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On the Phase Transition of a Superconductor

by Gregor Wentzel

The Enrico Fermi Institute for Nuclear Studies and the Department of Physics,
University of Chicago, Chicago (Illinois)¥*)

Abstract. In previous studies of the statistical mechanics of a superconductor,
only the ‘reduced Hamiltonian’ of the BCS theory!) has been used which ignores
the vast majority of the electron-electron interactions. Here, the Hamiltonian is
extended by including the other interactions as perturbations up to the second
order. As a preliminary step, omitting all but the first-order terms in the Hamil-
tonian, we derive a rigorous expression for the free energy. Then, to take account
of the second-order perturbations, a variational method is used. Particular attention
is paid to the behavior of the free energy near the critical temperature. Effects of
the lattice periodicity are not examined in this paper.

1. Introduction

The thermal behavior of a superconductor has been theoretically
studied by BARDEEN, COOPER, and ScHRIEFFER!), and by BoGoLiuBoOvV,
ZUBAREV, and TSErRkKOVNIKOV?Z). In both studies, the BCS model of a
superconductor was used. This model is characterized by a ‘reduced
Hamiltonian” in which only pairs of electrons with opposite momenta
appear coupled. As a technique of calculation, BCS used a variational
approximation (minimization of the free energy), whereas BZTs were
able to prove that the free energy, as calculated by BCS, is exact in the
sense that the volume-proportional part of the free energy is completely
and rigorously given by the BCS result. (See, however, our comments at
the end of section 2.) Subject to certain conditions, the system has a
phase transition of the second order (in the absence of external fields), and
the specific heat vs. temperature curve shows a remarkable resemblance
to the experimental curves.

The following question must be raised, however. The interaction
matrix-elements contained in BCS’s reduced Hamiltonian form only a
very small (actually, vanishingly small) minority among all matrix-
elements appearing in a more realistic Hamiltonian, e.g. in the inter-
actions mediated by virtual phonons. Some people argue that these
additional interactions, presumably, will affect the superconductive and
the normal state essentially in the same manner and can therefore be

*) Most of this work was carried out while the author was visiting at Bell Tele-
phone Laboratories, Murray Hill, New Jersey.
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omitted, in a first approximation, in spite of their large number. Plausible
as this argument is, it has not been substantiated.

The main purpose of the present study is to adduce some evidence in
favor of this view. If one wants to take account of all (or a majority of)
the additional interactions, he can do this only in some approximation.
We intend to treat the additional matrix elements in the Hamiltonian by
a perturbation theory up to the second order, and the results will show
that this is not unreasonable as far as differences between the super-
conductive and normal phases are concerned. It will turn out that in our
approximation the phase transition (if it exists at all) retains very nearly
its second order character. _

The procedure will be in two steps. We shall first simplify the BZTs
method?) and at the same time generalize it to allow the lowest order
selfenergy of the electron gas to be included. This problem can still be
treated rigorously. Then, adding the second-order perturbations, we have
to resort to a variational method.

2. First-Order Hamiltonian

We consider interaction operators involving products of four free-
electron absorption and emission operators

(a;4 st a’k3 51) (ﬂl;:z s ak1 s) (1)

(ky — ky = ks — By + 0). They may refer to phonon-mediated and
(screened) Coulomb interactions. For the BCS pair interaction we have
ky=—Fk;, ky= — k,, and s’ = — 5. We write it as

Hy=—VAZy Ju (@, “;+) (@ s a_p-) @)

where a,, refers to an electron with momentum k and spin #p, while a_,_
refers to an electron with momentum — k and spin down. [, > 0 is
favorable for ‘superconductivity’. In addition, we include in the first-
order Hamiltonian the selfenergy term ky; = k,, k, = ky, s" = s:

_ -1 *® *
Hy =V 2y Iy 2 ay, ay g

.

