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Etude expérimentale du polarem
(Mesure de la mobilité électronique dans AgCl et AgBr)

par L. Chollet*) et J. Rössel
Institut de Physique, Université de Neuchàtel

Summary. Electron mobility in the polar crystals AgCl and AgBr has been
investigated using a pulsed X rays technique in a range of temperatures where
comparison with existing polaron theories is possible.

Special attention was given to the measurement of true microscopic mobility by
selecting crystals where trapping and multiple trapping effects are négligeable.

The main results can be summarized as follows :

AgBr has better counting properties than AgCl but in both cases surface effects
play an important role and too strong irradiation can stop the sensitivity.

In no case could hole motion be observed.
The caracteristic exponential law for^(T) given by optical mode scattering has

been confirmed and the corresponding experimental Debye temperature is in good
accord with the predicted value.

The reduction of mobility observed below .—- 100° K can be accounted for by
ionised impurity collisions but is not easily compatible with a law of the type
/i ~ T+3/2.

Values for the polaron mass have been derived using both the Lee-Low-Pines
and the Feynman-Schultz theories.

I. Interaction électron-réseau polaire; polaron
L'étude théorique de l'interaction d'un électron de conduction avec

le réseau d'un cristal polaire a été développée par plusieurs auteurs. Nous
citerons ici les articles de Allcock1) et de Haken2) qui constituent un
excellent résumé et donnent une vue d'ensemble du problème.

Dans un cristal ionique, l'électron de conduction est soumis à

différentes forces de nature électrostatique. Les plus importantes de celles-ci
dérivent du potentiel périodique du cristal parfait considéré comme
rigide, et sont prises en considération dans la théorie de la masse effective.
Les autres forces sont dues aux vibrations du réseau, ces dernières étant
induites thermiquement ou directement par le champ coulombien de

l'électron. Les vibrations du réseau ionique se divisent en deux branches
dites optique et acoustique. La branche optique correspond aux vibrations

qui déplacent les ions positifs et négatifs les uns par rapport aux
autres. De telles vibrations engendrent des ondes de polarisation. La
branche acoustique représente essentiellement les déplacements d'en-

*) Maintenant au Laboratoire Suisse de recherches horlogères, Neuchàtel.
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semble du cristal, de sorte que la polarisation qui lui est associée est très
faible. Celle-ci n'entrera que d'une façon très secondaire dans notre
problème.

Le champ de polarisation associé aux vibrations optiques du réseau
est caractérisé par une fréquence co satisfaisant à une relation de dispersion

co(k). En première approximation, on peut admettre pour la branche
optique co(k) constante, où le nombre d'onde k est réduit à la première
zone de Brillouin. Par son champ de Coulomb, l'électron est couplé à la
polarisation sur laquelle il réagit. L'électron se trouve donc soumis à un
champ de polarisation quantifié dont l'énergie ne peut être modifiée que
par des multiples de fico correspondant à l'absorption ou à l'émission de

phonons. On est conduit à se représenter le mouvement d'un électron
dans un cristal polaire comme celui d'une charge entourée par un champ
d'autopolarisation. Cet ensemble mobile électron-phonons de polarisation

est appelé polaron. Les propriétés du polaron (énergie propre, masse
effective, mobilité) sont liées essentiellement à la grandeur de la
fréquence d'oscillation co.

L'intensité du couplage électron-réseau est caractérisée par un
paramètre sans dimension, a, jouant le rôle de constante de couplage. La
valeur de a varie de deux à six pour les cristaux polaires typiques. Il est
évident qu'il s'agit d'une interaction forte comparée au couplage électron-
photon caractérisé par la valeur 1/137. La constante de couplage a est
inversement proportionnelle à la racine carrée de la fréquence optique de
vibration co. Les travaux théoriques publiés se subdivisent en trois classes,
suivant qu'ils traitent les cas limites d'une fréquence haute, d'une fréquence
basse, ou d'une fréquence intermédiaire. On peut remarquer d'emblée que,
x étant généralement plus grand que 1, la méthode habituelle de calcul des

perturbations est inadéquate. Nous analyserons sommairement les
différentes méthodes proposées pour les trois classes indiquées ci-dessus.

a) Limite des basses fréquences; couplage fort

Pour une fréquence caractéristique d'oscillation du réseau suffisamment
faible, on peut admettre que l'électron suit adiabatiquement les variations

de la polarisation. Parmi les théories reposant essentiellement sur
cette hypothèse, citons l'approximation statique de Landau-Pékar*)
et l'approximation adiabatique de Pékar. La première néglige totalement

les propriétés dynamiques du réseau. La seconde par contre
implique que l'énergie, de vibration du réseau (c'est-à-dire sa fréquence) soit
petite par rapport à l'énergie de l'électron. Or, dans le cas d'un électron

*) Les références bibliographiques qui ne sont pas données ici sont indiquées
sous références1) et 2).



Vol. 33, I960 Etude expérimentale du polaron 629

de conduction lent dans un cristal ionique, ces deux énergies sont du
même ordre de grandeur, de sorte que cette approximation perd sa validité
pour le domaine expérimental que nous étudions.

b) Limite des hautes fréquences; couplage faible

Lee, Low et Pines3) entre autres ont développé le calcul de l'interaction

électron-réseau pour des fréquences de vibration élevées (appelé
fréquemment méthode du couplage intermédiaire). Le calcul de l'énergie
propre du polaron est basé sur une technique des variations introduite
antérieurement pour l'étude théorique de l'interaction mésonique. Il
repose essentiellement sur les hypothèses suivantes :

1. L'influence du réseau périodique est prise en considération par
l'introduction d'une masse effective pour l'électron.

2. Le diélectrique est traité comme un milieu continu. Cette approximation

est légitimée par le fait que les phonons interagissant avec l'électron
ont une longueur d'onde plus grande que la constante du réseau. Elle
implique d'autre part que le polaron ait une extension égale à plusieurs
distances réticulaires.

3. La branche optique est caractérisée par une fréquence unique a>

correspondant au mode longitudinal de vibration.
4. La polarisation associée au mode acoustique est négligée.
Il ressort des calculs de Lee, Low et Pines que le polaron se comporte

dans le cristal comme une particule libre dont la masse m* est donnée par

m* m (1 + a/6)

où m est la masse effective de l'électron dans le champ statique du réseau

cristallin.
Les résultats de Lee, Low et Pines sont valables pour autant que

a < 6.

