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Wightman-Funktionen und retardierte Kommutatoren II
von O. Steinmann

Physikalisches Institut der ETH, Zürich
20. II. 1960

Abstract. The consequences of the basic postulates of quantum field theory
(Lorentz-invariance, locality, stability of the vacuum) for the retarded products
are investigated by considering their connection with Wightman's functions.
Necessary and sufficient conditions for the existence of a Wightman function
corresponding to a prescribed r-function are given. The Fourier transform~r(px,..., pn)
of r is a boundary value of a function r (kx, kn) regular in a domain 9?„ SR„ is
constructed by a recursive procedure. Other boundary values gß(px, p„) of this
function are considered. They have to fulfill a set of linear identities of four and
twelve terms respectively.

1. Einleitung
In einer früheren Arbeit1) (im folgenden als A zitiert) wurden

notwendige und hinreichende Bedingungen dafür angegeben, dass zu einer
vorgegebenen retardierten Vierpunkt-Funktion r(x0, x3) die zugehörige

Wightman-Funktion W(x0, x3) existiert. Diese Bedingungen sollen

hier auf den Fall der «-Punkt-Funktion verallgemeinert werden.
Das Vorgehen ist dasselbe wie im Falle der Vierpunktfunktion. Der

Einfachheit halber beschränken wir uns wie übhch auf den Fall eines

einzigen skalaren Feldoperators A(x). In einem ersten Schritt werden wir
den Zusammenhang zwischen der Wightman-Funktion

W(xq,...,xA <A(Xq)...A(x„) }q (1)

und dem iterierten Kommutator

K(Xq, xn) <[... [A(xq), A(xx)l A(x„)]>q (2)

untersuchen. Aus den dabei erhaltenen Bedingungen für K werden wir
dann Eigenschaften der Funktion

r(£v •¦•.!„)= <R(xo> ¦ • • ¦> x«) >o, ^i x0- x{ (3)

R(xq, ,xn)

2j6(x0 - Xi) d(xK - Xi)... d(xin_i - xin) [... [A(xq),A(xx)] A(xA] (4)
P(l,...n)

resp. deren Fouriertransformierten r(px, ¦¦¦ ,pn) herleiten.
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Speziell wird sich ergeben, dass die analytische Funktion r(kx, kA,
deren Randwert r(px, ...,pn) in bekannter Weise ist, (siehe A) in ein

grosses Gebiet 9?„ analytisch fortgesetzt werden kann. Neben r(pj) werden

wir noch andere Randwerte gJpj) betrachten. Zwischen einzelnen

dieser Randwerte bestehen viergliedrige, resp. zwölfgliedrige lineare
Identitäten.

Diese Bedingungen für r(k,), d. h. Regularität in 9?n und Bestehen der
erwähnten Randwertidentitäten, sind zusammen mit den bereits
bekannten Eigenschaften (Symmetrie, Lorentzinvarianz) hinreichend für
die Existenz von K und damit von W. W kann aus ~r (kj) explizit berechnet
werden und ist im wesentlichen eindeutig bestimmt. (Für die Diskussion
der auftretenden Mehrdeutigkeiten siehe A.)

2. Der mehrfache Kommutator
Wir wollen hier die Eigenschaften des durch (2) definierten mehrfachen

Kommutators untersuchen. Speziell sollen notwendige und hinreichende
Bedingungen dafür angegeben werden, dass die zugehörige Wightman-
Funktion (1) existiert und die richtigen Eigenschaften2) hat. Von dem

von Wightman angegebenen System von quadratischen Ungleichungen
werden wir dabei allerdings absehen, d. h. wir berücksichtigen nur die
linearen Bedingungen.

Neben dem iterierten Kommutator K betrachten wir auch alle Operatoren

(resp. deren Vakuumerwartungswerte) der allgemeinen Form

O„(*0>...,*,) \_OJxt,, ¦¦-, xih), Oß(xih+i,..., xj], (5)

wobei (i0, in) eine Permutation der Indizes (0, n) darstellt und die
Oa, Oß entweder Feldoperatoren A (xj) oder selber wieder von der Form (5)
sind. In allen 0 „ treten somit n Kommutatorklammern auf. Die zu-
gehörigen Vakuumerwartungswerte bezeichnen wir mit <0 >. Alle <0 >

lassen sich mit Hilfe der Jacobischen Identität als Summen von K-
Funktionen schreiben.

Es gilt:
Folgende Bedingungen sind notwendig und hinreichend für die

Existenz von W:
a) Die <0„> haben die richtigen Antisymmetrien, d. h. entsteht Ov aus

0 durch die Ersetzung eines Kommutators [Oa, OA durch \0», Oa], so

gilt <0 > + <0„> 0. Ebenso sind alle Jacobi-Identitäten erfüllt.
b) K(Xq, xn) und damit jedes <0 >) ist invariant gegen die

inhomogene eigentliche Lorentzgruppe.
c) K ist lokal, d. h.

