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Wightman-Funktionen und retardierte Kommutatoren II

von O. Steinmann
Physikalisches Institut der ETH, Ziirich
20. II. 1960

Abstract. The consequences of the basic postulates of quantum field theory
(Lorentz-invariance, locality, stability of the vacuum) for the retarded products
are investigated by considering their connection with Wightman’s functions.
Necessary and sufficient conditions for the existence of a Wightman function cor-
responding to a prescribed »-function are given. The Fourier transform 7(p,,..., £,)

of 7 is a boundary value of a function# (%, ..., k) regular in a domain R, . R, is
constructed by a recursive procedure. Other boundary values g,(p,, ..., pn) of this
function are considered. They have to fulfill a set of linear identities of four and
twelve terms respectively.

1. Einleitung

In einer fritheren Arbeit!) (im folgenden als A zitiert) wurden not-
wendige und hinreichende Bedingungen dafiir angegeben, dass zu einer
vorgegebenen retardierten Vierpunkt-Funktion 7(x,, ..., x5) die zugeho-
rige Wightman-Funktion W (x,, ..., x,) existiert. Diese Bedingungen sol-
len hier auf den Fall der #-Punkt-Funktion verallgemeinert werden.

Das Vorgehen ist dasselbe wie im Falle der Vierpunktfunktion. Der
Einfachheit halber beschrinken wir uns wie iiblich auf den Fall eines
einzigen skalaren Feldoperators 4 (x). In einem ersten Schritt werden wir
den Zusammenhang zwischen der Wightman-Funktion

W(xO' I Y xn) = <A‘(x0) A(xn) >0 (1)
und dem iterierten Kommutator
K(xg, .oy %) = <[... [A (%), A(x1)], ..., A(%,)] D0 (2)

untersuchen. Aus den dabei erhaltenen Bedingungen fiir K werden wir
dann Eigenschaften der Funktion

7’(51, 59§ En) = <R(x0: veey xn)>0' §i = Kg = % (3)
Rixg, von ,2,) =

9(360 — %) 0x, — ;). 00, — %) [ [A(), A ()] - A(x)] (4)

P(,,..n

resp. deren Fouriertransformierten 7(p,, ..., p,) herleiten.
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Speziell wird sich ergeben, dass die analytische Funktion (4, ...., &,),
deren Randwert 7(p,, ..., ,) in bekannter Weise ist, (sieche A) in ein
grosses Gebiet R analytisch fortgesetzt werden kann. Neben 7(p;) wer-
den wir noch andere Randwerte g,(p;) betrachten. Zwischen einzel-
nen dieser Randwerte bestehen viergliedrige, resp. zwolfgliedrige lineare
Identitéiten.

Diese Bedingungen fiir 7(%;), d. h. Regularitit in R, und Bestehen der
erwahnten Randwertidentititen, sind zusammen mit den bereits be-
kannten Eigenschaften (Symmetrie, Lorentzinvarianz) hinreichend fiir
die Existenz von K und damit von W. W kann aus 7(k;) explizit berechnet
werden und ist im wesentlichen eindeutig bestimmt. (Fiir die Diskussion
der auftretenden Mehrdeutigkeiten siehe A.)

2. Der mehrfache Kommutator

Wir wollen hier die Eigenschaften des durch (2) definierten mehrfachen
Kommutators untersuchen. Speziell sollen notwendige und hinreichende
Bedingungen dafiir angegeben werden, dass die zugehorige Wightman-
Funktion (1) existiert und die richtigen Eigenschaften?) hat. Von dem
von WIGHTMAN angegebenen System von quadratischen Ungleichungen
werden wir dabei allerdings absehen, d. h. wir berticksichtigen nur die
linearen Bedingungen.

Neben dem iterierten Kommutator K betrachten wir auch alle Opera-
toren (resp. deren Vakuumerwartungswerte) der allgemeinen Form

3 omey xih)’ Oﬁ(xih+1’ ta sy xin):l’ (5)

wobei (7, ..., 7,) eine Permutation der Indizes (0, ..., n) darstellt und die
0,, 04 entweder Feldoperatoren A (x;) oder selber wieder von der Form (5)
sind. In allen O, treten somit » Kommutatorklammern auf. Die zu-
gehorigen Vakuumerwartungswerte bezeichnen wir mit <0 ,>. Alle <0,>
lassen sich mit Hilfe der Jacobischen Identitdt als Summen von K-
Funktionen schreiben.

Es gilt:

Folgende Bedingungen sind notwendig und hinreichend fiir die Exi-
stenz von W

a) Die <O,> haben die richtigen Antisymmetrien, d. h. entsteht O, aus
0, durch die Ersetzung eines Kommutators [0,, O4] durch [0, O,], so
gilt <0,> + <0,> = 0. Ebenso sind alle Jacobi-Identitdten erfiillt.

b) K(x, ..., x,) ( und damit jedes <O »>) ist invariant gegen die in-
homogene eigentliche Lorentzgruppe.

¢) K ist lokal, d. h.