Low et Pines4) ont calculé la mobilité du polaron se mouvant dans

un champ électrique faible, ce qui revient à calculer la probabilité de
diffusion du polaron par les phonons thermiques. Ils utilisent les fonctions
d'onde de Lee, Low et Pines pour caractériser les états final et initial
du polaron. Ceci implique que le domaine de validité de leurs calculs sera
limité également à oc < 6. D'autre part, les fonctions d'onde utilisées
ne sont exactes que si la température T est petite par rapport à la température

de Debye correspondant au mode de vibration longitudinal de la
branche optique. La mobilité du polaron est alors donnée par

/W(«)^r-MaV/r-i)2<xcU[

expression valable pour T <^ 0 et dans laquelle les symboles ont la
signification suivante:
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a constante de couplage donnée par
\l/2 e-n2 Im \i/2/ me \ 1/2 £ — n2 I m \ i

\2Ha>i/ en2 \meJ

/(a) est une fonction qui varie lentement avec a et qui est voisine de
1 pour 1 < a < 6, cf. 4).

e constante diélectrique statique.
n2 constante diélectrique à la limite des hautes fréquences.

0 hco,fk température de Debye correspondant à la fréquence limite
co, des vibrations longitudinales de la branche optique,

a), est en principe déterminé par la fréquence expérimentale a>r des rayons
restants: cw, (e/n2)ll2-cor.

me masse de l'électron libre.
Les constantes de couplage pour la plupart des cristaux ioniques étant

de l'ordre de 2 à 6, cette théorie fournit une base de discussion pour nos
résultats expérimentaux.

c) Domaine des fréquences intermédiaires

Les deux cas limites ci-dessus encadrent un domaine de fréquences pour
lequel ni l'une ni l'autre des méthodes de résolution n'est valable. Feynman5)

a utilisé une formulation mathématique plus générale valable sur
l'ensemble des domaines. A la limite des hautes fréquences, (couplage
faible) l'accord des résultats de Feynman avec ceux de Lee, Low et
Pines et de Low et Pines est satisfaisant. En particulier, la masse
indiquée par Feynman pour a < 6 est :

m* m (1 + a/6 + 0,025 a.2 + ¦¦¦)

En fait, le calcul est basé sur une méthode variationnelle et m*\m
s'exprime par une relation compliquée au moyen de deux paramètres
ajustables v et w choisis pour minimiser l'énergie propre du polaron. A
l'approximation d'ordre zéro, on a simplement m*jm (vjw)2.

Schultz6) a développé une théorie de la mobilité à partir de la
méthode de Feynman pour le calcul de la masse du polaron. Il justifie ce
choix en remarquant que les résultats obtenus par cette méthode sont
les seuls qui coïncident de façon raisonnable avec les cas limites des

couplages fort et faible et qui permettent une interpolation acceptable. Cela
constitue un fort argument en faveur d'une validité plus grande de cette
méthode d'évaluation de la self-énergie et de la masse du polaron.

Le choix d'un fondement solide est d'autant plus nécessaire que le calcul

de la mobilité du polaron ne peut se faire qu'en introduisant des
hypothèses supplémentaires dont la validité n'est que difficilement assurée:

dra) Utilisation du même Hamiltonien que pour le problème de l'énergie
opre et de la masse.
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b) Utilisation d'une équation de Boltzmann exigeant que %\x <^ kT
(x intervalle entre collisions) pour que l'énergie du polaron soit bien
définie entre deux collisions.*

c) Limitation de fait, dans les calculs, aux processus à 1 phonon.
Schultz considère le problème essentiellement comme un processus

de diffusion de résonance d'un polaron de Feynman. L'expression qu'il
déduit pour la mobilité est la suivante :

n _ ir. ig"" 2 m cd a Zr m* (2 h co/m)1!2
1)

A part le facteur m*jm qui en première approximation est égal à

(vjw)2, cette expression contient deux facteurs critiques: la grandeur
vr %-dcojdPr représentant la vitesse du polaron lorsqu'il possède l'énergie

de résonance (Pr est son impulsion à la résonance) et la grandeur
Zr facteur de couplage de renormalisation pour le phonon de résonance.
Les valeurs de ces grandeurs en fonction du paramètre de couplage a ainsi

que celles des deux paramètres v et w sont fournies par les courbes des

figures 1 a et b, construites à partir des données numériques de Schultz.

10 ex2 4 6 8

Fig. la
Paramètres v et w calculés par Schultz et représentés en fonction de a

ß vjco; y wjco

Comme les valeurs de a caractéristiques de AgCl et AgBr sont voisines
de 2, il apparaît légitime de fonder notre discussion des résultats obtenus
dans cette étude sur les deux théories qui sont actuellement disponibles
dans ce domaine de valeurs du paramètre de couplage: celle de Low et
Pines et celle de Schultz.

Etant donné le caractère encore flou de la théorie et les difficultés de

l'expérimentation, notre discussion aura surtout la valeur d'une
indication générale sur la nature et les caractéristiques du polaron.

*) Il est possible que cette condition soit trop exclusive et doive se remplacer par
la condition moins forte %jr <( E* énergie du niveau de Fermi (compté à partir
de la limite de bande).
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10

0,5

Fig. 1 b

Représentation de ô vTJ(2 Hcojm)1!- et de Zr en fonction de a

II. Interaction de l'électron avec les imperfections cristallines
Outre l'interaction électron-réseau, c'est-à-dire l'interaction de l'électron

avec le cristal parfait, il faudra tenir compte de la diffusion de l'électron

de conduction par les impuretés et imperfections cristallines dont les

plus importantes semblent devoir être, dans l'ordre, les impuretés
ionisées, les impuretés neutres, et les dislocations.

a) Impuretés ionisées

La diffusion par les impuretés ionisées a été traitée par Conwell et
Weisskopf7). Leur calcul est essentiellement classique et repose sur les

hypothèses suivantes :

1. La densité des électrons de conduction est suffisamment faible pour
qu'ils obéissent à la distribution de Maxwell-Boltzmann.

2. Les électrons sont considérés comme libres et leur diffusion par les

impuretés ionisées est donnée par la formule de Rutherford.
3. La diffusion de l'électron par un ion est indépendante des autres

ions.

L'expression de la mobilité résultant de ces calculs est la suivante :

/V
2'/2 e2ßTp/2
n3!2 m112 ea Nj In G

avec G ¦¦

3 e kT \2
e2 Nj1/*

où Nj est la densité des impuretés ionisées.

Brooks8) et indépendamment Herring ont amélioré ce résultat par
un calcul quantique tenant compte de l'effet collectif des ions et de la
variation de l'effet d'écran des électrons lorsque leur densité devient
inférieure à celle des impuretés ionisées. L'expression de Herring indiquée
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par Debye et Conwell9) diffère de la précédente en ce sens que le terme
In G y est remplacé par

avec

In (1 + b) - bl(l + b)

b (6/71) • (e mk2 T2\n%2 e2)

où n est la densité des électrons de conduction.
Blatt10) a repris le calcul de la diffusion par les centres ionisés et

montre que l'approximation de Born utilisée par les auteurs précédents
dans le calcul de la section efficace n'est plus valable, en particulier pour

v

100

50 -

20

/
/ // .'