- * 1 * 1
= — V220 Iy X, (aks Ags — “"2*) (“k's Aprs — 7)

(3)

1
+TV_1Zkk’ Ty

I, (like [J,.) is real and symmetric ([, = 0). Note that, regarding
Coulomb interactions, we have included in H, the single-electron self-
energies which should really be subtracted (a,,dz, =1 — dpsdy, > — Arsdyy),
but an equivalent subtraction can be made in the kinetic energy, provided
a high-energy cutoff is conceded.
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Now introduce operators

A " L 4

ks = \ s @s— =, )+ ks (4)

where &, ., &, and 7, are real functions which are to serve as trial
functions. The ‘perturbation’ will comprise the terms

H=-V"1 Zkk' (Ikk’ Zs Aks Ak’s F ]kk' B; Bk') (6)

whereas all the rest defines the unperturbed system:

H® - H., + H,+ Hy, — H'" 4 const,
* 1
— 5, [ — B2 m) Z, (a3, a— ) +
) 1 (7)
+ 22, 2 I, (“ks Aps — “2—)
+ 2 A4 (@ @y + 55_,:_ a,;Jr) + U J
where
Ly = V22 Iy &y (8)
A =V>Zp Jow nie 9)
U=V220 (L 2 &k Ers + T Tk M) (10)
In (7) we can replace
% 1 " 1
2, I(dha—5) by (Ze D) Zo(dh o — ).

the difference of these expressions being proportional to I',, — I',_ which
will eventually vanish [see (26)]. The quantity

& = (k2 — R)[2m + 2, T} (11)

will then play the role of a ‘renormalized’ kinetic energy. The constant ko
shall be chosen such that ¢, vanishes at the Fermi surface.
HO is diagonalized by the quasi-particle transformation

*
Ay = U Oy Vg Oy
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E, = (4; + )" (> 0) (14)
with the result
H'=U+ 2, E n, {13)
where
M=oy Oy + 0o, — 1 (16)

n, has the eigenvalues — 1, 0, 0, + 1. Note that H® depends on the trial
functions through E, [(14) with (8), (9), (11)] and U (10). '

The free energy, at the temperature T — 1/8, of the unperturbed
system can then be written

Fo— U+ P (17)
F'=—#121n Enk exp (— B E,ny) I
(18)
= —2fB-12 In (2 cosh § E,[2) l

Note that the thermal average of #, is
(M)ay = OF'|OE, = —tanh B E,/2 = — 7,0 (19)
Also, from (12) and (19)
(@ @) = 5 (Z Wy @)ae= 5 (1~ 708,/ E)) (20)
(@ 8 )y = — T A /2 B, (21)

Let us now minimize ' with regard to the trial functions, using (19)
again:

OF® oy 5 8 OB

05, Tom. K og, 0 )
OF° 90U o OE;
o T omy R oy =0 =
With the definitions (10) and (14) [with (8), (9), (11)] this gives
28, =1, &/E; (24)
29 = T A/ E (25)

This result must be compatible with (8) and (9):
Ly =V Z Ly Ty £4/2 Eye (26)
Ay = VAL Ty Ap|2 Eye (27)
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Equation (27), in conjunction with (14), is the integral equation, origi-
nally derived by BCS?!), which determines the ‘energy gap’ 4, as a
function of the temperature [see (19)], and its solution in the ‘weak
coupling case’ is well known. Then, inserting (26) into (11) gives the
renormalized kinetic energy; the quantity

1 de, 1 2 aly, 1 (28)

E dk m E dk m* (k)

defines an effective mass m* which in turn determines the density of
states in the vicinity of the Fermi surface.

It remains to be proved that F°, as defined by (17), (18) and minimized
as described, gives the volume-proportional part of the free energy F
completely, or in other words, that this part is not affected by the per-
turbation H’ (6). This is a consequence of the fact that the thermal
averages of the quantities 4, and B, vanish:

(Aks)av =0 ’ (Bk)av =) (29)

Indeed, by inserting (20), (21) and (24), (25) into (4) and (5) this is
immediately verified. Then, the proof given by BZTs?) for the case
I, = 0 can be readily generalized. Namely, writing down the mih order
correction to the partition function, 77 exp(— B(H® + H')), one meets
with expressions of the following type

Vo Tr [exp (— BHO) IT;_y s, {exp (B; H) Cy exp (— B, HO)}]

where each C;, stands for one of the operators 4, By, B;. (The f5; are
integration variables.) It is easily seen that the Trace vanishes, on account
of (29), if one momentum, say k,, is different from all the other momenta,
k, ... k;,, occurring in the product. In order to obtain a non-vanishing
term, one has to have m pairs of equal k;’s so that, after multiplying with
the appropriate factors I,,., J,,» and then summing over k, ... ky,,, the
sum runs only over m independent k-vectors. If one then divides by
Tr exp(— p H) and finally writes the sums as integrals (for IV - c0), the
factors - and V™ cancel out and the result becomes volume-independ-
ent. Hence, up to any finite order (m <€ N = total number of particles):

Tr exp (—f (H°+H'))
Trexp (— B HY)

lim
V—o00

= finite,

and
lim V-1 (F-F% =0, gq.ed.