0,(5,.... %) = [0,(x,

K {Kgs Hysonns 3,) =0, falls (xy = 23)* <L 0, (6)
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Allgemeiner erhélt man daraus: Trittin O, der Kommutator [4 (x;), 4 (x;)]
auf, so ist <0 ,> = 0 fiir (x; — x;)> < 0.
d) Ist 0,=[0,,04], so gilt fiir die Fouriertransformierte §0 ,(p, .. ,P,):

(FO,»> =0, falls (}'p;)?<0. (7)
B

2 bedeutet dabei Summation iiber alle in O, auftretenden Argumente.
B

Dass diese Bedingungen notwendig sind, ist leicht einzusehen, da sie
- unmittelbar aus den Eigenschaften der Wightman-Funktionen folgen.
Dass sie auch hinreichend sind, beweist man durch explizite Konstruk-
tion von W durch ein Rekursionsverfahren:

Seien alle

fyseysXp) ope O x

N-1 (xiN~1’ Y jN—1)>

fiir ein festes N < # bekannt, wobei die O; von der Form (5) sind und
alle Variablen x,, ..., x, genau einmal auftreten. Dann definieren wir

N
FOg-- 0> =0(=Dp) 3 F<0;y...0,1[00,0,10;45...0,>. (8
0, i=1

Durch #-malige Anwendung dieser Definition erhilt man aus den <0,>
die gewiinschte Funktion W (x,, ..., x,). Durch eine umsténdliche, aber
elementare Rechnung weist man nach, dass das so konstruierte W unter
den angegebenen Voraussetzungen iiber K tatsichlich die richtigen Eigen-
schaften aufweist.

3. Die G-Operatoren

Aus den in § 2 hergeleiteten Eigenschaften von K(x,), ..., x,) sollen nun
Bedingungen fiir 7(x,, ..., x,) hergeleitet werden. Dazu benétigen wir
eine Verallgemeinerung des retardierten Kommutators R(x,, ..., %,),
welche in diesem Paragraphen eingefiithrt werden soll.

Sei H(x,, ..., %,_;) ein Operator der Form

H(xy, ..., %_q) }zoz‘kflp (%gs- -5 %) A(xi,,) e A(xih_l)l 9)
?(0,..., -1)

wobel die f, beliebige ¢-Zahl-Funktionen sind.
Wir definieren

H(xq,..., %3-1) 1 A(x,)

H(xy,..., %41} %)

h—1
526(9@- — ) H Hgsonns Bpsncss Byg)s (10)
i 0
H(xo, .., %) L A(%) = H(xg, ..., %1 | %)

h—1

— 3B, — #) H Fpuesin BBpres Bl (11)

i=0

Il
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%, x, bedeutet dabei die Ersetzung des Feldoperators A (x;) durch den
Kommutator [A4(x;), 4(x,)].

Die so definierten Operatoren H(x, ..., 4,y [ %,) (] bedeutet 1 oder |)
sind wieder von der Form (9). Unser Verfahren kann also beliebig oft
hintereinander angewandt werden, was in evidenter Bezeichnungsweise
die Operatoren

H(xy, ..., %,_ IIthlei = xOJ"'th—l)IA(xh)IA(xiz+1)I"'
ergibt.
Es gilt
[H (%, - - s %)y Hap(Xpy1,- -+ %p1)] I A(x,) = (12)
[H, I A(xy), Hy) + [Hy, Hy 1 A(x)]
Die Pfeilrichtung ist dabei natiirlich in allen Termen dieselbe.
Ferner:
H(xg, ..., xp1 b ) — H(xg, ..., %y § %)
h—1
= OH(xO,..., L Y
h—1 l
=2 el 24y) 3] A () [A(xy), Alxy)].. A(xih_l)] (13)
P i=0

[H (%, .-+, %p_1), A(x)].

I

Wir verwenden die Abkiirzung

oo w] = [ [A(x), A(xy)],- 0, A(x,)]. (14)

Fir H = 6(xy — xq)... 0(x,_5 — %,_1) [%g, ., %3_4) Wird unsere Definition
von H} 4 zu

00, -, Xpa) (%o - o) %5 1] 1 A(5)

11 T xk_l)ZQ(xj s Bl [y s Bl awans gy |
h—1 j
= B(xo, ---,x xk, ]+1’ .. 2 xﬂ, .. xkxh, ve ey xh_ﬂ
=0 E=0
Resl
= 3 O Hgs 12 01 By Bs Kipgs -5 Fpag) [V <o 0 B Bps Bpaas oows Fpy | (15)
j=0
mit O(x,, ..., x,) = 0(xy — x7) ... O(x,_; — x,). In der letzten Umformung

wurde die Jacobi-Identitdt beniitzt. Wegen (13) gilt auch:

0(%gs -+ +» Xp1) [Fos -+ Fpa] ¥ A (%)
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=

—1
— 6(%0, ey xj, J’Ch, xJ+1, ...) [xo, ceey xJ, xh, ey xh_l] e

1=

[}

— B Xg g Bt} [Hiy woror Hig] s (16)