' //' y/
/T / T3/2

10 20 50 100 T°K

Fig. 2

Reproduction d'une figure donnée par Blatt10). La mobilité (échelle arbitraire)
déterminée par la diffusion sur les impuretés est représentée en fonction de T.
La courbe P est calculée par la méthode des ondes partielles (Blatt) et la courbe B

à l'aide de l'approximation de Born (Brooks-Herring).

les basses températures. Il propose l'utilisation de la méthode des ondes

partielles. Dans son travail, Blatt introduit le même potentiel avec écran

que Brooks et Herring. Les déphasages (phase shift) sont alors obtenus

par le calcul numérique de certaines intégrales, qui n'a été fait que dans

un cas particulier. Dans la figure 2, nous donnons à titre d'exemple les
mobilités obtenues par Blatt, comparées à celles calculées par la formule
de Brooks-Herring.
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b) Impuretés neutres

Erginsoy11) a obtenu la mobilité électronique déterminée par la
diffusion sur les impuretés neutres en modifiant de manière adéquate les

résultats de la diffusion de l'électron par l'atome d'hydrogène. La mobilité

est donnée par:
1 me3

Pn 20 Nn e lì3

où NN est la densité des impuretés neutres.

c) Dislocations

Il n'existe pas à notre connaissance d'estimation théorique de l'effet
des dislocations sur la mobilité électronique dans les cristaux polaires.

Pour les cristaux de valence, Bardeen et Shockley12) ont proposé

pour le potentiel de diffusion dû aux dislocations l'expression V(r)
(EJe) ¦ A(r) où A(r) est la dilatation mécanique (eu + e22 + e33) du
réseau au point r produite par la dislocation et Et un paramètre de l'ordre
de quelques eV dont la valeur exacte doit être déterminée expérimentalement.

A partir de ce potentiel de déformation, Dexter et Seitz13) ont
calculé l'accroissement de résistivité dû aux dislocations pour des électrons
avec distribution de Boltzmann. On en tire pour la mobilité l'expression :

_
32 k lie / l-v \2 1 j.^d~ An Ef¥ \A-Av) ~N m

où X distance de glissement du plan cristallin
v nombre de Poisson

N nombre de lignes de dislocations par unité de surface.

Remarque

Toutes les formules précédentes concernant les effets d'impuretés ont
été établies pour les cristaux semi-conducteurs de valence tels que Ge et Si.

La masse m représente donc la masse effective de l'électron. Pour l'étude
des cristaux ioniques et à défaut d'expressions spécialement adaptées
à ce cas, il convient de remplacer la masse effective m par la masse du
polaron m*.

Importance relative des différents types de diffusion
Nous calculons ci-dessous les mobilités résultant de chacun des types

d'interaction pour bien préciser l'importance relative de ceux-ci, et
surtout pour mettre en évidence les domaines de température pour lesquels
l'un ou l'autre des processus est prépondérant. Nous effectuerons ces
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estimations pour un cristal de AgBr. Nous utiliserons la valeur m*
0,35 me qui est la valeur obtenue dans une recherche préliminaire14) pour
la masse du polaron.
1. Interaction électron-réseau

En introduisant la valeur de a, la mobilité prend la forme (théorie de

Low et Pines) :

— H \ ^ En% w3/2 1
t *>IT _ Df1" ~~ IW ~(2kBAA <T-n2 ~m** e
[e '

Les valeurs numériques des différents symboles sont, pour AgBr, les

suivantes :

m* 0,35 m,) % 1,05 ¦ 10"27 erg. s.

m 0,25 me 14) k 1,38 • 10"16 erg. (V1
/(a) 1,1 e 4,80 ¦ IO-10 ues. cgs.

s 13,1 me 9,1 • 10-28 g
n2 4,62 S 195° K

D'où fir ~ 30 • ee/r (cm2 V-1 s"1)

(en négligeant le 1 devant l'exponentielle).
2. Diffusion par les impuretés ionisées

Nous utiliserons pour notre estimation la formule de Brooks-Herring
où le terme logarithmique varie peu avec T et peut être pris pour une
température moyenne de 100° K. Nous introduirons en outre pour la
densité des électrons de conduction la valeur n 2-1012 cm-3 déjà estimée

par Allemand et Rössel15). Nous obtenons alors pour b la valeur

b 2 ¦ 106

En admettant une densité Nr ~ 1017 cm-3 pour les impuretés ionisées15),
la mobilité p,t prend la forme

ßj ~ 0,8 • P3'2 (cm2 F-1 s-1)

3. Diffusion par les impuretés neutres
Il est à remarquer que la diffusion par les impuretés neutres ne dépend

pas de la température. En admettant15) une densité NN 2,5 ¦ 1017 cm-3,
on obtient :

pN ~ 1,1 • 103 (cm2 F"1 s-1)

4. Effet des dislocations

Lorsqu'on exprime la mobilité en unités pratiques cm2 V~x s-1,
l'expression permettant d'estimer l'effet des dislocations prend la forme:

M,-3,38-10-(S)*^^ '

où E1 est en eV et X en Â.
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Le coefficient de Poisson pour un cristal cubique v c12/(c11 + c12)

s'obtient en insérant les valeurs des modules d'élasticité cn 0,56 et
c12 0,33 pour AgBr, ce qui donne v ~ 0,37.

Il est peu probable que N dépasse 106 cm-2 pour les cristaux compteurs
d'impulsions d'ionisation étudiés ici. Avec A ~ 5 Â, de l'ordre de la maille
cristalline et E1 ~ 5 eV, et choisissant pour m\me le rapport m*\me
0,35, on obtient:

(id ~ 7,5 • 104 T (cm2 V-1 s"1)

Ces différentes mobilités, de même que la mobilité résultante donnée

par

11 1

jx fir ni

1 1

— + -
sont représentées en fonction de T sur la figure 3.

On remarquera que l'interaction avec le réseau est prépondérante aux
températures relativement élevées, alors que la mobilité semble être
conditionnée principalement par les impuretés ionisées aux basses tempéra-

cm fc Vs

10"6

50 OO 150 T°K

Fig. 3

Variation en fonction de la température des inverses des mobilités dues respectivement

à l'effet: r du réseau parfait; I des impuretés ionisées; A' des
impuretés neutres ; d des dislocations. R représente l'inverse de la mobilité résultante.
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tures.*) Les impuretés neutres et les dislocations semblent devoir jouer un
rôle secondaire au-dessus de 50° K et n'apporter qu'une faible correction
plus ou moins négligeable suivant leur densité.

III. Partie expérimentale
1. Principe de la mesure

Le cristal à étudier est placé dans le champ électrique produit par deux
électrodes planes. L'une d'elle, percée en son centre de trous très fins,
laisse passer une impulsion de rayons X. Les charges libérées dans le cristal
par l'irradiation se déplacent sous l'effet du champ électrique et induisent
sur l'électrode collectrice une impulsion de tension qui est amplifiée et
observée sur l'écran d'un oscilloscope. Pour autant que l'impulsion ne soit
pas déformée par le dispositif électronique, son temps de montée t*
correspond au temps de déplacement des électrons. Connaissant le champ E
appliqué au cristal et la distance d parcourue par les électrons, on obtient
la mobilité par la relation ß djt*E.

