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Freie Energie von 180°-Wänden und Oberflächen
im kubisch raumzentrierten Dipol-Gitter

von R. Sommerhalder
IBM-Forschungslaboratorium Zürich, Adliswil

(20. V. 1960)

Abstract. The free energy of 180°-domainwalls and surfaces in ferroelectrics is
estimated, assuming a simple model of dipole-interaction in a bodycentered cubic
lattice. The wall and the surface layer are found to be about one lattice constant
thick except for temperatures very close to the Curie temperature. Spontaneous
polarization in the surface layer is found to have lower values than in the
undisturbed crystal for all temperatures.

1. Einleitung
Die Domänen in Ferromagnetika und Ferroelektrika besitzen trotz

der im ersten Moment auffallenden Ähnlichkeit recht verschiedene
Wesenszüge. In Ferromagnetika wird wegen der grossen Austauschenergie

und der meist kleinen Anisotropie-Energie die Blochwand viele
hundert Gitterkonstanten breit. Dies ermöglicht eine Kontinuumstheorie.
In Ferroelektrika tritt an Stelle der Austauschenergie die elektrostatische
Wechselwirkungsenergie zwischen polarisierten Ionen oder Ionengruppen,

welche verhältnismässig kleine Energieunterschiede zwischen paralleler

und antiparalleler Orientierung der Dipole bringt; andererseits ist
die Anisotropie der Kristallenergie meist sehr gross. In Ferroelektrika ist
deshalb mit Wandbreiten von der Grössenordnung der Elementarzelle zu
rechnen. Dies bedingt eine Diskontinuumstheorie.

Selbst mit Verwendung von unrealistisch vereinfachten Modellvorstellungen

macht die Berechnung der Domänenstruktur in Ferroelektrika
Mühe, so dass bis heute über die Energie und Entropie der Wände und
Oberflächen weniger bekannt ist als bei den Ferromagnetika.

Die strenge statistische Behandlung der Dipol-Dipol-Wechselwirkung
bei endlichen Temperaturen ist immer noch ein unbefriedigend gelöstes
Problem, sogar für den homogenen Kristall (van Vleck (1937), van
Vleck (1940)) ; das weitaus kompliziertere Problem des Dipolgitters mit
Domänenwänden oder Oberflächen lässt sich deshalb nur in einer rohen
Näherung behandeln.
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Das Modell, welches dieser Arbeit zugrunde liegt, lässt sich wie folgt
beschreiben :

Ein kubisch raumzentriertes Gitter*) mit der Gitterkonstante a sei

mit identischen, frei drehbaren Punktdipolen vom Moment p besetzt. Wir
nehmen der Einfachheit halber an, dass die Achse der spontanen Polarisation

oder eines allfälligen äusseren Feldes Ea parallel zu (001) sei. Diese
Annahme ist willkürlich, da dem Modell keine Anisotropie innewohnt
(C. Kittel (1949)). Wir betrachten eine freie Oberfläche (Fig. 1) oder
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Fig. 1

Halbraum von Dipolen der Stärke p im Koordinatensystem (|, rj, Ç).

Kubisch raumzentriertes Gitter, Gitterkonstante a.

eine 180°-Wand (Fig. 2), welche parallel zur (lOO)-Ebene verläuft. Diese
Wahl ist wiederum willkürlich. Eine allfällige Anisotropie von Wand- oder
Oberflächenenergie wird in dieser Arbeit nicht untersucht.

Die freie Energie einer Oberfläche resp. 180°-Domänenwand wird nun
berechnet unter folgenden vereinfachenden Annahmen :

a) Die drehbaren Punktdipole werden ersetzt durch Dipole, welche dem

Erwartungswert p (T) entsprechen und demgemäss nach (001) orientiert
sind. Infolgedessen ist auch das innere Feld E parallel zu (001). Für ein

homogen polarisiertes raumzentriertes Dipolgitter in einem äusseren Feld

X gilt
4.TF + f 2-~-

WO / - (1.1)

*) Das einfach kubische Gitter eignet sich nicht für unsere Betrachtungen, da
es auf einen antiferroelektrischen Zustand führt, das heisst die Bildung einer Wand
im polarisierten Gitter würde einem exothermen Vorgang entsprechen.
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Fig. 2

180°-Wand von Dipolen der Stärke p im Koordinatensystem (£, »;, f).
Kubisch raumzentriertes Gitter, Gitterkonstante a.