V—oo

The discussion of F? will be postponed, but some general comments
should be made at this point. While &, (24) and I, (26) have well-
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defined signs, a simultaneous change of sign in #, and A4, is compatible
with (25) and (27) ; but these two solutions are physically equivalent, and
we are free to choose A, = 0. As is well known, there is always the formal
solution 1, = 0, A, = 0; this is the so-called trivial solution. It should be
pointed out, however, that it is an unacceptable solution if a non-trivial
one, giving a lower free energy, exists. This follows already from the mere
fact that the free energy is defined unambiguously in terms of the energy
eigenvalues of the system. But it is also easy to see why the trivial
solution goes wrong. Indeed, it is clear from (7) that, for A, = 0, H° re-
duces to the kinefic energy, and all of the interaction H, is then treated as
a perturbation, i.e. by an expansion in powers of a coupling parameter J.
This is certainly wrong for a condensed state in which some physical
quantities like the energy gap behave non-analytically as J goes to zero.
By the same token, the non-trivial ‘rigorous’ solution could be wrong too,
namely, if some collective effects are hidden in A’ and remain unnoticed
owing to the perturbation expansion. Quite generally, it should be
realized that the type of rigorous solution one obtains by the BZTs
method is heavily prejudiced by the type of terms which one includes in
the ‘unperturbed’ Hamiltonian, a choice based primarily on physical
intuition.

3. Second-Order Approximation

We now want to take into account, at least approximately, the vast
majority of the interaction matrix-elements (1), namely those which are
not contained in (2) and (3); we call them H”. None of them has a
diagonal part in our quasi-particle representation («, o, diagonal), and
it is convenient right away to diagonalize H® + H":

SUHO+ H"YS=H'+h

(h diagonal, ~ H"%). There are only three kinds of terms in the free-
particle representation which can contribute to %; apart from numerical
factors and energy denominators, they involve the operators

0, = (a; a)) (a; a,) (a,a,) (a, a,) (30)
0y = (a; a,) (“; a,) (@ agy) (@pp ap-) (31)
0y = (74 ay) (@S- @) (@pry @) (@gors Ao (32)

(Greek indices stand for momentum and spin). For instance, O, can arise
from a linear combination of two terms like

* * d * *
A @, g, and a,a,a., d,

I
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occurring in H”, by multiplying them crosswise with their conjugates.
Now, 0, actually simulates a BCS pair coupling of the typeH,(2). When
treated as perturbations, the matrix-elements O, are ‘dangerous’ in the
sense that they cause divergencies (for 4, - 0; see section 4). They are
more adequately accounted for by including them in H, with a; @, and
a, a, replaced by their thermal averages [see (20)]. This amounts to a
renormalization of the coefficients J,,- in (2). As to the terms 04(32), their
contribution to the free energy is so small that they are meaningless
unless one goes to higher approximations in H". Therefore, after the
renormalization of [,;., & can be entirely identified with the terms of the
type 0 (30). [Of course, O, carries a factor V-2 and, because only three of
the four momenta are independent, %,, will be proportional to V]

2 anv

The corrected free energy will be written
F=F+f, (33)
with f given by
Trexp [f (FO— HY) + 8 (f — B)] =0,
or in lowest approximation :
f=Tr(hexpf (F*— H%) = h,, (34)

H° and F° are again given by (15) and (17), (18), but in order to make
optimum use of the approximation (34), we now want to minimize F
instead of F°(3). Note that %,, [see (30) and (20)] depends on the trial
functions only through E,. Setting

dF[d&,, = 0, dF|dn, = 0,

one sees immediately that in all Equations (22)-(27), 7,° must be replaced
by
Te = — 3 (F' + JOE, = 7 — b, JOE,. (35)

Thus
28, =T 8/E;, 2 e = Ty A E, (36)
Iy =1 =V 2, Ly 1y 802 By,
p= V12, S T Ap[2 Ey..