Man erhalt damit sofort die wichtigen Beziehungen
Rl o503 Mg F ) = Bl s By ) ]
Rl vnns g b %) = Bl 5600 8) — [Blp 0o Bya)s A5 ]

Mit Hilfe des Spezialfalls R(xg, x; 1 %) = R(%,, %, %5) = R(xg, 25 1 ;)
ldasst sich einsehen, dass allgemein

17)

H(x,, ..., Zpd Xppa } Xpia) = H(xg, -ovs %4} Xpi2 Xpi1) l (18)
Hxo oo, %y Kpin d Xpga) = H(%g, o) %4 Xpya ¥ Xppa) [
Wir betrachten jetzt speziell die Operatoren
A Il T2 =A(x) T A(x) T ... T Alxp)- (19)

Sie sind nach (17) und (12) Summen von mehrfachen Kommutatoren von
R-Operatoren, also lorentzinvariant.

Der Kommutator [H(xy, ..., %), A(%g3] %42 ] .- ] %,)] ldsst sich nach
(12) wie folgt umformen:

[H, A%, ] ... ] =
:[H’A(xk-f—lI"‘Ixnml)]iA(xn)_[HIA( xk+1i Ixn 1)]

wobel der bei einem festen x; stehende Pfeil in allen Termen derselbe ist.
Fortgesetzte Anwendung dieses Verfahrens ergibt schliesslich eine Summe
von Gliedern der Form

[HT oo Ad@ea)] T oo
=HJ] . ‘A ] .- —H] ... A% T -
nach (13). Man erhdlt so

[H (%, -y %), A(@en T .. ] %
=Z(—1)S(P)H(x0,...,xk$xik+11...Txkﬂl...lxin) I

P

- 2 (t Zxgr —> § Fpia) I

P
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Die Summen J2'sind iiber die Permutationen von (x..q, ..., %,) zZu er-
P

strecken, die in der Entwicklung des mehrfachen Kommutators [ ... [x;,;,
Hraals wess ) == 3 15 [Wpsn o] B, — B fis o5 [Mpaymn] = une SfiitFELEH,. Auich
die Vorzeichen (— 1) entsprechen den Vorzeichen in dieser Entwicklung.

Mit anderen Worten: 2 liuft iiber alle Permutationen, bei denen kein
P

Index j zwischen zwei niedrigeren Indizes steht. s(P) ist die Zahl der x;,
die vor allen x,, ¢ > 1, stehen.

Sei 4 %9, TESP. |, %o Dann verschwindet in (20) die erste, resp. die
zweite Summe wegen (18), da z. B. im ersten Fall mit dem Term ...
4 %1} Xeig ... immer auch der Term ... } x5 1 %544 ... mit dem um-
gekehrten Vorzeichen auftritt. Es bleiben also nur die Summanden mit
V %511, TESP. } %, 4 stehen.

Wir definieren nun H(x,, ..., %) } A% ] ... J #,) als Summe der-
jenigen Glieder in (20), bei denen der erste Pfeil nach x, aufwirts gerichtet
ist:

H4 Al T o iZ 1OH (.., g, T T 3) (21)
und entsprechend
—H | Az ] - iE" —1PH(.., 22, T Do) (22)
womit

HY A(xpy ) —H{ Al T - [H, A% T - (23)
gilt.

Diese Definition der ] -Operation dehnen wir durch lineare Fortsetzung
auf Operatoren der Form

P oui ) = 3, gl Bipia s 4 Figh & =011 (24)
P(k 2, )

aus:
H(xg, .., %) T G(%pyy, -, %) EZspHI A 1 xik+21 e 3 %5 ). (25)
P

Damit gilt wieder
[H,G]=H4 G- H|G. (26)

Ist H(x,, ..., x;) selbst von der Form (24), so gilt das offensichtlich auch
fir H J G, d. h. die Menge der Operatoren (24) (fiir beliebige Variablen-
zahlen) ist gegen die Pfeiloperation abgeschlossen.

Jetzt sind wir in der Lage, die gewiinschte Verallgemeinerung der R-
Operatoren einzufithren. Wir definieren die Mengen ®, von Operatoren
G (%o, ..., %,) durch folgende Rekursionsvorschrift:
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a) ®, besteht aus dem einzigen Element A4 (x,)
b) ®, besteht aus allen Operatoren

GMV(xO, s %) = G (%, e,y %) TG (rs oves %) (27)
mit G,€0, 6,0, 4, k=01,...,n-1

Diese Vorschrift ist offenbar sinnvoll, da die so konstruierten G ’ alle
von der Form (24) sind.
®,, enthilt speziell den Operator

Axg) 4 A(xy) 4 ...+ A(x,) = Rz, .-, %,). (28)
Es gilt

(G, Gl=G,py—G

ptv plv

Fiir den Spezialfall G, € G, ldsst sich beweisen:
A(xg) + G, (xq, ..., %) = G (%, ..., x,) | A(xg) ]
A 4 G0, oy %) = Gy, .oy ) § Alxe) |

Im allgemeinen Fall gelten jedoch die entsprechenden Gleichungen nicht!

