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Long range interactions between magnetic moments in
semiconductors

by W. Baltensperger and A, M. de Graaf
(Laboratorium fiir Festkoérperphysik, ETH, Ziirich)

Summary: The interaction between magnetic moments embedded in a non de-
generate electron gas is calculated. In the fully degenerate gas the RUDERMAN,
KiITTEL interaction applies whereas in the Boltzmann gas the interaction is ferro-
magnetic only and of comparatively long range. Between these extreme cases the
behaviour changes gradually. In a semiconductor an additional interaction comes
from the virtual excitations of the valence band. These two interactions and the
magnetic dipole interaction may be of comparable magnitude in dilute magnetic
semiconducting alloys.

1. Introduction

PauLr?) treated the spin susceptibility of a degenerate free electron gas
for the case of a uniform external magnetic field. His work has been
extended to finite temperatures?). The space dependence of the spin
polarisation due to a localized magnetic field has been calculated by
RupeErMAN, KITTEL3) and Yosipa?). In the present paper this will be
considered for a non degenerate electron gas.

Localized actions on the spins of conduction electrons are caused by
the electron exchange with magnetic ions or by the hyperfine interaction
with magnetic nuclei. The resulting polarisation of the electron gas leads
to an interaction between magnetic ions or nuclei. Such interactions were
described by FrROHLICH, NABARROS), VoNsovskil®), RAMSEY, PURCELL?)
and RupeErmAN, KiITTEL?). In a semiconductor the non degenerate
electron gas also gives rise to such coupling between magnetic moments.
This will be evaluated and compared with the effect of the polarisation
of the valence band due to virtual interband transitions?),?).

2. Polarisability of the non degenerate electron gas
We consider a system of magnetic ions or nuclei at positions R; and
with spins §;, which act on an electron with coordinate r and spin § as an
external potential
D' —2](x—R)(s-8)). | (1)
i
Using Bloch waves
P = V2™ () - 0, (2)

56 HPA 33, 8 (1960)
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we define
Jik k) = Q1 f gHkR)x u;, (%) u,(%) J(x) dx (3)

where 2 is the volume of the atomic cell. In particular for a point inter-
action
J(%) = Jo 20(x) (4)

(3) becomes _
J(k, k) = Tty (0) 14,(0). (3)

With a development of the electron field in Bloch waves the interaction
energy takes the form19),4)

_ N4 ;EZ T(k, k) ¢®&*)R; {(“L; 4, — al, a,) & A |
kg J (6)

1 5 i #
My By Sf- + @y, 57‘

where N = V/Q is the number of atoms. aLt and a,, are creation and
destruction operators for electrons with wave-vector k and spin -+ or —.

The polarisation P =mn, — n_, where n. is the density of electrons
with + and — spin respectively, is obtained by perturbation theory to
second order4)

:ZPj (%) (7)
257 J (R, )
P38 = = Sag 2, ¥ () g~ by l 8)
z(k—k)(x—Rg),f( ){1_fk’}+c.c. J

where f(k) is the Fermi-Dirac distribution function.
The interaction energy up to second order is?),19)

=ZZA,.J. (8;-8;) (9)
2

_ |, B)® iterr) (Ri-R)) TR
Ay = 'N7£ﬁk)~5(k') 7 f(R) {1 - f(k)}. (10)
P,(R;) and 4 ;; are related to each other. Let ] u? represent a weighted

average of J (k k’),“k(o) up(0) in (8) and J? a weighted average of
| J(k, k')|2 in (10), then

A,;]22=—P; (R)[2 ] u?S". (11)

It should be noted that P(x) does not imply a variation of the total
charge density, since the excess of plus spin electrons equals at every
point the deficiency of minus spin electrons. Therefore correlation effects
will not appear in this approximation. If, however, spin independent

interactions are considered, correlation effects would have to be in-
cluded ).
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3. Evaluation of the integrals
We suppose that the energy is of the form

n [k k) K 12
E(k)KZ(mm_f_my“i_m'z ()

and introduce the variables
3= BB i wmwn B = IR, 0y v (13)