(37)

Regarding the perturbation H' (6), we observe that (29) is now no longer
rigorously true. However, (4,,),, and (B,),, are still small as 4, and hence
the contribution of H' to the free energy is small as A2 (or even less) and
must be neglected here.

55 HPA 33, 8 (1960)
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Our approximation can only be meaningful if we find 7, close to 7}. To
examine whether this is so, let us look at the limiting case of low tempera-
tures.

For T = 0, of course, only the ground state (all o, a;, = 0)contributes:

7, (T = 0) = 1 — dhOE, (38)

From the unperturbed ground-state or quasi-vacuum, only emission of
quasi-particles is possible, hence the energy denominators in %, are all
negative [— (E, + E,+ E, + E )], and one sees easily that the differ-
entiation of these denominators gives the predominant contributions to
Oho/OE,. Their sign is such that 7, < 1. Equation (37) then tells us that
the perturbation 4, has the effect of replacing the pair coupling constant

J (= Jiw) by a smaller one

Jp=J7=Jwte, <1 (39)

(averages taken over an energy shell |, | < w, where » > 4, in the ‘weak
coupling case’). The usual analysis of Equation (37) then gives

A=A4, ~ wexp (— 1/y]7) (40)

if J = > 0; otherwise the trivial solution, A4, = 0, takes over. Whilet < 1
has the effect of making the ‘gap’ A smaller, it should be remembered
that we are now dealing with a renormalized J and a corrected density
of states y [see (28)]. The energy difference between the superconductive
and normal ground-states is given by

(U =24 Ex+ ho) = (U =24 Eg+ h) g0 (41)

The perturbation %, obviously depresses the normal state more effec-
tively than the superconductive one.

In making order of magnitude estimates we have taken the H”
matrix-elements of the general order J/V (like H,). In the weak coupling
case (4 € w) one finds 7 close to unity, namely

17~ (y])? ~ (In w/4), (42)

and also in (41), the term &y, — (k) 4, o is by a factor ~ (y J)? smaller
than the other (unperturbed) terms. So far, the perturbation treatment
of H" is apparently justified. It is, of course, conceivable that H” gives
rise to collective effects which our method fails to detect, owing to the
perturbational expansion. But in such a situation the whole basic pair-
coupling idea of BCS would be in doubt.
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Going to high temperatures, T -> oo, we claim that 7, like 79 (19),
vanishes:
T (1 = o8] = . (43)

Indeed, %,, tends to zero once 7T has become much larger than all energy
denominators occurring in 4. [Rewriting 4, as an expression symmetrical
in ‘initial’ and ‘intermediate’ states, see Equation (63) in the Appendix,
shows this most easily.] (43) is even true to all orders in H”, and pre-
sumably also toall ordersin H" + H"”. Anyway, within our approximation,
7, must be taken as zero for T° - oo, with the implication that Equation
(37), at sufficiently high temperatures, admits only the trivial solution
Ay =1,
4. The Phase Transition
We will then assume that a non-trivial solution of (37) exists only at

temperatures below a certain critical temperature 7. For 2 = 0, it is well

known that 4 (= 4,), as determined by Equation (27) with (19), goes to
zero at T, as (T, — T)Y/2, We want to show that this remains true for the
perturbed system.

Let A, =47 (44)

where A, approaches a finite value (of order 1) as 4 - 0. Now (37) can
be written

%* VAL (Tew i) T (B, T) [ E =1 : (45)

and, with E, = (42 A} + £})%, this will determine A as a function of 7.
If this function goes to zero continuously as 7" = T, this value T, defines
the critical temperature:

1
2 VX Tk Ml Aa) Th (‘8’5

Both in (45) and (46), we transform the k-sums into integrals over ¢, and
then subtract (46) from (45). Since T ~ T, the factors [, 4,/4,- in the
two integrands can be taken as practically the same, and this also applies
to the respective densities of states, except possibly for terms small as
[4 (T)]2. Then, the essential factor in the integrand can be expanded:

T (B T Ec— 7 ([ & |, T | & | &
[(E} — &) 0/0ey + (T — T.) 0/ T g (lex |, T/ e |

» T| & | = 1. (46)

where the two terms are proportional to A% and to T — T, respectively.
So, indeed

AHT)=60(T,—T) for T
with @ > 0 [A(T) real for < T,].

