenergie
des Zustandes bezeichnet. Die anderen charakteristischen Grössen eines

Kernniveaus, wie Lebensdauer, Spin,Parität, magnetische und elektrische
Momente, Isotopenspin, Bahnmomente ungerader Nukleonen usw. werden
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Pfeilei Die charakteristischen Eigenschaften der dabei emittierten Strahlung,

wie Energie, Verzweigungsverhältnisse, Multipolordnung, ft-Werte
im Betazerfall, Konversionskoeffizienten bei Gammaübergängen usw.,
werden ebenfalls angeschrieben. Die Figur stellt als typisches Beispiel das
Termschema des Kernes "Tc dar. Eine Zusammenstellung aller bekannten

Termschemata findet sich in den Table of Isotopes [5], welche von
Strominger, Hollander und Seaborg zusammengestellt wurden und
in den Skhemy Raspada Radioaktivnykh Izotopov [6] von Dzhelepov und
Peker. Eine fortlaufend ergänzte Katalogisierung kernspektroskopischer
Daten stellen die Nuclear Data Cards dar, die von der Nuclear Data
Group des National Research Council in Washington (USA) herausgegeben

werden.
Die Bestimmung eines Termschemas ist im allgemeinen kompliziert und

erfordert die Anwendung und Koordinierung vieler verschiedener
Untersuchungsmethoden. Die Strahlungsarten, anhand deren Untersuchung
die gewünschten Kerneigenschaften ermittelt werden, sind im wesentlichen

Alpha- und Betateilchen für Übergänge zwischen Niveaus
verschiedener Kerne, Gammaquanten und Konversionselektronen für
Übergänge zwischen Zuständen eines gegebenen Kernes. Die Grössen, welche
direkt bestimmt werden können sind a) Übergangsenergien und
Energiespektren, b) Übergangswahrscheinlichkeiten - absolut durch Messung der
Lebensdauer eines Zustandes, relativ durch Bestimmung des

Verzweigungsverhältnisses zwischen verschiedenen emittierten Strahlungen,
c) Koinzidenzen zwischen Strahlungen, d) Polarisation und e) räumliche
Verteilung einer Strahlung in bezug auf eine bevorzugte Richtung, die
entweder durch Ausrichtung des Spins des emittierenden Kernes in einem
äusseren Feld oder aber durch die Emissionsrichtung einer vorhergehenden

Strahlung (siehe E. Heer, Richtungskorrelation, Seite 157) gegeben
ist. Die Zuordnung von Spin, Isotopenspin und Konfigurationen zu den
Zuständen und von Multipolordnungen zu den Übergängen erfolgt dann für
a), b) und c) auf Grund von Auswahlregeln, die natürlich zuerst festgelegt
werden mussten, während der Zuordnung für d) und e) im wesentlichen
ein geometrisches Problem zugrunde liegt (siehe E. PIeer,
Richtungskorrelation, Seite 157). Eine ausgezeichnete Einführung in die moderneren

Arbeitsmethoden der Kernspektroskopie ist in dem Handbuch von
K. Siegbahn, Beta and Gamma Ray Spectroscopy [7] und in dem neueren
Werk Nuclear Spectroscopy von F. Ajzenberg-Selove [8] zu finden.

Entwicklung der Kernspektroskopie in Zürich
Eine strikt chronologische Übersicht über die kernspcktroskopischen

Arbeiten im Scherrerschen Institut der ETH wäre sehr schwerfällig, da
gleichzeitige Untersuchungen verschiedener Gruppen sich oft über mehrere

Jahre erstreckten. Wir ziehen es daher vor, die einzelnen Probleme
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mehr oder weniger zusammenhängend zu behandeln. Das Literaturverzeichnis

wird insofern unvollständig sein, als wir im allgemeinen Sitzungsberichte

nicht anführen werden, falls die gleiche Arbeit in einem vollen
Artikel erschien.

Die ersten Arbeiten (1943) behandelten, geziemenderweise, Probleme
der natürlichen Radioaktivität: Betazerfall des RaA [9], Zerfall des

UX [10], Halbwertzeit des ThC' [11]. Da ThC' durch Betazerfall des ThC
gebildet wird und mit einer Halbwertzeit von 2,6 • 10~7s zerfällt, mussten
Zeitintervalle der Grössenordnung 10_7s zwischen den Betastrahlen des

