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Über den
Zusammenhang zwischen den Wightmanfunktionen

und den retardierten Kommutatoren
von O. Steinmann

Physikalisches Institut der ETH, Zürich

(4. XII. 1959)

Abstract. The connection between Wightman's vacuum expectation values and
the retarded functions of Lehmann et al. is investigated in the case of the four point
function. Necessary and sufficient conditions for the existence of a Wightman
function corresponding to a given r(x0, x3) are derived. The Fourier transform
^iPi>p2'Ps) °f r(xo~x\< ¦¦¦,xo~x3Ì is a boundary value of an analytic function
r(kx, A2, A3), regular in a domain § which is defined in the text. Certain boundary
values of this function other than ?(£,,•) satisfy a linear identity. This identity
enlarges the domain of reglarity of r still further.

The Fourier transform r(pt, p2, pa) of the time-ordered product r(x0 — xv
< TA(x0)... A(x3) >0 is shown to be everywhere a boundary value of the same
analytic function r (kj).

For the »-point case it is shown that W(x0, xn_1), if it exists at all, is uniquely
determined by r(x0, xJ up to terms of a very special kind.

1. Einleitung
In den letzten Jahren wurden in der Quantenfeldtheorie verschiedene

Formalismen entwickelt, die zum Ziele haben, die Theorie einer exakten
mathematischen Behandlung zugänglich zu machen. Sie versuchen
durch Verzicht auf die Einführung der kanonischen Vertauschungsrela-
tionen und eines explizit gegebenen Hamiltonoperators die bekannten
Divergenzschwierigkeiten des herkömmlichen Formalismus zu vermeiden.

In diesen Versuchen spielen geeignet definierte Produkte von
Feldoperatoren eine grosse Rolle. So hat A. Wightman die Vakuumerwartungswerte

der Produkte von Feldoperatoren in behebigen Raum-Zeit-
Punkten Wn(x0, x„) < A(x0)... A(xn) >o zu den grundlegenden
Grössen der Theorie gemacht1). Er studierte die Konsequenzen der

Grundpostulate der Theorie (Lorentzinvarianz, Lokalität, Existenz des

Vakuums, Definitheit der Metrik im Hilbertraum der Zustände) für diese
Funktionen und zeigte, dass das System aller W„ die Theorie eindeutig
festlegt. Leider kann der Teilchenbegriff (und damit im Zusammenhang
die S-Matrix) nicht in einfacher Weise in den Formalismus eingeführt
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werden. Ausser einer neuen, sehr durchsichtigen Ableitung des CTP-
Theorems2) und des Zusammenhangs zwischen Spin und Statistik3) hat
deshalb die Wightmansche Theorie keine praktischen Erfolge
aufzuweisen.

Anderseits wird versucht, die Theorie aufzubauen als Theorie der S-

Matrix. Dabei bietet besonders die Formulierung der Kausalitätsforderung

Schwierigkeiten. Kausalität wird üblicherweise gleichgesetzt mit
der Lokalität der betrachteten Felder, und es sind gegenwärtig zahlreiche
Bemühungen im Gange, aus der Lokalitätsforderung Eigenschaften der
S-Matrix herzuleiten (Dispersionsrelationen). Bei diesen Bemühungen
haben sich die von Lehmann et alA) diskutierten r-Funktionen als
geeignete Hilfsmittel erwiesen. Es handelt sich dabei um die
Vakuumerwartungswerte der sog. retardierten Kommutatoren (Definition siehe

§ 2) von n Feldoperatoren, also um mit den Wightmanfunktionen eng
verwandte Grössen. Aus den oben angeführten Grundpostulaten der
Theorie ergeben sich für die Fouriertransformierten der r-Funktionen
Eigenschaften, die denjenigen der FF-Funktionen bemerkenswert ähnlich
sind. Der Zusammenhang mit der S-Matrix wird hergestellt mit Hilfe
der sog. Asymptotenbedingung5), welche Aussagen über das Verhalten
des Feldes im hmes t -> zh. °° macht. Die positive Definitheit der Metrik
ist eine Folge der Asymptotenbedingung und muss deshalb nicht besonders

gefordert werden. Zusätzlich zu den erwähnten Eigenschaften, welche

die individuellen Funktionen rn betreffen, lässt sich aus dieser neuen
Bedingung ein kompliziertes Gleichungssystem (GLZ Gl. 15) ableiten, das
die verschiedenen rn miteinander verknüpft. Wir wollen dieses System
mit G bezeichnen. Die Funktionen rn legen in ihrer Gesamtheit die Theorie
wiederum eindeutig fest.

Es erhebt sich damit die Frage nach dem Zusammenhang zwischen
den beiden Funktionensystemen {Wn} und {rn}. Die Funktion r„ ist
gemäss Definition auf algebraischem Wege aus Wn bestimmbar. Hat Wn
die richtigen Eigenschaften, so erfüllt das daraus berechnete rn alle
Bedingungen, natürlich mit Ausnahme des Gleichungssystems G. Dieses

wurde abgeleitet unter wesentlicher Benützung der Asymptotenbedingung

und kann deshalb nicht aus den Eigenschaften der Wightmanfunktionen

folgen. Ist umgekehrt ein System {r„} von r-Funktionen mit den

richtigen Eigenschaften - inklusive G\ - gegeben, so lässt sich der
zugehörige Feldoperator und damit auch jede Wightmanfunktion berechnen.

D. h. in diesem Falle sind die Definitionsgleichungen der rn nach
J47„ auflösbar. Nun ist durch diese Gleichungen jedes rn durch das

zugehörige Wn bestimmt ohne Rücksicht auf die Funktionen anderer
Variablenzahl. Stellt man also an die Wn nur diejenigen Forderungen,
die sich auf die individuellen Funktionen beziehen (das sind alle mit Aus-
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nähme eines aus der Definitheit der Metrik folgenden Systems von
Ungleichungen), so müssen Lösbarkeitsbedingungen existieren, die sich
auch nur auf die einzelnen rn beziehen. Diese Bedingungen sollen in der
vorliegenden Arbeit untersucht werden. Unser Problem ist somit das

folgende: Unter welchen Voraussetzungen ist die Definitionsgleichung
von rn nach Wn auflösbar Genügen dazu die bereits bekannten
Eigenschaften von rn (ohne G) und wenn nicht, welche zusätzlichen Forderungen
muss man stellen

Das Problem ist trivial im Falle n 1. Im Falle n 2 (d. h. für die
Dreipunktfunktionen) wurde es gelöst durch R. Jost6). In beiden Fällen
existiert eine algebraische Auflösungsformel, aus der man leicht alles
Gewünschte ablesen kann. Neue Bedingungen für rl und r2 ergeben sich
nicht. Für höhere n ist eine algebraische Auflösung nicht mehr möglich ;

man muss zu analytischen Hilfsmitteln greifen. Wir werden hier nur den
Fall n 3 vollständig diskutieren. Es wird sich zeigen, dass die bereits
bekannten Bedingungen für r3 die Existenz von Ws nicht garantieren,
sondern zu ergänzen sind durch weitere Forderungen. Diese zusätzlichen
Forderungen müssten sich natürlich auch aus dem Gleichungssystem G

ableiten lassen, doch ist dies auf direktem Wege noch nicht versucht
worden. Für allgemeines n werden wir zeigen, dass die Funktion Wn
durch rn im wesentlichen eindeutig bestimmt ist, falls sie überhaupt
existiert.

2. Formulierung des Problems
Das in der Einleitung gestellte Problem soll hier genauer formuliert

werden. Dazu sollen zuerst die Eigenschaften der Funktionen Wn und
'r„ zusammengestellt werden, soweit wir sie in der vorliegenden Arbeit
benötigen.

Einfachheitshalber betrachten wir nur den Fall eines einzigen Skalar-
feldes A (x). Die Verallgemeinerung auf kompliziertere Fälle bietet keine
prinzipiellen Schwierigkeiten. Die Theorie soll den üblichen Forderungen
genügen :

1. Die Zustandsvektoren bilden einen Hilbertraum mit positiv-
definiter Metrik.

2. Die Theorie ist invariant gegen die inhomogene eigentliche Lorentz-
gruppe.

3. Die Theorie ist lokal, d. h. [A(x), A(y)] 0, falls (x — y) raumartig
ist.

4. Es existieren keine Zustände negativer Energie. Es existiert genau
ein Zustand ü (das Vakuum) mit der Energie 0. (Die Existenz des

Energieoperators folgt aus der in 2. postulierten Translationsinvarianz.)
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Die Lehmannsche Asymptotenbedingung5) oder ähnliche Forderungen
werden wir hingegen nicht voraussetzen. Auch werden wir die Definitheit
der Metrik nicht voll ausnützen.

Die Wightmanfunktion Wn(x0, xn) ist definiert durch

Wn(x0,...,xA^<A(x0)...A(xn)>0 (ü,A(x0)...A(xAQ). (1)

Wn sowie auch alle im folgenden eingeführten Funktionen reeller
Variablen sind aufzufassen als temperierte Distributionen im Sinne von
L. Schwartz7). Wir werden der Einfachheit halber die Funktionenschreibweise

benützen, werden uns jedoch bei Bedarf auf die Theorie der
Distributionen berufen, so dass die mathematische Exaktheit keinen
Schaden leidet.

Aus den Postulaten 1. bis 4. ergeben sich folgende Eigenschaften der
Wightmanfunktionen1) :

a) W„(x0,..., xn) ist nur abhängig von den n Variablen

Vi= xi- xi-i> *'= !> ¦ •••,«> (2)

also

Wn(x0,...,xA=W'n(rìl,...,rìn). (3)

Ferner ist Wn invariant gegen die eigentliche homogene Lorentzgruppe

<(yi.---rin)= W'n(AVl,...,Arin) für alle Ae Lj. (4)

b) Die Fouriertransformierte

Küv ...,qn)= /¦¦¦fd*Vl...d* Vn e-WWJ Wn(Vl,..., rin) (5)

von W'„ ist retardiert in allen Variablen, d. h.

K(qi,...,qn)=0, falls ein qk $ V+, (6)

wobei V+ den abgeschlossenen Vorkegel bedeutet.

c) Es gilt
Wn(...,xk,xk+1,...)= Wn(...,xk+1,xk,...), (7)

falls (xk — xk+1) raumartig ist. Für W'n wird diese Gleichung zu

W'ni---' Vk-i> Vk> Vk+v--) WX--,Vk-i + Vk. -Vk.Vk + Vk+v-)> (8)

für raumartige rjk.
Daneben besteht noch ein kompliziertes System von Ungleichungen

zwischen den verschiedenen Wn, das abgeleitet wird aus Postulat 1. Wir
werden diese Ungleichungen jedoch nicht berücksichtigen.
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Das retardierte Produkt von «4-1 Feldoperatoren wird definiert durch

R(x0,x1, ....,xA

E e(*o. *i,..., *n) [[-[A(x0), A(x1)],...], A(xn)] (9)

mit

z,/ n
f falIs x°>x°> ...>x°n,«(**•¦ ¦•'*¦>-{(> sonst

(10)

Die Summe in (9) ist über alle Permutationen der Variablen %,...,#„
zu erstrecken. Unsere Definition von R unterscheidet sich von der in
LSZ gegebenen um einen Faktor (— i)n. Da wir uns hier nicht mit
Realitätseigenschaften befassen wollen, ist dieser Faktor unwesentlich.

Der Vakuumerwartungswert von R(x0,..., xn) heisst retardierte Funktion

und wird mit rn bezeichnet :

rn(x0, x1,...,xn)=< R(x0, %,..., x„) >0. (11)

Nach LSZ hat diese Funktion folgende Eigenschaften :

A. rn ist translationsinvariant, also nur abhängig von den Variablen

h= X0-xk, k= 1, ...,«: (12)

rn(x0,...,xA=r'n(^,...,^). (13)

(Wir werden im folgenden häufig rn für r'n und Wn für W'n schreiben, wenn
keine Gefahr von Verwechslungen besteht.)

r'n ist invariant gegen L\ :

r,n(^,...,HA=r'n(A^,...,Atin) für AeL\. (14)

B. r'n ist retardiert in allen Variablen, d. h.

>•;&,... ,!„)= 0 falls ein |,. £ F+. (15)

C. r'n ist symmetrisch in aUen Variablen, d. h.

^1,...,^)=rX,...,|!J, (16)

wenn (ilt..., i„) eine Permutation der Indizes (l,...,n) ist.