K(Xq, xx,..., x„) 0, falls (Xq - xx)2 < 0. (6)
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Allgemeiner erhält man daraus : Tritt in 0 der Kommutator [A (x{), A (Xj)]
auf, so ist <0/(> 0 für (xt - Xj)2 < 0.

d) Ist Oß [Oa, Oß], so gilt für die Fouriertransformierte g 0p(p0,... ,pn) :

<gcy 0, falls (£p,)2 < 0. (7)
ß

E bedeutet dabei Summation über alle in Op auftretenden Argumente.
ß

Dass diese Bedingungen notwendig sind, ist leicht einzusehen, da sie

unmittelbar aus den Eigenschaften der Wightman-Funktionen folgen.
Dass sie auch hinreichend sind, beweist man durch explizite Konstruktion

von W durch ein Rekursionsverfahren:
Seien alle

<°o(*v ....Xj).... 0Ni (xiN_t, xJNJ >

für ein festes N < n bekannt, wobei die Ot von der Form (5) sind und
alle Variablen x0, xn genau einmal auftreten. Dann definieren wir

%<O0...ON> d(-£pi)Z% <Oi...Oj_x[Oq,Oj]Oj+x...On>. (8)
o. i -1

Durch w-mahge Anwendung dieser Definition erhält man aus den <0„>
die gewünschte Funktion W(x0, ...,xA. Durch eine umständhche, aber
elementare Rechnung weist man nach, dass das so konstruierte W unter
den angegebenen Voraussetzungen über K tatsächlich die richtigen
Eigenschaften aufweist.

3. Die G-Operatoren
Aus den in § 2 hergeleiteten Eigenschaften von K(x0, xn) sollen nun

Bedingungen für r(x0, xn) hergeleitet werden. Dazu benötigen wir
eine Verahgemeinerung des retardierten Kommutators R(x0, xn),
welche in diesem Paragraphen eingeführt werden soll.

Sei H(xq, xh_x) ein Operator der Form

H(xq,..., xh_x) £fP(x0,.... xh_x) A(Xi)...A(xih_x), (9)
P(ü h-l)

wobei die fP beliebige c-Zahl-Funktionen sind.
Wir definieren

H(xq,..., xh_x) f A(xh) H(Xq,..., xh_xf xh)

Ä-l
=Ee(xi- xh) H(xo, ¦¦-, xixh, ¦¦-, xh-i), (10)

» -0

H(xq,..., xh_x) \ A(xh) H(Xq,..., xh_x |xh)
h-l

-£Q(xh - Xi) H(Xq, Xixh,..., xh_x). (11)
i 0
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xt xh bedeutet dabei die Ersetzung des Feldoperators A (xt) durch den
Kommutator [A(x), A(xA\

Die so definierten Operatoren H(x0, xh_x\xh) J bedeutet f oder 1)

sind wieder von der Form (9). Unser Verfahren kann also beliebig oft
hintereinander angewandt werden, was in evidenter Bezeichnungsweise
die Operatoren

H(xQ,...,xh_xlxhlxh+xl =H(x0,...,x„_x) %A(xh) \A(xh+x) |
ergibt.

Es gilt :

[Hx(xq,...,xk), H2(xk+X,..., xh_x)] I A(xh)

[HxXA(xh),H2} + [H1,H2lA(xh)]

Die Pfeilrichtung ist dabei natürlich in allen Termen dieselbe.
Ferner :

(12)

H(Xq, xh_x \ xh) — H(x0, xh_x \ xh)

h-l
'£lH(xQ,...,xixh,...,xh_x)
i-0

Z\fp(xo, ¦¦-, **-i) £A (Xi) ...[A (Xi), A (xh)] ...A (*, \ (13)
P \ ;-0 I

[H(XQ,...,xh_x),A(xh)l

Wir verwenden die Abkürzung

[Xq,...xA [...[A(Xq),A(xx)],...,A(xA]. (14)

Für H 6(xq — xx)... d(xh^2 — xh_x) [x0, xh_x] wird unsere Definition
von H f A zu

6(xq, x„_x) [xq, xh_x] f A(xh)

h-l
0(x0, ¦¦-, xh-X)2Jd(xj - xh) [xq, XjXh, xh^x]

j=0
h-l i

2j "\xo, ¦ ¦• xj, Xh, Xj+X, 2_j \Xq, xkxh, xh_x\

h-l
2j "(Xq, ¦ ¦¦ Xp Xh, Xj+X, Xh_x) [Xq, Xj, Xh, Xj+X, Xh_x\ (15)
,-0

mit 6(xq, ¦¦¦, xn) d(x0 — xx) 0(xn_x — xA. In der letzten Umformung
wurde die Jacobi-Identität benützt. Wegen (13) gilt auch:

6(xq, xh_x) \xq, xh_x] | A (xh)
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2j "(Xq, ¦ ¦ ¦, Xj, Xh, Xj+1, [Xq, Xj, Xh, Xh_x\ —
0

- 6(xq, xh_x) [x0,..., x^. (16)