&

P, | (47)

[
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One might object to this argument that in the region |g,| Z 4, the
expansion of tLe integrand in powers of A% is incorrect and that the
integral actually may contain terms which do not vanish as strongly as
A2 We shall prove in the Appendix, however, that for E, € T [this is
satisfied when E,, < A(7T) - 0] the function 7,(E,, T)/E, can be expanded
into non-negative even powers of E,. Then, (47) is obviously correct. It
should be pointed out that the terms of type O, (31) which we eliminated
in section 3 by renormalizing [,,- would have caused even an infinity to
appear for 4 - 0. In this sense, they are ‘dangerous matrix-elements’
which we may not allow to occur in the perturbation 4.

It remains to discuss the free energy at temperatures close to T,. Recall
Equations (33) and (17):

F=U+F +f (48)

U, as given by (10), is conveniently split into two terms [see (9) and (36)]

U =U,+ U,

1
Ul — ra V-1 Zk}c’ Iick’ (Tk S;C/Ek) (Tk’ Sk’/Ek’) (49)

1
Up=2 Ay = o 2 A, v /E;

Let us define a function ¢ of 7" and 4 [see (44)] which becomes F if T and
A are linked by Equations (37) or (45) but, if this equation is disregarded,
has T and A as two independent variables:

$(T, A(T)) = F(T), (50)
T, N=U+ F + . (51)

Here, each term is meant to depend on 7 only through the Boltzmann
factors [see (18), (34), (35)], and on A through A, (44), as specified by all
preceding equations except (45). Then, the validity of (50) is obvious. On
the other hand substituting into (51) the ‘trivial solution’” A4 = 0, one
obtains the free energy of the ‘normal state’ (which is a fictitious state for
T<T):

$(T, 0) = F,(T). (52)

However, since we want to compare (50) and (52) for the same system,
i.e. for a fixed total number of electrons, we have to admit an explicit
A-dependence of £2/2m in g, (11):

Kj2m = u(T, 4), (53)

such that (7, A(T)) and u(7, 0) are the correct chemical potentials of
the two states:
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& = R}2Zm — w(T, A) + V12 Ly (vp &/ Ey). (54)

For other values of A4, ¢ has no specific physical meaning and, to be sure,
it is not the quantity ¥ which we have minimized (as a functional of
s My). Nevertheless, for small values of A, ¢ can be expanded into
powers of A, and in particular, for temperatures just below 7, where
A(T) is small, we obtain from (50) and (52):

F(T) = Fy(T) = Zypg o (—25EA) ATy (59)

[ ]
F > 7!

while (1) =F,(T) for T = T,.
Now examine the first derivative

06 (T, )[4 = X, 2, 0/dA,. (56)

In application to functions of the E,. alone, like (F' + f) or 7,/E,, we
have*)

D04 = Xy M 0y + 4 06, [0A,) OOE,. (57)

If one then writes down 0(F' + )[04, using (35), several terms are seen
to be cancelled by corresponding terms coming from 0U,/d04, and
0U,/04, in (56). But two terms remain:

O(T, A)dA = X, + X, ]
Xy = (Zytp e/ Ey) 0u(T, A)[0A
Xy =T A /EYfoA .

(58)

With (44) and (57), one sees easily that X, is proportional to A% and
therefore leads to a term 7 = 4 in the expansion (55). Indeed, the pre-
dominant term in X, is

Xy =A% 5 0 B (v EJPE, + -+ (< 0) (59)

The integral appearing here converges for 4 - 0 against a finite value,
including the contribution of the region |¢,| 2 4,, by the same argument
as was invoked above (Appendix). Thus, if the term X in (58) could be
ignored, F(T) — F,(T) would be proportional to [A(T)]* or (T, — T)2,
for T approaching T, from below, and this would characterize the phase
transition as one of the second order (0F /0T continuous, 02F[0T? dis-
continuous at 7).

