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Uber den
Zusammenhang zwischen den Wightmanfunktionen
und den retardierten Kommutatoren

von O. Steinmann
Physikalisches Institut der ETH, Ziirich

(4. XI1. 1959)

Abstract. The connection between Wightman’s vacuum expectation values and
the retarded functions of LEHMANN et al. is investigated in the case of the four point
function. Necessary and sufficient conditions for the existence of a Wightman
function corresponding to a given (¥, ..., #;) are derived. The Fourier transform
¥ (Py, Do, P3) Of #(%yg— 2, ..., y— x,) is a boundary value of an analytic function
7 (Ry, Ry, ky), Tegular in a domain § which is defined in the text. Certain boundary
values of this function other than #(p,) satisfy a linear identity. This identity en-
larges the domain of reglarity of 7 still further.

The Fourier transform F(p,, p,, ;) of the time-ordered product 7(¥,— 2, ...) =
< TA(xg)... A(x4) >4 is shown to be everywhere a boundary value of the same
analytic function # (;).

For the n-point case it is shown that Wi(xg, ..., %,_;), if it exists at all, is uniquely
determined by 7(%,, ...., x,_;) up to terms of a very special kind.

1. Einleitung

In den letzten Jahren wurden in der Quantenfeldtheorie verschiedene
Formalismen entwickelt, die zum Ziele haben, die Theorie einer exakten
mathematischen Behandlung zuginglich zu machen. Sie versuchen
durch Verzicht auf die Einfithrung der kanonischen Vertauschungsrela-
tionen und eines explizit gegebenen Hamiltonoperators die bekannten
Divergenzschwierigkeiten des herkémmlichen Formalismus zu vermeiden.

In diesen Versuchen spielen geeignet definierte Produkte von Feld-
operatoren eine grosse Rolle. So hat A. WiGHTMAN die Vakuumerwar-
tungswerte der Produkte von Feldoperatoren in beliebigen Raum-Zeit-
Punkten W (x,, ..., x,) = < A(%,)... A(%,) >, zu den grundlegenden
Grossen der Theorie gemacht!). Er studierte die Konsequenzen der
Grundpostulate der Theorie (Lorentzinvarianz, Lokalitidt, Existenz des
Vakuums, Definitheit der Metrik im Hilbertraum der Zustinde) fiir diese
Funktionen und zeigte, dass das System aller W, die Theorie eindeutig
festlegt. Leider kann der Teilchenbegriff (und damit im Zusammenhang
die S-Matrix) nicht in einfacher Weise in den Formalismus eingefiihrt
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werden. Ausser einer neuen, sehr durchsichtigen Ableitung des CTP-
Theorems?) und des Zusammenhangs zwischen Spin und Statistik3) hat
deshalb die Wightmansche Theorie keine praktischen Erfolge aufzu-
weisen.

Anderseits wird versucht, die Theorie aufzubauen als Theorie der S-
Matrix. Dabei bietet besonders die Formulierung der Kausalitdtsforde-
rung Schwierigkeiten. Kausalitit wird iiblicherweise gleichgesetzt mit
der Lokalitdt der betrachteten Felder, und es sind gegenwartig zahlreiche
Bemithungen im Gange, aus der Lokalitidtsforderung Eigenschaften der
S-Matrix herzuleiten (Dispersionsrelationen). Bei diesen Bemiihungen
haben sich die von LEHMANN ef al.4) diskutierten »-Funktionen als ge-
eignete Hilfsmittel erwiesen. Es handelt sich dabei um die Vakuum-
erwartungswerte der sog. retardierten Kommutatoren (Definition siehe
§ 2) von n Feldoperatoren, also um mit den Wightmanfunktionen eng
verwandte Grossen. Aus den oben angefithrten Grundpostulaten der
Theorie ergeben sich fiir die Fouriertransformierten der r-Funktionen
Eigenschaften, die denjenigen der W-Funktionen bemerkenswert dhnlich
sind. Der Zusammenhang mit der S-Matrix wird hergestellt mit Hilfe
der sog. Asymptotenbedingung?), welche Aussagen iiber das Verhalten
des Feldes im limes # = 4 oo macht. Die positive Definitheit der Metrik
ist eine Folge der Asymptotenbedingung und muss deshalb nicht beson-
ders gefordert werden. Zusitzlich zu den erwidhnten Eigenschaften, wel-
che die individuellen Funktionen 7, betreffen, l4sst sich aus dieser neuen
Bedingung ein kompliziertes Gleichungssystem (GLZ Gl. 15) ableiten, das
die verschiedenen 7, miteinander verkniipft. Wir wollen dieses System
mit G bezeichnen. Die Funktionen 7, legen in ihrer Gesamtheit die Theorie
wiederum eindeutig fest.

Es erhebt sich damit die Frage nach dem Zusammenhang zwischen
den beiden Funktionensystemen {W,} und {r,}. Die Funktion 7, ist ge-
maiss Definition auf algebraischem Wege aus W, bestimmbar. Hat W,
die richtigen Eigenschaften, so erfiillt das daraus berechnete 7, alle Be-
dingungen, natiirlich mit Ausnahme des Gleichungssystems G. Dieses
wurde abgeleitet unter wesentlicher Bentitzung der Asymptotenbedin-
gung und kann deshalb nicht aus den Eigenschaften der Wightmanfunk-
tionen folgen. Ist umgekehrt ein System {7,} von r-Funktionen mit den
richtigen Eigenschaften — inklusive ! — gegeben, so ldsst sich der zu-
gehorige Feldoperator und damit auch jede Wightmanfunktion berech-
nen. D. h. in diesem Falle sind die Definitionsgleichungen der 7, nach
W, auflésbar. Nun ist durch diese Gleichungen jedes 7, durch das zu-
gehorige W, bestimmt ohne Riicksicht auf die Funktionen anderer
Variablenzahl. Stellt man also an die W, nur diejenigen Forderungen,
die sich auf die individuellen Funktionen bezichen (das sind alle mit Aus-
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nahme eines aus der Definitheit der Metrik folgenden Systems von Un-
gleichungen), so miissen Losbarkeitsbedingungen existieren, die sich
auch nur auf die einzelnen 7, bezichen. Diese Bedingungen sollen in der
vorliegenden Arbeit untersucht werden. Unser -Problem ist somit das
folgende: Unter welchen Voraussetzungen ist die Definitionsgleichung
von #, nach W, auflésbar? Gentigen dazu die bereits bekannten Eigen-
schaften von 7, (ohne ) und wenn nicht, welche zusitzlichen Forderungen
muss man stellen ?

Das Problem ist trivial im Falle » = 1. Im Falle » = 2 (d. h. fiir die
Dreipunktfunktionen) wurde es gelost durch R. Jost®). In beiden Fillen
existiert eine algebraische Auflosungsformel, aus der man leicht alles
Gewiinschte ablesen kann. Neue Bedingungen fiir 7, und 7, ergeben sich
nicht. Fiir hohere # ist eine algebraische Auflésung nicht mehr méglich;
man muss zu analytischen Hilfsmitteln greifen. Wir werden hier nur den
Fall » = 3 vollstandig diskutieren. Es wird sich zeigen, dass die bereits
bekannten Bedingungen fiir »; die Existenz von W, nicht garantieren,
sondern zu erganzen sind durch weitere Forderungen. Diese zusdtzlichen
Forderungen miissten sich natiirlich auch aus dem Gleichungssystem G
ableiten lassen, doch ist dies auf direktem Wege noch nicht versucht
worden. Fiir allgemeines # werden wir zeigen, dass die Funktion W,
durch 7, im wesentlichen eindeutig bestimmt ist, falls sie iiberhaupt
existiert. f

2. Formulierung des Problems

Das in der Einleitung gestellte Problem soll hier genauer formuliert
_werden. Dazu sollen zuerst die Eigenschaften der Funktionen W, und
7, zusammengestellt werden, soweit wir sie in der vorliegenden Arbeit
bendtigen.

Einfachheitshalber betrachten wir nur den Fall eines einzigen Skalar-
feldes 4 (x). Die Verallgemeinerung auf kompliziertere Fille bietet keine
prinzipiellen Schwierigkeiten. Die Theorie soll den iiblichen Forderungen
geniigen:

1. Die Zustandsvektoren bilden einen Hilbertraum mit positiv-
definiter Metrik.

2. Die Theorie ist invariant gegen die inhomogene eigentliche Lorentz-
gruppe. :

3. Die Theorie ist lokal, d. h. [4(x), 4A(y)] = 0, falls (¥ — y) raumartig
1st.

4. Es existieren keine Zustinde negativer Energie. Es existiert genau
“ein Zustand £ (das Vakuum) mit der Energie 0. (Die Existenz des Ener-
gieoperators folgt aus der in 2. postulierten Translationsinvarianz.)
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Die Lehmannsche Asymptotenbedingung?) oder dhnliche Forderungen
werden wir hingegen nicht voraussetzen. Auch werden wir die Definitheit
der Metrik nicht voll ausniitzen.

Die Wightmanfunktion W (x,, ..., x,) ist definiert durch

W (dgy- oo %,) = <A(%) ... A(x,) >0 = (@, A(xg)...A(x,) Q). (1)

W, sowie auch alle im folgenden eingefiihrten Funktionen reeller Va-
riablen sind aufzufassen als temperierte Distributionen im Sinne von
L. ScawarTtz?). Wir werden der Einfachheit halber die Funktionen-
schreibweise beniitzen, werden uns jedoch bei Bedarf auf die Theorie der
Distributionen berufen, so dass die mathematische Exaktheit keinen
Schaden leidet.

Aus den Postulaten 1. bis 4. ergeben sich folgende Eigenschaften der
Wightmanfunktionen?):

a) W,(«,,-.., %,) ist nur abhingig von den » Variablen

nl: %i—xz_l, 7:= 1, --.-,71/_, (2)
also

Wn(x()’ wirin, 8 xn) = W;;(nl’ Tt nn)' (3)

Ferner ist W, invariant gegen die eigentliche homogene Lorentzgruppe
EL-
W, (1, es ) = Wo(Any,..., An,) fiir alle Ae L. 4)

b) Die Fouriertransformierte

~

Wi o )= f : -fd‘* By By TR Woltens ] )

von W, ist retardiert in allen Variablen, d. h.

W (qy,-..,q,) = 0, fallsein g, ¢V, (6)
wobei V. den abgeschlossenen Vorkegel bedeutet.
c) Es gilt
Wn(..., xk, Xk+1,...) - Wn(..., xk+1, xk,...), (7)

falls (x; — x,,,) Taumartig ist. Fiir W,, wird diese Gleichung zu

Wn(’ Ni—1s Nio» Np1s e ++) = Wn(’ B, T Yoo — Wi Wi+ Bapppens)s 18)

fiir raumartige 7.

Daneben besteht noch ein kompliziertes System von Ungleichungen
zwischen den verschiedenen W,, das abgeleitet wird aus Postulat 1. Wir
werden diese Ungleichungen jedoch nicht beriicksichtigen.
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Das retardierte Produkt von n + 1 Feldoperatoren wird definiert durch

B Wi s 05, 9 ) &=
= 37 0%, %1,000, ) [+ [A(xg), A(x1)], ... ], A(%,)] (9)
'yn
mit
1 falls ol 5wl 5 s 20 ),
I S — 0 sonst (10)
Die Summe in (9) ist iiber alle Permutationen der Variablen x,..., %,

zu erstrecken. Unsere Definition von R unterscheidet sich von der in
LSZ gegebenen um einen Faktor (— ¢)*. Da wir uns hier nicht mit Reali-
tatseigenschaften befassen wollen, ist dieser Faktor unwesentlich.

Der Vakuumerwartungswert von R(x,,..., %,) heisst retardierte Funk-
tion und wird mit #, bezeichnet :,

7il¥es Zys 0o ) = < R(¥ys Xy vo0s %) >0 (11)

Nach LSZ hat diese Funktion folgende Eigenschaften:
A. 7, ist translationsinvariant, also nur abhingig von den Variablen

Ert= 2, B=;: 0 (12)
yn(xO’ R xn) = 77;(51’ Gl §n)' (13)

(Wir werden im folgenden hiufig 7, fiir 7, und W, fiir W,, schreiben, wenn
keine Gefahr von Verwechslungen besteht.)
7, ist invariant gegen L1 :

1o o EN =7 (A &, ..., AE) fir AdeL]. (14)
B. 7, ist retardiert in allen Variablen, d. h.
7, (&, ..., &)= Ofallsein & ¢ V. (15)
C. 7, ist symmetrisch in allen Variablen, d. h.
TuEar oo ) = (€00 £ (16)
wenn (iq,..., 7,) eine Permutation der Indizes (1,..., #) ist.