Man erhält damit sofort die wichtigen Beziehungen

R(xq, xh_xf xh) R(Xq, xh_x, xh) 1

17)
R(*o, ¦¦¦, xh-x Ixh) R(xq, ...,xh)- [R(xq, xh_x), A(xh)]

Mit Hilfe des Spezialfalls R(x0, xx f x2) R(x0, xx, x2) R(x0, x2 f xx)
lässt sich einsehen, dass allgemein

(18)
H (Xq, xh-\ xh+x | xh+2) — H (Xq, xh\ xh+21 xh+x)

H(Xq, xh\ xh+x | xh+2) H(Xq, xh\ xh+21 xk+x) j

Wir betrachten jetzt speziell die Operatoren

A(x0 \xx % % xk) A(xq) X A(xx) X-.-X A(xk). (19)

Sie sind nach (17) und (12) Summen von mehrfachen Kommutatoren von
.R-Operatoren, also lorentzinvariant.

Der Kommutator [H(x0, ,xk),A (xk+xX xk+2 | | xA] lässt sich nach
(12) wie folgt umformen:

[H,A(xk+1X ...Xx»)]

[H, A(xk+X X ••• X x„-i)] X A(xn) -[Hl A(xn), A(xk+X X -X **-i)]

wobei der bei einem festen Xj stehende Pfeil in allen Termen derselbe ist.
Fortgesetzte Anwendung dieses Verfahrens ergibt schliesslich eine Summe

von Gliedern der Form

[HX-..,A(xk+x)]X...

HX...\A(xk+x)X----HX...\A(xk+x)X...
nach (13). Man erhält so

[H(Xq, ...,xk), A(xk+X X-.-X xn)]

JT (- !)<*> H(Xq, ...,xkX xik+1 X ¦ ¦ ¦ t xk+1 X-.-X Xu I

P
(2°)

— 2j (f xk+x -> 4 xk+x)
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Die Summen X sind über die Permutationen von (xk+1, xn) zu er-
p

strecken, die in der Entwicklung des mehrfachen Kommutators [... [xk+x,

xk+z\ • • - *„] [• • • [xk+i, ...]xn-xn[.... [xk+x...] auftreten. Auch
die Vorzeichen (— 1)* entsprechen den Vorzeichen in dieser Entwicklung.
Mit anderen Worten: Uläuft über alle Permutationen, bei denen kein

p
Index j zwischen zwei niedrigeren Indizes steht. s(P) ist die Zahl der Xj,
die vor allen x{, i > /, stehen.

Sei f xk+2, resp. | xk+2. Dann verschwindet in (20) die erste, resp. die
zweite Summe wegen (18), da z. B. im ersten Fall mit dem Term

t xk+x | xk+2 immer auch der Term \ xk+2 f xk+x mit dem
umgekehrten Vorzeichen auftritt. Es bleiben also nur die Summanden mit
I xk+v resp. f xk+x stehen.

Wir definieren nun H(x0, xk) \ A (xk+x X ¦ ¦ ¦ X xn) ^ Summe
derjenigen Glieder in (20), bei denen der erste Pfeil nach xk aufwärts gerichtet
ist:

H f A (xk+1 X---) ±Z'(- l)s(P,ff (• -.,xk\ xik+1 X-.-X *0 (21)
p

und entsprechend

-HlA(xk+xX...) ±Z"(-l)«P)H(--,xklxik+iX...Xxln). (22)
p

womit

H^A(xk+xX...)-HlA(xk+xX -¦¦) \H,A(xk+xX.-.)} (23)

gilt.

Diese Definition der t -Operation dehnen wir durch lineare Fortsetzung
auf Operatoren der Form

G(xk+i, ¦¦-,xn)= ZJ epA(xk+x X xt X---Î xO> «# 0, ± 1 (24)
P(A+2,-,»t)

aus:

H(xq, ...,xk)X G(xk+X, ...,x„) =£epH X A(xk+1 X xik+i X-.-X xin). (25)
p

Damit gilt wieder

[H, G] H | G - H j G. (26)

Ist H(Xq, xk) selbst von der Form (24), so gilt das offensichtlich auch
für H X G, d. h. die Menge der Operatoren (24) (für beliebige Variablenzahlen)

ist gegen die Pfeiloperation abgeschlossen.
Jetzt sind wir in der Lage, die gewünschte Verallgemeinerung der R-

Operatoren einzuführen. Wir definieren die Mengen ©n von Operatoren
G^Xq, ¦¦¦, xn) durch folgende Rekursionsvorschrift :
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a) ©o besteht aus dem einzigen Element A (x0)

b) ©„ besteht aus allen Operatoren

Gßt„(xq, ...,xA GA\Xq, ...,xk)X G,(xk+X, ...,xn) (27)

mit G^e ©*, G„ e ©„_*_1; k 0, 1, n-1

Diese Vorschrift ist offenbar sinnvoll, da die so konstruierten G„ alle
fi

von der Form (24) sind.
©„ enthält speziell den Operator

A(xq) f A(xx) f f A(xn) R(xq, ...,xn). (28)

