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Die Normalform einer komplexen Lorentztransformation

von Res Jost
ETH, Ziirich

Zusammenfassung. Zwei komplexe Lorentztransformationen 4 und B heissen

dquivalent, falls es zwei reelle Transformationen A, und A,in Ll derart gibt, dass
A = A, BA,. Die so definierten Aquivalenzklassen werden durch die Konstruktion
einer Normalform fiir jede Klasse vollstindig charakterisiert. Im letzten Paragraphen
wird ein Satz bewiesen, der die Verbindung zu den Untersuchungen von BARGMANN,
Harr und WiGHTMAN schafft.

§ 1. Einleitung

Die komplexen Lorentztransformationen spielen seit einiger Zeit eine
bedeutende Rolle in denjenigen Arbeiten, die sich mit den Grundlagen
der quantisierten Feldtheorien befassen!). Fiir den physikalisch inter-
essanten Fall von vier Dimensionen ist es wohl am einfachsten, zur Ana-
lyse der komplexen Lorentzgruppe den bekannten Isomorphismus dieser
Gruppe mit dem direkten Produkt von zwei speziellen linearen Gruppen
in zwei Dimensionen auszuniitzen. Doch haftet dieser Methode besonders
im Hinblick auf die Verallgemeinerung auf hohere Dimensionen etwas
Kiinstliches an. Wir geben deshalb im folgenden eine Analyse von kom-
plexen Lorentztransformationen, bei der die Dimensionszahl nebenséich-
lich ist. Es ist dabei das Ziel, die Analyse so zu leiten, dass die Verallge-
meinerung der Resultate?) von V. BARGMANN, D. HALL und A. WIGHT-
MAN auf allgemeine Dimensionszahlen evident wird. Das wesentliche
Hilfsmittel wird in Form eines Satzes formuliert.

Im Hinblick auf diese Anwendung wird tiberall nur das Skalarprodukt

(x,9) = 2090 — a1yl — 2292 — -o0 — xoyn

in Betracht gezogen.

Der Hauptteil der Note besteht darin, fiir rein imagindre*) Lorentz-
transformationen eine Normalform zu finden. Die zugehérigen Rech-
nungen unterscheiden sich wenig von denjenigen, die erforderlich sind,
um die Normalform einer reellen Lorentztransformation zu gewinnen?).
Der Vollstindigkeit halber sind sie aber trotzdem wiedergegeben.

*) Dieser Ausdruck erscheint nicht sehr gliicklich, doch fiel es mir schwer, einen
besseren zu finden.
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Diese Note geht auf eine Anregung von F. J. DysonN und auf eine
kritische Bemerkung von V. BARGMANN zuriick. Thnen beiden gilt auch
hiefiir mein freundschaftlicher Dank.

§ 2. Definitionen
1. Metrik
(%, %) = (202 — D (252 = 27 Gx
1
G = -1

2. Transponierte einer Matrix: M7
Hermitische Konjugierte: M*
Komplex Konjugierte: M = MT*

3. Reelle Lorentztransformation A: A1 =G AT G, A" = A.
Einskomponente der reellen Lorentzgruppe: Ll.
Ae Li hat die Determinante + 1 und transformiert den Vorkegel
V,={x; x>0, (%, x) > 0} in sich.

4. Komplexe Lorentztransformation A: A-1=G AT G
Einskomponente der komplexen Lorentzgruppe L. (C).
A4 € L (C) hat die Determinante + 1.

5. M € L_(C) heisst rein imaginir, falls M' M = 1.

6. Aquivalenz zweier komplexer Lorentztransformationen: A4 ~ B, falls
es A,, € L] gibt, derart, dass 4 = A, B A,.

Das Ziel der Untersuchung besteht darin, zu jeder der durch 6. defi-
nierten Aquivalenzklassen eine Normalform zu gewinnen. Dazu ist es
notig, zundchst eine Normalform fiir eine rein imagindre Lorentztrans-
formation zu suchen.

§ 3. Normalform einer rein imaginiren Lorentztransformation

1. Die Wurzeln des charakteristischen Polynoms y(A) = Det (M — 4+ 1)
(Ezgenwerte)

a) Aus yx(4) = 0 folgt y(A-1) = 0. Das gilt fiir eine beliebige Lorentz-
transformation. Mit 4 ist also auch A-* Eigenwert.
b) x(4) ist ein reelles Polynom, denn

x*(A) = Det (M* — A1) = Det (M'T — 1 -1)
= Det (M7 — A1) = Det (G (M — 1) G) = x(4).
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Also sind die Eigenwerte von M entweder reell oder sie treten in kon-
jugiert komplexen Paaren auf.