Man erkennt sofort die Analogie der Bedingungen A und B zu den
Eigenschaften a) und b) der Wightmanfunktion. Auch die Eigenschaften
c) und C) entsprechen sich in einem gewissen Sinne.

Das in der Einleitung erwihnte Gleichungssystem G werden wir hier
nicht beriicksichtigen. Hingegen werden wir eine darin enthaltene
schwichere Bedingung verwenden, welche auch ohne Beniitzung der
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Asymptotenbedingung hergeleitet werden kann. Diese Bedingung soll
hier nur fiir den Fall » = 3 angegeben werden, da sie fiir uns nur in
diesem Falle wichtig ist.

Wir gehen aus von der Operatondentltat (GLZ GI. 11):

R(xg, %1, X3, %3) — R(%1, %, Xg, ¥3) = l
= — [R(xy, x5, %3), A(x9)] + [R(xg, %2, %3), A(x,)] — (17)
— [R(x, %5), R(x, x3)] — [R(xy, x3), R(x¢, x3)]. J

Fiir die Fouriertransformierten der Vakuumerwartungswerte der rechts
stehenden Terme lassen sich auf Grund unserer Voraussetzungen gewisse
Trageraussagen machen. Ihre Herleitung entspricht der Herleitung von
(Gleichung (6) (aus welcher sie tibrigens auch auf direktem Wege gefolgert
werden kénnten) und soll hier fiir den ersten Term kurz skizziert werden:

< [R(%y, %9, %), A(xg)] >o= < R(...) A(%g) >0 — < A(xp) R(...) >,(18)

Sei U(a) der zur Translation x” = x + a gehérige unitdre Operator des
Hilbertraumes. Dann gilt

A(x) = Ux) A(0) U(— x). (19)

Uf(a) besitzt die Spektralzerlegung
Ula) = / ¢itas dE ().

Wegen der Nichtexistenz negativer Energien verschwindet die vier-
dimensionale Zerlegung der Einheit E(p), falls p¢ V..
Also:

[ a8 xg et (Q, R(...) A(xg) Q)

— [ @ xgeitn (@, R(...) Ulxg) A(0) 2)

A

_ (_Q, R() ‘/4 d4 Fy g—iboxo / eibxo dE(;b) A(O).Q)

- @a)* (2 R(..) | 8(p— po) dE(R) A©) Q)
— 0, falls p, ¢ V..

txenau gleich zeigt man, dass die Fouriertransformierte des zweiten Terms
in (18) verschwindet, falls p,¢ V_. Analoge Uberlegungen lassen sich
tir die andern Glieder der rechten Seite von (17) anstellen.
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Definiert man

Filpo - Bs) = (270)4 / - -fd4 Kg... 5y e IO Ty(ng, o ) (20)

73(brs bo Ps) = /] ALE) A&, A48y € EPRR 7y(Ey, &y, &) (21)

73(Bor s Ba) = O(bo + .- + b3) 73(Pr, Do, B3, (22)

so erhélt man schliesslich aus diesen Uberlegungen:

D. ;3(?50’ p1 o Ps) — 773(2{31: o, P2 P3) = 0 l (23)
by but) = Blbe put) =0 ]

falls die vier Vektoren p,, $,, (p1 + P2), (Py + P5) alle raumartig sind.
Dabei bedeutet
Po= — P1— P2 — Ps (24)

Analoge Bedingungen kann man leicht auch fiir allgemeines # herleiten.

Jetzt kénnen wir unser Problem exakt formulieren:

Gegeben sei eine Funktion 7, mit den Eigenschaften A bis D. Existiert
dann eine Funktion W, mit den Eigenschaften a), b), ¢) so, dass das dar-
aus gemdss (9) und (11) berechnete 7, das vorgegebene ist ? Wenn nicht,
welche zusdtzlichen Bedingungen muss 7, erfiillen, damit ein solches
W, existiert ?

Es ist noch zu bemerken, dass 7, durch (9) und (11) nicht eindeutig
festgelegt ist, da das Produkt einer Distribution mit einer Sprung-
funktion im allgemeinen nicht eindeutig definierbar ist (z. B. ist @(x) d(x)
unbestimmt). Mehrdeutigkeiten kénnen allerdings nur auftreten in den
Punkten, in denen zwei der x? zusammenfallen. Wir werden uns mit
dieser Schwierigkeit nicht weiter befassen.

3. Eindeutigkeit der Losung

Wir werden beweisen, dass die Wightmanfunktion W, durch die re-
tardierte Funktion 7, im wesentlichen eindeutig bestimmt ist, falls sie
iiberhaupt existiert. Die Eindeutigkeit besteht bis auf Terme einer spe-
ziellen Art, deren Fouriertransformierte nimlich ausser dem Faktor
0 (pg -+ ... + p,) noch andere d-artige Faktoren enthalten. Wir werden
diese Unbestimmtheit am Ende dieses Paragraphen noch genauer stu-
dieren.

Da wir es mit einem linearen Problem zu tun haben, geniigt es, zu
zeigen, dass aus 7, = 0 das Verschwinden von W, folgt (bis auf Terme der
angegebenen Art). Wir fithren den Beweis in zwei Schritten, indem wir
erst von 7, zum mehrfachen Kommutator

K, (% s %) = < [ [A(xg), A()]..., A(x,)] >, (1)

tibergehen und dann von K, zu W,.
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K, ist nach Definition eine Summe von 2" W, -Funktionen und soll die
Eigenschaften besitzen, die sich aus dieser Tatsache gemiss den Bedin-
gungen a) bis c) aus §2) ergeben. Es handelt sich dabei um Triger-
eigenschaften im x- und im $-Raum sowie um gewisse aus der Jacobi-
Identitit folgende Beziehungen.

1. Schritt: Es ist zu zeigen, dass aus dem Verschwinden von 7, das Ver-
schwinden von K, folgt*).

Wir betrachten die Funktionen

Sil%gr s %) = <[ [R(%g, - %), A(pn)] .o A(x)] >0 (2)

Speziell :

Sy« o o B} = Pl gy ey i)
(3)

So(xon sy xn) = Kn(x()’ e X )

LY n

Kénnen wir zeigen, dass mit s, auch s,_; identisch verschwindet, so
ist der gewiinschte Beweis erbracht.
Aus der Definition (2.9) von R entnehmen wir:

O(xg — 2xy) Oy — x5) ... O(xpq — ) Silxg, -- -5 X,)

il

= 0 (%o — xp) O(xy — x5) ... Oy — %) S5 a(%0, -0, %)

1 falls x° > 0
O(x) =
0 falls 20 << 0.

Ist also s, =0, so ist
Sg_1(%gs «ey 2,) = 0, falls 7 < x;-) tir alle 7 < 4. )]
Ferner folgt aus der Lokalitdtsbedingung
K, (xy, %y, --., x,) = O fiir raumartige (x, — x;) (6)
durch mehrfache Anwendung von Jacobi-Identititen:
Sp-1(%g, -+, x,) = 0, falls (x, — x,)2 < O fiir alle 7 < &. (7)
Wir gehen wieder zu den Variablen &, = x, — x; iiber:

Sk-1 (Fos -s %) = 81 (B oo £ (8)
Sei
t= Min (510) T der Vektor (— 2¢, 0,0, 0).
j<k
*) Der hier gegebene Beweis folgt im wesentlichen einer unverdffentlichten Arbeit

von R. Jost. Fiir die Erlaubnis zur Beniitzung dieser Arbeit bin ich Herrn Prof.
Jost zu Dank verpflichtet.
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Unter Beriicksichtigung der Retardierung von R erhilt man aus (5)
und (7):
$p1(Epy -0 &) =0 falls (T — &) ¢V, (9)

Wir betrachten nun die Fouriertransformierte o(&;,..., &1, P4 --+» 25)
von s;_, beziiglich der Variablen &,,..., &,. Die iibrigen Variablen &,,...,
&,_1 betrachten wir als feste Parameter. Nach L. ScHwARTZ®) ist ¢ wegen
(9) in p, Randwert einer im Gebiet (Im $,) €V _ analytischen Funktion
F(p,), die natiirlich noch von den reellen Parametern &,,..., &1, Prirr--
#, abhingt.

Andererseits ist s,_; eine Summe von Termen der Form

< A(x)... Ax;,) R(xy, .o, x5 ) A(xg) Alx;)-.. Alx;,) > o

J1

oder der daraus durch Vertauschung von R und A4(x,) hervorgehenden
Form. Auf gleiche Weise wie beim Beweis von (2.23) zeigt man, dass die
Fouriertransformierte beziiglich der Variablen x,..., x, eines solchen
Terms verschwindet, falls nicht (p, + p; + ... +9;,) €V, resp. (P +
pi,+ ...+ p;,) €V_. Die hier auftretenden p;, resp. p;, stammen aus
der Reihe $,_,, ..., p,. Ist diese Reihe fest vorgegeben, so existiert immer
ein p, so, dass alle Bedingungen der angegebenen Art in einer ganzen
Umgebung dieses p, verletzt sind, z. B. $, = (0, P, 0, 0) mit geniigend
grossem P. Das heisst zu beliebig vorgegebenen &,,..., &4, Prits---» Pa
existiert immer eine reelle $,-Umgebung, in der die Fouriertransformierte
von s,_, beziiglich x,, ..., x, verschwindet, und damit auch die Funktion
o, die daraus durch Multiplikation mit dem Faktor e @z +-+#,) ent-
steht. Daraus folgt jedoch, dass die analytische Funktion F(p,) identisch
verschwindet, also

Il

Sp-1(E -0 &) = Sea(%o, -0 %) =0, (10)

womit der gewiinschte Beweis erbracht ist.
2. Schritt: Es bleibt uns noch zu zeigen, dass mit K, auch W, ver-
schwindet.

Die Fouriertransformierte T/T},, der Wightmanfunktion W, ist von der
Form

W (poeenp) = (270)4 f B0 3 eI W (s, %) |
o GE)
= 6(?0'*‘ Y, +pn) Wﬂt (pl_!_ LR _;_ j’n’ p2+ S, + Pn’ ) Pn)! ]
wobei W,, definiert ist durch (2.5). Nach (2.6) gilt somit:
Wo(porr b)) = 0, falls pg + ... + 5+ 0
(12)

oder (p, + prys + ... + p,) ¢V, fiireink > 1.
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Natiirlich enthilt auch Rﬂ(ﬁo,..., f,) den Faktor d (po + ... + p,). Sei
nun K, (p,, ..., p,) = 0. Wir fithren die Funktionen

<A(x0) x4 A(%m) [ Bt [A(xm+1))A(xm+2ﬂ: #k "A(xm+k)]’A(xm+k+1)'" A(xn) >0

ein und bezeichnen ihre Fouriertransformierten durch das Symbol

(Bos o Pl Pmsts -+ s Ponsk] Prtists + o5 Pr)-

Diese Ausdriicke sollen die Triger haben, die ihnen als Summe von Wight-
manfunktionen nach (12) zukommen.
Speziell ist

[?01 s pn] = }En(pOJ er i)n)
(Bor -+ Pa) = Wilbo, -+ 7).

Se1 fiir ein festes & und alle m

(Ib(): e pm—l [pm’ te pm—!—k:' pm—&—k—é—l’ e ﬁn) =10 (14)
Nach Definition gilt dann

(' T pm—l [:pm! st pm+k—1J Ibm%-k’ v )
- ( T pmﬁl’ Ibm+k [Pm' A pm+k-—-1] ?m%k-&l! v )
= (’ Pm—l [?m’ ot Pm-}-k] Pm+k+1! ' ) = 0.