Es gilt

[G/l,GA Gfliv-G/llv. (29)

Für den Spezialfall G e ©0 lässt sich beweisen :

A(x0) t Gv(xx, ...,xA Gv(xx, ...,xA\A(x0) j

A (xq) j Gv(xx, ...,xA G„(xx, ...,x„)\A (x0)
(30)

Im allgemeinen Fall gelten jedoch die entsprechenden Gleichungen nicht!
Im folgenden werden wir einige Eigenschaften der Träger der G-Opera-

toren benützen, die aus der lokalen Vertauschbarkeit der Feldoperatoren
A (x) folgen. Wir behaupten :

Gß(xQ, xn) verschwindet ausserhalb einer Menge, die durch
Bedingungen der Form (x{ — Xj) eV+ (V+ Vorkegel) charakterisiert ist, wobei

diese Bedingungen untereinander sowohl durch sowohl-als-auch als
auch durch entweder-oder-Relationen verknüpft sein können. G (x0,

xk) X Gv(xk+i, ¦ ¦ ¦, x„) hat in (x0, ...,xk) denselben Träger wie G^Xq, xk).
Den Beweis führen wir durch allgemeine Induktion, wobei es genügt,

den Fall G (x0, ...,xk)XA(xk+x) zu betrachten.
Wir nehmen also an, G habe einen Träger der angegebenen Form.

Die Bedingung (xt — x}) eV+ soll dadurch Zustandekommen, dass G als
Summe von Termen geschrieben werden kann, die alle oder zum Teil (für
eine entweder-oder-Bedingung) Bestandteile der Form d(xh, xh, xt])
x [xh, xih], ix i, ih j, enthalten. Diese Voraussetzung gilt in @1( das

aus den beiden Elementen d(x0 — xx) [x0, xx] und 0(xx — x0) [xx, x0]
besteht.

Anwendung der Operation f A (xk+x) auf einen solchen Term ergibt
nach (15)

h-l
ZJd(xh, Xi., xk+x, xih) [xh xijt xk+1, xih] +
7-1

+ Hxih - xk+i) [®(xix, •••-%) [xh, ¦¦-, xihl A(xk+X)]

23 H.P.A. 33, 5 (1960)
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Jeder der auftretenden Summanden enthält wieder einen Bestandteil der
betrachteten Art, die Bedingung (x{ — xA e V+ bleibt somit bestehen.
Zusätzlich erhält man noch die Bedingung

(Xi — xk+x) e V+ für mindestens ein * < k, (31)

da ja jeder Summand in G \ A einen Operator d(x{ — xk+x) \xt, xk+x]

enthält.
Entsprechend erhält man für G „ \ A (xk+x) die Zusatzbedingung

(xk+i — xi) e V+ für mindestens ein i < k, (32)

während die Bedingungen in (x0, xk) wiederum bestehen bleiben.

4. Verhalten im p-Raum

Wir betrachten die Vakuumerwartungswerte

gßv ¦ • •. £,) <GJ\Xq, ...,x„)>0, i{ Xq- Xi (33)

der G-Operatoren, resp. deren Fouriertransformierte

l(Pi, ¦¦¦,Pn)= f d^x d% e's¥t gßx, ...,|B). (34)

In diesem Paragraphen werden wir folgenden Satz beweisen :

~SukPi, ¦¦¦, Pn) ist Randwert einer analytischen Funktion g Jkv kA,

kj pj + içj, deren Regularitätsgebiet eine Röhre 51 folgender Art ist:
Jeder Teilmenge I der Indizes (1, ...,«) wird ein Halbkegel V^ n

(a + oder —) zugeordnet. Dann

m, {(kx, ...,kn)\ £qj 6 VaM, alle /} (35)
iei

Es können w-Teilmengen Ih derart angegeben werden, dass das System
der zugehörigen Bedingungen

QtzV^MY Q=Zlj (36)
u

mit dem System aller 2n — 1 in (35) auftretenden Bedingungen
äquivalent ist. Die Menge {Çj} nennen wir die Basis von SR

Es ist zu beachten, dass 5R„ von der im ersten Lemma von Hall und
Wightman3) betrachteten Form ist. g„ ist also in das Gebiet

*'„= ü il», (37)
AeLJC)

analytisch fortsetzbar.
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Den Beweis des angegebenen Satzes führen wir durch Induktion. Sei

Gße®h, Gve(S>n_h_x. Sei g^K, kh) in ÎRAregulär, ebenso gv(kh+2,...,k„)
in £R„. Dann behaupten wir, dass g $ v(px, ...,p„) wieder Randwert einer
analytischen Funktion g $ v(kj) ist, und dass die zugehörigen Röhren iR^| „
wie folgt charakterisiert sind:

Sei I {qx, qh), Iv {qh+x, qn}. ^-Summen, die nur Summanden

aus einem der / enthalten, liegen in SR „ t „ im selben Halbkegel wie die

entsprechende Summe in SR„, resp. 9ÎV. In SR„ ist dabei die Beziehung
n

qh+x — Zqj zu verwenden. Die Summe über alle q} elv hegt in V+ resp.
i-h+i

V_ für SR^ | „ resp. SR i „. Summen, die Gheder aus beiden I enthalten,
liegen im selben Halbkegel wie die darin enthaltenen Partialsummen
aus /„.