Im folgenden brauchen wir zwei trivale Lemmata:

Lemma 1:

o) Zwei reelle orthogonale Nullvektoren sind linear abhingig.

p) Falls ein komplexer Nullvektor x auf dem komplex konjugierten x’
orthogonal steht, dann sind x und %’ linear abhingig.

Lemma 2: Sei M x = Ax und My = uy, dann ist (x, y) = Au(x, y), also
ist entweder (x, ¥) = 0 oder Au = 1.

c) Falls 4 ein komplexer Eigenwert von M ist, dann ist A* = 1~ also
1] = 1.

Bewers: Aus M x = Ax folgt M x' = A*1x’. Nach Lemma 2 (x, x) =
(x, ") = 0 also sind x und x" nach Lemma 1 linear abhingig und daher
AY= ],

Ausserdem kann x jetzt reell gewdhlt werden und desgleichen y, der
Eigenvektor zu A-1. Es gilt (¥, x) = (y, ¥) = 0, also ist (x, ¥) + 0 und bei
passender Normierung (x, y) = 1.

Dann sind die Vektoren & = 2-% (x +y) und 5 = 2% (x — ) ortho-
gonal und normiert: (¢, &) = — (, ) = 1. Es kann also nur einen kom-
plexen Eigenwert geben, und der durch (M — 4 1) annihilierte Raum ist
linear.

2. Das Auftreten von nicht linearen Elementarteilern

a) Zu einem komplexen Eigenwert A* + A gibt es nur lineare Elemen-
tarteiler.

Beweis: Sei

Mx=2Ax und My=1Aix+ Ay.

¥ kann reell gewdhlt werden gemiss 1c. Dann folgt
My =idx+ Ay

woraus M(y" — y) = A(y" — v). Es kann also auch y (das nur modulo x
definiert ist) als reell vorausgesetzt werden. Nun folgt weiter neben
(x, x) = 0 auch (Mx, My) = A%(x, v), also (x,y) =0 und (My, My) =
A%(y, v), also auch (y, y) = 0. Das ist nach Lemma 1 ein Widerspruch.

Folgerung: Es kann hochstens ein Paar von einfachen, konjugiert
komplexen Eigenwerten geben.

b) Zu einem reellen Eigenwert A &= 4 1 gibt es nur lineare Elementar-
teiler.

Beweis: Sei A~ + A = A* und
Mx = Ax My =x + Ay
Mx'=21x" My =—A12x" 421y
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Daraus (x, x) = 0, (M %', My) = A7Y(x, x') + (%', ), also auch (x, ") = 0
und daher x und x’ linear abhéngig, was nur fiir A = 2-1 méglich ist.

c) Es gibt hochstens einen nichtlinearen Elementarteiler, der entweder
zum Eigenwert A = + 1 oder 4 = — 1 geh¢rt und nur auftritt, falls alle
Eigenwerte reell sind. Ein solcher Elementarteiler ist 3. Grades.

' Bewess: Sei A2 =1 und

Mx =1x My =1ilx + 1y,
dann ist
My =" My =ilx' + Ay'.

Nach b) ist (x,x") = 0. Ausserdem (Mx, My) = i(x, x) + (¥, y), also
(x, ) = 0; x und %’ sind linear abhidngig. Daher kann x und ebenso v als
reell vorausgesetzt werden. Schliesslich gilt (M vy, M y) = 24(x, ) + (v, ¥),
also ist auch (x, ¥) = 0. Nun sei x; ein weiterer Eigenvektor M x; = u x4,
dann folgt, falls u = 4 ist, wie oben aus (M x;, M y) = 7(x, x) + (x, ¥) auch
(%1, ) = 0. Das gilt aber nach Lemma 2 auch fiir u + A.

Alle Eigenvektoren und y sind daher orthogonal zum Nullvektor x,
spannen also mit y zusammen nicht den ganzen Raum auf. Der Elemen-
tarteiler muss also mindestens 3. Grades sein:

Mz=—3Ax+idy+Aiz, Mz =—3%Ax+idy+ Az,

z kann wieder reell vorausgesetzt werden.
Es ist (%, %) =0, (x,9) =0 und (%, 2) + (v, ¥) = 0. Ein Elementar-
teiler 4. Grades aber kann nicht vorkommen, denn aus

Mw=—3}dy+idz+Aw, Mw' = — 32y + 1Az + dw'

folgt (Mx, Mw) = i(x, 2) + (x, w), also (x, z) = 0, und daraus nach oben
(v, ¥) =0, was mit (x, x) = (x, y) = 0 unvertréglich ist.