Man erkennt sofort die Analogie der Bedingungen A und B zu den
Eigenschaften a) und b) der Wightmanfunktion. Auch die Eigenschaften
c) und C) entsprechen sich in einem gewissen Sinne.

Das in der Einleitung erwähnte Gleichungssystem G werden wir hier
nicht berücksichtigen. Hingegen werden wir eine darin enthaltene
schwächere Bedingung verwenden, welche auch ohne Benützung der
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Asymptotenbedingung hergeleitet werden kann. Diese Bedingung soll
hier nur für den Fall n 3 angegeben werden, da sie für uns nur in
diesem Falle wichtig ist.

Wir gehen aus von der Operatoridentität (GLZ Gl. 11) :

K(Xq, X^, X%, XA K(X^, Xq, x%, x3) —

- lR(xi, x2, xz), A(x0)] + [R(x0, x.2, xs), A(xA,]

- [R(x1: x2), R(x0, x3)] - [R(xlt xB), R(x0, x2)].

(17)

Für die Fouriertransformierten der Vakuumerwartungswerte der rechts
stehenden Terme lassen sich auf Grund unserer Voraussetzungen gewisse
Trägeraussagen machen. Ihre Herleitung entspricht der Herleitung von
Gleichung (6) (aus welcher sie übrigens auch auf direktem Wege gefolgert
werden könnten) und soll hier für den ersten Term kurz skizziert werden :

< [R(xvx2,x3), A(x0)] >0= <R(...) A(x0) >0 - < A(x0) R(...) >0(18)

Sei U(a) der zur Translation x' x + a gehörige unitäre Operator des

Hilbertraumes. Dann gilt

A(x)= U(x) A(0) U(- x). (19)

V(a) besitzt die Spektralzerlegung

U(a)= feif"dE(p).

Wegen der Nichtexistenz negativer Energien verschwindet die vier-
dimensionale Zerlegung der Einheit E(p), falls p Ç V+.
Also :

/ rf4 x0 e~'P°'° (ü, R(...) A(x0)ü)

f d*x0 e-'*"(Q,R(...) U(x0) A(0)ü)

(ß, R(...) I d^Xoe-'P"» f e'P*«dE(p) A(0)ü\

(2 nY (Q, R( ¦ ¦ ¦) f ô (p - p0) dE(p) A (0) Q)

0, falls p0 $ V+.

Genau gleich zeigt man, dass die Fouriertransformierte des zweiten Terms
in (18) verschwindet, falls p0 £ V'_. Analoge Überlegungen lassen sich
für die andern Glieder der rechten Seite von (17) anstellen.
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Definiert man

r3(Po, ¦ ¦ ¦ fiz) (27t)-« j' • • • f d*x0... d* x3 e"*'fV* r3(x0, ...,x3) (20)

Kifii, fi* fiz) fffd'Si d*h d*Ç3 eiSHh rfa, £2, f3) (21)

's(A>. • • -, fiz) <K£o + • • • + AO ^(A. fi» fiz)< (22)

so erhält man schliesslich aus diesen Überlegungen :

D- ?z{fio, fix, fin, fiz) - rz(fix, fio, fiz, fiz) 0 \

r'zifii, fii, fiz) - r'ztfio, fiz, fiz) °
'

falls die vier Vektoren ^>0, ^1; (p± + p2), (px + p3) alle raumartig sind.
Dabei bedeutet

fio=-fii-fiz-fiz- (24)

Analoge Bedingungen kann man leicht auch für allgemeines n herleiten.
Jetzt können wir unser Problem exakt formulieren :

Gegeben sei eine Funktion r„ mit den Eigenschaften A bis D. Existiert
dann eine Funktion Wn mit den Eigenschaften a), b), c) so, dass das daraus

gemäss (9) und (11) berechnete rn das vorgegebene ist Wenn nicht,
welche zusätzlichen Bedingungen muss rn erfüllen, damit ein solches
147^ existiert

Es ist noch zu bemerken, dass rn durch (9) und (11) nicht eindeutig
festgelegt ist, da das Produkt einer Distribution mit einer
Sprungfunktion im allgemeinen nicht eindeutig definierbar ist (z. B. ist &(x) ò(x)
unbestimmt). Mehrdeutigkeiten können aUerdings nur auftreten in den

Punkten, in denen zwei der x° zusammenfallen. Wir werden uns mit
dieser Schwierigkeit nicht weiter befassen.

3. Eindeutigkeit der Lösung
Wir werden beweisen, dass die Wightmanfunktion Wn durch die

retardierte Funktion rn im wesentlichen eindeutig bestimmt ist, falls sie

überhaupt existiert. Die Eindeutigkeit besteht bis auf Terme einer
speziellen Art, deren Fouriertransformierte nämlich ausser dem Faktor
ò (p0 + + pn) noch andere ô-artige Faktoren enthalten. Wir werden
diese Unbestimmtheit am Ende dieses Paragraphen noch genauer
studieren.

Da wir es mit einem linearen Problem zu tun haben, genügt es, zu
zeigen, dass aus rn 0 das Verschwinden von W„ folgt (bis auf Terme der
angegebenen Art). Wir führen den Beweis in zwei Schritten, indem wir
erst von rn zum mehrfachen Kommutator

Kn(x0, ...,xA=<[... [A(x0), A(Xl)]..., A(xA] >0 (1)

übergehen und dann von Kn zu W„.
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Kn ist nach Definition eine Summe von 2" FF„-Funktionen und soll die
Eigenschaften besitzen, die sich aus dieser Tatsache gemäss den
Bedingungen a) bis c) aus § 2) ergeben. Es handelt sich dabei um
Trägereigenschaften im x- und im ^-Raum sowie um gewisse aus der Jacobi-
Identität folgende Beziehungen.

1. Schritt: Es ist zu zeigen, dass aus dem Verschwinden von rn das
Verschwinden von Kn folgt*).

Wir betrachten die Funktionen

Sk(x0,...,xn) =<[...[R(x0,...,xk),A(xk+1)]...,A(xn)]>0. (2)

Speziell :

sAxa, • • •> xn) — rAxa, • • •> XA
(3)

Sn(X0, ¦ ¦•• Xn) — Vn\X0< ¦-•' Xn)

S0(XC ¦¦-xn)= Kn(x0 xn)

Können wir zeigen, dass mit sk auch sk_t identisch verschwindet, so

ist der gewünschte Beweis erbracht.
Aus der Definition (2.9) von R entnehmen wir:

ö(*o - xk) ö(*i - xk) ¦ ¦ ¦ Hxk-i - xk) sk(xo, ¦¦¦¦xn)

6(x0~ xk) d(x1 - xk)... 6(xk_1 - xk) s^Xq, ...,x„)

1 falls x9 > 0

0 falls x° < 0.
6(x)

(4)

Ist also sk 0, so ist

S/c-l(*0" • • •' Xn) 0' faUS xk < Xj ^Ur a^e / < k- (^)

Ferner folgt aus der Lokalitätsbedingung

Kn(x0, xlt xn) 0 für raumartige (x0 — xx) (6)

durch mehrfache Anwendung von Jacobi-Identitäten :

sk-i(xo, ¦¦¦,xrò= 0, falls (xk — xt)2 < 0 für alle ; < k. (7)

Wir gehen wieder zu den Variablen I,- x0 — xl über :

Sa-1 (xo, ¦ ¦ ¦, x„) s*-i (Ii. • • •. S„) ¦ (8)

Sei

t Min (f°), T der Vektor (- 2 t, 0, 0, 0).

*) Der hier gegebene Beweis folgt im wesentlichen einer unveröffentlichten Arbeit
von R. Jost. Für die Erlaubnis zur Benützung dieser Arbeit bin ich Herrn Prof.
Jost zu Dank verpflichtet.
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Unter Berücksichtigung der Retardierung von R erhält man aus (5)
und (7) :

«*-i(fi W=0 falls {T-SMV+. (9)

Wir betrachten nun die Fouriertransformierte <j(f1(..., ik_lt fik,..., fin)

von sk_r bezüglich der Variablen £k,..., £n. Die übrigen Variablen £lt...,
I„_x betrachten wir als feste Parameter. Nach L. Schwartz8) ist a wegen
(9) in pk Randwert einer im Gebiet (Im pk) eV_ analytischen Funktion
F(pk), die natürlich noch von den reellen Parametern f1(..., fA._1, pk+1,...,
pn abhängt.

Andererseits ist sk_1 eine Summe von Termen der Form

< A(xt)...A(xJ R(x0, xk_A, A(xk) A(Xj)... A(XjJ > 0

oder der daraus durch Vertauschung von R und A(xk) hervorgehenden
Form. Auf gleiche Weise wie beim Beweis von (2.23) zeigt man, dass die
Fouriertransformierte bezüglich der Variablen xk,...,xn eines solchen
Terms verschwindet, falls nicht (pk + ph + + pJm) eV+, resp. (pk +
ph+ + pie) eV_. Die hier auftretenden piv resp. pjv stammen aus
der Reihe pk+1, pn. Ist diese Reihe fest vorgegeben, so existiert immer
ein pk so, dass alle Bedingungen der angegebenen Art in einer ganzen
Umgebung dieses pk verletzt sind, z. B. pk (0, P, 0, 0) mit genügend
grossem P. Das heisst zu beliebig vorgegebenen f1(..., £k_t, pk+1,-.-, fi„
existiert immer eine reelle ^-Umgebung, in der die Fouriertransformierte
von sk_1 bezüghch xk,..., xn verschwindet, und damit auch die Funktion
er, die daraus durch Multiplikation mit dem Faktor e »*o (?£ + ••• + P„)

entsteht. Daraus folgt jedoch, dass die analytische Funktion F(pk) identisch
verschwindet, also

s'k-1(^,..;U=Sk-1(x0,...,Xn)=0, (10)

womit der gewünschte Beweis erbracht ist.
2. Schritt: Es bleibt uns noch zu zeigen, dass mit Kn auch W„

verschwindet.

Die Fouriertransformierte Wn der Wightmanfunktion Wn ist von der
Form

W„(fi0, -.., fin) (2n)-* f #<"+!)x e-iS*k*H Wtt(x0, ...,xn) 1

J I

(11)

ô(p0 + + paw; (p1 + + pn, p2 + + pn,...,fin),

wobei W„ definiert ist durch (2.5). Nach (2.6) gilt somit:

Wn(p0, ...,pn)= 0,Mhpo+ + pn + 0 }

(12)
oder (pk + pk+1 +... + pn)$ V+ für ein k > 1. j
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Natürlich enthält auch Kn(p0, ...,fin) den Faktor ô (p0+ + p„). Sei

nun Kn(p0,..., pn) 0. Wir führen die Funktionen

<A(x0)...A(xm)[...[A(xm+1),A(xm+2)],...,A(xm+k)],A(xm+k+1)...A(xn)>0

ein und bezeichnen ihre Fouriertransformierten durch das Symbol

(fio> ¦ ¦ ¦> fimlfim+l, ¦ ¦ -, fim+kl fim+k+1' • ••> fin)-

Diese Ausdrücke sollen die Träger haben, die ihnen als Summe von Wight-
manfunktionen nach (12) zukommen.