Durch (n — & 4+ 1)-maliges Anwenden dieser Beziehung erhédlt man

([Jbor wminiy pkq] Prs oo ibn) = (pk [750: K ?kq] P e ?n) l

I

o)

(15)

:. (Pk: Prsv oo os Pa [P 5= 45 Pr-1))- l

Das erste Glied dieser Folge ist hochstens von null verschieden, falls
(pr + -+ + $,) €V,. Esist ndmlich eine Summe von Wightmanfunktio-
nen der Argumente p,,..., p,, wobei iiberall die Argumente p,,..., P,
am Schluss stehen. Das letzte Glied in (15) ist hochstens von null ver-
schieden, falls (py+ -+ + p,_4) €V,. Beide Terme sind natiirlich zu-
gleich von null verschieden, was also nur moglich ist, wenn (p, + ...
+ pr) + (Pp+ -+ D) = (po+ -+ + P,) €V, Das widerspricht aber
der Trigerbedingung ¢, + *++ + $, = 0, es sei denn, die Summen p,+...
+ ppqund p, + --- + P, seien schon einzeln gleich null. Diese Ausnahme-
punkte geben Anlass zu Termen der oben erwiahnten Art, die den Faktor

O(pr + ...+ p,) oder Ableitungen davon enthalten. Bis auf solche
Glieder gilt also
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(PO’ M Pm—l [pm’ e ?m-&-k—l] pm—!—k’ R Pn) = 0 fir alle m,

d. h. (14) gilt auch fiir £ — 1.
Wegen (13) erhilt man durch #-malige Anwendung dieser Betrachtung
die behauptete Beziehung:

M}n(pﬁi ) pn) = O

bis auf Terme der erwihnten speziellen Form.
Diese Ausnahmeterme haben wir nun noch genauer zu diskutieren.
Dazu definieren wir

Vgl = W i) = €otist,
Vo -« os %) = W (s enns ) — X Voalp one 83} 000 Vpy (85,04 %)

Die Summe 2 ist dabei iiber alle Aufteilungen der Argumente (x,,..., %,)
in mindestens zwei nicht leere Mengen zu erstrecken. Innerhalb jeder der
auftretenden V-Funktionen sind die Argumente in derselben Reihenfolge
wie im betrachteten W, anzuordnen. Gleichung (16) erlaubt die rekursive
Berechnung aller V, aus den W, mit 2 < =.

(16)

Wir bilden nun
Lr?‘l(xﬂ’ e i:xiy xi+1], - .) ]
= V,l(xu, ceey Xy Xiigs - ) — Vn(xﬂ’ e X Xy ) (17)

= W (g, -« [ %ial, o) =) Vil [0, %l o) oo Vig(en)

Die Terme in X, in denen #;, x,,, in verschiedenen Faktoren auftreten,
fallen heraus. Durch eine evidente Verallgemeinerung dieser Betrachtung
erhdlt man

V(oo %y ees ) = Wo[Hopeens Zedsoros %) =D, Vol [Kgyer Bl we)- oV gl)

= W ([Waprsrs Bidgonny Xig) ~—Z Val[%gy % )ec ) Wg(.0),
a4f=n—1 (18)

wobel in der zweiten Zeile die Summe X' nun {iber alle Aufteilungen der
Argumente %, ,,,..., %, in zwei Teilmengen liuft (wovon die im V-Faktor
auftretende auch die leere Menge sein darf). Speziell:

Vall%o, -0 %)) = Wa(l#o, -, X,])- (19)
Im p-Raum gilt
I/n([?()’ g ?k] karl’l' < ﬁn) = O’ falls p0+ cee Pk= OJ n> k (20)

wie man mit Hilfe von (18) durch Induktion nach # leicht beweist. Sei
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namlich p, + ++++ + p, = 0 und sei (20) fiir V,,, m < n erfiillt. Dann wird
(18) zu

V[P < os Bl eee Ba) = WollPos s B3] -+ B2)

— Willbo - ) W (- 2.

Die rechte Seite dieser Gleichung entsteht aber aus T/~Vn([ by — Dl s 1)
durch Einschieben eines vollstindigen Systems von Zwischenzustinden

zwischen den Klammerausdruck und A (Prs1) und Weglassen des zum
Vakuum gehérigen Terms und hat somit die behauptete Trigereigenschaft.

Glelchung (15) gilt sowohl fiir W als auch fir V V ist aber im Gegen-

satz zu W durch das dort angegebene Verfahren eindeutig bestimmbar,
da es in den kritischen Punkten p, + ... + p, = 0 verschwindet. Also

1st ﬁn(po,..., $,) durch I%n eindeutig festgelegt. W, ist aber nach (16)
durch die V, mit 2 < #» ausdriickbar, also ist W, durch die K, mit 2 < =
eindeutig bestimmt.

4. Der Zusammenhang zwischen K; und W,

Die Frage nach der Existenz von 7, ist im allgemeinen Fall schwieriger
zu kliren als die Eindeutigkeitsfrage. Wie wir schon in der Einleitung er-
wahnten, kénnen fiir » = 1 und 2 algebraische Auflésungsformeln gege-
ben werden, welche man jedoch nicht auf héhere # verallgemeinern kann.

Wir werden hier nur den Fall # = 3 untersuchen. Das angewandte Ver-
fahren scheint prinzipiell auf hohere # tibertragbar zu sein, wird jedoch
sehr uniibersichtlich. Wesentlich neue Erscheinungen sind bei einer sol-
chen Verallgemeinerung nicht zu erwarten.

Wie beim Eindeutigkeitsbeweis fithren wir den mehrfachen Kommu-
tator

K(%gy -0y %3) = < [[[ A(xo), A(x1)], A(x)], A(xs)] >0 (1)

als Zwischengrosse ein. (Der Index # = 3 in 7,, K,, W, soll in Zukunit
weggelassen werden.)

In diesem Paragraphen soll der Zusammenhang zwischen K und W
untersucht werden. Wir werden zeigen, dass folgende Bedingungen fiir

K notwendig und hinreichend fiir die Existenz eines W(x,, ..., ¥3) mit den
Eigenschaften a) bis c) aus § 2 sind:

«) K(x, ..., x4) ist invariant gegen die inhomogene eigentliche Lorentz-
gruppe. '

f) Die Fouriertransformierte K von K hat folgende Tragereigen-
schaften:

K(pg, ..., ps) = 0, falls p,2 < 0 2)
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K(po, pr- ba £5) = K(po, pr, sy ) = 0, falls (b + 252 <0 (3

) KXy &y o Ha) = 0, falls {4, — %,)* =0, (4)
d) Es gelten die Identititen

K{(xg, %1, %4, %3) + K(%1, Xg, %4, %3) = 0 (5)

K(%g, %1, %o, %3) + K (x4, x5, x5, %3) + K (%, Xg, %1, %3) = 0 (6)

K (%9,%1,%9,%3) — K (%,%1,%3,%9) = K(%9,%3,%1,%) — K(%9,%3,%0,%1).  (7)

Dass diese Bedingungen notwendig sind, erkennt man sofort, wenn
man K gemdss (1) als Summe von acht Wightmanfunktionen schreibt.
Gleichung (3) wird hergeleitet unter Beniitzung der Jacobischen Identitit

< [[[4 (%), A(x1)], A(x2)], A(x3)] >
— < [[[A(x), A(x1)], A(xy)], A(x5)] >
= < [[A(x), A(x))], [A(x3), A(x5)]] >

Diese Identitat fithrt durch zweimalige Anwendung auch zu (7).

Ausser (2), (3) und (4) gibt es natiirlich noch weitere Trigerbedingun-
gen fiir Kund K , doch lassen sich diese aus den hier gegebenen mit Hilfe
der Identitaten (5) bis (7) herleiten.

Dass die angegebenen Bedingungen hinreichend sind, zeigen wir durch
den Ausbau der beim Eindeutigkeitsbeweis angewandten Methode zu
einem Konstruktionsverfahren. Wir verwenden die im § 3 eingefiihrte
Bezeichnungsweise. :

Sei K(x,,..., #3) mit den Eigenschaften o) bis d) gegeben. Die Zahl der
darin auftretenden Kommutatoren wird unter Ausniitzung der postu-
lierten p-Raum-Eigenschaften sukzessive abgebaut durch die Defini-
tionen

[b0: -+ sl = Klpo, .-, B5) (8)
(o 1. Bs] P5) = O(3) [P - 3]
(bs [bor By ) = — O(— £3) [Pos -+ 5]
((Po, £1] o 5) = O(ps + 3) {([B0r 1 B3] ) + (B [Pos D1, D31}
(B2 [P0 1) D) = O(ps + 1) (o (D1, P B5)) —
— 0(— py — p3) ({Por Pr. B3] 13)
(b2, B3 [Po, $1]) = — B(— po— py) {({Por D1 P2 Po) + (B2 [P0 Bss P2}

)
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~

Wit -, p3)
= (Po -+ P3)
= 6(pl + ﬁ2 =+ pS) {([?50’ pl] p2’ P?») + (Pl I:P()’ pZ] p3) iy (pl’ ?2 [?0’ ?3])}

Die so definierten Funktionen erfiillen die Gleichungen
((bor P1. Pl B5) — (B3 [P b1, a)) = [Bor ---» 3] (12)

([Bo, £1] P2 B5) — (P2 [P0 1] 3) = (1P 1. B2) B) |

(B [Por $1) Ps) — (Bas B3 [P 1)) = (B2 [Por B0, £5)) |

(Po» P1s Pos P3) — (P1s Pos Pas P3) = ([Pos 1] o P3) USW., (14)

d. h. das aus W (Gl. 11) gemdss (1) berechnete K ist tatsichlich das vor-
gegebene. Wir haben noch zu verifizieren, dass das so bestimmte W die
Bedingungen a), b), c) erfiillt. Dabei beginnen wir mit Bedingung b),
d. h. mit den p-Raum-Trégereigenschaften:

Wegen (2) ist

(11)

(13)

([Por D1 P2) Ps) = 0, falls py ¢ V. l
(b3 [Pos 1, Pa]) = 0, falls py ¢ V_. l

Sei py €V, P2 V_, (po+ ps) ¢V, also auch pgV., (P, + p3) ¢V _.
Dann, mit Hilfe von (2) und (3):

([Bos 21, P2 P3)

(15)

(16)
= 9(?3) {[?0: ?51, 752: ?53] + [Tl’o’ Plx ibaj ?2] - [Ibo’ Plr Iba: Pz]} = 0.
Analog:

(ps [Po D1, P2]) = O, falls p, ¢ V. und (p, + p3) ¢ V_. (17)
Aus (15) und (17) folgt:

([Po, 1] P2 Ps) = O falls p; ¢ 74-- (18)
Weiter:
([P0, 4] Pas P3) — ([Pos P1] Pss P2) l

- G(?z + 7—”3) {[Qbo: 751» ?52’ Pa] - [}50: ?1: P, Pz]} (19)
= 0, falls (p, + pg) ¢V, I
nach (3). Also

([Pos P1] P2r P3) = O falls p; € T7+, (b2 + Ps) ¢I_/ +9 (20)
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da dann auch $, ¢V .. Genau gleich zeigt man:
(Pas P3 [Por P1]) = O falls p, ¢ V_ oder (Po + P3) & V_. (21)

Ferner:

(Pa [Por P1] P3) = ([Pos D1l Pas P3) — ([Pos D1, Pol P3) =0 falls py ¢ V., l

_ o (22)
= (Pa[Po» 1, P3]) + (D2, D3[P, P1]) =0 falls po € V_. l

Sei ps€V ., b€V _, aber (py + p3) ¢V, (b1 + #2) ¢V_. Dann auch p,* <0,
P02 < 0. Somit, unter Ausniitzung von (6):

(?52 [Ibo: pl:! }b3)
= (EPD! PIJPZ’ pi}) + ([?l’ p2t ?OJPB) =+ ([le Ib()’ pl]?ii)
= 0, falls (py + p3) ¢V
= T (P2[:p1’ pf}’ PO]) - (?2[?31 ﬁﬂ’ ﬁl]) + (;b2! ?3[?0’ Pl])

= 0, falls (py + p3) ¢ V_,
d. h,

(Polpo Prls) = O, falls (b + pg) ¢ Vo und (py 4 py) ¢ V_.  (23)

Sei pgeV,, (Ibz‘Hbs)EV Do V_, p1¢V_, also (py+py) ¢V ., (P1+23)
¢v_, plgéV p0¢V Dann:

([P0, P1lDas P3)

= ([P0 P1] P2: £3) — (Pas D3P0y 1)

= ([P0 D1 P2lts) + (Balbo. P1s P5])

= [P0, b1 D2 D3] — [Dor D1 P P2] + ((Dos D1 PalPo)

= [?2: Pa» 7—"1: ?"0] - [Ibzx ?53» pm Pl] - ([?51’ ?53: po]?z) - ([P3r Po: ?51]192)
= 0, )

wobei der Reihe nach die Gleichungen (21), (13), (9), (12), (7), (6), (2)
und (16) verwendet wurden.