Im folgenden werden wir einige Eigenschaften der Tréager der G-Opera-
toren beniitzen, die aus der lokalen Vertauschbarkeit der Feldoperatoren
A (x) folgen. Wir behaupten:

G ,(%g, ..., %,) verschwindet ausserhalb einer Menge, die durch Bedin-
gungen der Form (x; — x;) €V, (V, = Vorkegel) charakterisiert ist, wo-
bei diese Bedingungen untereinander sowohl durch sowohl-als-auch als
auch durch entweder-oder-Relationen verkniipft sein kénnen. G ﬂ(xo, .

%) 1 G, (%1, - .-, %,) hatin (x,, ..., x,) denselben Triger wie G al%or <o) %)

(30)

Den Beweis fithren wir durch allgemeine Induktion, wobei es geniigt,
den Fall G (x,, ..., ;) ] 4(x,.,) zu betrachten.

Wir nehmen also an, G, habe einen Triger der angegebenen Form.
Die Bedingung (x; — ;) €V, soll dadurch zustandekommen, dass G, als
Summe von Termen geschrieben werden kann, die alle oder zum Teil (fiir
eine entweder-oder-Bedingung) Bestandteile der Form 6(x;, x;,, ..., ¥;;)
x[%;, ..., %], 1 = 1, 7, = 7, enthalten. Diese Voraussetzung gilt in ®,, das
aus den beiden Elementen 0(x, — x;) [x,, %,] und 6(x; — x,) [%y, %] be-
steht.

Anwendung der Operation 4 A(x,,,) auf einen solchen Term ergibt
nach (15)

h—1

Zﬂ(xil, SRV THE NCTINUE TN RETNRINE P NSRS PR
=1

£ B(xih — Xp11) [e(xil’ cee xih) [%50 ooos %5, 1, A(%14)]

23 H.P.A. 33, 5 (1960)
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Jeder der auftretenden Summanden enthélt wieder einen Bestandteil der
betrachteten Art, die Bedingung (x; — x;) €V, bleibt somit bestehen.

J
Zusitzlich erhédlt man noch die Bedingung

(x; — %,44) €V, fiir mindestens ein ¢ < &, (31)

da ja jeder Summand in G, 1 A einen Operator 0(x; — %) [*;, %]
enthilt. '
Entsprechend erhdlt man fiir G, | 4(x;,) die Zusatzbedingung

(%41 — x;) €V fiir mindestens ein ¢ <&, (32)

wihrend die Bedingungen in (x,, ..., ;) wiederum bestehen bleiben.

4. Verhalten im p-Raum

Wir betrachten die Vakuumerwartungswerte

TR En) = <G (%o - s %p) D00 &= %p — % (33)

der G-Operatoren, resp. deren Fouriertransformierte

Pbyy . b)) = f i, ... A8, G g (5, o, ). (34)

In diesem Paragraphen werden wir folgenden Satz beweisen:

g uP1s -, P,) ist Randwert einer analytischen Funktion P4 o (T ) §
k; = p; + 1q;, deren Regularititsgebiet eine Rohre R, folgender Art ist:

Jeder Teilmenge I der Indizes (1, ...,#n) wird ein Halbkegel V
(0 = 4+ oder —) zugeordnet. Dann

R, ={(ky, ..., k) | D)4 €Voyury alle I} (35)

jel

olp,D

Es konnen n-Teilmengen I, derart angegeben werden, dass das System
der zugehorigen Bedingungen

ieVopury @ ZE% (36)
13

mit dem System aller 2 — 1 in (35) auftretenden Bedingungen &dqui-
valent ist. Die Menge {Q,;} nennen wir die Basis von R ,.

Es ist zu beachten, dass R , Von der im ersten Lemma von HALL und
WiGHTMAN?®) betrachteten Form ist. g, ist also in das Gebiet

W,— U AR, 37)

A€L.(C)

analytisch fortsetzbar.
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Den Beweis des angegebenen Satzes fithren wir durch Induktion. Sei
G,€0, G,€®, ;. Seig,(ky, ..., k,) in R, reguldr, ebenso g, (ks -- -, ;)
in R,. Dann behaupten wir, dass g ,4,(py, ..., p,) Wieder Randwert einer
analytischen Funktion g, 4,(k;) ist, und dass die zugehérigen Rohren R
wie folgt charakterisiert sind:

Sei I, = {q1, .-, @u}» I, = {Gss1, -+ > G} g-Summen, die nur Summan-
den aus einem der I enthalten, liegen in R, 4 , im selben Halbkegel wie die
entsprechende Summe in R, resp. R,. In R, ist dabei die Beziehung

wlv

Qoo = — & g; zu verwenden. Die Summe iiber alle ¢; €I, liegt in V' resp.
i=ht2

V_fir R4, resp. R 4}y Summen, die Glieder aus beiden I enthalten,

liegen im selben Halbkegel wie die darin enthaltenen Partialsummen

aus I,.