Le schéma de principe du dispositif expérimental est donné par la
figure 4. L'émission puisée de rayons X est commandée par un générateur

Tub e à P orte iO\
rayons x cristal ("VI usciiio

Tektronix 541

Générateur
d'imp ulsior s

Fig. 4
Schéma de principe du dispositif expérimental

d'impulsions qui synchronise simultanément le balayage de l'oscilloscope
du type Tektronix 541. Les appareils composant cet ensemble sont
décrits plus loin.

Nous nous sommes efforcés de réaliser les conditions suivantes:

a) les charges libérées par l'impulsion de rayons X sont localisées à la
surface du cristal.

b) La durée de l'irradiation est suffisamment petite pour être négligée
devant le temps de transit.

*) L'influence de la branche acoustique doit se manifester nettement aux très
basses températures, où le nombre de phonons optiques excités tombe fortement.
Cependant pour les cristaux utilisés ici, l'effet important des impuretés doit masquer
complètement cette transition.



638 L. Chollet et J. Rössel H. P. A.

c) Tous les électrons libérés traversent la totalité du cristal et atteignent
l'électrode collectrice; ceci revient à admettre un «Schubweg» supérieur
à l'épaisseur du cristal.

Avec ces hypothèses, au temps t 0, une charge Q0 est libérée en x 0

(fig. 5). Cette charge se déplace à la vitesse constante v et induit sur
l'électrode collectrice la charge

Q M Qo ' vtld' t variant de 0 a t*

A l'entrée du préamplificateur, nous aurons une impulsion de tension
croissant linéairement en fonction du temps à conditions que RC ^> t* :

V(t)
Q(t)

c+cn c+c„
vt
Af («g-6)

avec Cq capacité du condensateur plan formé par les électrodes et C

capacité d'entrée du préamplificateur + capacité du fil de connexion.

1

R -i-C

t=0

Fig. 5

Principe de la mesure
Fig. 6

Impulsion linéaire induite sur
l'électrode collectrice

La mobilité est alors calculée par la relation indiquée plus haut.
En mettant au point une technique expérimentale permettant de satisfaire

les hypothèses ci-dessus, nous éviterons des calculs de correction
souvent délicats. L'utilisation des rayons X comme moyen d'excitation nous
a paru particulièrement intéressante car elle permet de réaliser les deux
premières conditions. Il est en effet possible de choisir l'énergie des

rayons A de manière à obtenir une pénétration déterminée. Dans notre
cas, l'anticathode du tube à rayons A étant en cuivre, et la haute tension
de 25 à 30 kV, l'émission sera constituée essentiellement par la raie Ka
du cuivre (1,5 Â) dont l'énergie est de 8 kV. La pénétration de ce
rayonnement dans AgBr et AgCl est d'environ 10 microns; elle est très faible
par rapport à l'épaisseur des cristaux qui varie de 2 à 5 mm. Nous
pouvons donc admettre que les charges libérées sont localisées en surface.
L'influence du spectre continu est d'autant plus négligeable que l'arête K
d'absorption de Ag en atténue la partie située au-dessous de 0,5 Â.
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L'excitation par particules a remplirait aussi la condition ci-dessus, la
pénétration des a dans les halogénures d'argent étant d'une vingtaine
de microns. Cependant, Allemand et Rössel16) ont montré que ces

cristaux étaient en général insensibles à une irradiation a. L'excitation
par rayonnement ß et surtout celle par rayonnement y sont inadéquates
étant donnée leur grande pénétration.

D'autre part, les impulsions X obtenues sont périodiques et super-
posables, ce qui est beaucoup plus favorable pour l'observation à

l'oscilloscope. L'utilisation des rayons X donne de plus la liberté de travailler
avec une intensité variable. Il est possible ainsi d'obtenir un signal
d'amplitude supérieure à ceux produits par les 8 ou les y individuels, ce qui
est essentiel par suite des difficultés de l'amplification fidèle d'impulsions

si faibles et rapides.
Les signaux de déclenchement produits par le générateur ont une durée

de 25 ou 50 m,ws. La durée des éclairs de rayons X est certainement
inférieure à ces valeurs. Les temps de transit des électrons variant de 0,5
à 2 ßs, il est légitime de négliger la durée de l'excitation.

Nous avons admis que tous les électrons atteignaient l'électrode collectrice,

ce qui est réalisé à condition que le trappage soit suffisamment
faible. En admettant15) une concentration de trappes de l'ordre de
1013 cm-3 et une section efficace de 3 ¦ 10~15 cm2, on voit facilement que
le «Schubweg» est de l'ordre de plusieurs centimètres. On doit donc
s'attendre à observer des impulsions linéaires. Si tous les électrons étaient
capturés par des trappes dont la densité est uniforme dans le cristal,
l'impulsion aurait une allure du type 1 — exp(— t\x).

2. Cristaux
Les cristaux utilisés proviennent de différentes sources. Le cristal AgBr

N° 1 a été obtenu en refroidissant lentement la substance fondue (10° par
heure). Les autres cristaux de AgBr ont été aimablement mis à notre
disposition par la maison Eastman Kodak Company*). Les cristaux de AgCl
ont été achetés auprès de maisons spécialisées dans leur production
industrielle.

Tous les cristaux de AgBr testés ont donné un signal mesurable. Par
contre, seuls 2 cristaux de AgCl ont pu être utilisés pour des mesures.
Une vingtaine d'autres ont été examinés. Quelques-uns donnaient un
signal trop faible pour permettre une précision suffisante, tandis que la
plupart ne donnaient aucun signal. Certains cristaux fournissent une
impulsion appréciable lorsqu'ils sont irradiés par les y mais sont peu ou pas
du tout sensibles aux rayons X.

*) Nous tenons à exprimer nos vifs remerciements au Dr F. Urbach pour son
amabilité.
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La pénétration très faible des rayons X exige des surfaces aussi
parfaites que possible du point de vue cristallographique. Les cristaux sont
fréquemment polis sur du velours de soie imbibé d'une solution de
cyanure de potassium. La plupart ont été soigneusement recuits de la
manière suivante : la température est maintenue pendant 20 à 50 heures à

environ 20 degrés au-dessous du point de fusion. Elle est ensuite abaissée
à raison de 10 degrés par heure. Cependant, contrairement à ce que
mentionnent certains auteurs, nous n'avons pas observé d'effet sensible et
systématique sur le rendement.

Nous avons étudié la structure de quelques cristaux par rayons X, par
la méthode du «back-scattering». Il est apparu que la surface, même
après un polissage effectué en prenant de grandes précautions, n'est pas
monocristalline. Cependant, une nouvelle analyse, après attaque du
cristal par un solvant sans polissage mécanique, révèle une structure
monocristalline. La structure mosaïque est cependant assez prononcée.