Die entsprechende Basis Qx, ...,Qn erhält man offenbar aus den Basen

Qi- • • • - Qt> Qlz, ¦ ¦ ¦, Q: von *„, SR, wie folgt :

Qt =Qï + E ip Qt~Ql i i,...,h

Ei), Qh+i £ V+, VJixx SR^ „, »M„ resp.

h+ 2,

(38)

Qi =Q\, falls Q:^Qh+x I

Qi Qh+i - QI Qi <+ Q\, Mis Q\ ~ Qh+X.\

Dabei bedeutet P ~ Ç (P r^Q), dass die Vektoren P und Q im selben

Halbkegel (in verschiedenen Halbkegeln) hegen.
Zum Beweis dieser Induktionsbehauptung benötigen wir einen Hilfssatz,

dessen Beweis im Anhang gegeben werden wird :

Lemma. Sei G(x0, xn) e ©„, also eine Summe von Termen der Form
(19). Wir lassen nun die Variable xf (1 < / < n) in ahen diesen
Summanden weg und erhalten so einen wohldefinierten Operator Gf(x0,

xf-i, xf+x, xA. Dann ist Gf e ©n_1; und SRG/ ergibt sich aus SRC durch
Weglassen der qf enthaltenden Bedingungen.

GAxq, ...,xh)\ Gv(xh+X, xn) ist nach Definition eine Summe von
Gliedern der Form

Gll(XQ,...,xh)\A(xihJX---XA(xin)- (39)

Wir betrachten eine Aufteilung T der Variablen xh+x, xn in h + 1

Teilmengen Tq, ...,Tk und definieren einen OperatorG^f „(x0, ...,xA. Dieser
entsteht aus G j „ dadurch, dass in allen Summanden (39) die Mengen Tt
in der richtigen Reihenfolge (und mit den richtigen Pfeilen) an die in G

vorhandenen Feldoperatoren A (xA angehängt werden. G f G„ ist die
Summe dieser GJ t „ über alle Aufteilungen T.



356 O. Steinmann H. P. A.

Betrachten wir speziell den Fall, dass alle T{ ausser dem einen Tj leer
sind. GJf „ entsteht dann aus G einfach durch Ersetzung des Faktors.4 (xj)
durch A(xj) f G„(#A+1, xA. GT *v hat also die dem Operator A (x}) f G„
zukommenden Trägereigenschaften. Im allgemeinen Fall ergibt sich ebenfalls

eine Ersetzung von A (Xj) durch einen G-Operator, der mit A (xj) f G„
in dem im vorstehenden Lemma angegebenen Zusammenhang steht.

Wie wir schon wissen, hat G f G„ in x0, xh denselben Träger wie G^.
Der Träger in xh+x, xn ist in der Vereinigungsmenge sämtlicherGT-
Träger enthalten. Wir behaupten, dass

2>ft>° (40)

i-l
für alle |,- aus diesem Träger und alle {qt} e 5R„ + „. Sei speziell £ä £t(G
für i < ä, fj g <(G^* „) für i > k, T eine beliebige Aufteilung. Dann gilt
ini^t„:

Zìi f« 27 ft it +E E (ft - W ?i+Afe +2» > °-
1 î£T0 a -1 iera a -1 JeXa

da unter den gemachten Voraussetzungen alle drei Glieder einzeln > 0
sind. Dabei ist die Induktionsvoraussetzung verwendet worden, dass alle
Behauptungen für den Fall A(xa) \ Gv(xx, xh), h < n, gelten. Den
Spezialfall A (x0) f G(xx, xA führt man mit Hilfe von (30) auf den hier
betrachteten Fall zurück.

Aus (40) folgt aber sofort die behauptete Regularität von g.f „ in 9t f „.
Der Beweis für den Fall G \. G„ verläuft genau gleich.

Zusätzlich zu diesen Regularitätsaussagen erhält man noch Aussagen
über das Anwachsen von g * „ im Unendlichen, die hier nicht explizit
angegeben werden sollen (siehe A).