Oben wurde darauf hingewiesen, dass alle iibrigen Eigenvektoren auf x
orthogonal sind. Sie spannen also einen rein raumartigen Raum auf.
Nach 1c kann daher in diesem Fall kein komplexer Eigenwert vorhanden
sein. ‘

3. Die Normalform fiir M
a) Es tritt ein Paar komplexer Elgenwerte auf: A = A*. Man fithrt im
Raum zu (4, 2*) die Vektoren & und % aus lc als Basis ein und setzt
A = €%, dann lautet M in diesem Raum
(cosqp isincp) _K

ising cosg e

Im iibrigen hat man nur reelle Eigenwerte und keine héheren Elementar?!
teiler. Sei 4 = + 1 ein Eigenwert zum Eigenvektor x, dann gehort u—-
zu z2’. Im Raum zu (g, ) fithrt man die reellen Vektoren
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E=2F(x+x)n=—i-2F(x — %)
ein. Dann wird |

(€, &) = (7, m) = (x, %) und (§, #) = 0,

also muss bei passender Normierung (¢, &) = (5, ) = — 1 sein. Schliess-
lich setze man g = 4 ¢* und findet im Raum zu (u, 1) fir M die
Normalform :

Chy iShy _
=ic ( —iShy Chx) = Lx'

Als Normalform fiir M erhilt man jetzt

+ Ly

1

M, = 4 L 1 @
, 11
o
b) Es tritt kein komplexer Eigenwert und auch kein nichtlinearer
Elementarteiler auf. In diesem Fall ist in der vorstehenden Normalform
K, durch 4 1 zu ersetzen (b).
) Es treten keine komplexen Eigenwerte auf, aber es g1bt einen kubi-

schen Elementarteiler. Mit einer kleinen Modifikation liefert dann 2c)
drei reelle Vektoren x, y, z derart, dass fiir A = + 1 oder A = — 1 gilt

Mx=2x, My=A(vrx+7v), Me=A—312x+i1Yy+ 2),

mit reellem 7 # 0. Aus diesen Gleichungen folgt weiter (x, x) = (x, y) =
(v,2) =0, (x,2) + (y,9) = 0. Ausserdem sind y und z modulo x be-
stimmt. Es ist daher immer méglich, (v, ¥) = — 1 und (z, 2) = + 1 anzu-
nehmen. Im Koordinatensystem mit der Basis z, ¥ — z, v lautet M, be-
zogen auf unsern Unterraum,

1-372 3 72 17T .

A —-372  1+47® it ) =K

= r i &4
1T —i7T 1

die Normalform also

+ Ly

M, = S Ly, (c).
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M, — (by)
. Ly
auftreten.
Damit ist die gesuchte Normalform gefunden. Der Zusammenhang mit

der Normalform einer reellen Lorentztransformation leuchtet unmittelbar
ein.

Satz: Jede rein imagindre Lorentztransformation M ldsst sich durch ein

Ae Li gemidss A1 M A auf eine der drei Normalformen (a), (b)
oder (c) transformieren.

§ 4. Die Normalform einer komplexen Lorentztransformation

Nun sei A4 eine komplexe Lorentztransformation, 4 € L (c). Wir
bilden aus A die rein imagindre Lorentztransformation

M=A4"14 = GA* GA = GR.

Offenbar ist R* = R und die hermitische Form x* R x hat den Trag-
heitsindex von G. Bei einer reellen Lorentztransformation A transfor-
miert sich R gemiss A* R A. Der Trigheitsindex von R bleibt also er-
halten. Nun sei M, die Normalform von M :

M,=A"1MA, AeLl,
Ry, = GMy—A*R A.

Um die moglichen M zu bestimmen, haben wir aus den Normalformen
des vorigen Abschnittes diejenigen auszuwéhlen, fiir die R, den richtigen
Tréigheitsindex hat. Fiir die Tragheitsindices der verschiedenen Kéastchen
ergibt sich dabei:
K, ( _/ % 5a%) mit dem Trigheitsindex (+, —),
Ly~ (9% T'3%) mit dem Tragheitsindex (—, —),
+1—->F1 mitdem Trigheitsindex 7.

Im Fall a) kommt daher nur in Frage
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wobei die 1 in der Hauptdiagonalen nur fiir ungerade Dimensionszahl
auftritt, was durch () angedeutet ist.

Der Fall (b) liefert bei gerader Dimensionszahl nur Spezialfille des
Falles (a) mit ¢ = 0 oder ¢ = 7r. Bei ungerader Dimensionszahl aber kann
als neuer Fall

Schliesslich ist noch der Trigheitsindex aus K , anzugeben. Dafiir findet
man (1, — 1, — 1), so dass die zugehorige Normalform lautet

Ky

M, = " Ly (1),

1]

wobei [1] diesmal nur bei gerader Dimensionszahl auftritt.