Plusieurs cristaux ont été analysés spectrographiquement. La concentration

des impuretés est dans tous les cas à la limite de sensibilité spec-
troscopique (~ 10-6) sauf pour des impuretés de bore qui apparaissent
dans 3 cristaux < 10~5) dont 2 ne sont pas compteurs.

3. Porte cristal

A la température ordinaire, les cristaux polaires sont caractérisés par
une importante conduction ionique qui masque totalement la conduction
électronique. Par conséquent, les mesures de mobilité par la méthode
utilisée ici ne sont réalisables qu'à basse température. La limite supérieure
se situe à environ 180° K. La limite inférieure accessible est déterminée

par la température de l'azote liquide. Le domaine de température exploré
s'étend donc sur une centaine de degrés.

Le porte cristal utilisé est représenté dans la figure 7. L'inertie
thermique est telle que, une fois l'air liquide éliminé, la vitesse de réchauffement

est d'environ 20° C par heure ce qui permet une série de mesures à

des températures intermédiaires suffisamment constantes.
La partie anodique A du tube à rayons X pénètre dans la chambre

à vide et l'anticathode se trouve en face du cristal C.
~La. pression maintenue dans l'enceinte est généralement comprise entre

IO-4 et IO"5 mm Hg.

4. Tube à rayons X
L'émission puisée de rayons X s'obtient en appliquant à la grille de

commande G (fig. 8) des impulsions de 25 ou 50 m//s de durée et de 100 V
d'amplitude, suffisante pour débloquer la grille polarisée à — 60 V. Leur
fréquence de répétition est comprise entre 60 et 1000 s-1. Une feuille de
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B

TH

jT G

Fig. 7

Porte cristal
E électrodes d'argent; C cristal; R réservoir à air liquide; M tube de
maillechort; B colonne isolante en plexiglas ; A anticathode du tube à rayons
X, L; TH thermocouple; Pr connexion au préamplificateur; P vers les

pompes.

60V

G-I-

-30 KV

Fig. 8

Tube à rayons X
A anticathode; G grille de commande polarisée par une batterie de 60 V;

C cathode; G-I sortie du générateur d'impulsions.

Cu de 17 microns d'épaisseur sert d'anticathode et laisse passer environ
le 50% des rayons X pour l'irradiation du cristal.

L'intensité des rayons X a été contrôlée en comparant la luminescence
qu'ils produisent dans un cristal d'anthracène à celle produite par les y
du Co60. A émission maximum du tube, on obtient un rapport d'environ
50 entre l'amplitude des impulsions X et celle des impulsions y. Par la
mesure du «rise-time» des scintillations, nous avons pu vérifier que la
durée des éclairs de rayons X est inférieure à celle des impulsions de
commande du générateur.

41 HPA 33, 6/7(1960)
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5. Préamplificateur
L'électrode collectrice du porte cristal est reliée à la grille de commande

du tube d'entrée du préamplificateur par une connexion coaxiale.
L'amplitude de l'impulsion de tension est inversement proportionnelle à la
capacité d'entrée; il est donc nécessaire de rendre cette dernière aussi

petite que possible. Le préamplificateur est fixé directement sur le porte
cristal pour diminuer la longueur du fil de connexion.

Les charges libérées étant de l'ordre de 10~15 C, les impulsions de tension

à amplifier ont des amplitudes voisines du mV. Il est de première
importance que le préamplificateur soit à bruit minimum.

D'autre part, le temps de transit des électrons correspond au temps de

montée de l'impulsion. Cette dernière doit être amplifiée sans déformations.

Les temps de montée mesurés s'échelonnent de 0,3 à 1 ßs. Le rise-
time du système amplificateur doit donc être suffisamment inférieur à

ces valeurs. Le préamplificateur utilisé contient un premier étage monté
en cascode et une boucle de contre-réaction. Ses caractéristiques sont les
suivantes: amplification 20 fois ; bruit ramené à l'entrée 100 ßV ;

rise-time 0,03 ßs. Le préamplificateur attaque directement l'entrée
d'un oscilloscope Tektronix type 541. Le rise-time de l'unité d'amplification

(type 53/54 L) est de 0,014 ßs. Nous sommes ainsi assurés que les

temps mesurés sur l'écran de l'oscilloscope correspondent bien aux temps
de montée des impulsions à l'entrée.

IV. Observations et résultats
Avant d'être introduits dans le porte cristal, les cristaux sont soigneusement

lavés à l'eau distillée, de manière à éviter toute décharge en surface.
Ils reçoivent ensuite une électrode sur la face non irradiée, sous forme
d'une couche mince de peinture à base d'argent utilisée dans la préparation

des circuits imprimés. Cette électrode, adhérant parfaitement au
cristal, assure le contact avec l'électrode collectrice, et d'autre part garantit

l'homogénéité du champ électrique. Nous avons renoncé à une telle
électrode sur la face irradiée, pour limiter au maximum l'absorption des

rayons A, après nous être assurés que son absence n'avait pas d'influence
sur les mesures.

Le refroidissement des cristaux est effectué généralement en trois à

quatre heures et d'une manière continue, ceci pour éviter des tensions
dues à de brusques variations de température. Le cristal est ensuite maintenu

pendant une à deux heures à la température de l'air liquide. Les

mesures sont effectuées lors du réchauffement ; la durée de chaque mesure
est d'environ 10 s.

Le champ appliqué au cristal varie de 2500 à 6500 Vcm-1 suivant les

cas. Nous avons contrôlé que dans ce domaine, la proportionnalité entre
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l'inverse Iß* du temps de montée de l'impulsion et le champ E était vérifiée.

Le nombre de séries de mesures pour chaque cristal est de 3 à 8.

Entre les séries de mesures, les cristaux ont été polis ou même quelques-
fois recuits. On verra plus loin que ces traitements n'altèrent pas la
cohérence des résultats entre les différentes séries.

La figure 9 a et b montre deux impulsions caractéristiques. La variation

du temps de montée avec la température est bien mise en évidence.

Mi

Fig. 9

Impulsions de conduction (temps de balayage: 0,5 fis cm-1).
AgBr N° 1, T — 112°K; b AgBr N° 1, T 172°K; c impulsion non

linéaire caractéristique d'un fort trappage.



644 L. Chollet et J. Rössel H.P.A.

On remarquera également la linéarité des impulsions qui confirme un
trappage peu important des électrons. Les coudes parfaitement marqués
aux extrémités des impulsions indiquent également que la quasi-totalité
des charges libérées atteignent l'électrode collectrice. La figure 9 c reproduit

une impulsion non linéaire, caractéristique d'un cristal avec fort
trappage.

Effet de polarisation
Nos mesures ont mis en évidence le phénomène suivant: si l'intensité

des rayons X est augmentée, l'amplitude de l'impulsion de conduction
croît jusqu'à une certaine limite, puis elle décroît rapidement et
disparaît totalement. Dans certains cas, l'impulsion réapparaît
une ou deux heures après l'arrêt de l'irradiation mais, généralement, il
est nécessaire de ramener le cristal à la température ordinaire pour
restaurer l'état initial. Cette intensité critique des rayons A peut varier
suivant le cristal d'un facteur 5 à 10. Ce phénomène est très probablement
dû à un effet de polarisation.