In der Oberflächenschicht oder in der Wand liegen die Verhältnisse
komplizierter, indem der Polarisationsanteil des inneren Feldes aus den
Beiträgen der verschiedenen Netzebenen, welche parallel zur Oberfläche resp.
zur Wand gewählt werden, aufsummiert werden muss:

S U
2 P, (1.2)

b) Der Erwartungswert p der Dipole sei durch die Langevinsche Theorie

gegeben:

¦w •*(&)¦
L(x) Ctg*

(1.3)

(1.4)

Die in Ferroelektrika vorhandene Feldabhängigkeit des Moments p
wird somit vernachlässigt.

Als Randbedingung gilt, dass in genügender Entfernung von der
Oberfläche resp. Wand das innere Feld und die Polarisation den Wert annehmen,

welcher dem ungestörten Gitter entsprechen würde.
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2. Polarisationsverlauf in der Oberfläche
Zur Berechnung der Koeffizienten f{ in Gleichung (1.2) gehen wir

zunächst von einer felderzeugenden Ebene aus, die in einfach kubischer
Anordnung in den Punkten

7]

o

l ¦ a

m ¦ a (l, m) ganzzahlig

mit Dipolen der Stärke p besetzt sei (Fig. 3) und berechnen die
Feldstärke

F=Fr

die sie am Ort des Dipols

t
+ 00

¦E
{--00

Ó2

dt2 \

)il>ols

^0 i a

Vo 1 a

Co k ¦ a

fPo+(v-Vo)2+(Z-Q2
(2.1)

(i, j, k) halb- oder ganzzahlig

hervorrufen. Die Summation erstreckt sich nicht über den Term
l m 0, falls i 0. Sie kann nach dem Verfahren von Ewald (1921) in
ausgezeichnet konvergenter Form durchgeführt werden. Die Resultate
sind in Tabelle 1 zusammengestellt und zeigen, dass ein Dipol fast aus-

¦a) I

p(ia,ja,ka)

Fig. 3

Feldstärke Fj am Ort des Dipols p(i ¦ a, j ¦ a, k ¦ a), hervorgerufen durch
die felderzeugende Netzebene der Dipole p(0, l ¦ a, m-a); (l,m) ganzzahlig

(i, j, k) halb- oder ganzzahlig; a Gitterkonstante.
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schliesslich durch die Dipole der eigenen Netzebene und diejenigen der
beiden nächsten Nachbarebenen orientiert wird.

Tabelle 1

Feldstärke Fr (in Einheiten 4jr/3 • 2pja3) am Ort der Dipole in der Netzebene
10 i ¦ a

i <-l -1 -0,5 0 +0,5 + 1 > + l

F( -0,00 -0,02 + 0,25 + 0,54 +0,25 -0,02 -0,00

Tabelle 1 gestattet mit Verwendung von Gleichung (1.3) unmittelbar
die Aufstellung des Gleichungssystems zur Beschreibung des
Polarisationsverlaufs in der Oberfläche. Man findet

(2.2)
(- 0,02 PM + 0,25 P;_0>6 + 0,54 Pt + 0,25 Pi+0>5 - 0,02 Pi+1) ¦ ^

x^.xdx*-
i positiv, halb- oder ganzzahlig, P_1 P-0,5 0,

wenn mit G Lr1 die inverse Funktion zur Langevinfunktion eingeführt
wird, ferner mit Pi 2pi(T)fa3 die Polarisation in der Netzebene
|0 i • a, mit Ps 2 pja3 die Sättigungspolarisation und mit

Tc ~II^ (2-3)

die Curietemperatur der Langevintheorie.
In genügender Entfernung von der Kristalloberfläche geht die Polarisation

in diejenige des ungestörten Domäneninnern P über. Es muss
deshalb die Randbedingung

lim P{ P
i—>oo

erfüllt sein, wobei sich der Wert von P durch Elimination des inneren
Feldes E von den Gleichungen (1.1) und (1.3) aus

E.+ *2-P-*£-.P.-£-G(-§-) (2.4)

ergibt.
Zur Auflösung des Gleichungssystems (2.2) ist ein Iterationsverfahren

zweckmässig. Zunächst wählt man eine beliebige 0. Näherungslösung
P0°\ P0% Pf>..., setzt sie auf der linken Seite von (2.2) ein und berechnet
aus den rechten Seiten die 1. Näherung P^, PJJ£, P^K.. Dann setzt
man die 1. Näherung wieder links in (2.2) ein, berechnet aus den rechten
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Seiten die 2. Näherung P{u2\ P02), Pf\.. und wiederholt das Verfahren
so lange, bis sich aufeinanderfolgende Näherungen nicht mehr
unterscheiden.