ThC und den Alphateilchen des ThC' gemessen werden. Zu diesem
Zwecke entwickelten Bradt und Scherrer eine Koinzidenzapparatur,
mit welcher sie ein damals sehr beachtliches Auflösungsvermögen von
8 • 10~8s - mit Geigerzählern - erreichten [12]. Die Messung der Konver-
sionslinien des UX erfolgte mit Hilfe eines 180°-Betaspektrometers. Diese
Arbeit wurde zu einer Untersuchung der UX2-UZ-Isomerie erweitert
[13,14],

Kernspektroskopische Arbeiten mit künstlich radioaktiven Substanzen
begannen etwa 1944. Da die Stärke der Quellen, welche mit der Li-
Gammastrahlung der Van-de-Graaff-Maschine hergestellt werden konnten,

für Energiebestimmungen in magnetischen Spektrometern nicht
ausreichte, benutzten Wäffler und Mitarbeiter ein einfaches
Absorptionsverfahren für die Ermittlung von Beta- und Gammacnergien [15 -17],
Die Methode wurde von Bleuler und Zünti [18] verfeinert und in der

Untersuchung der Zerfallsschemata mehrerer Radioisotope verwendet,
welche mit Hilfe der D-D-Neutronen des Tensators produziert wurden
[19-22],

Mit der Fertigstellung des Zyklotrons in 1944 wurde es möglich,
genügend starke Quellen künstlich radioaktiver Substanzen herzustellen,
um Präzisionsmessungen durchzuführen. Eines der ersten Probleme war
die Prüfung, der Fermischen Theorie des Betazerfalls durch Vergleich
von Positronenemission und Elektroneneinfang. Arbeiten im Zusammenhang

mit diesem Problem erstreckten sich von 1945 bis 1949 und
bestätigten im wesentlichen die Theorie [23-25],

Ein zweites Problem war dasjenige der Isomerie oder, allgemeiner, des

Zusammenhanges zwischen der Multipolordnung eines Gamm aÜberganges

und den Übergangswahrscheinlichkeiten für Gammaemission und
innere Konversion. Die Lage war zunächst ziemlich verworren, da zu
dieser Zeit genaue theoretische Berechnungen der KonverSionskoeffizien-
ten und befriedigende Abschätzungen der Gammaübergangswahrschein-
lichkeiten fehlten. Viele Klassifizierungsversuche scheiterten bis zu dem
Erscheinen der Arbeiten von Goldhaber und Sunyar [26], Weisskopf

[27] und Rose und Mitarbeitern [28], Der Beitrag der Zürcher
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Gruppe lag in der experimentellen Bestimmung mancher der Daten,
welche die schliessliche Abklärung möglich machten. Einige dieser
Isomere wurden während mehreren Jahren, mit ständig verbesserten
Methoden, untersucht. Als Beispiel mögen i«'>»Ag und 199mAg dienen.
Im ersten Artikel [29] (1947) werden die Konversionskoeffizienten
(<x NJNy) durch Messung der Elektronenintensität Ne im 180°-Spek-
trometer und Messung der Gammaintensität Ny in geeichten
Geigerzählern [30] bestimmt. Eine zweite Untersuchung wurde mit Hilfe des im
Jahre 1948 von Zünti gebauten Linsenspektrometers [31] durchgeführt.
Da dieses Instrument eine hohe Lichtstärke hat, ist es möglich, Koinzidenzen

zwischen den fokussierten Elektronen einerseits und den gleichzeitig

emittierten Gamma- oder Elektronenstrahlen andererseits zu messen.
Mit Hilfe solcher Koinzidenzmessungen zwischen den im Spektrometer
fokussierten Auger-Elektronen und den Konversionselektronen konnten
Huber, Humbel, Schneider und de-Shai.it (1951/2) sowohl die
Konversionskoeffizienten als auch die Auger-Koeffizienten bestimmen [32,33],
Bevor diese Messungen durchgeführt werden konnten, war es notwendig,
schnelle Koinzidenzschaltungen zu untersuchen [34], Anthrazenszintilla-
tionszähler zu entwickeln [35,36] und eine zuverlässige Methode für die

Messung der Auger-Elektronen im Linsenspektrometer zu finden [37], In
einer dritten Messung (1953) wurde wiederum das Verhältnis NJNy
durch direkte Messung von Ne im geeichten Linsenspektrometer und
direkte Messung von Ny im geeichten Szintillationsspektrometer
bestimmt [38], Die Entwicklung der quantitativen Gammastrahl-Szintilla-
tionsspektroskopie in Zürich war das Verdienst von Maeder, welcher
seine in Basel begonnene Technik des Graukeilspektrographen r39] zu
einer vielseitig anpassungsfähigen Präzisionsmethode ausbaute [40-43].