Since terms in f(k) f(k’) cancel, (10) becomes

4 ﬁ gi(n—n')g
= NeR s a2 (%)
3% :
Where. we have qropped.the index ¢7 in 4 ; a.nd 0;; = @, — 0;. With polar
coordinates the integration over the angles gives

kol ) 32 —'2

4 222 m, m,ym fd”fd"‘ 23 sin () sm(x 0) 1) (15)

After integration over x’ by principal parts

T 22 my iy m, kpT

A (Q’ ,’7) = A 4 3 hg, 2z G(Q’ 77) (16)
Glo. ) = 4op f dre xsin (2 % @) (). (17)
Here
[ T x? —1 _
(=) = ¢ #uT 1 1] (18)
so that (17) becomes
G(x, %) = j dy sin (@ %) [e*7 + 1)1 (19)
0
where
=22k, TR 1. ' (20)

This integral has been tabulated as a function of « for some values of
using the electronic computer of the ETH.

In the following limiting cases the integral is elementary. For a de-
genmerate gas, - oo, the formula of RUDERMAN and KITTEL is obtained

iy, ol = — L Wy Wiy [ dwsesin (2 % o) (21)
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JEQe Mgy m.,

Afg,00) = — =gt i [sin (2 %, 0) — 2 %, 0 cos (2 %, 0)] (22)

where A2 x3/2 is the top of the energy surface. In the other extreme for
the Boltzmann gas, n - — oo,

f(x) = e 7" 1%BT (23)
7T 00 = .
A(g, —o0) = — L%g;g%ﬁ@ ¢’ ] dx % sin(2 » g) e FPBT (24)
0
_ PPQmymym) P 1 o gy
- 2nh B (25)

The density of particles # is related to # through

n =

(my my, m)1/2 (2 kp T \3/2
D — (55 —) Fie () (26)

where I, is a tabulated?®) function. In particular

F

1/2

4. Discussion of the results

The RubpErMAN, KITTEL function (22) oscillates and diminishes with
distance. The interaction between two magnetic moments in a degenerate
electron gas is therefore alternatingly ferromagnetic and antiferro-
magnetic. The corresponding function (25) for the Boltzmann case falls
off as a Gaussian curve at large distances. The resulting interaction is
ferromagnetic for all distances. It is weaker, however, with comparatively
long range (2 kg T)~Y2 k. The oscillation of (22) comes from the sharp
cut off of the integration, which is replaced by a gradual decrease of the
integrand with x in (24).

As examples of iniermediate cases Figure 1 shows G(p %) for four values
of 0. Detailed tables of this integral will be published in a forthcoming
paper. It can be seen that the curve for s = 4 resembles the Ruderman,
Kittel function, whereas for n = — 2 the behaviour of the Boltzmann
case 1s obtained. Note that G(g, oo) plotted in the units of Figure 1 would
have vanishing range and G(p, — oo) vanishing amplitude.

The interaction 4 is given as a function of

o= (m R+ m, R} + m, R))'” (28)
Hence the surfaces of equal interaction energy in real space are ellipsoids,
the long axes pointing into the direction of small effective mass.
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Fig. 1 ‘
Distance dependence of g? times the interaction between magnetic moments in an
electron gas for some values of the degeneracy %

The polarisation due to a point source can be related to that produced
by a homogeneous field. The energy of an electron in the field F is given
by — F's, (for a magnetic induction B, we must take F = guz B,,
where g is the spectroscopic splitting factor and xp the negative Bohr

magneton). F can be written as a superposition of point fields
F Z
F- rigs /(—ZIOQS)é(x)dx. (29)

Since the polarisation P;(«, ) caused by a point field at position R; is
proportional to J, via J(k, k') = [, uy (R;) uy(R;) the polarisation due
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to a homogeneous field can be expressed as an integral over point field
polarisations:

F
P(s, 1) = s f P,(x, 1) dR,. (30)

If we assume that #,(%) is independent of k and use equations (11), (13)
and (16) this reduces to

P(x, 1.1) - _Fw_xmlﬂz)ilzu_z(-ﬂk)g

2 R4

z 0/ Glo, 1) do. (31)

u? actually is a function of & indicating the variation of P(n) within each
cell. For the Ruderman, Kittel case (31) reduces to the Pauli spin para-
magnetism :

Ploo) = Fuv (32)
where

Yy==x

- (my, m, m,) 22 ? B2 (33)

is the level density per unit volume at the Fermi surface. In the Boltz-
mann case

P(—oo)=Funf2k, T (34)

the expression for the Curie law is obtained.