Die entsprechende Basis @, ..., Q, erhilt man offenbar aus den Basen
Qhts 5w O OF 5 1105 Q2 VoI R, R, wie folgt:
Qi =0+ g, Qi~Q i=1,..h

qj.'EI,u )
%"‘“Q’:

Qr+1 :;’qj, Qpa €V, V_fiir R4, R, |, resp. | (38)

Qi =0; falls Q)+ Q4 )
1=h+2,...,n

Qi = 0w — Qi Qi+ Q) falls Q) ~ Q1. !
Dabei bedeutet P ~ Q (P ~ Q), dass die Vektoren P und Q im selben
Halbkegel (in verschiedenen Halbkegeln) liegen.

Zum Beweis dieser Induktionsbehauptung benétigen wir einen Hilfs-
satz, dessen Beweis im Anhang gegeben werden wird:

Lemma. Sei G(x,, ..., x,) € ®,, also eine Summe von Termen der Form
(19). Wir lassen nun die Variable x, (1 < f < #) in allen diesen Sum-
manden weg und erhalten so einen wohldefinierten Operator G/(%,, ...,
Xp1r X¥p41s -5 X,). Dann ist G/ € 6,_4, und Rr ergibt sich aus R, durch
Weglassen der ¢, enthaltenden Bedingungen.

G, (%o, s %) } G (X441, -, %,) ist nach Definition eine Summe von
Gliedern der Form
Gulw )t Ay, ) T T Al,) (39)

Wir betrachten eine Aufteilung 7" der Variablen x,,,, ..., x,in & + 1 Teil-
mengen T, ..., T, und definieren einen Operator G4 ,(x,, - - -, %,). Dieser
entsteht aus G, 4, dadurch, dass in allen Summanden (39) die Mengen T,
in der richtigen Reihenfolge (und mit den richtigen Pfeilen) an die in G,
vorhandenen Feldoperatoren A(x;) angehingt werden. G, 1 G, ist die

Summe dieser Gy, , {iber alle Aufteilungen 7.
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Betrachten wir speziell den Fall, dass alle 7'; ausser dem einen 7 leer
sind. GT » entsteht dann aus G, einfach durch Ersetzung des FaktorsA( ;)
durch A( £) 1 G (Fhirs oo e %) GTTI, hat also die dem Operator 4 (x; TG
zukommenden Tréagereigenschaften. Im allgemeinen Fall ergibt 51ch eben-
falls eine Ersetzung von 4 (x;) durch einen G-Operator, der mit A(x;) 1 G,
in dem im vorstehenden Lemma angegebenen Zusammenhang steht

Wie wir schon wissen, hat G, 1 G, in %, ..., x, denselben Triger wie G ,.
Der Triger in x,_4, ..., x, ist in der Vereinigungsmenge simtlicher G”-
Tridger enthalten. Wir behaupten, dass

Zﬂqu'fi>0 (40)
ie1

fiir alle §; aus diesem Triger und alle {g;} € R+ ,. Sei speziell &; € (G )
fir ¢ < &, & €t(G,4,) fiir >k, T eine beheblge Aufteilung. Dann gﬂt
in R

whv
D)4 & ZEqﬁZZf—é‘ q1+Z§ (9, + 2 9:) >0,
1 iE€ET, a=1 €Ty €T

da unter den gemachten Voraussetzungen alle drei Glieder einzeln > 0
sind. Dabei ist die Induktionsvoraussetzung verwendet worden, dass alle
Behauptungen fiir den Fall A(x,) 1 G, (x4, ..., %,), & < n, gelten. Den
Spezialfall A4 (xy) 1 G(xy, ..., #,) fithrt man mit Hilfe von (30) auf den hier
betrachteten Fall zuriick.

Aus (40) folgt aber sofort die behauptete Regularitit von g4, in R4
Der Beweis fiir den Fall G, | G, verlauft genau gleich.

Zusdtzlich zu diesen Regularititsaussagen erhidlt man noch Aussagen
tiber das Anwachsen von g+, im Unendlichen, die hier nicht explizit an-
gegeben werden sollen (siehe A).

5. Die Funktion r(k,, ...., k,)

Wir betrachten die Gesamtheit der in §4 definierten Funktionen
g u(ky, ..., k,) fiir ein festes . Diese Gesamtheit enthilt speziell die Funk-
tion 7(%y, ..., k,). g, ist nach (37) in R’ regulir.

Durch allgemeine Induktion beweisen wir

G (%g, :--s %) = R(xg, ..., %,) +
+ Glieder der Form [Ha(xio, cees %30 Hple oo, 25 )] (41)

G (%, ..., %,) besteht nach Konstruktion aus Gliedern der allgemeinen
Form + A(xyt %, ] ...) resp. 4+ A(xy| %, ] ...). Dabei ist die Zahl der
positiven Summanden um eins grésser als die Zahl der negativen: Gelte



Vol. 33, 1960 Wightman-Funktionen und retardierte Kommutatoren II 357

das nédmlich fir G, und Gy, u = a1 f. Wir greifen je einen Term aus G,
und G, heraus und betrachten