5. Die Funktion r(k1, k„)
Wir betrachten die Gesamtheit der in § 4 definierten Funktionen

g (kx, kn) für ein festes n. Diese Gesamtheit enthält speziell die Funktion

r(kx, kA. ~g ist nach (37) in SR'^ regulär.
Durch allgemeine Induktion beweisen wir

GAxq, ...,xA R(x0, ...,xA +

+ Glieder der Form [Ha(x{>, x,k), Hß(..., *,J] (41)

G^Xq, ¦¦¦, xn) besteht nach Konstruktion aus Gliedern der allgemeinen
Form ± A(x0 f xx |...) resp. Az A(x0 \. xx X ¦ • •)• Dabei ist die Zahl der
positiven Summanden um eins grösser als die Zahl der negativen : Gelte
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das nämlich für Ga und Gß, \x a.\ ß. Wir greifen je einen Term aus Ga

und Gß heraus und betrachten

A(xoX ¦¦¦) Ì A(xk+i X %k+i £•••)

±E(-i)s<p)A(xoV---xkUik+1X-Xxin)
p

nach (21). Dabei gilt das + vor 2J im Falle | xk+2, das — im Falle f xk+2.
p

Zu jedem Summanden mit ik+x / k + 1, k + 2 gibt es auch einen
Summanden, in dem xk+x, xk+2 vertauscht sind und der dementsprechend das

umgekehrte Vorzeichen aufweist. Zusätzlich zu diesen Paaren hat man
im Fall j. xk+2 einen positiven Term mit ik+x k + 1, im andern Fall
einen negativen Term mit ik+x k + 2. Daraus ergibt sich sofort unsere
Behauptung über die Zahl der positiven und negativen Summanden in
Ga| ß und analog für G^^ß. Nun ist nach (12) und (17)

A(XoX--- X Xn) R(X0, ¦¦-, Xn) +E[Ha, Hßl

woraus sich auf Grund der vorangehenden Bemerkung die Beziehung (41)

ergibt.
Die Fouriertransformierte von <[Ha(xiti,..., xik), Hß(xik xin)]y0

verschwindet auf Grund der Spektralbedingungen, falls (pik+1 + + p,n)2
< 0. Das gilt speziell in den Jost-Punkten 4), d. h. in den reellen Regulari-
tätspunkten von r(kx, kn). Es lässt sich leicht zeigen, dass SR' und SR'

gemeinsame reellen Umgebungen enthalten. In diesen Umgebungen gilt
somit nach (41)

i,(kx,...,kn)=~r(kx,...,kn), (42)

d. h. g ist eine analytische Fortsetzung von r in das Gebiet SR'.

Wir haben damit folgendes Theorem bewiesen :

Die Funktion~f(kx, kn) ist in das Gebiet

%= V 9t'„ (43)
Gße®„

analytisch fortsetzbar. Alle Funktionen (genauer: Distributionen)
~g/i(Pi> ---'Pn) smcf Randwerte dieser Funktion t:

l^Pi, ¦¦¦,Pn)= Um r(kx, ...,k„), kj Pj + iqj. (44)
{ki}emß

qt-*0

Zusätzlich zu dieser Regularitätsaussage unterliegt t noch der früher
erwähnten Bedingungen über das Verhalten im Unendlichen.

Eine so einfache Charakterisierung des Gebietes SR„ wie im Falle der

Vierpunktfunktion ist im allgemeinen Fall nicht bekannt. Man ist hier
auf die im Text gegebene rekursive Definition angewiesen (siehe dazu
auch § 8).
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6. Identitäten
Neben der eben hergeleiteten Regularitätsforderung ergeben sich aus

den Eigenschaften von if noch weitere Bedingungen für r, nämlich gewisse
Identitäten zwischen G-Operatoren und somit zwischen speziellen
Randwerten von r.

Es muss gelten :

[Gp G„] - [G„ GJ, (43)
also

GmU(x0,...,x„) - Gnv(xQ, ...,xA=Gv]iII(xq,...,xA-GvU(xq,...,xA. (44)

Die gleiche Identität gilt natürlich für die entsprechenden g-Funktionen:

lim r (kj) — lim r (k}) lim r (kj) — lim r (k}) (45)

{W%\v {WU»U {W*A* {W*>U
qf-+0 q}-+0 qf-+0 q.-*0

Allgemeinere Identitäten erhält man, wenn man beachtet, dass zu (44)

beliebige G-Operatoren in beliebiger Reihenfolge durch die Pfeiloperation
hinzugefügt werden können, resp. dass (44) zu behebigen G's hinzugefügt
werden kann, z. B.

G«t G^v- Ga\ GM„= Ga\ Gvl/l- Ga\ G„tA

usw. Es ergibt sich so :

lim ~r(kj) — lim ~r(kj) lim r(kj) — lim ~r(kj) (46)

{»,}€»•¦¦(>, t»)- {M6*-fcH" {',}«-Hrt" {*,}6"-<»t*«>»
q.^0 q.-^0 q.-+0 q .-+0

3 3 3 Ì

Auf genau dieselbe Weise erhält man aus der Jacobi-Identität

[[Ga, Gß], Gr] + [[Gß, Gr], GJ + [[Gr, GJ, GJ 0 (47)

zwölfgliedrige Beziehungen der Form

G..(atf3fy)..- G..(af/îiy)..- G.(o< 1 /3 | y).. + G..(a | ,3 j y).. + ZYkl- °- (48)

welche natürlich ebenfalls als Randwertidentitäten für ~f(k,) geschrieben
werden können.