Speziell ist
[p0,...,pn]=Kn(p0,...,pA=0., I

(13)
(p0,...,pA~Wn(p0,...,pn). j

Sei für ein festes k und alle m

(fio,---, Pm-1 [firn, -, fim+kì Pm+k+1, •••. fin) 0- (14)

Nach Definition gilt dann

(• ¦ -, Pm-1 Vfim, ¦¦-, Pm+k-li fim+k> • • •)

~ (¦ ¦ ¦> Pm-V fim+ k [fim, • • -, fim+k-li fim+k-ll, • • •)

(•••. fim-1 [fim, ¦¦-, fim+ki fim+k+1, • • •) °-

Durch (n — k + l)-mahges Anwenden dieser Beziehung erhält man

([fio, ¦¦-, fik-lì Pk..-. fin) (Pk [Po, ¦ ¦ ; Pk-li Pk+1, .-;Pn)

(Pk,fik+l,--;fin[fio,--;fik-ll)-

(15)

Das erste Glied dieser Folge ist höchstens von null verschieden, falls
(fik+ '•• + pn) eV+. Es ist nämlich eine Summe von Wightmanfunktio-
nen der Argumente p0,..., pn, wobei überall die Argumente pk,...,pn
am Schluss stehen. Das letzte Glied in (15) ist höchstens von null
verschieden, falls (po+ ¦¦• + pk-i) sV+. Beide Terme sind natürhch
zugleich von null verschieden, was also nur möglich ist, wenn (p0 +
+ fik-i) + (fik + ¦ ¦ ¦ + fin) (fio A- • • • 4- fin) eV+. Das widerspricht aber
der Trägerbedingung p0 + ¦¦¦ + pn 0, es sei denn, die Summen p0+...
+ pk_t und pk+ ¦¦• +p„ seien schon einzeln gleich null. Diese Ausnahmepunkte

geben Anlass zu Termen der oben erwähnten Art, die den Faktor
ô(pk+... + p„) oder Ableitungen davon enthalten. Bis auf solche
Glieder gilt also
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(fio, ¦¦-, Pm-1 [fim, ¦¦-, fim+k-li fim+k, ¦ ¦., fi„) 0 ÜX alle Ml,

d. h. (14) gilt auch für k — 1.

Wegen (13) erhält man durch «-malige Anwendung dieser Betrachtung
die behauptete Beziehung:

Wn(po,...,pn)=0

bis auf Terme der erwähnten speziellen Form.
Diese Ausnahmeterme haben wir nun noch genauer zu diskutieren.

Dazu definieren wir
^o(*o) ^oW const.

(16)
V„(x0,..., x„) Wn(x0,...,xn) -JTVa^(xh... xix)... Vß_x (xh...xJß).

Die Summe List dabei über alle Aufteilungen der Argumente (x0,..., x„)
in mindestens zwei nicht leere Mengen zu erstrecken. Innerhalb jeder der
auftretenden V-Funktionen sind die Argumente in derselben Reihenfolge
wie im betrachteten W„ anzuordnen. Gleichung (16) erlaubt die rekursive
Berechnung aller Vn aus den Wk mit k < n.

Wir bilden nun

Vn(x0, [xitxi+1], ¦¦¦)

V„(x0, xt, xi+1, - V„(x0, xi+v x-„

W„(x0, [xit xi+1], ...)-2J Va(... [x„ xi+1], Vß

(17)

Die Terme in 27, in denen xit xi+1 in verschiedenen Faktoren auftreten,
fallen heraus. Durch eine evidente Verallgemeinerung dieser Betrachtung
erhält man

Vn([x0,..., xk],..., xn) Wn([x0,..., xk],..., xn) ~2J Va([x„...xk]...)...Vß(...)

W„([x0,..., xk},..., xn) -g Va([x0,...xk]...)Wß(...),
*+ß-n-l

(18)

wobei in der zweiten Zeile die Summe S nun über alle Aufteilungen der
Argumente xk+1,..., xn in zwei Teilmengen läuft (wovon die im F-Faktor
auftretende auch die leere Menge sein darf). Speziell:

Vn([x0,...,xn))=Wn([x0,...,xn]). (19)

Im ^-Raum gilt

Vn([fio,---, fi kl fik+i,---, fin) 0, falls p0+...+pk= 0,n>k (20)

wie man mit Hilfe von (18) durch Induktion nach n leicht beweist. Sei
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nämlich p0+ — 4- pk 0 und sei (20) für Vm, m < n erfüllt. Dann wird
(18) zu

V„(tPo,.:,fik}---fin)= Wn([Po Pkl---Pn)

-Wk(\j>0,...,pk])Wn_k_1(...pn).

Die rechte Seite dieser Gleichung entsteht aber aus Wn([Pii — pk\ .../>„)
durch Einschieben eines voUständigen Systems von Zwischenzuständen

zwischen den Klammerausdruck und A (pk+1) und Weglassen des zum
Vakuum gehörigen Terms und hat somit die behauptete Trägereigenschaft.

Gleichung (15) gilt sowohl für Wn als auch für Vn. Vn ist aber im Gegensatz

zu Wn durch das dort angegebene Verfahren eindeutig bestimmbar,
da es in den kritischen Punkten pk + + pn 0 verschwindet. Also

ist Vn(p0,...,pn) durch Kn eindeutig festgelegt. Wn ist aber nach (16)
durch die Vk mit k < n ausdrückbar, also ist Wn durch die Kk mit k < n
eindeutig bestimmt.

4. Der Zusammenhang zwischen K3 und W3

Die Frage nach der Existenz von rn ist im allgemeinen Fall schwieriger
zu klären als die Eindeutigkeitsfrage. Wie wir schon in der Einleitung
erwähnten, können für n 1 und 2 algebraische Auflösungsformeln gegeben

werden, welche man jedoch nicht auf höhere n verallgemeinern kann.
Wir werden hier nur den Fall n 3 untersuchen. Das angewandte

Verfahren scheint prinzipiell auf höhere n übertragbar zu sein, wird jedoch
sehr unübersichtlich. Wesentlich neue Erscheinungen sind bei einer
solchen Verallgemeinerung nicht zu erwarten.

Wie beim Eindeutigkeitsbeweis führen wir den mehrfachen Kommutator

K(x0,...,x3)= <[[[A(x0),A(xl)],A(x2)lA(x3)]>0 (1)

als Zwischengrösse ein. (Der Index n 3 in r„, Kn, Wn soll in Zukunft
weggelassen werden.)

In diesem Paragraphen soll der Zusammenhang zwischen K und W
untersucht werden. Wir werden zeigen, dass folgende Bedingungen für
K notwendig und hinreichend für die Existenz eines W(x0,..., x3) mit den

Eigenschaften a) bis c) aus § 2 sind :

a) K(xa, x3) ist invariant gegen die inhomogene eigentliche Lorentz-
gruppe.

ß) Die Fouriertransformierte K von K hat folgende Trägereigenschaften

:

K(p0, ...,p3)=0, falls ^32<0 (2)
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K(fio. fix- fi2, fiz) ~ K(p0, pit p3, p2) 0, falls (p2 + p3)2 < 0 (3)

y) K(x0, xlt x2, x3) 0, falls (x0 — xx)2 < 0. (4)

ô) Es gelten die Identitäten

K(x0, xv x2, x3) + K(xv x0, x2, x3) 0 (5)

K(x0, xlt x2, x3) + K(xx, x2, x0, x3) + K(x2, x0, xx, x3) 0 (6)

i\.\X^,Xx,X2,X3) J\[Xq,Xi,X3,X2) K.(X2,X3,Xx,Xq) I\.(X2,X3,Xq,Xx). (l)

Dass diese Bedingungen notwendig sind, erkennt man sofort, wenn
man K gemäss (1) als Summe von acht Wightmanfunktionen schreibt.
Gleichung (3) wird hergeleitet unter Benützung der Jacobischen Identität

< [PW. M*ù\ A(H)l A(x3)] >0

- < [PW, A(xx)l A(x3)], A(x2)] >0

< [[A(x0), A(xx)l [A(x2), A(x3)]] >0.

Diese Identität führt durch zweimalige Anwendung auch zu (7).
Ausser (2), (3) und (4) gibt es natürlich noch weitere Trägerbedingungen

für K und K, doch lassen sich diese aus den hier gegebenen mit Hilfe
der Identitäten (5) bis (7) herleiten.

Dass die angegebenen Bedingungen hinreichend sind, zeigen wir durch
den Ausbau der beim Eindeutigkeitsbeweis angewandten Methode zu
einem Konstruktionsverfahren. Wir verwenden die im § 3 eingeführte
Bezeichnungsweise.

Sei K(x0,..., x3) mit den Eigenschaften oc) bis ò) gegeben. Die Zahl der
darin auftretenden Kommutatoren wird unter Ausnützung der
postulierten ^>-Raum-Eigenschaften sukzessive abgebaut durch die Definitionen

[p0,...,p3]=K(p0,...,p3) (8)

([Po,Pi,Pz\fiz)= e(p3)[fi0,...,fi3]

(Pz[Po,fii,fi2Ì)= -0(-fi3)[fio,...,fizl

([fio, fili fiz, fiz) 0(fiz + fiz) {([fio, fil, fizì fiz) + (fiz [fio, fil, fizi)}

(fit [fio, fili fiz) 0(fiz + fiz) (fio [fil, fiz, fizi) -
- 0(- fiz - fiz) ([fio, fii, fizì fiz)

(fiz, fiz [fio, fili) - 0(- fiz - fiz) {([fio, fil, fizi fiz) + (fiz [fio, fil, fizi)}

(9)

(10)
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W(p0,...,p3)

(Po,.-;Pz)

Hfii + fiz + fiz) {([fio, fili fiz, fiz) + (fil [fio, fizi fiz) + (fil, fiz [fio, fizi)}

Die so definierten Funktionen erfüllen die Gleichungen

([fio, fii, fizi fiz) - (fiz [fio, fii, fizi) [fio, ¦ ¦ -, fizi

([fio, Pli Pz, Pz) - (fiz [fio, fili fiz) ([fio, fii, fizi fiz)

(Pz [Po, Pii Pz) - (Pz, Pz [Po, Pli) (Pz [Po, Pi, Pzi)

(Po, Pi, Pz, fiz) - (fii, fio, fiz, fiz) ([fio, fili fiz, fiz) usw.,

(11)

(12)

(13)

(14)

d. h. das aus W (Gl. 11) gemäss (1) berechnete K ist tatsächlich das

vorgegebene. Wir haben noch zu verifizieren, dass das so bestimmte W die

Bedingungen a), b), c) erfüllt. Dabei beginnen wir mit Bedingung b),
d. h. mit den ^>-Raum-Trägereigenschaften :

Wegen (2) ist

(\fio,fii, fizi fiz) 0, falls p3<ß7+ |
(15)

(fis [fio, fii, fizi) 0,iaüs fiz $V_. \

Sei p3eV+, p2$V_, (Pz + fi3)CV+, also auch p£V+, (fi2 + fiz)$V_.
Dann, mit Hilfe von (2) und (3) :

([fio, fii, fizi fiz) \

Hfiz) {[fio, fii, fiz, fizi + [fio, fii, fiz, fizi - [fio, fii, fiz, fizi} 0.

Analog :

(16)

(fiz [fio, fii, fizi) 0, falls p2 i V+ und (p2 + p3) $ V_. (17)

Aus (15) und (17) folgt:

(Ifio, Pii Pz, Pz) 0 falls p3 $ F+. (18)

Weiter:
([fio, fili fiz, fiz) - ([fio, fili fiz, fiz)

0(fiz + fiz) {[fio, fii, fiz, fizi - [fio, fii, fiz, fizi} (19)

0, Mis (p2 + p3) $V+,

nach (3). Also

([fio, fili fiz, fiz) 0 falls p3 e V+, (p2 + p3) ckV +, (20)
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da dann auch p2 $V+. Genau gleich zeigt man :

(fiz, fiz [fio, fili) 0 falls p2 £ V_ oder (p2 + p3) $ V_. (21)

Ferner :

(fiz [fio, fili Pz) « ([Po, fili fiz, fiz) - ([fio, fii, fizi fiz) 0 falls fis$V+ |

(fiz [fio, fii, fizi) + (Pz, Pz [Po, fiii)=0 falls p2 f V_. J

Sei p3eV+, p2eV_, aber (pt + p3) <£F+, (pt + p2) <£V_. Dann auch p,2 <0,
p02 < 0. Somit, unter Ausnützung von (6):

(fiz [fio, fili fiz)

([fio, fiiifiz, Pz) + ([fii, fiz, fioifiz) + (fiz, fio, fiiifiz)

0, falls (p2 + p3) $ V+

- (Pzfii, fiz, fioi) - (fiz[fiz, Po, Pii) + (Pz, fiz[fio, fili)

0, falls (p2 + p3) $ V_,
d.h.