Newton 16) a étudié les effets de charge d'espace dans le diamant.
Cependant, il considère un cristal homogène avec une densité de trappes
constante. Dans ces conditions, la recombinaison électrons-trous et le
trappage d'électrons sont négligeables dans la région superficielle irradiée.
Nous pensons que dans notre cas, la recombinaison et le trappage sont
au contraire beaucoup plus importants dans une zone superficielle fortement

perturbée que dans le volume du cristal. Nous en donnons pour
preuve le fait que la sensibilité du cristal aux y n'est pas altérée malgré
la disparition de l'impulsion due aux rayons A. Allemand et Rössel15)
ont déjà mis en évidence un phénomène semblable.

On peut estimer la grandeur de l'effet de la façon suivante : on admet
l'existence, à une profondeur a, d'une barrière de trappes à électrons
portant une densité de surface a de charge capturée. Un simple calcul
d'électrostatique montre que dans l'épaisseur a du cristal, le champ prend
la valeur:

X V0/d - (4 n aie) ¦ (1 - ajd)

Puisque seule une zone superficielle peut être fortement polarisée, on aura
aß <^ 1. Il suffit dès lors d'une densité d'environ 2 • 1010 électrons par cm2

pour produire un champ de 3 • :0s V cm-1, annulant le champ E0 extérieur.
Ceci suffit à explique; la disparition de l'impulsion pour les intensités
d'irradiation utilisées

Il n'est donc pas possible d'améliorer le rapport signal sur bruit de nos
impulsions par augmentation de l'intensité d'irradiation au-delà d'une
certaine limite. Lors de nos mesures, nous avons toujours maintenu
l'intensité du rayonnement nettement en dessous de la valeur critique, en
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nous assurant que la forme de l'impulsion (amplitude et temps de montée)
n'était pas affectée par une irradiation même prolongée.

Nous donnons sur la figure 10 les résultats de 6 différentes séries de

mesures se rapportant au cristal AgBr N° 1. Nous avons porté la mobilité
en fonction de la température pour mettre en évidence d'une part l'allure

200

100

cm2V"V!

60 80 100 120 140 160 T °K

Fig. 10

Mobilité dans AgBr N° 1

de la courbe, et d'autre part la reproductibilité des points correspondant
aux différentes séries. Les erreurs affectant les points de mesure ne sont
pas reproduites pour ne pas charger le dessin. Elles sont de 1 à 2% sur la
température et de 5 à 10% sur la mobilité. On remarquera que vers les
basses températures (où les erreurs affectant la mobilité sont plus grandes
et atteignent 20%) la courbe ne suit plus la forme exponentielle.
L'influence des impuretés ionisées semble devenir importante, sans toutefois
être prédominante.

Cette influence est par contre très nette et beaucoup plus importante
dans le cas du cristal AgCl N° 1 (fig. 11) où on observe un maximum de
la mobilité vers 110° K.

Sur les figures 12, 13, 14, 15 et 16, nous avons porté le logarithme de la
mobilité en fonction de l'invers de la température. Les figures se rapportent

respectivement aux cristaux AgCl N° 1 et AgBr N° 1 à 4.
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Fig. 11

Mobilité dans AgCl N° 1
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Fig. 12

Mobilité dans AgCl N° 1
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Mobilité dans AgBr N° 1
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Mobilité dans AgBr N° 2

T-'.103 °K"1

V. Discussion des résultats et comparaison avec les théories
du polaron

1. Validité du ß mesuré

Nous estimons que, dans le cas de AgBr tout au moins, la mobilité
mesurée est bien la mobilité microscopique et qu'il n'y a pas lieu de tenir
compte d'un effet de «multiple trapping» comme l'indiquent Kobayashi
et Brown17). Les constatations suivantes appuient notre point de vue:

a) Les valeurs de la mobilité obtenues pour différents cristaux sont
cohérentes. Les cristaux étant de provenances très différentes, il est pro-
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Mobilité dans AgBr N° 3
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Fig. 16

Mobilité dans AgBr N° 4

T-1.103 "K"1

bable que la concentration des trappes varierait fortement de l'un à

l'autre, ce qui se manifesterait par une dispersion plus grande pour la

mobilité.
b) Les impulsions observées sont linéaires. Un trappage prononcé se

manifesterait par une courbure du front d'impulsion (fig. 9 c). Ceci exclut

la présence de trappes profondes.
c) Un «multiple trapping» par trappes peu profondes aurait pour effet

d'étaler le groupe de charges en mouvement. Le décrochement très net

par lequel se terminent nos impulsions est incompatible avec une telle

dispersion des électrons dans leur mouvement.
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2. Domaine expérimental de température et validité des hypothèses théoriques
Les expressions théoriques de la mobilité sont valables à condition que

h/x <^ kT où t représente l'intervalle de temps entre deux collisions, x est
lié à la mobilité par la relation ß (e/m*) x. Pour une masse du polaron
égale à 0,3 me et une mobilité de 100 cm2 F^s-1 correspondant à une
température T 150° K, %\x ~ 5-10-14 erg devient du même ordre de

grandeur que kT*). La mobilité croissant exponentiellement lorsque la
température diminue, la condition sera parfaitement satisfaite aux très
basses températures. Il n'est pourtant pas possible d'effectuer les mesures
au-dessous d'une certaine limite, car la mobilité est alors déterminée par
la diffusion de l'électron sur les impuretés; la température critique au-
dessous de laquelle l'influence des impuretés est prédominante se situe,
suivant les cristaux, entre 70 et 100° K. Nos mesures sont donc effectuées
dans un domaine de température situé à l'intérieur des limites de validité
des expressions théoriques.

D'autre part, l'expression de la mobilité est surtout valable pour
T <4 6, ce qui permettrait de négliger le terme — 1 dans le facteur
(eelT — 1) caractérisant la statistique des phonons. La valeur prévue de
0 étant voisine de 200 pour AgBr, le fait de négliger — 1 par rapport à

l'exponentielle entraîne dans notre domaine de mesure des erreurs variant
de 10 à 25%.

La théorie du polaron conduit à une loi exponentielle pour la mobilité.
Un des points essentiels de cette théorie est le fait de considérer l'interaction

de l'électron avec la branche optique des vibrations du réseau

comme prédominante. L'interaction de l'électron avec la branche acoustique

conduit pour la mobilité à une loi en p-3/2 ce qui est le cas pour les
cristaux de valence à l'approximation d'une surface d'énergie sphérique.
Comme nous le verrons ci-dessous, nos résultats expérimentaux donnent
une probabilité nettement plus grande pour une courbe exponentielle
que pour une courbe du type T~3I2.