Also
([Pos PrlP2s P5) = O, falls py ¢ V_und P ¢ V_ (25)
und analog
(P2, P3lPos $1]) = 0, falls p, ¢ V,und p, ¢ V+- (26)
Schliesslich:
(Po, - ) = O, falls ps ¢ V., (27)

wegen (18) und (26);
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(Zbo: # 2’53) = (Po: Pv Ps It’z) o (pm p1lPs ps])
=0, falls py €V, (po+ p3) ¢ V.
wegen (27) (p,¢V,!) und (21); und endlich

(bo 1> P P3) = (Dolbr, Dalps) + (Po. ol 5]) + (Bos Do, D5, £4)
= 0, falls py € V., (po+ p3) €V (pr+ D2+ 1) ¢V (29)
wegen (22), (21) und (27) (p,&V ).

(27), (28) und (29) sind aber genau die Bedingungen, die W nach (3.12)
erfilllen muss. Unser W aus Gleichung (11) erfiillt somit die Bedingung
b) aus § 2.

Translationsinvarianz besteht trivialerweise, da ja der Faktor d(p,+...
+ p3) unverdndert durch die ganze Konstruktion mitwandert. Wegen
der eben hergeleiteten Trigereigenschaften kénnen in den Definitionen
(8), (9), (10) alle auftretenden @-Funktionen durch die charakteristische
Funktion des Vorkegels mit denselben Argumenten ersetzt werden.
Wegen Voraussetzung «) ist also W (und damit W) invariant gegen L,
womit auch Bedingung a) verifiziert ist.

Die in (9) und (10) auftretenden @-Funktionen enthalten nur die
Variablen p, und ;. Die x-Raum-Eigenschaft (4) pflanzt sich deshalb
ungestort fort, d. h. Riicktransformation in den x-Raum ergibt

([%0s X1]1%3, X3) = (%52, X1]%3) = (X3, X3[%g, %1]) = O (30)

wenn (x, — x,) raumartig ist. Das ist aber Gleichung (2.7), somit ist auch
Bedingung c) erfiillt.

Zum Schlusse sei noch die explizite Auflosungsformel angegeben, die
sich durch Einsetzen von (9) und (10) in (11) ergibt:

W (Bos -+ ) = 0(ps) 0 (po+ p3) 0 (py+ bo+ o) {K (Poy b1, Por ) —

(31)

5. Die Funktion r (k,, ks, k,)

Wir haben noch den Zusammenhang zwischen K(x,, ..., %) und
(%, .., %3) aufzuklidren. Dazu bedienen wir uns analytischer Methoden.
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Wir fiithren die komplexen Vierervektoren
k;= p; +1q;, p;und g; reell, (1)

ein und betrachten die durch (2.21) definierte Funktion 7(k,, k,, k;) der
zwolf komplexen Variablen Zj.
Die Eigenschaften A, B, C aus § 2 ergeben folgende Bedingungen fiir 7 :

A’. 7(ky, ky, ky) ist invariant gegen L.
B'. ¥(ky, ks, ky) ist analytisch im Gebiet?)

m: {(kl’ k?ﬂ kS) 5 alle gj € V+}, (2)

wobei V' den Vorkegel unter Ausschluss des Randes bedeutet.
Fiir jedes B > 0 und fiir alle Q;, g,V ist

ey (Ib; + ¢ (Q; + tQj))

in ¢ 2> 0 beschriankt durch ein Polynom in $,8).

C’.7(ky, ko, k3) ist invariant gegen alle Permutationen der Variablen.

Nach einem Satz von BARGMANN, HALL und WiGHTMAN?) folgt aus
A’ und B’, dass 7 analytisch fortsetzbar ist in das Gebiet

R = V(AR). (3)
4eL, (C)

L. (C) bedeutet dabei die Gruppe der komplexen Lorentztransforma-
tionen mit der Determinante -+ 1. 7 ist invariant gegen L_(C):

7 (Ry, by, kg) = 7 (Aky, Ay, Aks) fiir A € L (C). (4)

Mit diesem Satz koénnen wir auch Bedingung D aus § 2 in eine Eigen-
schaft von 7 umsetzen: Nach R. Jost?2) liegt der reelle Punkt (p;, Pa, £3)
in R’ falls 3
(3 o p)? < Ofiirallea; >0, 3 a; > 0. (5)
f=1

3 3
Sei py = — Ll‘,’ P ko= — %’ki. Es gibt reelle Umgebungen, in denen nach

(5) sowohl 7 (4, ps, P3) als auch #(p,, ps, P4) regulir ist. In diesen Punk-
ten gilt (2.23), woraus man durch analytische Fortsetzung?) erhilt:

D’ 7(ky, Ry, Rg) = 7 (o, Bo» k). (6)

Nach C’ spielt die Variable %, keine ausgezeichnete Rolle, man kann
also auch %, oder &y mit %, vertauschen.

(6) und die eben erwidhnten analogen Beziehungen ergeben eine Er-
weiterung des Regularititsgebietes von 7, die wir weiter unten disku-
tieren werden.

18 H.P.A. 33, 4 (1960)
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In den reellen Punkten (p;), die nicht Regularititspunkte von 7 sind,
ist #(pq, Pa, P3) Randwert der analytischen Funktion 7(k,, ks, k3) in fol-
gendem Sinne:

Fiir jede Testfunktion @(p, p,, #5) € SY), d. h. fiir jede beliebig oft
stetig differenzierbare Funktion mit geniigend raschem Abfall im Un-
endlichen, gilt:

[ @25 7(p, par 1) 9o Bor )
) (7)
= lim A2 D7 (py + 19y, ..., 3 + 193) @(P1, Do P3)-

gGEV,

g;—0
Dieser limes soll existieren fiir alle ¢ € S und unabhéingig von der Art und
Weise sein, in der die %; gegen p, streben, wenn das nur innerhalb R
geschieht. Dann ist das so definierte 7(p,) eine temperierte Distribution?2),
wie es sein muss.

Wir wollen jetzt weitere Eigenschaften der Funktion 7 herleiten, die
aus der Existenz von K(x,,..., ;) folgen und die wir beim Ubergang von
r zu K benétigen werden. Es handelt sich um eine Erweiterung des
Regularititsgebietes von # sowie um eine ziemlich undurchsichtige Iden-
titdt zwischen gewissen Randwerten der Funktion 7.

Wir definieren

S(%g, -+, %) = < [R(%, %1, %), A(%5)] > (8)
Die Definitionsgleichung (2.9) von 7 wird damit zu
7 (%o, X, Xy, X

= 0 (%, — %)

)
(%5 — x3) (%, %1, Xq, X3) +

7,
+ 6 (%2 — x) 0 (x5 — 1) (%0, %2, X3, %) +
+ 0 (x5 — x,) 0

(21 — x5) (%9, X3, Xy, Xg)-

s hat folgende Trigereigenschaften:

$(%gs «-» %g) =0, falls (x,— %) ¢V, l
oder (%, —x,) ¢ V.. (10)
oder (xy — %x3), (¥, — %3), (%5 — %) alle raumartig. J

Die ersten beiden Bedingungen ergeben sich aus den Eigenschaften von
R, die dritte aus den Eigenschaften 4) und 8) von K (Gl. (4.4) bis (4.7)),
wenn man beachtet, dass

$(Xos - -5 X3) = O(x¢, %1, %) K(%4, %1, %3, %3) + 0(%g, %5, %1) K (%9, %g, %1, %5) (11)
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Es gilt:
$(%gy «+-, Xg) = (g, ..., Xg), falls (v — ) ¢V, und (%3 — %,) ¢ V,. (12)

Aus der Gleichung (9) erkennt man sofort die Giiltigkeit dieser Beziehung
im Falle 3 < 19, 29. Fiir die andern Fille hat man die Identitdt (4.7) zu
Hilfe zu ziehen. Wegen der Symmetrie von s und r in x; und 78 genugt
es, den Fall 4% > %2 zu untersuchen.

Fiir x5 > 2] > 23 > 2 wird (12) zu

K(xg, %1, %5, %3) = K(%4, %1, X3, %),

was unter unserer Voraussetzung (x; — %,) ¢V, wegen (4.7) und (4.4)
stimmt.

Im Falle x > x3 > «9 > a2 ist zu zeigen, dass
K%, %5, % %) = K (%5, Ti, Ty, Bs),
oder mit (4.6) umgeformt
K(xg, %4, %3, %5) + K(%1, %3, %g, %s) = K (%, %1, %s, %3).

Das gilt wieder auf Grund unserer Voraussetzungen wegen (4.7) und (4.4).
Fiir 23 > 1§ verschwinden beide Seiten von (12) gemiss (10) und (2.15).
Damit ist (12) bewiesen. Die Funktion

2%, s o op B) = 5(%5, «ovy Ty) — 2%y, - 55, %) (13)
verschwindet also ausserhalb der durch
G (%0 — 1) € I—/+

(g — %) €V, (14)

(x3 — %) €V, oder (x3 — x,) €V,

—— —

definierten Punktmenge

Wir betrachten nun 7, s, g wieder als Funkt10nen der leferenzen-
variablen £, = x, — x; und fiihren ihre Fouriertransformierten 7(p;, p,,
ps) usw. ein. Aus (14) folgt in gleicher Weise wie bei 7, dass g(py, Pa, Ps)
Randwert einer analytischen Funktion g(k,, ks, k4) ist. Deren Regulari-
tdtsgebiet ist die Rohre

Guas: G3EV (1 + ) €V (g2t q3) €V, - (15}

und g unterliegt darin analogen Beschrinktheitsbedingungen wie den in
- B fiir 7 gegebenen. Das gilt ndmlich, falls®)

3
o 2;% g; >0 fir (§) €G, (g;) € Gras-
; 1 E
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Diese Bedingung ist aber erfiillt: Sei (§; — &) eV, & eV, &eV,.
Dann gilt in ;44

Zgjqj:51(9'1+93) +&ts— G —Ed s >0,

da alle drei Glieder dieser Summe schon einzeln > 0 sind. (Aus g,V _
und (g, + g5)€V ., folgt natiirlich ¢,V ,.) Genau gleich verfihrt man im
Falle (&, — &) €V, & €V, &€V, der nach (14) auch auftreten kann.

Also
8P o ) = Lm g(ky, kg, k), (16)

(75) € ®y24
q5—

wobel dieser limes im Sinne von Gleichung (7) zu verstehen ist.
In § 2 haben wir gezeigt (im Anschluss an (2.18)), dass

E(Pl’ pes P3) = 0 fiir p5* < 0. (17)
Nach der Definition (13) von g gilt somit: _
g(p, Pos P3) = — ;(Pp par P5) fr pg% < 0. (18)

_ gf(kj) erfiillt die Voraussetzungen des bei (3) erwidhnten Satzes von
BARGMANN, HaLL und WIGHTMAN; also ldsst sich g in ein grésseres Ge-
biet ®,,3 analytisch fortsetzen, das analog zu R’ definiert ist. Die reellen

Punkte in ®,,3 sind analog zu (5) bestimmt durch die Forderung
[0y (P14 P3) + 0ty (P + P3) — oz P3]2 < O fiir alle «; > 0, Z a;>0. (19)

Speziell ist sowohl in den reellen Punkten von R’ als auch in denen
von ,,3 der Vektor 4 raumartig. Nun gibt es reelle Umgebungen, die
beiden diesen Gebieten angehoren, z. B. eine Umgebung des Punktes

b= ps— (0,10,0,0), py— (0,0, 1, 0).