(fizfio, fiiifiz) 0, falls (px + p3) $ V+ und (pt + p2) $ V_. (23)

Sei£3eF+, (fizA-fi3)eV+, p0$V'_, p^V_, also (fi^fi^^V^ (px+p3)
$v-, fi\$V+, fio$V-¦ Dann:

([fio, fiiifiz, fiz)

([fio, fili fiz, fiz) - (fiz, fizfio, fili)

([fio, Pi, fizifiz) + (fizfio, fii, fizi)

[fio, fil, fiz, fizi ~ [fio, fii, fiz, fizi + (fio, fil, fizifiz)

[fiz, fiz, fii, fioi - [fiz, fiz, fio, fili - {[Pi, Pz, PoiPz) ~ ([fiz, Po, PiiPz)

0,

wobei der Reihe nach die Gleichungen (21), (13), (9), (12), (7), (6), (2)

und (16) verwendet wurden.
Also

(fio, PiiPz, Pz) 0, falls p0 <ß V_ und p, £ V_ (25)

und analog
(Pz, fizfio, fiii) 0, falls p0 <ß V+ und px $ V+. (26)

Schliesslich :

(p0, ...,p3) =0, falls p3$V+ (27)

wegen (18) und (26) ;

(24)
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(fio, .-;fiz) (fio, fil, fiz, fiz) + (fio, fiiifiz, fizi) |

0, falls p3 G V+, (p2 + p3) £ V+ |

wegen (27) (p2^V+\) und (21); und endlich

(fio, fii, fiz, fiz) (fiotti, fizifiz) + (fio, fizfii, fizi) + (fio, fiz, fiz, Pi)

0, falls p3 e V+, (p2 + p3) G F+, (px + p2 + p3) ai V+ (29)

wegen (22), (21) und (27) (p&V+).

(27), (28) und (29) sind aber genau die Bedingungen, die W nach (3.12)

erfüllen muss. Unser W aus Gleichung (11) erfüllt somit die Bedingung
b) aus § 2.

Translationsinvarianz besteht trivialerweise, da ja der Faktor ö(p0 +...
+ p3) unverändert durch die ganze Konstruktion mitwandert. Wegen
der eben hergeleiteten Trägereigenschaften können in den Definitionen
(8), (9), (10) alle auftretenden ©-Funktionen durch die charakteristische
Funktion des Vorkegels mit denselben Argumenten ersetzt werden.

Wegen Voraussetzung a) ist also W (und damit W) invariant gegen L\,
womit auch Bedingung a) verifiziert ist.

Die in (9) und (10) auftretenden (9-Funktionen enthalten nur die
Variablen p2 und p3. Die «-Raum-Eigenschaft (4) pflanzt sich deshalb

ungestört fort, d. h. Rücktransformation in den «-Raum ergibt

([#„, xA\x2, x3) (x2[x0, xt]x3) (x2, x3[x0, zj) 0 (30)

wenn (x0 — %) raumartig ist. Das ist aber Gleichung (2.7), somit ist auch
Bedingung c) erfüUt.

Zum Schlüsse sei noch die explizite Auflösungsformel angegeben, die
sich durch Einsetzen von (9) und (10) in (11) ergibt:

W(p0,..., p,) 6(ps) 6 (p2 + p3) 0 (p, + p2 + p3) {K(Po, fii, p2, Ps) -
-e(-p2)K(p0,p1,p3,p2)~

-6(p1 + p3) d(-p,) K(p0,p2,p3,p1) -
-Ö(-pi-p3)K(Po,p2,Pi,fiz)~

- H-fii- fiz) 8(fiz) K(Po, P3, fix, P2) +

+ 0(-fii-fiz)0(- fii) K(Po, fi3, fiz, fii) }¦

5. Die Funktion r(kt, fc2, fe3)

Wir haben noch den Zusammenhang zwischen K(x0, x3) und
r(x0, x3) aufzuklären. Dazu bedienen wir uns analytischer Methoden.

(31)
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Wir führen die komplexen Vierervektoren

kj pj + iqJt pj und q} reell, (1)

ein und betrachten die durch (2.21) definierte Funktion ~r(kv k2, k3) der
zwölf komplexen Variablen kf.

Die Eigenschaften A, B, C aus § 2 ergeben folgende Bedingungen für r :

A'. r(klt k2, k3) ist invariant gegen L\.
B'. r(klt k2, k3) ist analytisch im Gebiet1)

X={(k1,k2,k3) | allere V+}, (2)

wobei V+ den Vorkegel unter Ausschluss des Randes bedeutet.
Für jedes B > 0 und für alle Qjt q^eV'+ ist

e-m~r(Pj + i(Qj + tqj))

in t J* 0 beschränkt durch ein Polynom in p,8).
C'.r(kly k2, k3) ist invariant gegen alle Permutationen der Variablen.
Nach einem Satz von Bargmann, Hall und Wightman8) folgt aus

A' und B', dass r analytisch fortsetzbar ist in das Gebiet

W=V(AW). (3)
AeL+(C)

L+(C) bedeutet dabei die Gruppe der komplexen Lorentztransforma-
tionen mit der Determinante + 1. r ist invariant gegen L+(C) :

r(kx, k2, k3) r(Akx, Ak2, Ak3) für A e L+(C). (4)

Mit diesem Satz können wir auch Bedingung D aus § 2 in eine Eigenschaft

von r umsetzen: Nach R. Jost2) liegt der reelle Punkt (px, p2, p3)

in W, falls 3

(É aJ Pj)2 < °für alle ai > °> E ai > °- (5)

,_i
3 3

Sei p0= — S pt, k0= — Ekf. Es gibt reelle Umgebungen, in denen nach
i i

(5) sowohl r (p1: p2, p3) als auch r(p0, p2, p3) regulär ist. In diesen Punkten

gilt (2.23), woraus man durch analytische Fortsetzung10) erhält:

D'. r(kv k2, k3)= r(k0, k2,k3). (6)

Nach C spielt die Variable kx keine ausgezeichnete Rolle, man kann
also auch k2 oder k3 mit k0 vertauschen.

(6) und die eben erwähnten analogen Beziehungen ergeben eine
Erweiterung des Regularitätsgebietes von r, die wir weiter unten diskutieren

werden.

18 H.P.A. 33, 4 (1960)
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In den reellen Punkten (/>¦), die nicht Regularitätspunkte von r sind,
ist r(fix, p2, p3) Randwert der analytischen Funktion r(kx, k2, k3) in
folgendem Sinne:

Für jede Testfunktion cp(px, p2, p3) eS11), d.h. für jede beliebig oft
stetig differenzierbare Funktion mit genügend raschem Abfall im
Unendlichen, gilt:

lim

qi^rO

d12 p r(fii, fiz, fiz) <p{Pi, Pz, Pz)

d12 pr(fix + iqx, ...,fiz + iq3) <p{fii, fiz, fiz)-

(7)

Dieser limes soU existieren für alle cp e S und unabhängig von der Art und
Weise sein, in der die kt gegen p{ streben, wenn das nur innerhalb SR

geschieht. Dann ist das so definierte r(p,) eine temperierte Distribution12),
wie es sein muss.

Wir woUen jetzt weitere Eigenschaften der Funktion r herleiten, die

aus der Existenz von K(x0,..., x3) folgen und die wir beim Übergang von
r zu K benötigen werden. Es handelt sich um eine Erweiterung des

Regularitätsgebietes von r sowie um eine ziemlich undurchsichtige Identität

zwischen gewissen Randwerten der Funktion r.
Wir definieren

s(x0, ...,x3)= < [R(x0, xx, x2), A(x3)} >0.

Die Definitionsgleichung (2.9) von r wird damit zu

r(x0, xx, x2, x3)

ü (Xx X3) (7 (X2 X3) S(Xq, Xx, X2, X3) +

+ 6 (x2 — %) 0 (x3 — xA, s(x0, x2, x3, xx) +

+ u (x3 x2) ö (xx — x2) s(x0, x3, xx, x2).

s hat folgende Trägereigenschaften :

s(x0, x3) 0, falls (x0 — xx) $ V+

oder (x0 ¦— x2) £ V+

oder (x0 — x3), (xx — x3), (x2 — x3) alle raumartig.

(8)

(9)

(10)

Die ersten beiden Bedingungen ergeben sich aus den Eigenschaften von
R, die dritte aus den Eigenschaften y) und ô) von K (Gl. (4.4) bis (4.7)),
wenn man beachtet, dass

s(x0, ...,x3)= 0(xo,xx,x2)K(x0,xx, x2,x3) + d(x0,x2,xx) K(x0,x2,xx,x3) (11)
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Es gilt :

s(x0, x3) r(x0, x3), falls (x3 — xx) ^ V+ und (x3 — x2) £ V+. (12)

Aus der Gleichung (9) erkennt man sofort die Gültigkeit dieser Beziehung
im Falle x9 < xx, x\. Für die andern Fälle hat man die Identität (4.7) zu
Hilfe zu ziehen. Wegen der Symmetrie von s und r in xx und x2 genügt
es, den Fall x\ > x\ zu untersuchen.

Für x°o > x\ > x% > x\ wird (12) zu

was unter unserer Voraussetzung (x3 — x2) <£V+ wegen (4.7) und (4.4)
stimmt.

Im Falle xl > x\ > x\ > x\ ist zu zeigen, dass

i\(Xq, X3, Xx, X2) A \Xq, xx, x2, x3),

oder mit (4.6) umgeformt

XV l ^vn* "^1 > "\> 2/ ~A~ ii- Iai ^^t> fl)' "2/ — ii. I ^n » -^1) -^2' 3/"

Das gilt wieder auf Grund unserer Voraussetzungen wegen (4.7) und (4.4).
Für #3 > #<} verschwinden beide Seiten von (12) gemäss (10) und (2.15).
Damit ist (12) bewiesen. Die Funktion

...,x3) (13)g(xo, ¦ ¦;xz) - s(#0, %3) - r

verschwindet also ausserhalb der durch

G: (*o-

(*o-

%) e ^+

*a) eF+

(*3~ %) g F+ oder (x zv+

(14)

definierten Punktmenge.
Wir betrachten nun r, s, g wieder als Funktionen der Differenzenvariablen

£j x0 — Xj und führen ihre Fouriertransformierten r(px, p2,
p3) usw. ein. Aus (14) folgt in gleicher Weise wie bei r, dass g(px, p2, fis)
Randwert einer analytischen Funktion g(kx, k2, k3) ist. Deren Regulari-
tätsgebiet ist die Röhre

©123 : ?3 6 V_, (qx + q3) G V+, (q2 + q3) G V+, (15)

und g unterhegt darin analogen Beschränktheitsbedingungen wie den in
B' für r gegebenen. Das gilt nämlich, falls8)

': Zïjqj>0 für %)eG,(qj) g©123.
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Diese Bedingung ist aber erfüllt : Sei (|1 — |3) g V+, £x g V+, £2 e V+.
Dann gilt in ©123

27 h li £l (?1 + 93) + f 2 ?2 - (f1 - £3) ?3 > °.

da alle drei Glieder dieser Summe schon einzeln > 0 sind. (Aus q3eV_
und (q2 + q3)eV+ folgt natürlich q2eV+.) Genau gleich verfährt man im
Falle (|2 — I3) gF+, £x eV+, I2gF+, der nach (14) auch auftreten kann.