Il faut remarquer que la grandeur 0 qui intervient dans le facteur
exponentiel a un caractère purement statistique, et qu'elle pourrait ne pas
coïncider avec ficojk, cot étant une grandeur dynamique caractéristique
du cristal. Rigoureusement ce 0 statistique n'a pas nécessairement une
valeur fixe; il est susceptible de varier suivant l'intervalle de température

envisagé. Les valeurs de 0 déduites de nos résultats expérimentaux
sont en bon accord avec la valeur hcojk déduite des propriétés optiques.
Il n'y aura donc pas lieu dans notre travail de faire une distinction entre
les valeurs statistique et dynamique de 0. Ceci signifie qu'on peut, en
bonne approximation, faire intervenir dans la statistique des phonons
la seule fréquence co(k 0).

*) Comparer note en page 631.
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Les deux points ci-dessus constituent des arguments en faveur des

hypothèses sur lesquelles se fonde le modèle du polaron et nous autorisent
à analyser nos résultats sur la base des théories construites sur ce modèle.

3. Comparaison des résultats avec la théorie

A. Théorie de Low et Pines
Nous avons fait une première analyse des résultats en admettant une

exponentielle du type ß Aee'T. Bien que les valeurs que nous déduirons

ne soient qu'indicatives, par le fait que nous négligeons — 1 devant
l'exponentielle, nous avons jugé cette analyse utile. Il est en effet
possible de déterminer les coefficients de l'exponentielle par un calcul de

moindres carrés qui tient compte de la dispersion des points de mesure et
donne les erreurs affectant les coefficients.

Le facteur A dépend de m, m*, a et 0. a et m* sont eux-mêmes fonctions
de m. Il est ainsi possible d'exprimer A en fonction de m et 9. Nous
pouvons dès lors représenter In ß en fonction de 1/P. Les figures 12, 13, 14,
15 et 16 montrent que, dans cette représentation, les points de mesure
correspondant aux températures les plus élevées s'alignent autour d'une
droite. La pente de cette droite, calculée par les moindres carrés, donne
la valeur de 0. Celle-ci étant connue, nous pouvons calculer la valeur de

la masse effective m de l'électron à partir de l'ordonnée à l'origine et
ensuite les valeurs de ot et m*.

Les propriétés diélectriques et optiques caractéristiques des cristaux
AgCl et AgBr sont reproduites dans le tableau I.

Tableau I

E n2 «,.(*-») ">j(0 fl(-K)-?2

AgCl
AgBr

12,3
13,1

4,01
4,62

2,00 • IO"
1,52 • IO"

3,50 • 1013

2,55 • IO"
267
195

Les mobilités peuvent alors être mises sous une forme dépendant
essentiellement des deux seuls paramètres 0 et ß m/m/.

w2
AgCl: ßr f(a) Wl l «1/z\a

03,^1 + 11,2^)
JIT cm2 Fis-1)

AgBr: ßr /(a)

où f(a) p» 1,1.

1,20-102
~AAi2~

1

»"(1 + 9.30 1-ra)

IT (cm2 F-1 s
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Nous n'indiquerons que les valeurs de 0 obtenues pour les différents
cristaux par le procédé de calcul indiqué plus haut (tableau II).

Tableau II
e °K

AgCl N° 1 346 ± 14

(AgCl N° 2 247 ± 29)
AgBr N°1 201 ± 6

AgBr N°2 183 + 12

AgBr N° 3 182 ± 15

AgBr N°4 188 ± 14

Le résultat se rapportant au cristal AgCl N° 2 doit être considéré comme
une indication seulement. Le signal observé était faible et l'impulsion
n'était pas linéaire, de sorte que son temps de montée est mal défini.

Pour plusieurs de nos cristaux, nous avons adapté une courbe en T~3I2

aux points expérimentaux. Les coefficients de cette courbe, calculés par
les moindres carrés, sont affectés d'une erreur deux fois plus grande que
celle obtenue pour les coefficients de l'exponentielle. La probabilité d'une
loi exponentielle pour la mobilité apparaît donc nettement plus grande
que celle d'une loi en p-3/2.

L'analyse des résultats expérimentaux sur la base d'une loi du type
ß A (e6,T — 1) ne peut pas se faire d'une manière simple par la
méthode des moindres carrés. Nous avons alors porté graphiquement
In (ßlA0) en fonction de ln(0o/T) où A 0 et 0O sont des constantes voisines
des valeurs attendues pour A et 0 (fig. 17). Nous avons calculé la courbe

y e* — 1 et construit la représentation de In y en fonction de In x. Les
points expérimentaux doivent pouvoir être ajustés sur la courbe calculée.
Le déplacement vertical des coordonnées donne In (A/Aq) et le déplacement

horizontal In (0/0o).
Dans une première approximation, 0 est déterminé en ne considérant

que les points correspondant aux températures les plus élevées. Nous
admettons ensuite que seules les impuretés ionisées interviennent dans
un terme correctif du type B • T312 et nous calculons ce terme correctif
sur la base des points précédant immédiatement le maximum. La courbe
expérimentale est alors corrigée et A et 0 sont déterminés dans une
seconde approximation. Nous avons constaté qu'il était possible de varier
l'exposant de T dans le terme correctif entre 1,2 et 1,7 sans que les résultats

soient modifiés de plus de 1 à 2%.
A et 0 étant connus, nous pouvons déterminer successivement m, oc et

m*. Les valeurs obtenues sont données dans le tableau III. Les erreurs
affectant ces valeurs ne pouvant pas se calculer, nous admettrons qu'elles
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Fig. 17

Cristal AgBr N° 1

La mobilité est portée en fonction de l'inverse de la température.
X Points expérimentaux.

- — Courbe expérimentale ; o Points corrigés.
— Courbe théorique. (Seuls les points expérimentaux ayant une précision suffi¬

sante sont pris en considération.)

sont identiques à celles obtenues par le calcul des moindres carrés qui
tenait compte de la dispersion des points expérimentaux. La dernière
colonne indique le rapport
Kobayashi et Brown17).

*fint mesuré par Brown et Dart18) et

Tableau III
e°K a mjme m*jme m*\m m*\me

AgCl N° 1 350 ± 15 2,13 0,35 0,47 1,34 1 0,28i8)
J 0,4017)(AgCl N°2 250 ± 30 1,50 0,10 0,15 1,50)

AgBr N°1 210 ± 6 1,77 0,21 0,27 1,29
AgBr N° 2 191 ± 12 1,66 0,17 0,22 1,30
AgBr N° 3 200 ± 15 1,76 0,20 0,26 1,30
AgBr N°4 167 ± 14 1,73 0,16 0,21 1,31

On constate en comparant avec le tableau II que les valeurs obtenues

pour 0 ne sont pas modifiées de façon significative.
Dans le cas de AgCl, les résultats ne sont pas très cohérents. Pour le

cristal N° 1, l'écart entre notre valeur de 0 et la valeur semi-théorique est
de 30%. Cependant, les valeurs obtenues pour le cristal N° 2, bien que
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n'ayant que le caractère d'une estimation, laissent supposer qu'on doit
s'attendre à obtenir en moyenne des valeurs plus correctes.