7. Umkehrung
Wir haben jetzt zu zeigen, dass die eben hergeleiteten Bedingungen für

r, nämlich Regularität in SRn und Bestehen der Identitäten (46) und (48),
für die Existenz von K (und damit von W) hinreichend sind.

Sei also eine analytische Funktion ~r(kx, kn) mit folgenden
Eigenschaften gegeben :

A) r ist regulär in SR„ (und erfüllt dort die erwähnten Bedingungen im
Unendlichen).
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B) r ist in SR„ invariant gegen die komplexe homogene Lorentzgruppe
L+(C) (d. h. mit Determinante + 1).

C) ~r ist invariant gegen Permutationen der Argumente kx, kn und

gegen die Ersetzung &; -> k0 — Ekj.

D) Die Randwerte von r in den reellen Punkten erfühen die in § 6

angegebenen Identitäten.
Dann lässt sich das zugehörige K(x0, xn) mit den Eigenschaften a)

bis d) aus § 2 wie folgt konstruieren :

Wir definieren

ì,(Pi,.-.,Pn)= Hm ~r(kx,...,K) (49)

und erhalten daraus durch Fouriertransformation

gfiv - - ¦, ft) <G^xo, ...,x„) >0, f, x0- Xi (50)

Weiter definieren wir

<•[... [GAxq,...,xA,Gv(xì+x Xj)lOx(xJ+x,...)],Oh(...,xn)]>0

<[..-[G„t».OJ OJ>.-<[...[C,.„OJ,...,01]>,l (51)

wobei die 0T aus G-Operatoren nach der Vorschrift (5) aufgebaute
Kommutatorausdrücke sind.

Durch fortgesetzte Anwendung dieser Definition erhält man schliesslich

K(xq, xn) und allgemeiner alle in § 2 betrachteten < 0 >.

Die Bedingungen a) bis d) sind offenbar erfüllt:
a) gilt als Folge von D), wie man durch Induktion beweist.
Translationsinvarianz besteht trivialerweise. Die Invarianz gegen die

homogene eigenthche Lorentzgruppe folgt aus B), da die Definitionen
(49) und (51) eine invariante Bedeutung haben.

Die Fouriertransformierte des durch (51) definierten Ausdrucks ist nach
Konstruktion in px, p{ Randwert einer in SR„ analytischen Funktion.
Speziell ist die Fouriertransformierte von <.[...[R(x0, xx), A(x2)],...],
A(xA] >0 eine in SR analytische Funktion der Variablen kx. Wie üblich
folgt daraus

<[... [R(x0, xx), .]>„ 0 für (xq - xx) $ V+

und damit

K(xq, ...,xn)

<[...[R(xq,xx),...]\-<\...[R(xx,Xq),...}\=0
für (xq - xx)2 < 0,

womit auch c) bewiesen ist.
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Die in Bedingung d) auftretenden Ausdrücke

<\0Jxq, xk), 0ß(xk+x, *„)]>„

sind nach Definition Summen von Termen der Form

T(xq, ...,xn) <[Gß(xe, ...,xk), Gv(xk+X, xA]>0 (52)

— ë,i\v(Çl>

oder im Impulsraum

T(px,...,pn)=~g/lU(fix,...,pn)-g/tit,(Pi,---,Pn) (53)

lim r (kj)

Nun unterscheiden sich die Gebiete SR„ * „ und SR„ i v nur durch die Lage
h

der Summe Uqj (eV+ resp. eV_). Lässt man bei der Grenzwertbildung
*+i

in (53) zuerst diese Summe gegen Null gehen, so erhält man

T(Pi,.-.,P„)=0 für (pk+x+...pn)2<0, (54)

weil in diesem Fall der betrachtete Grenzpunkt noch ein Regularitätspunkt

ist (da e SR'„ | „) und somit die verschiedene Art des Grenzübergangs
in den beiden Termen keine Rolle spielt. Damit ist auch d) verifiziert.

8. Schlussbemerkungen
Wir haben notwendige und hinreichende Bedingungen dafür abgeleitet,

dass zu einer vorgegebenen r-Funktion die zugehörige JF-Funktion
existiert. Insbesondere haben wir ein Gebiet SR„ angegebenen dem? (kx,... ,kn)

regulär sein muss. Zu diesem Gebiet sollen hier noch einige Bemerkungen
gemacht werden.

Auf Grund der in A gegebenen Resultate für die Vierpunkt-Funktion
hätte man Regularität von r(kx, ...,kn) im Gebiet

I)' U AT) (55)

erwarten können, wobei D die durch die Bedingung

(Elj)2 > 0 fur aue Teilmengen I aus (1, n) (56)

charakterisierte Röhre darstellt. Wie D. Ruelle5) gezeigt hat, ist £)' für
n > 3 grösser als SR„. Es enthält nämhch auch Röhren der am Anfang
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von § 4 betrachteten Art, die nicht durch eine aus nur n Elementen
bestehende Basis der Form (36) festgelegt sind.