Also

g(Pi, fiz, fiz) um ì(kx,k2,k3), (16)
(«) e ®i2„

wobei dieser limes im Sinne von Gleichung (7) zu verstehen ist.
In § 2 haben wir gezeigt (im Anschluss an (2.18)), dass

~s(fii, fiz, fiz) 0 für p2 < 0. (17)

Nach der Definition (13) von g gilt somit :

ì(fii, fiz, fiz) - Hfii, Pz, Pz) für P32 < 0. (18)

g(kj) erfüllt die Voraussetzungen des bei (3) erwähnten Satzes von
Bargmann, Hall und Wightman ; also lässt sich g in ein grösseres
Gebiet ©123 analytisch fortsetzen, das analog zu 91' definiert ist. Die reellen
Punkte in (5X23 sind analog zu (5) bestimmt durch die Forderung

[«i (Pi + Pz) + «2 (fiz + fiz) -oi3fi3i2<0 für alle oc,- > 0, JT oc, > 0. (19)

Speziell ist sowohl in den reellen Punkten von 9T als auch in denen

von ©î23 der Vektor ^>3 raumartig. Nun gibt es reelle Umgebungen, die
beiden diesen Gebieten angehören, z. B. eine Umgebung des Punktes

px=p2= (0,10,0,0), p3= (0,0,1,0).

In diesen Punkten gilt (18), also ist g(kj) eine analytische Fortsetzung von
r(kj) in das Gebiet ©^:

g(kx,k2,k3)= -r(kx,k2,k3), (20)

und r ist regulär in ©1,3.
Auf Grund dieser Tatsache sowie der Symmetrien C' und D' von r und

der aus (4) folgenden Invarianz von r gegen die totale Spiegelung k\
— k{ lässt sich nun über das Regularitätsgebiet von r folgendes aussagen :

Die Bedingungen B', C, D' ergeben, dass r(kx, k2, k3) regulär ist, falls
drei der vier q, (q0 mit eingerechnet!) in V+ hegen (oder falls drei der
vier qj in V_ liegen, wegen der erwähnten Spiegelinvarianz). Es sind
dann alle (y- 4- qk) zeitartig (j,k 0, ...,3). (20) bedeutet, dass r in ©123

noch analytisch ist. An Stelle von kx, k2, k3 kann man hier wieder eine
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beliebige Auswahl der vier £¦ in behebiger Reihenfolge setzen, d. h. r ist
regulär in allen ($ikj. Auch hier sind alle (q, + qk) zeitartig, wie man sich
leicht überlegt.

Es ist (&{kj ©ty. Aus den vier Indizes 0, 3 lassen sich auf vier
Arten drei verschiedene auswählen. Von diesen dreien kann jeder
zuhinterst stehen, so dass im ganzen zwölf Gebiete ©,y existieren. Diese
Zahl wird noch verdoppelt durch die Möglichkeit der totalen Spiegelung.

3

Sei nun ein Punkt (k0,..., k3) (27kj 0) gegeben, in dem aUe [q} + qk)
o

zeitartig sind. Dann ist dieser Punkt ein Regularitätspunkt von r :

Liegen drei der q, z. B. q{, qjt qh, im selben Halbkegel, so haben wir
es nach (2) und (4) zu tun mit einem Regularitätspunkt von r(kit kj, kh)

r (kx, k2, k3).
Seien nun zwei der q{ in V+, die beiden andern in V_ (z. B. q0, qx gF+,

q2, q3 eV_). Das ist auf sechs Arten möglich. Die (q} + qk), j 4= k, können
noch auf je vier Arten in den beiden Halbkegeln verteilt sein : In unserem
Beispiel ist die Lage von (qx + q2) und von (qx + q3) noch frei, die übrigen
Summen sind dadurch festgelegt. Diese 6 X 4 24 Möglichkeiten
entsprechen gerade den 24 ©-Gebieten. Ist z. B. in unserem Spezialfall
(li + le zV-, (?i + q3) eF+, so sind wir in einem Regularitätspunkt von

~g(K ki, kz) - r(k0, kx, k3) - r(kx, k2, k3).

Wir haben also folgendes Ergebnis :

I. r(kx, k2, k3) ist analytisch im Punkte kj p} + iqjt falls dort alle

(qj + qh?>0(hh 0,...,3).
Auf jedem Strahl Qj + tqj (t > 0), der ganz in der angegebenen Menge des

q-Raumes verläuft, wird für jedes B > 0 der Ausdruck

e-B'~r(pj + i(Qj + tqj))

majorisiert durch ein Polynom in den p,.
Natürlich ist die angegebene Menge nicht das volle Regularitätsgebiet

von r; sie ist überhaupt kein Gebiet, da sie nicht zusammenhängend ist.
Es handelt sich um eine Vereinigungsmenge von Röhren der Art von 3t
und ©. Nach dem früher zitierten Satz von Bargmann, Hall undWiGHT-
man ist r also noch analytisch in der Holomorphiehülle § des aus der
betrachteten Menge durch Anwendung von L+(C) hervorgehenden
Gebietes.

Wir werden in § 8 auf indirektem Wege zeigen, dass auch § noch nicht
das volle Regularitätsgebiet von r ist.

Die eben hergeleitete Bedingung I ist, zusammen mit A' bis D', noch
nicht hinreichend für die Lösbarkeit unseres Umkehrproblems, d. h. für
die Existenz von K. Man kann das z. B. daran sehen, dass wir die Eigen-
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schaft (14) der Funktion g nicht voll ausgenützt haben. Aus I (d. h. aus
(15) und den zugehörigen Beschränktheitsbedingungen) folgt nämlich
nur, dass der Träger von g(Çx, f2, £3) in der Menge £x eV+, |2 eV+, (£x +
|2 — iz) eV+ liegt (siehe § 6). Diese Menge ist aber grösser als G.

Wir wollen deshalb noch eine weitere Bedingung für r ableiten, die
dann zusammen mit den schon gegebenen die Existenz von K sicherstellt.

Dazu beweisen wir zuerst die Identität

d(x2 - x3) [g(x0, xx, x2, x3) - g(- xx, -x0, - x3, - x2)] 0. (21)

Wegen (14) gilt das, wenn Xo < x\, oder (x3 — xx) $V+, oder (x0 — x2) $V+.
Dann verschwinden nämlich beide Summanden einzeln. Es bleibt also

nur der Fall
Xq ^- x2 ^> x3 ->¦ xx

zu untersuchen. Berücksichtigt man die Definition (13) von g und die
aus dem unter unseren Voraussetzungen geltenden CTP-Theorem2)
folgende Beziehung

i\(Xq, xx, x2, x3) /v( Xq, xx, x2, x3), \A^)

so wird (21) in diesem Fall:

XV \-^Qj -^"2' 1> 3/ ^^ \ 0* 2> 3' 1/ —i *^ \ 1» 3» 0» 2/ ~^^~ Vi' 3> -^2> 0/ — ^*

Das ist aber Gleichung (4.7), deren Gültigkeit wir hier voraussetzen.
Damit ist (21) bewiesen.

Wir behaupten nun, dass folgende Identität gelte:

g(x0, xx, x3, x2) + g(x2, x3, xx, x0) —

_
I (23)

g xx, x0, x2, x3) g (— x3, — x2, — xe, xx) — 0. j

Wegen (21) und (14) ist das erfüllt, falls x% > x\ oder x\ > x%, wie man
durch Multiplikation mit den entsprechenden 0-Faktoren erkennt.
Durch Anwendung der Symmetrie

g(x0, xx, x2, xa) g(x0, x2, xx, x3) (24)

sieht man in gleicher Weise, dass (23) auch gilt, falls x9 > Xo oder x\ > x\.
Zu diskutieren bleibt der Fall x\, x\ < x%, x9. Wegen der Invarianz der
zu beweisenden Gleichung gegen die Vertauschungen xx <=> x3 und
x0<r-> x2 (wieder als Folge von (24)) genügt es, den Fall

Xx *C X3 <C Xq <^, X2

zu betrachten. Die linke Seite von (23) wird dann nach (13) und (22) :
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Lf J\\Xq} X%, X-^y %%) -\- xv[Xfy X^, X±, Xq) ¦ ri.[Xfy Xq, X%, X-^j -j-

\~ J\.\X-^y XQ, Xay Xq} -t\- \X~\ y Xtty Xfty XOJ ~\ "-V^S* 0* 1» 2/'

was mit (4.5) bis (4.7) umgeformt werden kann :

L= K(x0, xx, x3,x2) + K(x3, x2, xg, xx) + K(x2, x3, xx, x0) + K(xx, x0, x2, x3) 0,

womit (23) bewiesen ist.
Durch Fouriertransformation erhält man aus (23) :

î(fii, fiz, fiz) + ìifiz, fii, fio) - ì(-fio, - fiz, - fiz) - £(- fiz,- fio-fii) 0- (25)

Diese Gleichung kann nach (16) und (20) als Beziehung zwischen
Randwerten der Funktion r(kj) geschrieben werden und ergibt so die
gewünschte zusätzliche Bedingung für diese Funktion :

II. Es gilt die Identität

lim r(kx, k2, k3) + lim r(kx, k2, k3)
to)s©ls2 to)e©31„

lim r(kx, k2, k3) + lim r(kx, k2, k3). (26)

qj->-0 qj~+o

Diese Forderung scheint sich nicht in einfacher Weise als
funktionentheoretische Eigenschaft von r(k) ausdrücken zu lassen, wodurch sie sich
sehr unvorteilhaft von den andern Forderungen A' bis D' und I abhebt.

Es ist noch zu bemerken, dass für spezielle Werte der Variablen p, die
Identität (26) eine Folge der Bedingung I ist. Die lim-Vorschriften
(ij) e©i32 un(l (— 1j) 6©o23 unterscheiden sich nur durch das Vorzeichen
von (q2 + q3), ebenso die beiden andern lim-Vorschriften, die in (26)
auftreten. Daraus folgt, dass die vier Terme der Identität paarweise gleich
sind, falls (p2 + p3) raumartig ist. (Siehe den Beweis von Gleichung (6.11)
im folgenden Paragraphen.) Eine solche Gleichheit je zweier Terme
besteht auch, falls (px + p2) raumartig ist. In diesen beiden Fällen ist also

(26) von selbst erfüllt.

6. Die Existenz von K(x„, x3)
Es soll gezeigt werden, dass die in § 5 für r(kx, k2, k3) hergeleiteten

Bedingungen I und II, zusammen mit den bereits bekannten A' bis D', für
die Existenz der Wightmanfunktion hinreichend sind.

D. h. es gilt folgender Satz :

Es sei eine analytische Funktion r(kx, k2, k3) mit den Eigenschaften A'
bis D', I und II aus § 5 gegeben.



lim r(Ä1> k2, k3)
(«>eS
«->o

- lim r(kx, k2, k3
to) e ©„

«^o
*; fi
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Dann existiert eine Funktion K(x0,..., x3) mit den Eigenschaften a) bis

ô) aus § 4 so, dass die daraus nach (2.9) und (2.21) berechnete Funktion
r(kx, k2, k3) die vorgegebene ist.

Die in II auftretenden Randwerte von r, ebenso wie die im folgenden
eingeführten anderen Randwerte, sollen existieren im Sinne der
Gleichung (5.7).

Wir beweisen diesen Satz, indem wir K aus r explizit konstruieren.
Nach § 3 ist K eindeutig festgelegt. Das im folgenden konstruierte K ist
also das einzig mögliche.