In diesen Punkten gilt (18), also ist g(&;) eine analytische Fortsetzung von
7(k;) in das Gebiet G, |

g(kl: kz: ks) = - ;(kb kz) k:;)J (20)

’

und 7 ist regulir in ®,,,. 7
Auf Grund dieser Tatsache sowie der Symmetrien C’ und D’ von 7 und
der aus (4) folgenden Invarianz von 7 gegen die totale Spiegelung k; =
— k, lisst sich nun iiber das Regularititsgebiet von 7 folgendes aussagen :
- Die Bedingungen B’, C’, D’ ergeben, dass 7(k;, k,, k3) regulir ist, falls
drei der vier ¢; (g, mit eingerechnet!) in V7, liegen (oder falls drei der
vier ¢; in V_ liegen, wegen der erwidhnten Spiegelinvarianz). Es sind
dann alle (g; + ¢,) zeitartig (7, £ = 0, ..., 3). (20) bedeutet, dass 7 in ® 05
noch analytisch ist. An Stelle von #;, £, £; kann man hier wieder eine
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beliebige Auswahl der vier %; in beliebiger Reihenfolge setzen, d. h. 7 ist
reguldr in allen ;. Auch hier sind alle (¢g; + ¢,) zeitartig, wie man sich
leicht iiberlegt. ,

Es ist ®;; = 6. Aus den vier Indizes 0, ..., 3 lassen sich auf vier
Arten drei verschiedene auswihlen. Von diesen dreien kann jeder zu-
hinterst stehen, so dass im ganzen zwolf Gebiete G;;; existieren. Diese
Zahl wird noch verdoppelt durch die Moglichkeit der totalen Spiegelung.

. ,

Sei nun ein Punkt (k,,..., k) (X' &; = 0) gegeben, in dem alle (g; + ¢;)
0

zeitartig sind. Dann ist dieser Punkt ein Regularitdtspunkt von 7:

~ Liegen drei der ¢, z. B. g,, ¢;, ¢;, im selben Halbkegel, so haben wir
esnach (2) und (4) zu tun mit einem Regularitatspunkt von 7(k;, ;, k,) =
7 (Ry, Ra, By).

Seien nun zwei der ¢, in V', die beiden andern in V_ (z. B. ¢,, ¢, €V,
92, g5 €V_). Das ist auf sechs Arten moglich. Die (g; + gx), 7 # %, kénnen
noch auf je vier Arten in den beiden Halbkegeln verteilt sein: In unserem
Beispiel ist die Lage von (g, + ¢,) und von (¢, + ¢s) noch frei, die librigen
Summen sind dadurch festgelegt. Diese 6 x 4 = 24 Moglichkeiten ent-
sprechen gerade den 24 (®-Gebieten. Ist z. B. in unserem Spezialfall
(g1 + q5) €V _, (g4 + g5) €V, so sind wir in einem Regularitdtspunkt von

g’(ko, kl: k3) = = ;’(kw kb ka) = ;(kl’ kz: ka)-

Wir haben also folgendes Ergebnis:

L 7(ky, ky, ks) ist analytisch im Punkte k; = p; + ig;, falls dort alle
(¢ +a)>> 0G4, h=0,...,3).

Auf jedem Strahl Q; + tq; (¢t > 0), der ganz in der angegebenen Menge des
g-Raumes verlduft, wird fiir jedes B > 0 der Ausdruck

e (p; + 1 (Q; + 1g;))

majorisiert durch ein Polynom in den p;.

Natiirlich ist die angegebene Menge nicht das volle Regularitidtsgebiet
von 7 sie ist iiberhaupt kein Gebiet, da sie nicht zusammenhingend ist.
Es handelt sich um eine Vereinigungsmenge von Roéhren der Art von iR
und ®. Nach dem friiher zitierten Satz von BARGMANN, HALL und WIGHT-
MAN ist 7 also noch analytisch in der Holomorphiehiille § des aus der
betrachteten Menge durch Anwendung von L (C) hervorgehenden
Gebietes. '

Wir werden in § 8 auf indirektem Wege zeigen, dass auch $ noch nicht
das volle Regularitatsgebiet von 7 ist. :

Die eben hergeleitete Bedingung I ist, zusammen mit A’ bis D’, noch
nicht hinreichend fiir die Lésbarkeit unseres Umkehrproblems, d. h. fiir
die Existenz von K. Man kann das z. B. daran sehen, dass wir die Eigen-
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schaft (14) der Funktion g nicht voll ausgeniitzt haben. Aus I (d. h. aus
(15) und den zugehorigen Beschrinktheitsbedingungen) folgt namlich
nur, dass der Trager von g(&,, &, &;) in der Menge &, €V, &, €V, (5, +
&y — &) €V liegt (siehe § 6). Diese Menge ist aber grosser als G.
Wir wollen deshalb noch eine weitere Bedingung fiir 7 ableiten, die
dann zusammen mit den schon gegebenen die Existenz von K sicherstellt.
Dazu beweisen wir zuerst die Identitiit

6(xy — x3) [g(x0, %1, X, %3) — g(— %1, — %, — %3, — %5) | = 0. (21)

Wegen (14) gilt das, wenn 2 < x?, oder (x5 — ;) ¢V, oder (x, — %) ¢V ,.
Dann verschwinden namlich beide Summanden einzeln. Es bleibt also
nur der Fall

0 0 0 0
Xy = Xy = X3 > Xy

zu untersuchen. Berticksichtigt man die Definition (13) von g und die
aus dem unter unseren Voraussetzungen geltenden CTP-Theorem?2)
folgende Beziehung

K (%o, %1, %3, %3) = — K(— %, — %1, — %o, — 43), (22)
so wird (21) in diesem Fall:

K(xg, %3, %1, %3) — K (%, %5, %3,%;) + K (%9, %3, %, %) — K (%3, X3, %3, %g) = O.

Das ist aber Gleichung (4.7), deren Gdiltigkeit wir hier voraussetzen.
Damit ist (21) bewiesen.
Wir behaupten nun, dass folgende Identitit gelte:

g(Xo, X1, X3, %) + g(%a, X3, Xy, %) — ]
| (@
— 8 (— %1, =X, — Xy, — X3) — g (— %3, — %, — Xp, — %) = 0. )

Wegen (21) und (14) ist das erfiillt, falls x3 > 3 oder x§ > x§, wie man
durch Multiplikation mit den entsprechenden 0-Faktoren erkennt.
Durch Anwendung der Symmetrie

g(X0, X1, %o, X3) = g(%q, Xa, X1, X3) (24)

sieht man in gleicher Weise, dass (23) auch gilt, falls x§ > x§ oder x9 > 3.
Zu diskutieren bleibt der Fall x?, 23 < xJ, 3. Wegen der Invarianz der
zu beweisenden Gleichung gegen die Vertauschungen x> x; und
Xg¢> % (Wieder als Folge von (24)) geniigt es, den Fall

0 0 0 0
Xy << X3 < Xy << Xy

zu betrachten. Die linke Seite von (23) wird dann nach (13) und (22):
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L = K(xy, %, %y, %) + K (g, %3, %y, %) — K (%, %o, %3, %) +
+ K(xq, %y, %5, x3) — K (%1, %3, Xo, %2) + K(x3, ¢, %1, %3),
was mit (4.5) bis (4.7) umgeformt werden kann:
L= K (%q, %1, ¥a,%3) + K (%5, Xg, %y %) + K(xg, X3, %1, %) + K (%, %y, %25 %g) =0,

womit (23) bewiesen ist.
Durch Fouriertransformation erhilt man aus (23):

8(b1, b3 b2) +§ (B3, b1, Po) — &(—Po, — Pas — Bs) — §(— P — Do~ 1) = 0. (25)

Diese Gleichung kann nach (16) und (20) als Beziehung zwischen Rand-
werten der Funktion 7(;) geschrieben werden und ergibt so die ge-
wiinschte zusétzliche Bedingung fiir diese Funktion:

II. Es gilt die Identitit

Hm 7 (ky, ky bg) + Hm 7 (ky, ks, Fg) =

(99) € G52 (97) € gy
qi— gi—>0
— lim F(ky kg k) & Lim F(ky, kg Bo). (26)
(—¢7) € ey (—qj) € Bsn
q5—0 i

Diese Forderung scheint sich nicht in einfacher Weise als funktionen-
theoretische Eigenschaft von 7(%;) ausdriicken zu lassen, wodurch sie sich
sehr unvorteilhaft von den andern Forderungen A’ bis D’ und I abhebt.

Es ist noch zu bemerken, dass fiir spezielle Werte der Variablen p; die
Identitat (26) eine Folge der Bedingung I ist. Die lim-Vorschriften
(¢;) €G30 und (— g;) €Byyg unterscheiden sich nur durch das Vorzeichen
von (¢, + ¢5), ebenso die beiden andern lim-Vorschriften, die in (26) auf-
treten. Daraus folgt, dass die vier Terme der Identitdt paarweise gleich
sind, falls (p, + p5) raumartig ist. (Siehe den Beweis von Gleichung (6.11)
im folgenden Paragraphen.) Eine solche Gleichheit je zweier Terme be-
steht auch, falls (p; + p,) raumartig ist. In diesen beiden Féllen ist also
(26) von selbst erfiillt.

6. Die Existenz von K(x,, . . , ¥3)

Es soll gezeigt werden, dass die in § 5 fiir 7(k,, k,, k3) hergeleiteten Be-
dingungen I und II, zusammen mit den bereits bekannten A’ bis D', fiir
die Existenz der Wightmanfunktion hinreichend sind.

D. h. es gilt folgender Satz:

Es sei eine analytische Funktion 7(k,, ko, k) mit den Eigenschaften A’
bis D', I und 11 aus § 5 gegeben.
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Dann existiert eine Funktion K(x,, ..., x3) mit den Eigenschaften a) bis
0) aus § 4 so, dass die daraus nach (2.9) und (2.21) berechnete Funktion
7(ky, ko, kg) die vorgegebene ist.

Die in IT auftretenden Randwerte von 7, ebenso wie die im folgenden
eingefiihrten anderen Randwerte, sollen existieren im Sinne der Glei-
chung (5.7).

Wir beweisen diesen Satz, indem wir K aus 7 explizit konstruieren.
Nach § 3 ist K eindeutig festgelegt. Das im folgenden konstruierte K ist
also das einzig mogliche.

Zuerst definieren wir die Funktionen reeller Variablen

;(Pl: Do, P3) = lim ;(kl’ ko, k)
(g EMN
gi—0
g(P1, P2 P3) = — lim ;(kl: ko, k3) (1)
(98) € Gy
g;—0
Ri= p; + 14

Die Gebiete R und ®,,; sind dabei definiert durch (5.2) resp. (5.15).
Wegen Voraussetzung I ist 7 in R und in ;.3 analytisch, so dass die
Definition (1) sinnvoll ist (unter der erwdhnten zusdtzlichen Vorausset-
zung iiber die Existenz der Randwerte von 7).

Wegen C’ und der Symmetrien von R und ®,,, gilt

;(Pil’ Pigl Pig) = ;(Pl» 2% ?53) (2)
fiir jede Permutation (z;, 7,, 73) der Indizes (1, 2, 3), und
§(p1, Do B3) = E(Pa, P1. P3)- (3)

Sowohl R als auch ®,,, sind konvex. 7(;) ist deshalb in R, resp. ;4
Fouriertransformierte einer Distribution 7(&,, &,, &), resp. g(&,, &, &3).
Nach L. SchwaRrTz®) liegt der Tréger von » im Halbraum

3

25f9i>0»

=1

falls fiir alle B > 0 und alle (Q.) R der Ausdruck
7 (

p; + ¢ (Q; + tg;))

in £ > 0 durch ein Polynom in p; beschridnkt ist. Nach Voraussetzung
I ist dies der Fall fiir alle ¢,V ,, d. h. der Trédger von 7 liegt im Durch-
schnitt aller Halbrdume der angegebenen Art mit g,€V’,, also

e—Bt

7(&1, 52., £)=0, fallsein & ¢ V_. 4)
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Ebenso liegt der Trager von g im Durchschnitt der entsprechenden Halb-
rdume mit (g;) €®,,5. Aber

255%2 S1 (g + qs) + & (g2 + q3) — (&1 + & — &) g5,

also
g6y &5 &)= 0, falls & ¢V, oder &, ¢ V., oder (& + & — &) ¢ V.. (5)

Wegen der Existenz der Randwerte in (1) sind » und g temperierte
Distributionen, und 7(p;), g(p;) sind ihre Fouriertransformierten im Sinne
der Distributionentheorie.

Die Voraussetzung II gestattet eine Verschirfung der Trigereigen-
schaft (5): (5.26) kann nach (1) in der Form (5.25) geschrieben werden.
Daraus erhilt man durch Fouriertransformation:

g(&y1, &3, &)
= —8E— &8 — & — &) T 8616 — £, 61— &) + 86— 83,6, §0— &)

Ist weder (£, — &;)€V, noch (&, — &) €V, so verschwinden alle rechts-
stehenden Glieder wegen (5). Der Triger von g liegt also in G (siehe (5.14)):

& € V-H g eV, (6 — &) E_T?+ oder (&, —¢&;) € —17+- (6)

Aus der Invarianz von 7(k;) und der Gebiete R und ®,,4 gegen L er-
gibt sich die Invarianz von 7(£;) und g(&;) gegen L.