Alxe T ) Aa T %0 T -
:I:ZP;Y(_ S(P)A in xk/i\ xik,{_li Ix

nach (21). Dabei gilt das + vor 2 im Falle |, x;,, das — im Falle 4 %, _,.
P

Zu jedem Summanden mit 7., # 2 + 1, 2 4+ 2 gibt es auch einen Sum-
manden, in dem %, 4, %,,, vertauscht sind und der dementsprechend das
umgekehrte Vorzeichen aufweist. Zusédtzlich zu diesen Paaren hat man
im Fall | x,., einen positiven Term mit 7,,; = 2+ 1, im andern Fall
einen negativen Term mit ¢, ., = % 4 2. Daraus ergibt sich sofort unsere
Behauptung iiber die Zahl der positiven und negativen Summanden in
G, 1 p und analog fir G, .. Nun ist nach (12) und (17)

Ay T ... T %) = R(xy, ..., %,) + Y [H, Hyl,

woraus sich auf Grund der vorangehenden Bemerkung die Beziehung (41)
ergibt.

Die Fouriertransformierte von <[H,(%;,, ..., %;;.), Hg(%s;, 1, - -+, %) |29 VeI~
schwindet auf Grund der Spektralbedingungen, falls (p;,,, + ... + $;,)°
< 0. Das gilt speziell in den Jost-Punkten?), d. h. in den reellen Regulari—
tatspunkten von 7(ky, ..., k,). Es lisst sich leicht zeigen, dass R’ und R/,
gemeinsame reellen Umgebungen enthalten. In diesen Umgebungen gilt
somit nach (41)

Eulkyeen, k) =Ry, ooy By, (42)

d. h. g, ist eine analytische Fortsetzung von 7 in das Gebiet R’ ﬂ;
Wir haben damit folgendes Theorem bewiesen:
Die Funktion 7(k,, ..., k&,) ist in das Gebiet
R=V %, (43)
GuE®y
analytisch fortsetzbar. Alle Funktionen (genauer: Distributionen)
g,(p1 ---, p,) sind Randwerte dieser Funktion 7: |
g’y(ﬁ: s D) = lm 7(Ry, .., R, ki = p; + 1g;. (44)

{ki}ERp
qi—0

Zusitzlich zu dieser Regularititsaussage unterliegt 7 noch der frither
erwahnten Bedingungen iber das Verhalten im Unendlichen.

Eine so einfache Charakterisierung des Gebietes R, wie im Falle der
Vierpunktfunktion ist im allgemeinen Fall nicht bekannt. Man ist hier

auf die im Text gegebene rekursive Definition angewiesen (siehe dazu
auch § 8).
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6. Identitiiten
Neben der eben hergeleiteten Regularititsforderung ergeben sich aus
den Eigenschaften von K noch weitere Bedingungen fiir7, nimlich gewisse
Identitdten zwischen G-Operatoren und somit zwischen speziellen Rand-
werten von 7.
Es muss gelten:
(G, G,] = — [G,, G,], (43)

also
Gy (B %) — Gy (%o, -, x,;)EGvM(xO,...,x ) =Gy y(Kg e e, ). (44)

Die gleiche Identitiit gilt natiirlich fiir die entsprechenden g-Funktionen:

lim 7 (k;) — lim 7 (k) = lim 7 (k) — lim 7 (%;) (43)
{Fi}e8ut, {F3e8u s, {#}e%y |, {7381 4
qj—>0 qj.—>0 qj—>0 q’.—a»ﬂ

Allgemeinere Identitdten erhdlt man, wenn man beachtet, dass zu (44)
beliebige G-Operatoren in beliebiger Reihenfolge durch die Pfeiloperation
hinzugefiigt werden kénnen, resp. dass (44) zu beliebigen G’s hinzugefiigt
werden kann, z. B.

GOLTG,M,TV_' GaTGyl,v= GaTGvip_ GocT Gv?,u

usw. Es ergibt sich so:

lim ¥(k)— lim 7(k)= lLm F(k)— lim 7(k) (46)
{kj}em...()u 1\,,) {kj}Em...(M &(,,) {kj}em...(,,i'u).. {kj}ﬁm...(,,lpu)..
q?.—>0 qj—e—O qj—>0 qj.—:-l)

Auf genau dieselbe Weise erhilt man aus der Jacobi-Identitit
[[ch’ Gﬂ]’ G'y] ‘g [[Gﬂl G'y:l’ Got,] € i [[G'y; G:x:’: Gﬂ] =0 (47)
zwolfgliedrige Beziehungen der Form

G..(ccT,BT:u).. - G..(a’]‘ﬁl,y).. _ G,.(aiﬁfy).. T G..(aiﬁly).. + ZYkl =0, (48)

welche natiirlich ebenfalls als Randwertidentititen fiir 7(%;) geschrieben
werden konnen.

7. Umkehrung

Wir haben jetzt zu zeigen, dass die eben hergeleiteten Bedingungen fiir
7, nimlich Regularitit in R und Bestehen der Identititen (46) und (48),
fiir die Existenz von K (und damit von W) hinreichend sind.