Zuerst definieren wir die Funktionen reeller Variablen

r(fii, fiz, fiz

g(fij, fiz, fiz) - um ~r(K K kz) (1)

fi) + %

Die Gebiete 9t und ©123 sind dabei definiert durch (5.2) resp. (5.15).
Wegen Voraussetzung I ist r in 9Î und in ©123 analytisch, so dass die
Definition (1) sinnvoll ist (unter der erwähnten zusätzlichen Voraussetzung

über die Existenz der Randwerte von r).
Wegen C und der Symmetrien von 9Î und ©123 gilt

Hfiit, fih, fit) r(fii, fiz, Pz) (2)

für jede Permutation (ix, i2, i3) der Indizes (1, 2, 3), und

ì(Pi, Pz, Pz) Ì(Pz, Pi, Pz)- (3)

Sowohl 51 als auch ©123 sind konvex. r(k) ist deshalb in 5Î, resp. ©123

Fouriertransformierte einer Distribution r(£x,£2,£3), resp. g(£x, f2. £3)-

Nach L. Schwartz8) liegt der Träger von r im Halbraum

È ti ii > °>

i 1

falls für alle B > 0 und alle (Q}) G 9t der Ausdruck

e-Btr(pj + i(Qj + tqj))

in t > 0 durch ein Polynom in pj beschränkt ist. Nach Voraussetzung
I ist dies der Fall für alle §,!gF+, d. h. der Träger von r liegt im Durchschnitt

aller Halbräume der angegebenen Art mit g,iGF+, also

r(Sv h, h) 0, falls ein f, ^ F+. (4)
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Ebenso liegt der Träger von g im Durchschnitt der entsprechenden
Halbräume mit (q() G©123. Aber

Z! ti lì £l (?1 + ?s) + f2 (?2 + ?s) " (fl + f2 ~ fS) %,
also

g(fi. f* fa) 0, falls £ s) F+, oder f £ F+, oder (& + f, - |3) £ F+. (5)

Wegen der Existenz der Randwerte in (1) sind r und g temperierte
Distributionen, und r(pt), g (fii) sind ihre Fouriertransformierten im Sinne
der Distributionentheorie.

Die Voraussetzung II gestattet eine Verschärfung der Trägereigenschaft

(5) : (5.26) kann nach (1) in der Form (5.25) geschrieben werden.
Daraus erhält man durch Fouriertransformation :

g(fi. fa. fs)

- g(f2 - £„ Sx - f„ -13) + g(|1; Çx -13, fj - £2) + g(St - h, £»£»- fi)-

Ist weder (£x — Ç3)gV+ noch (|2 — £3) eV+, so verschwinden alle
rechtsstehenden Glieder wegen (5). Der Träger von g liegt also in G (siehe (5.14)) :

à g F+, |2 g F+, fo - fj e V+ oder (£, - |3) e F+. (6)

Aus der Invarianz von r(/y und der Gebiete 91 und ©123 gegen Li
ergibt sich die Invarianz von r(£{) und g(£{) gegen L|.

Aus r(|,-), resp. g(|,-) erhält man die entsprechenden Funktionen der
vier Variablen x{ durch die Definition

r(XQ, xx, x2, x3) — r(x0 xx, Xq x2, xa x3)

g(xo, xi> xz> xz) §(xo xi> xo xz, xo xz)

Weiter definieren wir

s(x0, x3) r(x0, ...,x3) + g(x0, ...,x3)

also s(fi,f2.f8) r(Si, f2> fa) + g(£i, £., &)

s ist retardiert in fj und £2 und erfüllt die Gleichung (5.9) :

r(xü, %3) u (xx x3) u (x2 x3) s(x0, xx, x2, x3) +

+ d (x2 - xx) 0 (*8 - %) s(x„, x2, x3, xx) +

+ " (X3 X2) U [Xx X2J S(Xq, x3, xx, x2),

(-')

(8)

(9)

wie man durch Einsetzen erkennt (unter Benützung der (2) und (3)
entsprechenden Symmetrien von r und g).
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Im /i-Raum wird (8) zu

~s(fii, fiz, fiz) Hfiv Pz, fiz) + î(Pi, fiz, fiz)

¦¦ lim r(kx, k2, k3) — lim r(kx, k2, k3).
(«)6 8J («)e8„,
«-»¦o qî-+o

(10)

Die beiden limes-Vorschriften in dieser Gleichung unterscheiden sich

nur durch das Vorzeichen von q3. Es ist nämlich q3eV+ in 9Î, <?3gF_ in
©123» aber in beiden Gebieten qx, q2 eV+ und (qx + q3) eV+, (q2 + q3) eV+.

Falls p3 raumartig ist, ist der Punkt (£•) mit qx eV+, q2 gF+, q3 0
ein Regularitätspunkt von r(k,). Es kann dann nämlich eine infinitesimale

Lorentztransformation AgL+(C) angegeben werden, so dass (Akx,
Ak2, Ak3) e% d. h. unser Punkt liegt in 9Î' :

Ohne Einschränkung der Allgemeinheit kann man annehmen

p3 (0, a, 0, 0), a > 0.

Durch die infinitesimale Transformation

/01l0 \
A 1 + i ei HL- s > 0

\o\o)
wird dieses p3 übergeführt in k3 Ap3 p3 + ie(a, 0, 0, 0), also ist q3eV+.
Für / 1,2 ist mit q, auch q'j in V+, wenn nur e genügend klein gewählt
wird.

Da die Reihenfolge des Verschwindens der q, in der Definition (1) keine
Rolle spielen soll, können wir in (10) zuerst mit q3 gegen null gehen. Ist
p3 raumartig, so gelangen wir dabei nach der vorhergehenden Bemerkung
in einen Regularitätspunkt von r, das Vorzeichen von q3 ist also in diesem
Falle ohne Bedeutung. Beide Terme der rechten Gleichungsseite sind
gleich, d. h.

~s(fii, fiz, fiz) 0 wenn p2 < 0. (11)

Wegen (2) und (3) gilt

s(Çx, kz, f3) s(f2, ii, f3), (12)

wegen der Lorentzinvarianz von r und g ist auch s invariant gegen L\.
Wir haben nun noch die Gleichung (5.11) zu lösen, die zusammen mit

(9) zu der Definition (2.9,11) der Funktion r äquivalent ist. Die Lösung
kann auf algebraischem Wege gefunden werden, unter Ausnützung der
Bedingungen (4.5) und (4.6) und der Beziehung (5.22). Es ergibt sich:

i\(X0, X3) — S(Xq, Xx, X2, X3) S\XX, Xq, x2, x3)

S Xq, Xx, X2, — X3,) + S (— Xx, — Xq, X2, X3).
(13)
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Dieser Ausdruck ist sicher lorentzinvariant, da s lorentzinvariant ist.
Wegen der Retardierung von s in (x0 — xx) erfüllt K die Lokalitätsbedingung

(4.4). Die Antisymmetrie (4.5) ist offensichtlich auch
vorhanden, ebenso gilt die Jacobi-Identität (4.6). Zu prüfen sind also noch
die Bedingung ß) und die Identität (4.7) aus Bedingung ô) in § 4.

Durch Einsetzen von (8) in (13) erhält man unter Berücksichtigung
der Symmetrien von r und g :

v xo> xv xz,

X0> Xl> xz>

(14)

^^~\ 0, 1» z, z) ^~\ o, 1, xz* xz)

g\X0, xv xz< xz) — g(Xl' X0' XZ' xz) i

"r g( Xx, — Xq, X2, X3)

— §(xo, xi, xz, xz) + S(xi, xo> xz> xz) + ;

g( xi> xo< — xz, — xzl-

Einen analogen Ausdruck erhält man für

J\(X2, X3, Xx, Xq) J\(X2, X3, Xq, Xx).

Wegen der Identität (5.23) sind diese beiden Ausdrücke gleich. ((5.23)
gilt als Folge der Voraussetzung (5.26)). Damit ist auch die Forderung
(4.7) erfüllt.

Die Fouriertransformierte von K(x0,..., x3) ist

k(Po,...,p3)

ô (Pq + + p3) [S(PX, P2, P3) - ~s(Pq, P2, p3) - S(- Px, - P2, - P3

+ s(- fio, - fiz, - fiz)i 0, wenn p2 < 0,

als Folge von (11). Sei

Lr(X0, xx, x2, x3) g(— xx, x0, x2, x3

Damit wird (14) zu

iv (Xq, Xx, X2, X3) i\ (Xq, Xx, X3, X2)

\J\Xq, XX, X2, X3j LrlXi, Xq, X2, X3/ v_7 I Xq, X-t, X3, Xn) ~+~ ^-r\X~X, Xq, X3, Xn.

Aber:

G(fio, fii, fiz, fiz)-à(p0+...+ fi3)G'(px, p2, p3),

G'(fii, fiz, fiz) - g(fii, fiz, fiz) + Ì(- fio, - fiz, - fiz)

lim r(kx, k2, k3) — lim r(kx, k2, k3)

(15)

(xq,xx,x3,x2). (16)

(17)

qj^O
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Die beiden hier auftretenden limes-Vorschriften unterscheiden sich nur
durch das Vorzeichen von (q2 + q3), alle andern (q} + qh) - natürlich mit
Ausnahme von (q0 + qx) - liegen beidemal im selben Halbkegel. Auf
gleiche Weise wie Gleichung (11) erhält man daraus:

G(Pq, ..,p3) 0 wenn (p2 + p3)2 < 0. (18)

Also:
K(fio, fix, fiz, fiz) - K(Pq, px, p3, p2) 0 wenn (p2 + p3)2 < 0. (19)

(15) und (19) sind aber identisch mit den Gleichungen (4.2) und (4.3),
also ist auch Bedingung ß) erfüllt.

Damit ist der am Anfang dieses Paragraphen gegebene Satz bewiesen.
In § 4 wurde gezeigt, dass aus <x) bis ô) die Existenz der Wightman-
funktion folgt, so dass wir folgendes Ergebnis haben :

Falls r(px, p2, p3) Randwert einer analytischen Funktion r(kx, k2, k3) mit
den Eigenschaften A' bis D', I und II ist, so existiert die zugehörige
Wightmanfunktion W(x0,..., x3) mit den Eigenschaften a), b), c) aus §2.

7. Das T- Produkt
Wir wollen kurz noch eine weitere Funktion betrachten, die mit den

Funktionen W und r in engem Zusammenhange steht, nämlich die Funktion

x(Xq, ...,x3) =< TA(x0)... A(x3) >o < T(xq, ...,x3) >q. (1)

T(Xq,..., x3) bedeutet dabei das zeitlich geordnete Produkt der
Feldoperatoren A (xq), A (x3).

Es ist wohlbekannt, dass diese Funktion eine enge Verwandtschaft mit
der Wightmanfunktion W(x0,..., x3) aufweist :

Gleich wie r(px, p2, p3) ist auch W'(rjx, rj2,1]3) (siehe (2.3)) Randwert
einer analytischen Funktion W(ÇX, Ç2, Ç3), Çk i]k + ìQ/c1)- W' ist regulär

in 91, d. h. falls alle okeV+. Die lokalen Vertauschungsrelationen (2.8)

bewirken - ähnlich wie die Symmetrien (5.6) und (5.20) im Falle von r -
eine Vergrösserung des Regularitätsgebietes von W. Wir definieren

W(zq, ...,z3)= W (zx - Zq, z2 - zx, z3 - z2), zk= xk + iyk. (2)

Wist analytisch im Punkte (z0,..., z3), falls eine Permutation (zia,..., zi:)
der Variablen (z0,..., z3) existiert, so dass (yife.x — yik) eV+ für alle k.

Gehen die yf. unter Innehaltung dieser Bedingung gegen null, so strebt
W(z0,...,z3) gegen W(xu,..., xf).

Wählt man

yk= -exl(l, 0,0,0), e > 0, (3)
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so sieht man auf Grund dieser Betrachtung, dass

lim W(z0, ...,z3)= x(Xq, ...,x3). (4)

Dieses Ergebnis kann man in eine elegantere Form bringen, das so

spezieUe Vorschriften für den Grenzübergang wie (3) vermeidet. Nach
Hall und Wightman9) kann W(z0,..., z3) als Funktion der sechs
Variablen

«<* fo - ZkY, * > k (5)

geschrieben werden. Das Regularitätsgebiet von W(uik) weist längs den

positiv reellen Achsen aller Mi4-Ebenen Schnitte auf. Die Randwerte von
W in den reellen Punkten hangen also im allgemeinen davon ab, ob die

uik aus der oberen oder aus der unteren Halbebene gegen die reelle Achse
streben. Aus der Vorschrift (3) ergibt sich:

vik Im uik 2(Xi - xk) [yt -yk)=2e (x° - x[\)2 > 0,

so dass (4) wird:

x(xq, ..'., x3)= lim W(uik). (6)
»ik l °

Der Grenzübergang muss selbstverständlich innerhalb des Regularitäts-
gebietes von W erfolgen.