In jedem Fall kann man aus M, die Quadratwurzel ausziehen und
erhdlt wieder eine rein imagindire Lorentziransformation derselben Form.
Dies ist eine Folge der Gleichungen

VE, =Ky VIg=Lyn VK, =K

Setzt man N = J/M,, dann hat man simultan N’ N = 1 und N1 =G NG,
Es gilt also mit Ay=A"1A A die Gleichung 4,1 4, = N? oder
N1A4,2 A, N =1, woraus (4, N) 1 (4yN')=1. Also ist A, N' =
A, N = A, eine reelle Lorentztransformation der Determinanten + 1,
und wir haben schliesslich '

A = AA, NA.

Hier sind noch zwei Fille zu unterscheiden: entweder ist A, € Li, dann
ist unsere Reduktion durchgefithrt. A ist dann dquivalent zu einer der
Formen (a,), (b,) oder (c,), oder es ist A, ¢ L1, dann hat man A, von
rechts und N von links noch mit einer passenden Spiegelung P zu multi-
plizieren. Als solche wihlt man etwa im Fall (a;) die Multiplikation der
zwel ersten Zeilen mit dem Faktor — 1, was der Substitution von Ky
durch K, , entspricht. Im Fall (¢,) und bei gerader Dimensionszahl kann
man N durch — N ersetzen. Die so entstehenden Normalformen sind rein
imagindr.

Dies ist nicht notwendig erreichbar fiir A, ¢ Ll , ungerade Dimensions-
zahl und die Fille (b;) und (c;), wo man die folgenden Normalformen
wihlen kann:

A ~ Ly, ungerade Dimension A4, ¢ Li
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oder
K7
L
A~ AL ungerade Dimension A, ¢ L],
Ly,
wobei
— -1 0
L ( 0 1 ) Ly

und

gesetzt ist.

§ 5. Eine Anwendung

Der folgende Satz bildet das eigentliche Hilfsmittel zum Beweis des
~ ersten Lemmas in der Arbeit von D. HALL und A. WIGHTMAN 2).

Satz: Essei{ = &+ iy und 5 € V. Weiter sei

Kq
L
A= e Jol<m

ka
und S, xuo oo 20) = Al 20+ 20) &= &l@, 1) + ¢ nle, x)-

Falls nun %(e, yq, ..., %) € V., dann ist auch n(t @, t ¥4, ..., t yi) € V. fiir
0=t=<1

Beweis: Es wird
1) = 1% cosp + Ersing > 0
und
(@, 20, 0. 7)) = Alp) — 2 By(x,) > 0
mit "
A(p) = (1% cos ¢ + &' sin ¢)2 — (' cos ¢ + &% sin )2
B,(3a) = (" Ch z, + &1 Sh )2 + (" Ch i, — &2" Sh y,)*.

Diejenigen Werte von g, fiir welche sowohl #°(¢) > 0 als auch A(p) > 0
sind, bilden offenbar in |¢| << 7 ein Intervall, dessen Linge kleiner ist als
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7t und das @ = 0 enthilt. Der Mittelpunkt dieses Intervalls sei ;. Es ist
|@o| < /2 und
A(p) = a® cos*(p — @g) — B sin(p — @),

wobei auch | — @,| < 7/2 ist.

Analog ldsst sich auch B,(y,) auf Diagonalform transformieren (ab-
gesehen von Ausnahmefillen, die aber durch ein Stetigkeitsargument
erledigt werden konnen):

B, (%n) = o CH? (4, — %) + By SH® (i — 20)-
Es ist also
(22 + B2 cos(p — @g) > B2+ Dol + D) (%) + Br) SK* (% — Xa)
oder:
F(t) = (o + B2t cos (tp — o) — J/a>+ 362 SK* (¢ 1, — 43)

ist fir £ =0 und /=1 (wegen |g@,| < /2 und |p — @,| < 7/2) positiv.
Dabei wurde

@ == fj* +2ai und bﬁ = ozi + ﬁi
gesetzt.

Nun ist aber F(f) konvex, solange cos (f ¢ — g,) > 0 ist, wie sich durch
Ausrechnen der zweiten Ableitung ergibt:

F'(f) = — (o + f9E gP cos (g — py) — GI)

G(t) = [a®+ Db SB2 (t 3, — 21 G1 (9)
und

mazzxn b2 (C2 + S?)
252 5-2 2%2 b2 52
+{262S2 ) (X218 C) — (X0, 4. S C)%,

welches offenbar nach der Schwarzschen Ungleichung positiv ist. Als
Abkiirzung wurde dabei S, = SA(t y, — x2) und C, = Ch(t y, — x9) ver-
wendet.

Alsoistfir0 =i <1

F(t)y = (1 —¢) F(O) + ¢ F(1) = Min (F(0), F()),
andererseits aber fiir dasselbe #-Intervall

ety v e ty)=[FE?

wodurch der Satz bewiesen ist.
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