Sei also eine analytische Funktion 7(k,, ..., ,) mit folgenden Eigen-
schaften gegeben:

A) 7 ist regulir in R, (und erfiillt dort die erwihnten Bedingungen im
Unendlichen).
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B) 7 ist in ﬁn invariant gegen die komplexe homogene Lorentzgruppe
L,(C) (d. h. mit Determinante + 1).
C) 7 ist invariant gegen Permutationen der Argumente %, ..., k, und
h
gegen die Ersetzung k; > ky = — X'k;.
j=1
D) Die Randwerte von 7 in den reellen Punkten erfiillen die in § 6 an-
gegebenen Identitdten.
Dann lasst sich das zugehorige K(x,, ..., x,) mit den Eigenschaften a)
bis d) aus § 2 wie folgt konstruieren:
Wir definieren

Culbr s ) = T koo k) 49)
{%;}E%,

qj—>0
und erhalten daraus durch Fouriertransformation

gp(fl: vy Eg) = <G (%, -, X))o &= % — %; (50)
Weiter definieren wir

Lo [GalFgr oo Xi)s Gol@ipas o0vs %)) Or(Fpas ) 110400 Z) ]2 =
= - [Gayy O -, 0100 = <L-o- [Gpy s Ol -, 0,10, 51)

wobei die O, aus G-Operatoren nach der Vorschrift (5) aufgebaute Kom-
mutatorausdriicke sind.

Durch fortgesetzte Anwendung dieser Definition erhédlt man schliess-
lich K(x,, ..., x,) und allgemeiner alle in § 2 betrachteten { 0, ».

Die Bedingungen a) bis d) sind offenbar erfiillt:

a) gilt als Folge von D), wie man durch Induktion beweist.

Translationsinvarianz besteht trivialerweise. Die Invarianz gegen die
homogene eigentliche Lorentzgruppe folgt aus B), da die Definitionen
(49) und (51) eine invariante Bedeutung haben.

Die Fouriertransformierte des durch (51) definierten Ausdrucks ist nach
Konstruktion in ¢, ..., ; Randwert einer in R , analytischen Funktion.
Speziell ist die Fouriertransformierte von <[...[R(%xy, %), A(%5)],...],
A(x,)] > eine in R analytische Funktion der Variablen %,. Wie {iblich
folgt daraus

... [R(xg, #1), ... 10 =0 flir (xg— )&V,
und damit
K(xg, ..., x,)
= <[« [R(#%, %), ... ]9 — <[.-. [R(%1, %), ... ]>o =10
fir (wy — x,)2 << 0,

womit auch c) bewiesen ist.
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Die in Bedingung d) auftretenden Ausdriicke

[Ou(x4s -+ -» 24), Og(Xps1s -+ %2)10

sind nach Definition Summen von Termen der Form

T(xg, .-, %) = <[G (%, ---» %)y Gy Fpn, -+ -5 %) D0 (52)

= ngv(El’ g En) - g'ulv(él’ misiny En)

oder im Impulsraum

T(pli Tt Tbn) :éﬂTv(Pl’ e Pn) P‘é‘uiv(fbb sy Pn) (53)
= lim 7(k)— lim 7(k).
(k€M 4, {k}ER, |,
qz.—>o qi—>0

Nun unterscheiden sich die Gebiete R4, und R, |, nur durch die Lage
h

der Summe 2'g; (€V resp. €V_). Lisst man bei der Grenzwertbildung
R+1

in (53) zuerst diese Summe gegen Null gehen, so erhilt man
T(py - o) =0 fir (P + ... p2)* <O, (54)

weil in diesem Fall der betrachtete Grenzpunkt noch ein Regularitdts-
punkt ist (da € R’ 4,) und somit die verschiedene Art des Grenziibergangs
in den beiden Termen keine Rolle spielt. Damit ist auch d) verifiziert.

8. Schlussbemerkungen
Wir haben notwendige und hinreichende Bedingungen dafiir abgeleitet,
dass zu einer vorgegebenen r-Funktion die zugehorige W-Funktion exi-
stiert. Insbesondere haben wir ein Gebiet R, angegeben,in dem7 (%, ..., k,)
reguldr sein muss. Zu diesem Gebiet sollen hier noch einige Bemerkungen
gemacht werden.
Auf Grund der in A gegebenen Resultate fiir die Vierpunkt-Funktion

hdtte man Regularitit von 7 (k,, ..., k,) im Gebiet
D=U 4D (55)
AeL  (©)

erwarten kénnen, wobei D die durch die Bedingung

(3. g;)% > 0 fiir alle Teilmengen [ aus (1, ..., n) (56)
el
charakterisierte Rohre darstellt. Wie D. RUELLE®) gezeigt hat, ist D’ fiir
n > 3 grosser als R,. Es enthilt namlich auch Réhren der am Anfang
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von § 4 betrachteten Art, die nicht durch eine aus nur » Elementen be-
stehende Basis der Form (36) festgelegt sind.