Die gleiche Folge von Messmethoden wie bei den Silberisomeren wurde
bei der Untersuchung einer Gruppe von Pt-, Au- und Hg-Isotopen
angewendet. Sic erstreckte sich von einer ersten Arbeit von Steffen, Huber
und Humbel (1949) zu einem abschliessenden Bericht von Brunner,
Halter und Scherrer im Jahre 1958 [44-50], In dieser Serie wird eine
bezeichnende Interessenverschiebung sichtbar. In der ersten Arbeit war
eines der Hauptziele die Bestimmung von Konversions- und Auger-
Koeffizienten, wobei die Abklärung der Zerfallsschemata im wesentlichen
Mittel zum Zweck war; in den späteren Arbeiten dagegen rückte die
Deutung der Zerfalls- und Termschemata im Sinne des 1949 vorgeschlagenen

Schalenmodells [51-52] in den Vordergrund. Tatsächlich ist das
bemerkenswerteste Resultat dieser Untersuchungen die Ähnlichkeit der
Niveauschemata von Kernen, die sich nur um zwei Neutronen
unterscheiden, zum Beispiel 193Au, 195Au, 197Au, im Einklang mit dem
Einteilchenmodell, nach dem das «Leuchtnukleon», in diesem Falle das letzte
Proton, den Charakter der Kernzustände bestimmt.
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Etwas komplizierter ist der Fall der ungerade-ungeraden Kerne, deren
Eigenschaften im einfachsten Falle durch die Art der Kopplung des letzten

Protons und des letzten Neutrons gegeben werden. Beiträge zu diesen
Problemen sind in Arbeiten von Mukerji und Preiswerk über den
Zerfall der Ga-Isotope [53] und von Medicus und Mitarbeitern über den
Zerfall der Tc-Isotope [54] enthalten. Zwei interessante Einzelheiten
mögen im Zusammenhang mit den Tc-Untersuchungen erwähnt werden:
In "Tc wurde ein Isomer mit nur 1,8 keV Anregungsenergie gefunden

[55, 56], welches die kleinste bekannte Trennung von Kernniveaus
ist, und die Röntgenstrahlung dieses Atoms - welches ja in der Natur
nicht stabil vorkommt - wurde von Marmier und Mitarbeitern mittels
eines Cauchois-Spektrographen gemessen [57]. Das Problem der Kopplung

der beiden ungeraden Nukleonen ist besonders interessant bei Kernen

mit gleicher Protonen und Neutronenzahl, da Niveaus mit Isotopenspin

0 und 1 auftreten, die energetisch nicht stark verschieden sind. Die
Frage der relativen Lage dieser Zustände wurde in einer Arbeit von
Stähelin geklärt, in welcher 38K und 34C1 untersucht wurden [58].

Es würde zu weit führen, alle übrigen kernspektroskopischen Arbeiten,
die sich mit verschiedenen Isotopen befassen, im Detail zu beschreiben.
In einigen der früheren Arbeiten liegt das Hauptinteresse in der Bestimmung

von Konversionskoeffizienten [59-61], in andern ist das
Gammaspektrum, inklusive innere Bremsstrahlung, das Hauptobjekt [62-65],
während in einem Grossteil der Untersuchungen die Aufstellung eines

volltändigen Zerfallsschemas angestrebt wird [66-71].
Die Zürcher Arbeiten sind im allgemeinen durch die Anwendung und

Kombination aller verfügbaren Methoden - magnetische und Szintil-
lations-Spektrometer, Proportionalzählrohre, Koinzidenzmessungen -
ausgezeichnet. In einer der neuesten Arbeiten über den Zerfall des 181W

von Debrunner, Heer, Kündig und Rüetschi [72] wurde zusätzlich
die Technik der Richtungskorrelationsmessung verwendet, deren
systematischer Gebrauch in der Kernspektroskopie von grossem Nutzen sein

wird.
Die Entwicklung der Kernspektroskopie in Zürich ist ein deutliches

Beispiel dafür, wie in einer relativ kurzen Zeitspanne die Messmethoden
der Kernphysik gewaltig verfeinert und erweitert worden sind. Der
begeisternden Initiative Professor Scherrers ist es weitgehend zu verdanken,

dass im Physikalischen Institut der ETH immer mit den neuesten
Methoden gearbeitet wurde, und sein unermüdlicher Ansporn war dafür
verantwortlich, dass immer wieder neuartige und bedeutende physikalische

Probleme in Angriff genommen wurden.
Über die systematische Klassifizierung und Deutung kernspektrosko-

pischer Ergebnisse und die theoretische Entwicklung der Kernmodelle
wird an anderer Stelle berichtet.
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