Aus 7(&;), resp. g(&;) erhidlt man die entsprechenden Funktionen der
vier Variablen x; durch die Definition

(%o, X1, Xg, X3) = 7(¥g — Xy, Xy — X, Xp — X3)

(7)

B

(%, %1, %3, %3) = g%y — Xy, Xp — Xg, Xy — X3)

Weiter definieren wir

S(Xgy +-vr Xg) = 7(Xgy - ey X3) + (X ++ -, X3) ] "
also Sy o &) =7 608 +EELEnE) |
s 1st retardiert in &; und &, und erfiillt die Gleichung (5.9):
7%, o %) = 6 (%1 — x3) 0 (%, — 23) s(xg, %1, %, X3) + l
+ 0 (x5 — x7) 0 (%3 — x71) s(xq, Xa, X3, ¥1) + (9
+ 0 (%3 — x5) 0 (x; — x5) $(%g, X3, X1, %), ]

wie man durch Einsetzen erkennt (unter Beniitzung der (2) und (3) ent-
sprechenden Symmetrien von 7 und g).
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Im p-Raum wird (8) zu

$(p1, P P3) = 7(P1, D2 13) + E(D1, Dar P3) I
— lim 7(ky, kg ky) — Hm 7(ky, &y, &y). (10)
(ga:) egt (qz)_e 04 l

Die beiden limes-Vorschriften in dieser Gleichung unterscheiden sich
nur durch das Vorzeichen von ¢,. Es ist ndmlich ¢,V . in R, g;eV/_ in
®,,3, aber in beiden Gebieten ¢,, ¢, €V, und (¢, + ¢5) €V ., (g2 + ¢5) EV ...

Falls p; raumartig ist, ist der Punkt (k;) mit ¢, €V, ¢, €V, g3=0
ein Regularitdtspunkt von 7(k;). Es kann dann nimlich eine infinitesi-
male Lorentztransformation AeL_(C) angegeben werden, so dass (A%,
Aky, ARG) R, d. h. unser Punkt liegt in R’:

Ohne Einschrinkung der Allgemeinheit kann man annehmen
p3=(0,a,0,0), a>0.

Durch die infinitesimale Transformation
01 I 0

A=1+4+ie|2Y ), e>0
0 \ 0

wird dieses p, libergefithrt in &y = Ap, = p4 + 1e(a, 0, 0, 0), alsoist g,V ..
Fiir j = 1,2 ist mit ¢; auch ¢; in ¥, wenn nur ¢ geniigend klein gewzhlt
wird.

Da die Reihenfolge des Verschwindens der g, in der Definition (1) keine
Rolle spielen soll, kénnen wir in (10) zuerst mit g5 gegen null gehen. Ist
p3 raumartig, so gelangen wir dabei nach der vorhergehenden Bemerkung
in einen Regularititspunkt von 7, das Vorzeichen von g, ist also in diesem

Falle ohne Bedeutung. Beide Terme der rechten Gleichungsseite sind
gleich, d. h.

Z‘(?5‘1: Pa P3) = 0 wenn p32 < 0. (11)
Wegen (2) und (3) gilt
s(&1, &as &3) = 8(&as &1, &3)s (12)

wegen der Lorentzinvarianz von » und g ist auch s invariant gegen L.
Wir haben nun noch die Gleichung (5.11) zu lésen, die zusammen mit
(9) zu der Definition (2.9,11) der Funktion » dquivalent ist. Die Losung
kann auf algebraischem Wege gefunden werden, unter Ausniitzung der
Bedingungen (4.5) und (4.6) und der Beziehung (5.22). Es ergibt sich:

K(xg, ..., %3) = $(%g, X1, Xg, X3) — S(Xq, Xg, X3, X3) —
(13)

— S (— %, — %1, — Xp, — X3,) + S (— ¥y, — %, — %g, — X3).
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Dieser Ausdruck ist sicher lorentzinvariant, da s lorentzinvariant ist.
Wegen der Retardierung von s in (x, — #,) erfiillt K die Lokalitits-
bedingung (4.4). Die Antisymmetrie (4.5) ist offensichtlich auch vor-
handen, ebenso gilt die Jacobi-Identitit (4.6). Zu priifen sind also noch
die Bedingung f) und die Identitit (4.7) aus Bedingung ) in § 4.

Durch Einsetzen von (8) in (13) erhdlt man unter Beriicksichtigung
der Symmetrien von » und g:

K(xy, %1, %5, %3) — K (%, %1, %3, X5)
= g%, X1, ¥, Xg) — g1, X, X, X3) — g(— %9, — %1, — Xg, — %) + _
+ gl— %3, — %y, — %g, — %g) — (14)

— 8(%o, %y, Xy, %a) + 8(%y, X, X, X)) + §(— Ko, — Xy, — Xy, — Xy) —

— g(— %1, — %o, — %3, — %)
Einen analogen Ausdruck erhilt man fiir
K(xy, %3, %y, %) — K(%g, %3, X, #1)-

Wegen der Identitat (5.23) sind diese beiden Ausdriicke gleich. ((5.23)
gilt als Folge der Voraussetzung (5.26)). Damit ist auch die Forderung
(4.7) erfullt.

Die Fouriertransformierte von K(x,,..., ;) ist

K(pg, ---, ps)
= 0 (pot -+ po) [5(hy, oy ) — 5o, By ) — S(— b1, — po, — Pa) | (15)
+ S(— po, — Pay — P3)] = 0, wenn p2 < 0, ]
als Folge von (11). Sei

G(%g, %1, %o, %3) = (— X1, — X9, — X9, — X3) — (X, X1, X3, Xg)- (16)

Damit wird (14) zu

KXy Xys ¥ %) = Ky 81080 H) } an
s= o (Wgy Bpsins W) = G{sKp; Wow ) — G (g, s s Hlg) o Gr{ Wy X Mg 6y) _

Aber:

Glpo b1 Do bs) = O (Po+ - + 13)G'(br, Do B3),

G'(py, Por Ps) = — §(b1, Pss Bo) + &(— Do, — Par — P3)
— lim 7(ky, ko, k) — Hm 7(ky, kg, ks)
(g5) € L (— ;) € Bgay

gi—0 a9 —
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Die beiden hier auftretenden limes-Vorschriften unterscheiden sich nur
durch das Vorzeichen von (g, + ¢5), alle andern (¢g; 4 ¢,) — natiirlich mit
Ausnahme von (g, + ¢,) — liegen beidemal im selben Halbkegel. Auf
gleiche Weise wie Gleichung (11) erhdlt man daraus:

Glpgy --» pg) =0 wenn (py + p3)2 < 0. (18)

Also:
K(po, 1, P2 P3) — K(po, D1, P35, P2) = 0 wenn (p, + $3)% << 0. (19)

(15) und (19) sind aber identisch mit den Gleichungen (4.2) und (4.3),
also ist auch Bedingung f) erfiillt.

Damit ist der am Anfang dieses Paragraphen gegebene Satz bewiesen.
In §4 wurde gezeigt, dass aus «) bis 0) die Existenz der Wightman-
funktion folgt, so dass wir folgendes Ergebnis haben:

 Falls ¥(p1, o Ps) Randwert einer analytischen Funktion v(ky, ky, ks) mit
den Eigenschaften A’ bis D', I und II 1st, so existiert die zugehdrige
Waightmanfunktion W(x,,..., x3) mit den Eigenschaften a), b), c) aus § 2.

7. Das T-Produkt

Wir wollen kurz noch eine weitere Funktion betrachten, die mit den
Funktionen W und 7 in engem Zusammenhange steht, namlich die Funk-
tion

Bl 21 ) = 25 TllildgVus: &) S5g =5 TG v By) e (1)

T(x,..., x3) bedeutet dabei das zeitlich geordnete Produkt der Feld-
operatoren A (x,),..., A(x).

Es ist wohlbekannt, dass diese Funktion eine enge Verwandtschaft mit
der Wightmanfunktion W(x,,..., x;) aufweist:

Gleich wie 7(pq, pa, Ps) ist auch W’ (ny, 15, 175) (siehe (2.3)) Randwert
einer analytischen Funktion W'({;, {s, &5), & = m, + 10,1). W' ist regu-
ldr in R, d. h. falls alle p,€V .. Die lokalen Vertauschungsrelationen (2.8)
bewirken — dhnlich wie die Symmetrien (5.6) und (5.20) im Falle von 7 —
eine Vergrosserung des Regularititsgebietes von W', Wir definieren

Wizg, ..., 23) = W' (27 — 2, 25 — 21, 23 — 23), %= Xj + 1V; (2)
W ist analytisch im Punkte (z,..., z3), falls eine Permutation (z;,..., z;)
der Variablen (z,..., z5) existiert, so dass (y;, ., — v;,) €V, fir alle &.

Gehen die y;, unter Innehaltung dieser Bedingung gegen null, so strebt
Wiz, ..., z3) gegen Wi(x, ..., x,).
Waihlt man
V= — exg(l, 0,0,0),e>0, (3)
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so sicht man auf Grund dieser Betrachtung, dass

Bt W (s 15 o B) == Bi{figs wvua Higle (4)

e—0

Dieses Ergebnis kann man in eine elegantere Form bringen, das so
spezielle Vorschriften fiir den Grenziibergang wie (3) vermeidet. Nach
Harr und WiGHTMAN?®) kann W(z,,..., z;) als Funktion der sechs Va-
riablen , |

= (2, —z)% 1>k (3)

geschrieben werden. Das Regularititsgebiet von W{u;) weist lings den
positiv reellen Achsen aller #;-Ebenen Schnitte auf. Die Randwerte von
W in den reellen Punkten hangen also im allgemeinen davon ab, ob die
. aus der oberen oder aus der unteren Halbebene gegen die reelle Achse
streben. Aus der Vorschrift (3) ergibt sich:

Vig=Imu; = 2(x; — x;) (y; —yp) = 2 ¢ (xf - xg)2 = U,

so dass (4) wird:

(%, - -y %) = lim W (u,,). (6)

vig | 0

Der Grenziibergang muss selbstverstdndlich innerhalb des Regularitits-
gebietes von W erfolgen.

Die Ergebnisse von § 5 erlauben es nun, eine dhnliche Beziehung zwi-
schen T (py,..., p3) und der Funktion 7(k,, ks, k5) herzustellen.

Die Identitat13)

R(%g cous ) = D) (— 1)¥ T (%, o, %) Ty Zpas +v0s %) (7)

T = antichronologischer Operator.
2'erstreckt iiber alle Aufteilungen der Variablen xy,..., %,

, in zwei Gruppen
(Fgoeens ¥5)s W pqae s -» %)

wird im Spezialfall » = 3 zu

R(x,, .., %3)
= T (xg, -, %3) — A(x1) T (g, %, %3) — A(xg) T (%, %1, %3) —
A(xs) T(xg, 1, %) + ' (8)

+ T(x1, %9) T(x, x3) + T(xl’ x3) T (g, %a) + —T(xz: %) T (%9, %) —
— T(xy, x5, x3) A(xy).
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Eine dhnliche Uberlegung wie wir sie beim Beweis von (2.23) ange-
wandt haben ergibt daraus:

;(PO: cees P3) = ?’7(?50: oo Py), falls p, ¢ V., Po ¢ T—/-E-’ (Po + #:) ¢ V+

Speziell:

7(Pos +-» D) = T(Pgy -- -, p3) wenn alle p? > 0,7= 1, 2, 3. (10)

Wegen der totalen Symmetrie von 7 in allen Argumenten gilt allge-
meiner

T(pg, -+ P3) = ;(pior s ?51'3) wenn 15?1, ??2: PZ > 0. (11)
Weiterhin folgt aus dem CTP-Theorem %)
T(Xgy +:v5 Xg) = T(— %Xy ooy — %3) l
. " (12)
T(Pos «+vr P3) = T(— Doy -+ — P3) J

also
T(Pos --vr P3) = 7(— Pip oo — p;,) wenn p?p ngz, ?5?3 < 0. (13)
Mit Hilfe der ebenfalls aus (7) folgenden Identitdt

T %yses %)
_ (14)
= R(xy, %y, %5) + A(x1) T (g, x5) + A(x) T (%0, 21) — T (%1, %) A(x)
lasst sich das in (8) auftretende Glied A (x5) 7 (x,, %1, ¥5) umformen:
A(xg) T (%9, %1, %) = A(xg) R(xg, %1, %5) + --.