Wir haben jedoch nur Regularitit in R, gefunden. Das hat zur Folge,
dass der im Falle #n = 3 bestehende Zusammenhang zwischen 7 und der
Fouriertransformierten 7 von

Ty o &) = (TA(Kg, -+, %) 2 (57)

mit den hier entwickelten Hilfmitteln im allgemeinen Fall nicht mehr be-
wiesen werden kann. D. h.7 (py, ..., p,) ist nicht unbedingt iiberall Rand-
wert der Funktion 7 (k,, ..., &,). Es ist jedoch zu beachten, dass R, (auch
nach Bildung der Holomorphiehiille) keineswegs das vollstdndige Regu-
laritdtsgebiet von 7 zu sein braucht. Es ist anzunehmen, dass die in § 6
betrachteten Identitdten das Regularitdtsgebiet noch vergrdssern, wie in
A fiir den Spezialfall » = 3 bewiesen wurde. Die zitierte Arbeit von
D. RUELLE, in der nur die 0-Komponenten der p; als komplexe Variable
betrachtet werden, scheint tatsichlich darauf hinzudeuten, dass eine
analytische Fortsetzung von 7 in ©’ méglich ist.

Ein grosser Teil dieser Arbeit entstand wihrend eines Aufenthaltes des
Autors am Institut fiir Theoretische Physik der Universitdit Hamburg.
Fiir die ihm dort erwiesene Gastfreundschaft mdchte er Herrn Prof.
H. LEamMANN herzlich danken. Die Arbeit wurde durch ein Nachwuchs-
stipendium des Schweizerischen Nationalfonds unterstiitzt.

Anhang: Beweis des in § 4 verwendeten Lemmas

Das zu beweisende Lemma lautet:

Sei G(xg, ..., x,) € ®,. Wir lassen in allen Summanden (19) die Va-
riable x, (1 < f < n) weg und erhalten so einen Operator G/(x,, ..., Xp 1,
Xfi15 -+ X,). Dann ist G7e ®,_; und Re, ergibt sich aus R; durch Weg-
lassen der ¢, enthaltenden Bedingungen.

Beweis:

A) Sei G(xy, ..., %,) = G(%o. ..., %) T GalHprq, .-, %), 1 < f < k. Das
Lemma gelte fiir G,. Dann gilt es offensichtlich auch fiir G mit

GI= G,/ ] Gy (A.1)

B) Sei
G (%, --vy %) = Alxg) T Gy, -0, %) (A.2)
Wir betrachten den Operator G/(x,, ..., % 10 Xya1s -e-s %), der aus

G,(*y, ..., x,) durch die Substitution x , - x, entsteht. G gehort natiirlich

zu ®,_,, und das Regularititsgebiet der zugehérigen Funktion g/ ergibt
sich aus R, durch die Ersetzung ¢, - g, in allen Bedingungen. Die Be-
dingungen fiir die g, nicht enthaltenden Summen werden davon nicht
beriihrt.
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Es ist aber
Gl = G (A.3)
Zum Beweis betrachten wir einen typischen Term aus G,, wobei wir spe-

ziell den Fall 4 x, annehmen (resp. x; | %, fiir f = 1. Der andere Fall | x,
resp. %, } x, ldsst sich genau gleich behandeln):

Ay T2 ] - b % T 5, (A.4)
Adjunktion dieses Terms zu A(x,) ergibt in der bekannten Weise Aus-

driicke der Form A(x,{x; J ...} x,... ] x; ). Beim Weglassen der Va-
riablen x, bleiben nur die Glieder

Aoy % T oo L xi )y 42 <[(resp.i;=2im Fall f = 1)
stehen, da sich die iibrigen paarweise wegheben. Man erhilt damit
(A@xg) T A T ... T ) = |
= (A(xg) ¥ A%y T ... %)) I A(%p14) I 1 A(x,) (A.5)
Fiir f = 1 lautet die rechte Seite A(x,) | A (x,) ...

Andererseits erhilt man bei Bildung von G’ aus dem Term (A.4) den
Ausdruck

Al T g % 34 % T %5 - 2,) =
= (Alxg) $ Ay T .. T2 0)) T ¥pia - T,
nach (30), also dasselbe wie in (A.5), womit (A.3) bewiesen ist. Das Lemma
gilt somit im betrachteten Spezialfall.

C) Sei G = Gy(xy, .-, %) T Gpl%gsn, -+, %,), | > k. Vergleichweise be-
trachten wir

G'(%g, Fpprs o0 %) = A(%) I Gﬁ(xk—!-l’ sns Ky) (A.6)
G’/ besteht aus Summanden der Form
A (xy) I A(xikH) 1 i A(xin). (A.7)

Analog bilden wir G/, indem wir in (A.7) A(x,) durch G, ersetzen. Da
G'7e ®,_,_;, liegt das analog gebildete G/ in ®,_,. Es ist klar, dass das
so definierte G/ der nach den Vorschriften des Lemmas gebildete Operator
ist. Dass sich dabei das richtige Regularitidtsgebiet ergibt, ist einfach zu
sehen. Die Vorschriften innerhalb I, bleiben ja bestehen, und die iibrigen
Vorschriften ergeben sich in voller Analogie zu G'/.
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