Figur 4 zeigt die Resultate für den Fall der spontanen Polarisation
(Ea 0). Sie bleiben unverändert, wenn der Lorenzfaktor 4tiJ3 durch
einen allgemeineren / ersetzt wird.

Ei
Ps

1

X/^
^-—

T
Tc"
0
0,1

0.2
0,3
OA
0,5
0.6
0,7
W
CS

0,98

Fig. 4

Spontane Polarisation P. in der Netzebene !; — i - a unter der Oberfläche bei
verschiedenen Temperaturen T.

Ps — Sättigungspolarisation, Tc Curictemperatur, a Gitterkonstante,
i halb- oder ganzzahlig.

Tabelle 2

Dicke 6 der Oberflächenschicht und spontane Polarisation P des ungestörten
Domäneninnern in Abhängigkeit von der Temperatur

TjTc bja P

0,95
0,99
0,999

0,8
1,8
5,6

0,30
0,13
0,04

In unmittelbarer Nähe der Curietemperatur Tr lässt sich die Breite
der Oberflächenschicht abschätzen, wenn das Gleichungssystem (2.2)
durch die Differentialgleichung

4.7
~3 [X® + *<«]

4jr T
~9~ F'-f; G (>:-) - *¦ (2.5)

approximiert und die inverse Langevinfunktion G als Potenzreihe

P \sAi) 3 r. 1,8 (X + •¦

entwickelt wird.
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Man findet dann in genügender Entfernung von der Oberfläche für
Ea

0

[ 1 - P-^-] 2 • exp [ - ± | /2 (1 - TjTj ] (2.6)

Wir definieren als Dicke der Oberflächenschicht

b a\4 / 2 (1 - TfTc) (2.7)

und ersehen aus Tabelle 3, dass b erst in unmittelbarer Nähe der
Curietemperatur viele Gitterkonstanten erreicht. Die Oberfläche ist bei allen
Temperaturen ein Gebiet reduzierter Polarisation und kleinerer Koerzi-
tivkraft.

Der Polarisationsverlauf in der Oberfläche des Ferroelektrikums zeigt
qualitativ gleichen Verlauf wie die Magnetisierung in der Oberfläche des

Ferromagnetikums nach dem Modell von ValentA (1957).

3. Freie Enthalpie der Oberfläche
Wir wählen die Temperatur T und die Polarisation P im ungestörten

Domäneninnern als Variable.
Die Gibbssche freie Energie pro cm3 der Dipole, welche im ungestörten

Domäneninnern liegen, setzt sich ausser einem nur temperaturabhängigen

Term, welcher der freien Energie des unpolarisierten Kristalls
entspricht und hier vernachlässigt werden kann, additiv aus der Helm-
holtzschen freien Energie H der freien Dipole im äusseren Feld Ea

rr_ 2kT /„ Sin G(P/PS)H - - ~1T ln "G(PTpJ~ ' '

der Wechselwirkungsenergie

Ew F ¦ P/2 (3.2)

der Dipole mit dem von den Nachbarn erzeugten Feld F 4nj3 ¦ P und
dem Term

Ea • P (3.3)

zusammen, der von der Legendreschen Transformation von der Helm-
holtzschen zur Gibbsschen freien Energie herrührt.

Für Dipole, welche in der Oberflächenschicht liegen, kann in den

Gleichungen (3.1) und (3.3) einfach P durch die Polarisation Pi der
betreffenden Netzebene ersetzt werden. Dagegen muss in Gleichung (3.2)
die Wechselwirkungsfeldstärke Fi aus den Beiträgen der Dipole, welche
in benachbarten Netzebenen liegen, zusammengesetzt werden. Ihre
Werte können als die linken Seiten des Gleichungssystems (2.2) abgelesen
werden.
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Für den Unterschied der freien Energie im Ferroelektrikum mit und
ohne Oberfläche (freie Oberflächenenergie A0) ergibt sich pro cm2
Oberfläche der Ausdruck

A0 £(H{-H) + 1I2-(F;P. FP) + Ea (P, - P)

i 0, V„ 1, 3/2
(3.4)

Er ist in Figur 5 aufgezeichnet für verschiedene Werte von Aussenfeld Eu
und Temperatur T. Die Potentialmulden entsprechen dem Fall der
spontanen Polarisation. Die Kurven bleiben unverändert, wenn der Lorenz-

kTc
04
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'1
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1 \ \

0,5

0,6 \

T
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0,7 \

0,8 V

1,0

--2L.