Dans le cas de AgBr par contre, les valeurs obtenues pour 0 sont en bon
accord avec la valeur semi-théorique. Ce fait confirme une interaction de

l'électron avec la branche optique et fournit une justification du modèle
du polaron.

Dans le cas du cristal AgCl N° 1, nous avons essayé d'adapter une
courbe en P3/2 à la partie basse température de nos résultats. Il n'est pas
possible d'obtenir un accord satisfaisant entre les courbes théorique et
expérimentale. L'exposant devrait être nettement plus grand que 3/2.
Cependant, l'imprécision des mesures dans ce domaine ne permet pas de

faire une analyse quantitative des résultats. Nous pouvons néanmoins

supposer que, d'une part, les impuretés neutres et les dislocations n'ont
pas une influence négligeable dans ce domaine de température. D'autre
part, on pourrait mieux rendre compte de l'allure de la courbe
expérimentale aux très basses températures (fig. 11 et 12) par la théorie de

Blatt10) pour la diffusion par les impuretés ionisées.

B. Théorie de Feynman-Schultz
La comparaison des résultats expérimentaux avec la théorie de Feyn-

man-Schultz se fait le plus aisément en exprimant la mobilité sous la
forme :

ftxäXX)»;fw(^_i)r r 4 h k2 \n2 e) m* 02 a2

OÙ p,\ _ îy/(2 fteo/m)1/2

a.Zr

Dans le domaine des valeurs de a caractéristiques des cristaux étudiés,
soit 1,5 < a < 5, la fonction F(a), obtenue par interpolation des valeurs
numériques de Schultz, est représentée avec une erreur ne dépassant pas
1% par l'expression:

(1 + 0,525 oc)/(a - 0,0532 a2 - 0,0116 a3)

On constate en particulier qu'elle reste comprise entre 1,17 et 1,24 pour
1,5 < a < 4. Elle peut donc être considérée, à une approximation
suffisante, comme constante et égale à 1,20.

D'autre part, m*lm est donné à mieux de 2% pour le domaine 1,5 <
a < 4 par le polynôme

m*jm 1 + a/6 + 0,025 oc2 + 0,004 a3

qui est l'expression indiquée par Feynman avec l'adjonction d'un terme
en a3 pour l'adapter aux résultats de Schultz obtenus par calcu latrice
électronique.
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Ainsi, ß,. s'exprimera au moyen des deux seuls paramètres 0 et oc par
l'expression numérique suivante:

ß, =1,07 • io« \ -r) ": ^ f(:] ^ i> (Cm2 v > s--)\n- f / m* d2 a.2 v

c'est-à-dire

^=3-37 •K)3 (r* i) ï ^/r -x) p°ur Ascl

^ 2,35 • 103 (5 i.) l°4 (Xr - 1) pour AgBr

On obtient dans ces conditions les résultats indiqués dans le tableau IV
ci-dessous. (Les valeurs de 0 sont naturellement les mêmes que celles du
tableau III.)

Tableau IV

a m\mc m* jme rn*jm

AgCl N° 1 3,43 0,85 1,58 1,96
(AgCl N°2 2,17 0,26 0,39 1,50)
AgBr N°1 2,75 0,51 0,85 1,67
AgBr N° 2 2,55 0,40 0,64 1,61

AgBr N°3 2,77 0,49 0,83 1,69
AgBr N°4 2,67 0,38 0,63 1,65

Il n'existe pas d'estimation théorique précise de la masse effective
dans un réseau polaire. Tibbs19) dans son étude du centre F dans NaCl
estime que mjme est voisin de 1.

Les travaux de Pekar (voir réf. 2) (approximation quasi adiabatique)
sur l'énergie de dissociation thermique des centres F dans les halogénures
d'alcalins lui permettent de tirer mlme de la comparaison avec les valeurs
expérimentales de cette énergie. Ses résultats sont compris entre 1,70 et
3,25 mais ne semblent pas pouvoir être retenus étant donnée la valeur
relativement faible du coefficient de couplage a.

Les résultats que nous avons obtenus sur la base des deux théories
utilisées indiquent que mjme ne dépasse pas 0,5. Par contre les deux
théories fournissent des valeurs nettement différentes pour la masse du
polaron; d'une part de l'ordre de 0,20 me d'autre part voisine de 0,75 »,
soit une différence d'un facteur 4.

VI. Conclusions
1. Nos expériences n'ont pas mis en évidence une conduction par trous

positifs. Ces derniers ont vraisemblablement une masse effective très
élevée. Il est en effet peu probable que la densité des trappes soit beaucoup

plus grande pour les trous positifs que pour les électrons.
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2. Pour tous les cristaux, il existe une zone superficielle fortement
perturbée dans laquelle la densité des trappes est plus élevée que dans le
volume du cristal. Ceci impose une limitation de l'intensité d'irradiation
pour éviter la formation d'une charge d'espace importante, susceptible
d'empêcher toute conduction.

3. Les cristaux de bromure d'argent semblent avoir une sensibilité pour
la détection des radiations ionisantes nettement supérieure à celle des
cristaux de chlorure.

4. L'influence de la diffusion de l'électron par des impuretés ionisées

apparaît nettement et suffit à expliquer la décroissance de la mobilité
aux basses températures (< 100°K); une loi en P312 paraît toutefois
douteuse.

L'intervention d'un effet de «multiple trapping» nous semble exclue
étant donnée la forme des impulsions observées.

5. Le modèle du polaron faisant intervenir une interaction de l'électron
avec la seule branche optique des vibrations du réseau est confirmé.

6. Le domaine de température exploré n'est pas suffisamment étendu

pour permettre l'étude d'une variation éventuelle du 0 statistique avec
la température. Sur l'ensemble du domaine, ce 0 est en bon accord avec
le 0 dynamique correspondant à la seule fréquence co(k 0).

7. Les valeurs obtenues pour la masse du polaron paraissent
raisonnables. Cependant, l'écart entre les valeurs déduites sur la base des

expressions de Low et Pines d'une part et de Schultz d'autre part est
considérable.

Dans le cas de AgCl, l'expression de Low et Pines donne une masse m*
nettement inférieure à la masse me, tandis que celle de Schultz donne
une valeur de m* supérieure à me.

Dans le cas de AgBr, les deux masses du polaron sont inférieures à la
masse de l'électron libre bien que différentes d'un facteur 4 environ.

8. Notre étude expérimentale ne fournit pas de donnée susceptible
d'appuyer l'une des théories en faveur de l'autre. Seule une détermination
directe de la masse du polaron, par résonance cyclotron sur des cristaux
très purs par exemple, donnerait une valeur indépendante des méthodes
de calcul théoriques et servirait de test de validité pour celles-ci.

Nous remercions la Commission Suisse de la Science Atomique de son
appui financier.
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