Wir haben jedoch nur Regularität in SR„ gefunden. Das hat zur Folge,
dass der im Falle n 3 bestehende Zusammenhang zwischen r und der
Fouriertransformierten x von

x(Çx,...,ÇA=<TA(x0,...,xA>q (57)

mit den hier entwickelten Hilfmitteln im allgemeinen Fall nicht mehr
bewiesen werden kann. D. h. x (px, ,pn) ist nicht unbedingt überall Randwert

der Funktion r(kx, kn). Es ist jedoch zu beachten, dass SR„ (auch
nach Bildung der Holomorphiehülle) keineswegs das vollständige
Regularitätsgebiet von zu sein braucht. Es ist anzunehmen, dass die in § 6

betrachteten Identitäten das Regularitätsgebiet noch vergrössern, wie in
A für den Spezialfall « 3 bewiesen wurde. Die zitierte Arbeit von
D. Ruelle, in der nur die O-Komponenten der pt als komplexe Variable
betrachtet werden, scheint tatsächlich darauf hinzudeuten, dass eine

analytische Fortsetzung von r in Î)' möglich ist.
Ein grosser Teil dieser Arbeit entstand während eines Aufenthaltes des

Autors am Institut für Theoretische Physik der Universität Hamburg.
Für die ihm dort erwiesene Gastfreundschaft möchte er Herrn Prof.
H. Lehmann herzlich danken. Die Arbeit wurde durch ein Nachwuchsstipendium

des Schweizerischen Nationalfonds unterstützt.

Anhang: Beweis des in § 4 verwendeten Lemmas
Das zu beweisende Lemma lautet :

Sei G(xq, xn) s ©„. Wir lassen in allen Summanden (19) die
Variable xf (1 < / < n) weg und erhalten so einen Operator Gf(x0, xf_x,
xf+x, ...,xA. Dann ist Gse ©„_! und SR^yergibt sich aus SRG durch
Weglassen der qf enthaltenden Bedingungen.

Beweis :

A) Sei G(xq xA Ga(x0. xk) X Gß(xk+X, xA, 1 < / < k. Das
Lemma gelte für Ga. Dann gilt es offensichtlich auch für G mit

Gf=G/XGß. (A.l)
B) Sei

G(xq, ...,xn) A(xq) X Ga(xx, ...,xA. (A.2)

Wir betrachten den Operator Gf(x0, xf_x, xJ+x,...,xA, der aus

Ga(xx, ¦¦¦, xn) durch die Substitutionxf ¦> x0 entsteht. G gehört natürlich

zu ©„_!, und das Regularitätsgebiet der zugehörigen Funktion gf ergibt
sich aus SRa durch die Ersetzung qf ->- q0 in allen Bedingungen. Die
Bedingungen für die qf nicht enthaltenden Summen werden davon nicht
berührt.
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Es ist aber
G> Gf. (A.3)

Zum Beweis betrachten wir einen typischen Term aus Ga, wobei wir
speziell den Fall f xf annehmen (resp. xx j x& für / 1. Der andere Fall j xf
resp. % f x2 lässt sich genau gleich behandeln) :

A(xxXx2X-Uf—Xx«) (AA)

Adjunktion dieses Terms zu A(x0) ergibt in der bekannten Weise
Ausdrücke der Form A(x0 X xSi X ••• f xf... X xin). Beim Weglassen der
Variablen Xj- bleiben nur die Glieder

A(x0 I xK X • •• X xin-i)> *'i < f (resP- *i 2 im Fall / 1)

stehen, da sich die übrigen paarweise wegheben. Man erhält damit

(A(xQ)XA(xxX--.Xxn))f
(A (xq) \A (xx X xf_x)) X A (xf+x) X-XA (xn) (A-5)

Für / 1 lautet die rechte Seite A (x0) | A (x2)

Andererseits erhält man bei Bildung von Gf aus dem Term (A.4) den
Ausdruck

A (xx X x2 ¦ ¦ ¦ Xj-_x \ XqX Xf+X ¦ ¦ ¦ xn)

(A(x0) I A(xx X---X xf-i)) X xf+i ••• X Xn

nach (30), also dasselbe wie in (A.5), womit (A.3) bewiesen ist. Das Lemma
gilt somit im betrachteten Spezialfall.

C) Sei G Gx(xq, xk) X Gß(xk+X, ...,xA, f > k. Vergleichweise
betrachten wir

G'(xq, xk+x ,xn) A(xq) X Gß(xk+X, xn) (A.6)

G'f besteht aus Summanden der Form

A(xo)XAKJX-XA(xiJ- (A-7)

Analog bilden wir Gf, indem wir in (A.7) A(x0) durch Ga ersetzen. Da
G'f e ®n_k_x, liegt das analog gebildete Gf in ©n_x. Es ist klar, dass das

so definierte G-^der nach den Vorschriften des Lemmas gebildete Operator
ist. Dass sich dabei das richtige Regularitätsgebiet ergibt, ist einfach zu
sehen. Die Vorschriften innerhalb Ix bleiben ja bestehen, und die übrigen
Vorschriften ergeben sich in voller Analogie zu G'f.
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