*) Note that, at this point a k-sum is not yet considered as‘an integral over g,,.
This makes it easier to take account of the A-dependence of the density of states.
(Clarifying comments by Dr. Y. NaMBU are gratefully acknowledged.)
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However, the term X, which originates in the rigorous treatment of
the selfenergy H,, may give rise to a term § = 2 in (55), thereby changing
the order of the transition from second to first. Moreover, the k-sum in
X, (58) is cut-off dependent, and we have to invoke a new physical
argument, outside the scope of our approximation, to specify the cut-off.
Here we want to exploit the observation made by BARDEEN?) that the
coherent superposition of electron wave functions which is implied in the
quasi-particle transformation (12) and in all subsequent equations based
on (12), is meaningful only if the lifetime of the corresponding excited
electron states -+ % is long enough to allow the particles to travel through
the coherence distance. Since the decay rate (imaginary part of E,) in-
creases with g, [, there will be a limited ‘zone of coherence’, say &, <<k<£%,,
in the vicinity of the Fermi surface (¢ = &), where the coherent electron
pairing takes place as described, whereas outside of this zone our approxi-
mation is insufficient, and the best we can do is to set A4, = 0 there. This
provides the necessary cut-off prescription, e.g. in (57) and (58). Then,
we have approximately, for T approaching T, from below:

F(T) = Fy(T) = Zu, equo (T8l Ei) g0 (T, A(T)) = (T, 0)] + -+ (60)

This may contain a term /inear in T, — T which then determines the
‘heat of condensation’, W.

The difficulty in computing W stems from the fact that it is the dis-
symmetry in the properties of excitations with £ > %, and 2 < % which
governs the quantities in Equation (60), indeed not only the k-sum
appearing explicitly but also similar sums occurring in u [see (54)]. One
would have to know the difference in the lifetimes of ‘electrons’ and
‘holes’ at about equal distance from the Fermi surface! On the other
hand, just because only the dissymmetries contribute, we can expect W
to be small (compared with the area under the specific-heat curve) if the
zone of coherence is sufficiently narrow (k; — %, <€ k). Nevertheless,
there seems to be no obvious reason for W to vanish exactly (even for the
‘unperturbed’ system: H” = 0). We must therefore anticipate that there
exists a non-vanishing latent heat, though it may be too small to be
easily measurable.

Appendix
Labeling the eigenstates of H° by a suffix N, we have

hy =24 | (N'|H" | N) |2 (HS — H%)- . (61)

Each virtual process N - N’ consists of the emission or absorption of
4 quasi-particles. In view of (35), we are interested in those terms of 4
where one of those 4 quasi-particles is either & + or —k—. This part of
h will be called #%,; it is volume-independent (V' — oo). Furthermore, in
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each term of %;, we are interested only in those factors which depend on
E,. Remembering that only terms of the type O, (30) were to be retained
in A, such factors all originate in ay, 4,, and the energy denominators.
From (12) it follows that the £, dependence of an individual term in (61)
is given by

u’lza a;:s Xgs (Ek - Q)_l + vlge A g mik-s (_ Ek - Q)—l

where Q is the energy change of the other 3 quasi-particles participating
in the special virtual process. Adding the 2+ and —k— contributions
and inserting (13) and (16), one obtains

(Ei — Q)T (Q + &) + (Ex + O/ Ey) ny). (62)

In the corresponding term in the free energy (34), the thermal average
(19) 1s to be taken. Then, for E, € T and Q > E,, the result can be
expanded into non-negative even powers of E,.

As to the contributions Q = E,, we avoid the singularity in (62) by
symmetrizing (%,),, in initial and intermediate states:

1 (N H" | N) |?

2y by exp (—pHY) = I e — e [€XP (—BHYS) —
SO

(63)
— exp (—fH}.)]

In other words, whereas in (62) we have already summed over N’ for each
N, we here go back and first symmetrize in every pair of states N, N'.
Now, in the terms with Q = E, € T, (63) can be expanded in powers of
both 8 E, and § Q, and the denominators can be cancelled out. Then one
sees easily that the odd powers of E, appear always multiplied either with
(my, m) which vanishes identically, or with odd powers of #, or n, which
vanish in the average (to be taken with § = 0).

This proves that, whatever the value of Q, all terms contributing to
fr = (A),, can be expanded into non-negative evern powers of E,. Then,
however, the same is true for the functions

T JE, = — E, 10 (F' + )/dE, and E, 'd(t,/E,)dE,.

This justifies the statements made in section 4, in the discussion of the
Equations (47) and (59).
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