Mit

S(xgs -+, x3) = [R(%g, %y, %a), A(x5)] (15)
wird das '

A(xg) T (%o, X1, %5) = — S(xg, « .-, %3) + R(xg, 9, %) A(x5) + ...

Setzt man das in Gleichung (8) ein, so erhdlt man auf gleiche Weise wie
(10):
T(Po, -+ Po) = — &lbo -+ Pa) Wenn p§ < 0, P + p5 > 0, p3 + p5 > 0,
(16)
wobei g durch (5.13) definiert ist.

Auch diese Beziehung ldsst sich auf Grund der vorhandenen Symme-
trien verallgemeinern zu
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t(Pos -+ Pg) = — E’(Pfox---fbis)
0 0 0 0 0
wenn lbz'a = 0, pil -+ ;bia > 0, p;, + ;bia >0
= g(‘“ Piu"") - piﬂ)
wenn p; > 0, ) + p) < 0, ) + p) <O.

Die in (11), (13) und (17) auftretenden Vorzeichenkombinationen er-
schopfen alle Moglichkeiten. Der Beweis entspricht genau den in § 5 im
letzten Abschnitt vor der Formulierung der Bedingung I gegebenen Be-
trachtungen, wobei man nur die Halbkegel V', resp. V_ durch die Halb-
rdume p° > 0 resp. $° < 0 zu ersetzen hat.

Nach § 5 sind 7 und g nach Abspaltung des Faktors é(py + =+ + ps)
Randwerte der analytischen Funktion 7(k;). Seien die Vektoren p,, p,, ps
(und damit p,) gegeben. Wir definieren

g;= ¢ 2(1,0,0,0). (18)

Der Punkt (p; + ig,) ist nach I ein Regularititspunkt der Funktion 7.
(Falls eine oder mehrere der Summen ? + #} verschwinden, muss die
Definition (18) etwas abgedndert werden.) Durch Vergleich von (6.1) mit
(11), (13), (17) erkennt man

T(Pyr s b3) = O(po + - + b5) Tlbr, . 15)
T (b1, Do pa) = Um 7(ky, o, k).

e—0

(19)

Nach dem erwihnten Satz von HALL und WiGHTMAN lisst sich 7 als
Funktion der Variablen

w;= (B, + %)% 4,7=0,...,3 (20)
schreiben, wovon sechs unabhingig sind. (18) ergibt dann die Bedingung
ty= Imwy=2¢(p; + $;)* >0,

woraus man erhélt:

%,(2—"1: P2 P3) = lim ;(wij)' (21)
tij | 0

Diese Gleichung hat dieselbe Form wie die Gleichung (6) im x-Raum.
Es ist allerdings zu beachten, dass in Gleichung (6) nur sechs Variable
u, auftreten, man also fiir die Grenzwertbildung nur sechs Positivitits-
vorschriften zu beachten hat. Im Falle von Gleichung (21) hat man es
jedoch mit zehn Variablen w;; zu tun. Wegen wg, = w,; ist allerdings
zugleich mit #;; auch 7,5 positiv usw., es bleiben jedoch auch nach Be-
riicksichtigung dieser Paare sieben Positivitdtsvorschriften fiir die sechs
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(beliebig wihlbaren) unabhidngigen Variablen iibrig. Das hingt damit
zusammen, dass das in I gegebene Regularititsgebiet von 7 kleiner ist als
das bei (2) angegebene Regularititsgebiet von W(Z;, {s, £3)-

8. Eine Bemerkung zur Bedingung II

Wir wollen zeigen, dass im Falle nicht verschwindender Ruhemasse
der betrachteten Teilchen das in § 5 im Anschluss an Satz I erwdhnte
Gebiet § (inkusive einer aus den verscharften Spektralbedingungen fol-
genden Erweiterung) noch nicht das volle aus unseren Annahmen fol-
gende Regularitidtsgebiet der Funktion 7 ist, d. h. die Bedingung II hat
eine Vergrosserung dieses Gebietes zur Folge. Die Art dieser Vergrosse-
rung ist leider noch nicht bekannt#*).

Wir werden den Beweis auf indirektem Wege fiihren, indem wir ein
Gegenbeispiel zu den sog. Dispersionsrelationen fiir Streuung zweier
Teilchen konstruieren.

Dazu spezialisieren wir unsere Annahmen wie folgt: Das Feld A(x)
soll hermitisch sein und einem Teilchen mit der Ruhemasse 1 entsprechen,
das keine Wechselwirkung mit anderen Teilchen aufweist. In der Defini-
tion von R (Gl. (2.9)) ersetzen wir A(x) durch (] — 1) A(x). Die Eigen-
schaften A bis C von #(x,) aus § 2 werden dadurch nicht beriihrt, hin-
gegen ldsst sich D verscharfen:

D,) ;(pl’ Par P3) = ;(?0: Pas P3) falls po? < 4, pi2 < 4,

(P14 P2)> < 4, (P + P32 < 4.

Ebenso gilt nun Gleichung (5.18) fiir p,2 << 4.
Die Funktion 7(k,, Ry, k3) schreiben wir wie in § 7 als Funktion der

Variablen w, = k2 1=0,...,3 l
[ (2)

} (1)

ey = (ki + %)% 1=1,2,3, 1> 1.
Die Eigenschaften A’ bis D', I, II aus § 5 bleiben bestehen. Die an-
gegebenen verschirften Spektralbedingungen sind erfiillt, falls die in §
auftretenden Schnitte lings den positiv reellen Achsen der w-Ebenen

erst bel 4 einsetzen.

*) Das endgiiltige Regularitidtsgebiet von 7 enthilt sicher nicht alle Punkte
des bei (7.2) angegebenen Regularititsgebietes von W({;, {,, {3). Das wiirde nim-
lich bedeuten, dass ;(kj) reguldr ist, falls alle ¢; und zwei der drei unabhédngigen
(g;+4,), ¢ + j, zeitartig sind. Speziell ware der Punkt ¢,+¢; = 0, alle andern ¢;+g;

~

zeitartig, ein Regularititspunkt, also wire G = 0 (siehe (6.18)). Es ist aber

G(xo’ ey JV3) = <[R(x0: xl)’ R(/’lf2, 273)]>0,
und dieser Ausdruck ist im allgemeinen sicher von null verschieden.
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Aus der Hermitizitit von A(x) folgt, dass 7(x,,..., ¥3) rein imagindr
ist (siehe LSZ), d. h.
;*(pl: 752: P3) = ;('— ﬁlr - pZ’ - P3)» (3)
was durch analytische Fortsetzung ergibt:
PH( B B = — F(— Ry, — Ray — By). @)

Wir betrachten nun die Streuung zweier Teilchen mit den Anfangs-
impulsen p, £ und den Endimpulsen ', 2’ (p + k= p’ + &’). Die zuge-
hérige Streuamplitude T'(%’, p’; &, p) ist eine Funktion der Variablen

2 (R—R)? - (k+k)(f9+:b)

und es gilt nach LSZ
T(w, 4%) = 7(k, p, — p) (6)

bis auf einen konstanten Faktor. Dabei ist
B2 = p2= p2— k2= 1
P+R2=2014+4%+ o (1+ 4212
(f—2)2=2(1+4%— w (1 + 4717
(b —p) = — 44

Dieses T erfiillt eine Dispersionsrelation, falls die Impulsiibertragung
A% < 2ist™). D.h. fiir 0 < 42 < 2 ist T(w, 42), aufgefasst als Funktion
von o, analytisch in der ganzen komplexen Ebene mit Ausnahme der
Schnitte in der reellen Achse

> (1= 49 (L+ 4930, o < — (142 (144020 ()

Die Interpretation von 7 als Streuamplitude ist natiirlich nur méglich
unter Beniitzung der Asymptotenbedingung; nur dann kann ja eine S-
Matrix definiert werden, Wir kénnen jedoch formal (6) als Definition von
T auffassen. Die genannte Regularititseigenschaft von T bleibt dabei
bestehen, da in ihrem Beweis die Asymptotenbedingung nicht wesentlich
verwendet wird. Kénnen wir also eine in § regulire Funktion 7 angeben,
so dass das daraus nach (6) berechnete T keine Dispersionsrelation er-
fiillt, so ist gezeigt, dass $ noch nicht das volle aus unseren Annahmen
folgende Regularititsgebiet von 7 ist.

Ein solches Beispiel soll jetzt gegeben werden. Wir definieren:

3
N(ky, kg, kg) = D (2 + 3% 2,7Y) + 215 + 29571 — @ + de. (9)
=0

k=
19 H.P.A. 33, 4 (1960)
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Dabei bedeutet
2= (4 —w))'", 2, = (4 — w;)t" (10)

Ein in der lings der negativ-reellen Achse aufgeschnittenen Ebene ein-
deutiger Zweig dieser n-ten Wurzeln wird ausgewdhlt durch die Forde-
rung, dass »!/* fiir positiv reelle « positiv reell sein soll. # ist eine positive
ganze Zahl, «, a, ¢ sind positive reelle Zahlen, {iber deren Grdsse wir noch
verfiigen konnen.

Unser Beispiel ist

;(kp kzs ks) ‘"—_ { H

(ilribisn)

N(k;, k;, k;) }—1 —{e—>—¢}, (11)

wobei das Produkt /7 iiber alle Permutationen der Indizes 1, 2, 3 zu er-
strecken ist. Das zweite Glied entsteht aus dem ersten durch die Substi-
tution von — ¢ an Stelle von ¢ und hat die Erfiillung von (4) zur Folge.

(11) befriedigt offensichtlich die Bedingungen A’, C’ und D’ aus § 5.
(Es ist zp; = 2s5, usw.!) Ebenso treten die richtigen Schnitte in den w,
und w;; auf, so dass die verschirften Spektralbedingungen (1) erfiillt sind.
Wir haben noch zu zeigen, dass unser 7 bei geeigneter Wahl der verfiig-
baren Parameter in den durch I, § 5, definierten Punkten (und damit
in $) analytisch ist. Die in I noch geforderten Beschranktheitsbedin-
gungen im oo sind erfiillt, da 7 im oo gegen null strebt.

Als Singularititen von 7 treten erstens die schon erwihnten Schnitte
w; (oder w;,) > 4 auf. Diese liegen ausserhalb des gewiinschten Regulari-
‘tatsgebietes. Ist namlich ¢,2 > 0 und w, positiv reell, so ist auch p;2 > 0,
also p,9; + 0 im Widerspruch zur Forderung Im w; = 0.

Weiterhin kénnen Pole auftreten, die natiirlich in den Nullstellen eines
der Faktoren IV des Nenners liegen. Diese Nullstellen haben wir also zu
untersuchen, soweit siein der betrachteten Punktmenge I liegen. Wegen
der Symmetrie von I geniigt es, die Funktion N(k,, k,, %3) zu diskutieren.

Zuerst betrachten wir den in (9) auftretenden Ausdruck

z; + 3% 7.1,

Nach der Definition (10) liegen alle z; (und auch alle z;,) in einem Keil
lings der positiv reellen Achse mit der Spitze im Ursprung und dem
halben Offnungswinkel ¢ = 7/n:

Rez; >0, |Imz; | <(Rez)-tge (12)

@ kann durch geeignete Wahl von # beliebig klein gemacht werden. Wir
werden voraussetzen, dass # gross ist (z. B. n > 10).
Sei

y;= Re (z; + 3% z;71). (13)
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Es gilt
vi > (|7 | + 3|z, |7) cos g

wegen (12) und weil mit z; auch 2;,7! im Keil (12) liegt. Die in dieser
Ungleichung auftretende Funktion von | z; | (ohne den Faktor cos ¢) nimmt

ihr Minimum an fiir | z; | = 31/, Dieser Minimalwert betrigt
Also
Vi 2> COS @ (15)

Wir fiihren die neue Konstante
’ d=a—4ucose (16)
ein und wihlen a so, dass 0 < § < 1.