Die Ergebnisse von § 5 erlauben es nun, eine ähnliche Beziehung
zwischen t(pQ,..., p3) und der Funktion r(kx, k2, k3) herzustellen.

Die Identität13)

R(xq,...,xA= 27 (- l)kT(xx, ...,xk) T(XQ,xk+x, ...,x„), (7)

T antichronologischer Operator.
2 erstreckt über alle Aufteilungen der Variablen xv..., xn in zwei Gruppen

(xx,..., xk), (xk+x,..., xn).

wird im Spezialfall n 3 zu

R(x0, ...,x3)

T(xq, x3) - A(xx) T(xq, x2, xs) - A(x2) T(Xq, xx, x3) -
A(x3) T(xq,xx,x2) + i (8)

4- T(xx, x2) T(xq, x3) + T(xx, x3) T(xq, x2) + T(x2, x3) T(x0, xx) -
— T(xx, x2, x3) A(xq).
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Eine ähnliche Überlegung wie wir sie beim Beweis von (2.23)
angewandt haben ergibt daraus:

?(Pq, ...,p3)= t(Pq p3), falls Pi $ F_, Pq $ V+, (Pq + Pi) £ F+

(*" 1, 2, 3) (9)

Speziell :

~r(Po, ...,p3) t(Pq, ...,p3) wenn alle p° >0,i= 1,2,3. (10)

Wegen der totalen Symmetrie von x in allen Argumenten gilt
allgemeiner

r(fio fiz) Hfiia, ¦¦-, Pi) wenn p\, p\, p\ > 0. (11)

Weiterhin folgt aus dem CTP-Theorem2)

X(Xq, X3) T( Xq, x3)

r(p0, •¦¦,p3) =r(-pQ,...,-p3) J

also

r(fio, ¦¦-,fiz)= H- fit,, ¦¦-,- fit) wenn p\, /£, j>\ < 0. (13)

Mit Hilfe der ebenfaUs aus (7) folgenden Identität

* (xo> xl> xz)

R(Xq, xx, x2) + A(xx) T(Xq, x2) + A(x2) T(Xq, xx) - T(xx, x2) A(x0)

lässt sich das in (8) auftretende Glied A (x3) T(x0, xx, x2) umformen :

A(x3) T(xq, xx, x2) A(x3) R(x0, xx, x2) +
Mit

S(Xq, ...,x3)= [R(xq, xx, x2), A(x3)] (15)

wird das

A(x3) T(xq, xx, x2) - S(Xq, x3) + R(Xq, xx, x2) A(x3) 4-

Setzt man das in Gleichung (8) ein, so erhält man auf gleiche Weise wie

(10):

r(fio, ¦ ¦ -, fiz) - Kfio, ---fiz) wenn p\ <0,p°1 + p°> 0, p\ + p\ > 0,

(16)

wobei g durch (5.13) definiert ist.
Auch diese Beziehung lässt sich auf Grund der vorhandenen Symmetrien

verallgemeinern zu

(14)
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r(fio,-..,fiz) -i(fiia,-.-fii)
wenn p\ < 0, p\ + p\ > 0, p\ + p\ > 0

-g(-Pie,-,-Pi)
wenn p\ > 0, p\ + p\ < 0, p\ + p\ < 0.

(17)

Die in (11), (13) und (17) auftretenden Vorzeichenkombinationen
erschöpfen alle Möglichkeiten. Der Beweis entspricht genau den in § 5 im
letzten Abschnitt vor der Formulierung der Bedingung I gegebenen
Betrachtungen, wobei man nur die Halbkegel V+ resp. V_ durch die
Halbräume p9 > 0 resp. p9 < 0 zu ersetzen hat.

Nach § 5 sind r und g nach Abspaltung des Faktors ò(p0+ ¦¦¦ + p3)
Randwerte der analytischen Funktion r(k^). Seien die Vektoren px, p2, p3

(und damit p0) gegeben. Wir definieren

qj= e p<>(l, 0,0,0). (18)

Der Punkt (pj + iqj ist nach I ein Regularitätspunkt der Funktion r.
(Falls eine oder mehrere der Summen pf + p\ verschwinden, muss die
Definition (18) etwas abgeändert werden.) Durch Vergleich von (6.1) mit
(11), (13), (17) erkennt man

r(fio, ¦¦-,P3)= ô(Pq + + P,) ~x'(Pi, Pz, Pz)

i'ifii, fiz, fiz) lim r(K K h)-
(19)

Nach dem erwähnten Satz von Hall und Wightman lässt sich r als

Funktion der Variablen

Wij= (ki + kj)2, i,j=0,...,3 (20)

schreiben, wovon sechs unabhängig sind. (18) ergibt dann die Bedingung

t;j= Imwij=2e(p° + p°)2>0,

woraus man erhält :

r'(fii, fiz, fiz) Hm r(w{j). (21)
Hi l «

Diese Gleichung hat dieselbe Form wie die Gleichung (6) im #-Raum.
Es ist allerdings zu beachten, dass in Gleichung (6) nur sechs Variable
uik auftreten, man also für die Grenzwertbildung nur sechs Positivitäts-
vorschriften zu beachten hat. Im Falle von Gleichung (21) hat man es

jedoch mit zehn Variablen wi} zu tun. Wegen wQX w23 ist allerdings
zugleich mit tox auch £23 positiv usw., es bleiben jedoch auch nach
Berücksichtigung dieser Paare sieben Positivitätsvorschriften für die sechs
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(behebig wählbaren) unabhängigen Variablen übrig. Das hängt damit
zusammen, dass das in I gegebene Regularitätsgebiet von r kleiner ist als
das bei (2) angegebene Regularitätsgebiet von W(ÇX, Ç2, f3).

8. Eine Bemerkung zur Bedingung II
Wir woUen zeigen, dass im Falle nicht verschwindender Ruhemasse

der betrachteten Teilchen das in § 5 im Anschluss an Satz I erwähnte
Gebiet § (inkusive einer aus den verschärften Spektralbedingungen
folgenden Erweiterung) noch nicht das volle aus unseren Annahmen
folgende Regularitätsgebiet der Funktion r ist, d. h. die Bedingung II hat
eine Vergrösserung dieses Gebietes zur Folge. Die Art dieser Vergrösse-

rung ist leider noch nicht bekannt*).
Wir werden den Beweis auf indirektem Wege führen, indem wir ein

Gegenbeispiel zu den sog. Dispersionsrelationen für Streuung zweier
Teilchen konstruieren.

Dazu spezialisieren wir unsere Annahmen wie folgt : Das Feld A (x)
soll hermitisch sein und einem Teilchen mit der Ruhemasse 1 entsprechen,
das keine Wechselwirkung mit anderen Teilchen aufweist. In der Definition

von R (Gl. (2.9)) ersetzen wir A(x) durch (fj — 1) A(x). Die
Eigenschaften A bis C von r(xk) aus § 2 werden dadurch nicht berührt,
hingegen lässt sich D verschärfen :

Di) Hfii, Pz, Pz) Hfio, fiz, fiz) falls p02 < 4, p2 < 4, |

(Pi + Pz)2 < 4, (Pi + p3)2 < 4. J

Ebenso gilt nun Gleichung (5.18) für p32 < 4.

Die Funktion r(kx, k2, k3) schreiben wir wie in § 7 als Funktion der
Variablen „ i

wi ki2, i=0, ...,3
(2)

Wij (ki + kj)2, i= 1,2,3, j>i. \

Die Eigenschaften A' bis D', I, II aus § 5 bleiben bestehen. Die
angegebenen verschärften Spektralbedingungen sind erfüllt, falls die in §
auftretenden Schnitte längs den positiv reellen Achsen der w-Ebenen
erst bei 4 einsetzen.

*) Das endgültige Regularitätsgebiet von r enthält sicher nicht alle Punkte
des bei (7.2) angegebenen Regularitätsgebietes von W(t,x, t,«, f3). Das würde nämlich

bedeuten, dass r(k}) regulär ist, falls alle qt und zwei der drei unabhängigen
(qi+qì), i Jfj, zeitartig sind. Speziell wäre der Punkt q2 + q3 —. 0, alle andern q^ + q,

zeitartig, ein Regularitätspunkt, also wäre G 0 (siehe (6.18)). Es ist aber

G(x0,...,xa) <l[R(x9,xx), R(x„,x3)]}0,
und dieser Ausdruck ist im allgemeinen sicher von null verschieden.
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Aus der Hermitizität von A(x) folgt, dass r(x0,..., x3) rein imaginär
ist (siehe LSZ), d. h.

r*(fii, fiz, fiz) - r{- fii, - fiz, - fiz), (3)

was durch analytische Fortsetzung ergibt :

r*(k\, kl, k\) - r(- kx, - k2, - k3). (4)

Wir betrachten nun die Streuung zweier Teilchen mit den Anfangsimpulsen

p, k und den Endimpulsen p', k' (p + k p' + k'). Die
zugehörige Streuamplitude T(k', p' ; k, p) ist eine Funktion der Variablen

m (*-A')2 „ (k + k')(p + p')

und es gilt nach LSZ
T(w, A2) r(k, p, - p') (6)

bis auf einen konstanten Faktor. Dabei ist

k2 p2= p'2 k'2 1

(p + k)2=2(l+A2 + co(l + ZI2)1'2)

(k - p')2 2 (1 + A2 - co (1 + A2)1'2)

(fi-fiV= -4Z12.

(7)

Dieses T erfüllt eine Dispersionsrelation, falls die Impulsübertragung
A2 < 2 ist14). D. h. für 0 < A2 < 2 ist T(co, A 2), aufgefasst als Funktion
von co, analytisch in der ganzen komplexen Ebene mit Ausnahme der
Schnitte in der reellen Achse

co >(1 - A2) (1 + A2)-1'2, co < - (1 - A2) (1 4- zl2)-1'2. (8)

Die Interpretation von T als Streuamplitude ist natürlich nur möglich
unter Benützung der Asymptotenbedingung; nur dann kann ja eine S-
Matrix definiert werden. Wir können jedoch formal (6) als Definition von
T auffassen. Die genannte Regularitätseigenschaft von T bleibt dabei
bestehen, da in ihrem Beweis die Asymptotenbedingung nicht wesentlich
verwendet wird. Können wir also eine in § reguläre Funktion r angeben,
so dass das daraus nach (6) berechnete T keine Dispersionsrelation
erfüllt, so ist gezeigt, dass §> noch nicht das volle aus unseren Annahmen
folgende Regularitätsgebiet von r ist.

Ein solches Beispiel soll jetzt gegeben werden. Wir definieren:

3

N(kx, k2, k3) =£(zk + 32'» ^1) + zX2 + a ^1 - a + is. (9)
A- 0

19 H. P.A. 33, 4 (1960)
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Dabei bedeutet

**-(4-w*)1*,,*»*= (4-wJ1*. (10)

Ein in der längs der negativ-reellen Achse aufgeschnittenen Ebene
eindeutiger Zweig dieser «-ten Wurzeln wird ausgewählt durch die Forderung,

dass ulln für positiv reelle u positiv reell sein soll, n ist eine positive
ganze Zahl, oc, a, e sind positive reelle Zahlen, über deren Grösse wir noch
verfügen können.

Unser Beispiel ist

r(kx, k2, k3) | /J N(kk, ku_, k{) H - { s -+ - s }, (11)

wobei das Produkt IT über alle Permutationen der Indizes 1, 2, 3 zu
erstrecken ist. Das zweite Glied entsteht aus dem ersten durch die Substitution

von — e an Stelle von e und hat die Erfüllung von (4) zur Folge.
(11) befriedigt offensichtlich die Bedingungen A', C und D' aus § 5.

(Es ist zox z23, usw. Ebenso treten die richtigen Schnitte in den w{
und wjk auf, so dass die verschärften Spektralbedingungen (1) erfüUt sind.
Wir haben noch zu zeigen, dass unser r bei geeigneter Wahl der verfügbaren

Parameter in den durch I, § 5, definierten Punkten (und damit
in §>) analytisch ist. Die in I noch geforderten Beschränktheitsbedingungen

im ex) sind erfüllt, da im oo gegen null strebt.
Als Singularitäten von r treten erstens die schon erwähnten Schnitte

wi (oder wik) > 4 auf. Diese hegen ausserhalb des gewünschten Regulari-
tätsgebietes. Ist nämlich q? > 0 und w{ positiv reell, so ist auch p{2 > 0,
also piqi 4= 0 im Widerspruch zur Forderung Im w{ 0.