0; Q2 0,3 0,4 0,5 0,6 0,7 1,0

Fig. 5

Freie Enthalpie Aa pro cm2 Oberfläche in Funktion der
Polarisation P des ungestörten Domäneninnern bei verschiedenen Temperaturen T.

a Gitterkonstante, k Boltzmannsche Konstante,
Tc Curietemperatur, Ps Sättigungspolarisation.

faktor / 4tt/3 durch einen allgemeineren ersetzt wird. Die links der
Potentialmulden aufsteigenden Äste der Kurven gehen ungefähr so weit,
bis die Koerzitivkraft in der Oberfläche erreicht ist.

4. Polarisation und freie Enthalpie der 180°-Wand
Die Berechnungen verlaufen analog zu denjenigen von Kapitel 3. Wir

beschränken uns hier auf den Fall Ea 0, wo die Ebene | — 1/4 • a

Symmetrieebene ist. An Stelle des Gleichungssystems (2.2) gilt dann
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4ji— (0,29 Pq + 0,27 Pq 5 - 0,02 Px

Itl p
9 s T,h-°ffl

4jT

4.-r

(0,27 Pq + 0,54 P05 + 0,25 P^ - 0,02 P1>5)

An
AT r~-c(V)

-f- (- 0,02 P,.! + 0,25 P,,.5 + 0,54 P, + 0,25 Pm. - 0,02 P,fl)

431 '.-£•«#)¦

(4.1)

* halb- oder ganzzahlig und i > 1.

Figur 6 zeigt den Verlauf der spontanen Polarisation bei verschiedenen
Temperaturen und Tabelle 3 den Gleichung (3.4) entsprechenden
Ausdruck Aw für die freie Wandenergie.

Tabelle 3

Freie Enthalpie pro cm2 Aw der 180°-Wand in Abhängigkeit von der Temperatur

T aS
4

~Tc kTc w

0 1,26
0,1 1,14
0,2 1,02
0,3 0,89
0,4 0,75
0,5 0,60
0,6 0,45
0,7 0,30
0,8 0,17
0,98 0,00

5. Diskussion
Die vorliegenden Berechnungen stellen eine Abschätzung der freien

Wand- und Oberflächenenergie in Ferroelektrika dar, soweit sie auf
elektrostatische Wechselwirkung zwischen polarisierten Ionen zurückzuführen

ist. Es zeigt sich, dass die Breite von 180°-Wänden und Oberflächen
bis in unmittelbare Nähe des Curiepunktes stets von der Grössenordnung
der Elementarzelle bleibt.

Die Annahme feldunabhängiger Dipolmomente, die Voraussetzung
einer atomar glatten Oberfläche und die Vernachlässigung von
Raumladungen, welche von Verunreinigungen in der Oberfläche herrühren,

40 HPA 33, 6/7 (1960)
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Fig. 6

Spontane Polarisation P, in der Netzebene { i'¦ ¦ a der 180°-Wand bei verschie¬
denen Temperaturen T.

P, Sättigungspolarisation, a Gitterkonstante, Tc Curietemperatur,
i halb- oder ganzzahlig.

schränken die Anwendung der Resultate auf das Verhalten wirklicher
Ferroelektrika wohl stark ein.

Wichtig ist ebenfalls die Vernachlässigung des piezoelektrischen
Effektes, der eine elastische Wand- resp. Oberflächenenergie bewirken kann,
die von gleicher Grössenordnung ist wie die elektrostatische.

Den vorliegenden Berechnungen kommt die Theorie von Mitsui und
Furuichi (1952) wohl am nächsten. Sie kann jedoch ebenfalls nur als

rohe Näherung gelten, weil die ferroelektrische Wand trotz der Breite von
wenigen Gitterkonstanten mit einer Kontinuumstheorie behandelt wird.
Mitsui und Furuichi berücksichtigen ausser der elektrostatischen
Wechselwirkung auch die elastischen Effekte. Hierzu sei jedoch auf die
Diskussion der Arbeit in Känzig (1957) hingewiesen.

Ich danke Herrn Dr. W. Känzig für die Anregung zu dieser Arbeit und
für wertvolle Kritik.
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