Sei nun (&, Ry, kg) eine Nullstelle von N(ky, &y, k) mit (g; + ¢;)2 > 0
fiir alle 4,7 =0,..., 3.
Mit N muss natiirlich auch Re N verschwinden. Re N ist von der Form

ReN=A+B+C—-9¢ (17)
mit 5
A:)_:'yk——4,ucos;<p>0

Eo

B=Rez,>0 (18)
C =& Relfza) >
Aus Re N = 0 folgt also

A <d,B<9,C <o (19)

~ Wir werden zeigen, dass diese Ungleichungen bei geeigneter Wahl von
o und » einen Widerspruch enthalten. Bei den folgenden Abschitzungen
werden wir folgende Bezeichnungsweise verwenden: |

a ~ b heisst @ = b bis auf einen Term der Ordnung 0(8)/8 + o(n)/n
a < b heisst a < b bis auf einen Term derselben Ordnung.

. Aus B < § (d. h. B ~ 0) folgt wegen (12), dass z,, ~ 0 sein muss, also
wyy ~ 4. Das bedeutet

(Br+ 22— (1 + )2 ~4 (b1 + 22 (1 + g ~O. (20)
Das ist mit der Bedingung (g, + ¢,)2 > 0 nur vertréglich, falls

(914922 ~0, (pr+p2)°~4. (21)
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(9o + g3)> ~ 0, (P + p3)2 ~4, (Po+ 23) (90 + g5) ~O. (22)

Aus 4 < 6 (also A4 ~ 0) folgt, dass alle y, in der Nahe des Minimal-
wertes u cos @ liegen miissen, d. h.

|2;| ~3" > |4 —w, | ~3, i=0,...,3.

Die w; liegen also alle in der Nihe des Kreises vom Radius 3 um den
Punkt w = 4. Speziell muss gelten:

1< Rew,=p2—q2<7, |Imw,| <3, (23)

woraus wegen ¢,2 > 0 folgt:
iz 1. (24)

Wir haben zwei Fille zu unterscheiden:

1. Fall: p; €V, p, €V _ (oder umgekehrt).
Dann gilt (in Analogie zur Dreiecksungleichung im Falle einer defini-
ten Metrik) die Ungleichung:

(pr+ D)2 = (£:2 — V222,

woraus wegen (21) und (24):

]/P?Z]/PDJHLZz?» oder I/I_b—zz_Zl/?f’_f—ﬂLZZi

Also, fiir 2 = 1 oder 2:
P22 9.

Wegen (23) muss dann ¢,2 = 2 sein, und somit | Imu; | =2|p,q;| 2
2 - 3 )/2, im Widerspruch zur zweiten Bedingung in (23).

Dieser Fall kann somit nicht auftreten. Genau gleich kénnen wir auch
den Fall ausschliessen, dass p, und p, in verschiedenen Halbkegeln
liegen.

2. Fall: :
preVipaeVi poeV_ psel.. (25)

(Der daraus durch Vorzeichenwechsel aller p; entstehende Fall ergibt
nichts Neues.)
Aus (24) ergibt sich $,$, = 1, also ist (21) nur moghch falls

P~ plt~pipe~1, }

und ebenso

?502 ""’?532 ~ pops ~ 1.
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Weiter, wegen p, + p3 = — p; — Pa:
(bo + 13) By + po) ~— 4

Alle vier linksstehenden Terme sind wegen (24) und (25) < — 1, also

pipj~—1, 1=03, 7=12 (27)
Da alle w; auf dem erwidhnten Kreis liegen miissen, folgt aus (26):

w; ~1,also p,q;, ~0, ¢2~0, (28)
und damit aus (21) und (22):

91 92 ~ g 95 ~ 0. (29)
Ferner:
Go® = — o (¢1 + g2 + q3) ~ 0, (30)
also
90d1+ 9o 92 ~ 0,
woraus

do 9 ~ 9092 ~ 0, (31)

wenn ¢, und ¢, im gleichen Halbkegel liegen. Dann aber auch

(92 + ¢3)% = (¢ + q1)2 ~ O,
d. h.
gs ¢s ~ 0 und analog ¢, g5 ~ 0. (32)

Ebenso lassen sich (31) und (32) beweisen, falls g, und ¢, im gleichen
Halbkegel liegen.
Sei nun keine der beiden Annahmen erfiillt, z. B.

WeEV g€V, €V _ g€V, aber (g + ¢5) €V,

(Alle andern Fille sind von der gleichen Struktur und lassen sich deshalb
analog behandeln.) Aus (30) ergibt sich dann:

9o 91 + 9o (2 + g3) ~O.
Beide Terme sind negativ, also
9091 ~0, o (g2 + g5) ~ 0, d. h. gy g, ~ 0 wegen (29).

Dann aber auch
9295 ~0, ¢, 93 ~0,

die Gleichungen (31) und (32) gelten also auch in diesem Fall.
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Zusammenfassend haben wir bis jetzt gefunden:
pitr~=+1 4;9.~0, $;4;~0, 4,k=0,.,3. (33)

Wir haben nun noch die Bedingung C <C 8 aus (19) zu diskutieren:
Aus (33) ergibt sich

Re wyy = (Pa + $3)* — (92 + ¢3)* ~ 0, (34)

da p, und 4 nach (25) in verschiedenen Halbkegeln liegen; und

Im wyg = 2 (py + P3) (92 + q3) ~2 (P2 g5 + 3 qs)- (35)

Sei ¢z €V .. Dann
(Pat+ @) =P+ @2+ 2p393~1,

d. h. (p; + ¢5) €V_. Also ist py(ps + ¢5) < 0 und damit
0 <pags << —paps~1.

Auf dhnliche Weise zeigt man im Falle g, €V _:

0> p2q3> paps~—1,
also | pygs [' < 1, und analog | psg, | < 1. (35) wird damit zu

| Imwy | < 4. (36)
C < ¢ bedeutet
B oo % : o (37)
was nach (12) ergibt
4
I %3 |_1<‘ o COS q; ’
und schliesslich
2n
1223i2":|4—w2312>[a623¢] : (38)

Aber, nach (34) und (36):
|4 — wyy 2= (4 — Rewy)® + (Im wyy)?

< 16 + 16 = 32.
Aus (38) folgt damit:
[233_‘?’_]2” < 32. (39)

Wir konnen sicher «, ¢, #» so wiahlen, dass

[255]" > 3. (40)
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Dann ist Bedingung (39) verletzt, also hat Re N — und damit auch N
selbst — keine Nullstellen in §. Das durch (11) definierte # erfiillt also
alle in § 5 angegebenen Bedingungen mit Ausnahme der Identitit II,
falls wir die verfiigbaren Konstanten so wihlen, dass Bedingung (40)
erfiillt ist.

Die zugehorige Streuamplitude T'(w, A2%) ergibt sich aus # gemiss (6)
und (7) durch Einsetzen der Argumente

w . =1, 1::0,...,3

Wiy = 2 (14 A2 + o (1 + A42)17)
Wiy = 2 (14 42 — o (1 + 4%)17)

(41)

Woy = — 4 A2.

Wir halten 4% > 0 fest und betrachten T als Funktion der komplexen
Variablen w. Es ist zu untersuchen, fiir welche Werte von A2 T in der
geschnittenen w-Ebene (8) analytisch ist.

Als mogliche Singularititen von T treten wieder die bekannten Schnitte
in der Definition von z; und z, sowie Pole auf. Die Schnitte in den z;
und in z,; spielen keine Rolle wegen w; < 4 und w,; < 4. Die durch z,
und 2,4 erzeugten Schnitte sind gerade die gewiinschten (siehe (8)). Eine
Dispersionsrelation besteht also, falls keine Pole auftreten, d. h. falls der
Nenner in der Definition von 7 nirgends verschwindet.

Es ist

2= [2 (1 — A2 — w (1 + A2)W2]u
23 =21 —-4A24+w (1+ A2) 1121/ 42)
Zos = [4 (1 + A%)J1.
Also wird (9) Zu |
N(ki’ki’kb):4H+zij+0€2;h“1—a+ig, (43)
(3, j, k) eine Permutation von (1, 2, 3).

Nach (16) ist
4pu—a=4u(l—cosgp) — 4. (44)

N = 0 bedeutet also
Zi+ozyt=0—4u(l—cosg) —1ie. (45)

Der Realteil des links stehenden Ausdrucks ist nie negativ, Losungen
existieren also hochstens, falls

0>4u(l—coseg). (46)
Diese Ungleichung sei erfiillt.
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Wir betrachten zuerst den Fall ¢ = 2, 1 = 1, A = 3. Aus (45) folgt:

Re z;, < 0,d. h. 25 ~0,

also nach (42):
w~ (1 —A4%) (1 4 A42)-12

und damit
213 ~ [4 (1 — A7),

Aus der weiteren Bedingung Re z;,71 < d/ folgt wie bei (37):

2 '~ 4 [ 1= 42 > [2522]" > /33,

also wegen A2 > 0:

442> 4 133> 2-4.

Unterhalb der Lehmannschen Schranke A2 = 2 gibt der hier diskutierte
Faktor N zu keinem Pol Anlass.

Ebenso erhalten wir im Falle z = 2, / = 3, A = 1 keine Nullstellen von
N. In einer solchen miisste namlich gelten

R8223<6, d.h.1+A2NO,

was wegen A2 > 0 nicht méglich ist.

Zu diskutieren bleibt noch der Fall¢ = 1,7 = 2, A = 3. (Die andern drei
Fille unterscheiden sich von den hier diskutierten nicht wesentlich, sie
entstehen daraus durch Vorzeichenumkehr von .) Hier wird (45) zu

Zp=0—4u (1l —cosp) —ie—al[4(l+ A% (47)

Wir definieren eine Konstante A2 durch

d=4u(1—cosq)+ o [4(1+ A42)] 1, (48)
(47) wird damit zu
Za = [4 (1 + A2 — g [4 (1 + A%V — 7 &. (49)

Ist nun A2 > A2 und e geniigend klein, so liegt die rechte Seite dieser
Gleichung im Keil (12). Dann kann das so bestimmte z,, nach o auf-
gelost werden, wobei das e-Glied bewirkt, dass dieser Pol von 7" (um einen
solchen handelt es sich ja) nicht gerade auf die reelle Achse zu liegen
kommt.

Eine Dispersionsrelation besteht also nicht fiir A2 > A2}
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A2 ist nicht beliebig wihlbar. Aus den Bedingungen (40) und (46) er-
gibt sich:

A2 n __ = _0(7
[#{1 + A9 = S—4 u (1—cos ¢) > 6’

4 (14 47 > (—f;) > /33,
also

e Y33 -4
2~ 7
A% > 5 .

(50)

Sei nun umgekehrt ein A2 vorgegeben, das (50) erfiillt. Ebenso geben
wir ein d <€ 1 vor. Zu jedem 7 ergibt dann (48) einen Wert von «. Be-
dingung (46) kann offensichtlich durch Wahl eines geniigend grossen #
erfiillt werden (¢ = sz/n kann beliebig klein gemacht werden). Aus (48)
folgt

B (1~ cosg) 4 [4 (1 + A%

d
o o

Man erhilt daraus

. 2n e
lim (acow )" = 116 (1 + A2t < 3371,

Hn—- 00

Fiir ein geniigend grosses #» ist also auch Bedingung (40) erfiillt.

Wir haben somit folgendes Ergebnis: Die Konstanten «, «, # und &
in unserem Beispiel kénnen so gewihlt werden, dass 7 alle Bedingungen
mit Ausnahme von II erfiillt, dass aber die zugehérige Streuamplitude
fiir Impulsiibertragungen A2, die grésser als eine vorgegebene Zahl A2
sind, keiner Dispersionsrelation geniigt, wenn nur diese Zahl A2 der Be-
dingung (50) entspricht. Die in (50) gegebene Schranke ist aber kleiner
als die Lehmannsche Schranke A2 = 2.

Damit ist unsere Behauptung bewiesen, dass § zumindest im Falle

nicht verschwindender Ruhemasse noch nicht das volle Regularitits-
gebiet von 7 ist.

Meinem verehrten Lehrer, Herrn Professor Jost, méchte ich danken
fiir die Anregung zu dieser Arbeit und fiir zahlreiche férdernde Diskus-
sionen wihrend ihrer Ausfithrung. Dem Schweizerischen Nationalfonds
zur Férderung der wissenschaftlichen Forschung habe ich fiir ein Stipen-
dium zu danken.
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