5. Interactions by virtual excitations from the valence band

The interaction between magnetic moments via a non degenerate
electron gas may have an influence in semiconductors. Since the con-
duction electrons form a dilute gas of particles with low kinetic energy,
the interaction is weak but of long range, whereas the valence electrons
are capable of producing strong short range interactions.

This second interaction may be pictured as arising from the polarisation
of the system of valence electrons. It is included in the expressions (8) and
(10) if we allow k and k’ to run through both the valence and conduction
bands. #, 1s a different function for the two bands. We shall consider the
contribution coming from a full valence and an empty conduction band.

An evaluation of the integrals for a realistic case is not elementary.
Models have been proposed?),?) in which

' B2 LY
— E(k)+ E(K) = Eg+ o B+ " 35)
where E, is the direct optical energy gap and m, and m, are respectively
the effective masses of valence and conduction electrons. Note that if the
summation is extended to infinity for both k and &, the resulting integral
does not exist, unless special prescriptions for the integration are followed.
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BLOEMBERGEN and RowLaND#®) assume the valence band to be narrow
compared to E, and neglect (A%/2 m,) k% in (35). The integration over % is
cut off at &,, where

k, = 2m (34 7 )18 (36)
while that over &’ goes from 0 to oo to include contributions from higher
bands. They obtain an interaction of the form (9) where

T2 92 . (2m3Eg}”‘"
A s zangr [sin(k, R;;) — k, Ry, cos(k, R;)] ==& Ra. (37)
14

The polarisation (8) now is a sum over the functions v, (%) u,(x) e “**)%,
where v, ¢® and u, ¢** are Bloch functions of the valence and con-
duction band respectively. Since these Bloch functions are all orthogonal
(even for k = k') the polarisation assumes positive and negative values
in each cell. Therefore the polarisation for a homogeneous field (30)
vanishes. This also follows directly from the fact that a homogeneous
field has vanishing matrix elements for interband-transitions. This means
that there is no direct spin contribution to the van Vleck paramagnetism.

6. Numerical applications
For a dilute system of magnetic impurities embedded in a semi-

conductor, the numerical values of the various interactions are estimated

in TableI for a semiconductor like germanium. We take m, = m, = m, =
my, = m, = 1/10 m, 2 = 2:24 - 10~ cm?®, and E, = 0-8 eV. The para-
meters which still can be varied are the distance between two magnetic
ions R, the temperature T and the degeneracy # or the density of con-

Table I

Numerical values for the various interactions: the interaction via conduction elec-
trons 4, the envelope to the interaction due to the valence band 4’, and the magne-

tic dipole interaction estimated as 4" = u2/R®
R 10 40 A
T 100 500 100 500 °K
n 2 =1 2 w3 2 ~f | = .
n |4:3-1017 |5.0-1018 [4-8-108 |5.6-1017 | 4.3-1017 | 5.0-10%6 | 4-8-10%8 | 5:6-10%7 | cm—3
A/]ﬂ2 4-3-1078(5-1-10°{4-2-1077|5:2-10°8| 6:4-10"? | 8-8-10-19 1-2-10-? | 2.0-10~* .eV
[JineV]
TR 5. 105 1 -10-9 ev
14|17 3.5-10 7-1-10 Jin eV]
A" 54-10-8 84 -10-10 eV
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duction electrons n. The exchange integral J between a magnetic inner
shell and a conduction electron may be a few tenths of an electron volt.

Table I shows that for R = 10 A the interaction via the valence band
dominates, whereas for 40 A the various interactions considered may be
of comparable magnitude. It may be noted that A increases with the
density of the conduction electrons and with their effective mass. To
obtain the density of conduction electrons used in Table I doping is
necessary.

In a paramagnetic resonance experiment, the interactions give rise to
a line width. For one Bohr magneton the energy of 6-7 - 10-8 eV corre-
sponds to a width of one Oersted. The actual line shape involves the
simultaneous interaction of many magnetic moments, a problem which
has not been treated here.
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