Weiterhin können Pole auftreten, die natürlich in den Nullstellen eines
der Faktoren N des Nenners hegen. Diese Nullsteilen haben wir also zu
untersuchen, soweit sie in der betrachteten Punktmenge I hegen. Wegen
der Symmetrie von I genügt es, die Funktion N(kx, k2, k3) zu diskutieren.

Zuerst betrachten wir den in (9) auftretenden Ausdruck

z{ + 32'" zf1.

Nach der Definition (10) hegen alle z{ (und auch alle zik) in einem Keil
längs der positiv reellen Achse mit der Spitze im Ursprung und dem
halben Öffnungswinkel cp — n\n :

Re Zi > 0, I Im z{ | < (Re z,) • tg q> (12)

cp kann durch geeignete Wahl von n behebig klein gemacht werden. Wir
werden voraussetzen, dass n gross ist (z. B. n ^> 10).

Sei

yi=Re(zi + 32l»zi-i). (13)
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Es gilt

y,>{\z, | + 32'" | *,. I"1) cos 99

wegen (12) und weil mit z{ auch zf1 im Keil (12) liegt. Die in dieser

Ungleichung auftretende Funktion von | zt | (ohne den Faktor cos cp) nimmt
ihr Minimum an für | zt \ 31/n. Dieser Minimalwert beträgt

H 2 ¦ 31'". (14)

Also

y{ > p cos cp. (15)

Wir führen die neue Konstante

ò a — 4 /j, cos cp (16)

ein und wählen a so, dass 0 < <5 <^ 1.

Sei nun (kx, k2, k3) eine Nullstelle von N(kx, k2, k3) mit (qt + <^)2 > 0
für alle i,j 0,..., 3.

Mit N muss natürlich auch Re N verschwinden. Re A7 ist von der Form

ReN= A + B+C-Ò (17)

mit 3

A J^yk-\pcoscp^0
k 0

B Re zX2 > 0

C x Re(z23~1) > 0.

(18)

Aus Re N 0 folgt also

A < ô, B < ö, C < ò. (19)

Wir werden zeigen, dass diese Ungleichungen bei geeigneter Wahl von
a und n einen Widerspruch enthalten. Bei den folgenden Abschätzungen
werden wir folgende Bezeichnungsweise verwenden :

a ~ ö heisst a 6 bis auf einen Term der Ordnung o(o)/ò + o(n)fn
a < b heisst a < b bis auf einen Term derselben Ordnung.

Aus B < è (à. h. B ~ 0) folgt wegen (12), dass zX2 ~ 0 sein muss, also

w12 -~ 4. Das bedeutet

(fii + fizY-(<ii+qz)2~±, (fii + p2)(qi + q*)~o. (20)

Das ist mit der Bedingung (qx + q2)2 > 0 nur verträglich, falls

(?i + ?2)2~0, (^4-^2)2~4. (21)
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Wegen kx + k2 — k0 — k3 gilt auch

(<?o + 1z)2 ~ 0, (p0 + p3)2 ~ 4, (Pq + p3) (q0 + q3) ~ 0. (22)

Aus A < ô (also A ~ 0) folgt, dass alle yt- in der Nähe des Minimalwertes

fi cos c? hegen müssen, d. h.

\zt I ~3Vn_^ | 4-w. I ^3, i 0, ...,3.

Die ze»,- liegen also alle in der Nähe des Kreises vom Radius 3 um den
Punkt w 4. Speziell muss gelten :

1 < Re Wi pi2 - q? < 7, \Imwi\<3, (23)

woraus wegen q? > 0 folgt :

fit2 > 1- (24)

Wir haben zwei Fälle zu unterscheiden :

7. Fall: px eV+, p2 gF_ (oder umgekehrt).
Dann gilt (in Analogie zur Dreiecksungleichung im Falle einer defini-

ten Metrik) die Ungleichung:

(fix + fiz)2<(fp7-]jfil)2,
woraus wegen (21) und (24) :

ifii2 Z Ìfiz2 + 2 > 3 oder i/^2 > ^p1J+ 2 > 3.

Also, für i 1 oder 2 :

fit2 Z 9.

Wegen (23) muss dann q{2 > 2 sein, und somit [ Im w, | 2 | />,<7; | >
2 • 3 )/2, im Widerspruch zur zweiten Bedingung in (23).

Dieser Fall kann somit nicht auftreten. Genau gleich können wir auch
den Fall ausschliessen, dass p0 und p3 in verschiedenen Halbkegeln
hegen.

2. Fall:
px g V+, p2 g V+, Pq g V_, p3 g 7_. (25)

(Der daraus durch VorzeichenWechsel aller pt entstehende Fall ergibt
nichts Neues.)

Aus (24) ergibt sich pxp2 > 1, also ist (21) nur möglich, falls

(26)
fii ~ fiz2 ~pxp2~l

ebenso

Po2 ~ fiz2 ~ fio fiz ~ 1



w, ~ 1, also Pi qt ~ 0, q.

und damit aus (21) und (22) :

Ferner :

also

ft ft ~ lo 1z ~ 0.

Io2 - ft (ft + ft + ft)

woraus
ft ft + ft ft ~ o,
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Weiter, wegen p0 + p3 - px - p2 :

(fio + fiz) (fii + fià~- 4.

Alle vier linksstehenden Terme sind wegen (24) und (25) < — 1, also

p,fj~-l, » 0,3, /=1,2. (27)

Da aUe wf auf dem erwähnten Kreis hegen müssen, folgt aus (26) :

' 0, (28)

(29)

(30)

ft ft ~ ft ft ~ 0, (31)

wenn qx und q2 im gleichen Halbkegel hegen. Dann aber auch

(ft + ft)2 (ft + ft)2 ~ o,

d.h.
ft ft ~ 0 und analog qx q3 ~ 0. (32)

Ebenso lassen sich (31) und (32) beweisen, faUs q0 und q3 im gleichen
Halbkegel liegen.

Sei nun keine der beiden Annahmen erfüllt, z. B.

ft G V_, qx G V+, q2 e V_, q3 e V+, aber (q2 + q3) G V+.

(Alle andern Fälle sind von der gleichen Struktur und lassen sich deshalb

analog behandeln.) Aus (30) ergibt sich dann :

ft ft + ft (ft + ft) ~ 0.

Beide Terme sind negativ, also

ft ft ~ 0. ft (ft + ft) ~ 0. d. h. qQ q2 ~ 0 wegen (29).

Dann aber auch

ft ft ~ 0. ft ft ~ o,

die Gleichungen (31) und (32) gelten also auch in diesem Fall.
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Zusammenfassend haben wir bis jetzt gefunden:

PtPk~±l, ftft^O, ttqt~Q, i,k 0,..,3. (33)

Wir haben nun noch die Bedingung C < ò aus (19) zu diskutieren :

Aus (33) ergibt sich

Re w23 (p2 + p3)2 - (q2 + q3)2 ~ 0, (34)

da ^>2 und p3 nach (25) in verschiedenen Halbkegeln hegen ; und

Im w23 =2(p2 + p3) (q2 + q3) ~ 2 (p2 q3 + p3 q2). (35)

Sei q3 eV+. Dann
(Pz + ft)2 Pz2 + ft2 + 2 p3 q3 ~ 1,

d. h. (p3 + q3) eV_. Also ist p2(p3 + q3) < 0 und damit

0 < Pz ft < - Pz Pz ~ !•

Auf ähnliche Weise zeigt man im Falle q3 eV_ :

0>fiz1z>fizfiz 1.

also | p2q3 | < 1, und analog [ p3q2 [ < 1. (35) wird damit zu

| Im œ>23 [ < 4. (36)

C < ò bedeutet

was nach (12) ergibt

a cos cp

und schliesslich

Xexn-i<±, (37)

423 | *=»

4 23
I2" I 4 - w~, |2 > [gc°sy]2". (38)

Aber, nach (34) und (36) :

I 4 - w23 |2 (4 - Re w23)2 + (Im w^)2

< 16 + 16 32.

Aus (38) folgt damit:

p^p-]2* < 32. (39)

Wir können sicher a, ô, n so wählen, dass

[gc°sy]2">33. (40)



Vol. 33, 1960 Zusammenhang zwischen den Wightmanfunktionen 295

Dann ist Bedingung (39) verletzt, also hat Re N - und damit auch N
selbst - keine Nullstehen in §. Das durch (11) definierte r erfüllt also
alle in § 5 angegebenen Bedingungen mit Ausnahme der Identität II,
falls wir die verfügbaren Konstanten so wählen, dass Bedingung (40)
erfüllt ist.

Die zugehörige Streuamplitude T(co, A2) ergibt sich aus r gemäss (6)
und (7) durch Einsetzen der Argumente

(41)

Wir halten A2 > 0 fest und betrachten T als Funktion der komplexen
Variablen co. Es ist zu untersuchen, für welche Werte von A2 T in der
geschnittenen co-Ebene (8) analytisch ist.

Als möghche Singularitäten von T treten wieder die bekannten Schnitte
in der Definition von zt und zik sowie Pole auf. Die Schnitte in den z{
und in z23 spielen keine Rolle wegen w{ < 4 und w23 < 4. Die durch zX2

und zX3 erzeugten Schnitte sind gerade die gewünschten (siehe (8)). Eine
Dispersionsrelation besteht also, falls keine Pole auftreten, d. h. falls der
Nenner in der Definition von T nirgends verschwindet.

Es ist
zX2 =[2(l-A2-w(l + zl2)1'2]1'"

w{ 1, i 0,.. 3

WX2 2(14- A2 + co (1 4- Zl2)1'2)

wX3-- 2(1+A2- co (1 + Zl2)1'2)

Wzz-- -4zl2.

*18 [2 (1

*23 [4 (1

A2 + co(l + zl2)1'2]1'"

¦ Zl2)]1'".

Also wird (9) zu

te,

(42)

(43)N(k{, kj, kh)=4/i + Zy + oc Zjf-1 -
(i,j, h) eine Permutation von (1, 2, 3).

Nach (16) ist
4 [i — a 4 /j, (1 — cos cp) — ò.

N 0 bedeutet also

z{j + a. Zjn"1 ò — 4 pt, (1 — cos cp) — i e.

Der Realteil des links stehenden Ausdrucks ist nie negativ, Lösungen
existieren also höchstens, falls

(44)

(45)

ô>4pt(l
Diese Ungleichung sei erfüllt.

cos cp). (46)
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Wir betrachten zuerst den Fall i 2, j 1, h 3. Aus (45) folgt:

Re zX2 < ô, d. h. zX2 ~ 0,

also nach (42) :

und damit

(1 -Zl2) (l+zl2)-1'2

z13 ~ [4 (1 - Zl2)]1'».

Aus der weiteren Bedingung Re z13_1 < ó/oc folgt wie bei (37) :

K3l»~4|l-Zl2|>p°^]">)/3!,
also wegen zl2 !> 0:

4zl2> 4 4-)/33~> 2-4.

Unterhalb der Lehmannschen Schranke Zl2 2 gibt der hier diskutierte
Faktor N zu keinem Pol Anlass.

Ebenso erhalten wir im Falle i 2, j 3, h 1 keine Nullstellen von
N. In einer solchen müsste nämlich gelten

Rez23<ö, d. h. l-fzl2~0,
was wegen Zl2 > 0 nicht möghch ist.

Zu diskutieren bleibt noch der Fall i l,j 2,h 3. (Die andern drei
Fähe unterscheiden sich von den hier diskutierten nicht wesentlich, sie

entstehen daraus durch Vorzeichenumkehr von co.) Hier wird (45) zu

z12 ,5 - 4 pt, (1 - cos.?) -is-«. [4(1 + Zl2)]-1'". (47)

Wir definieren eine Konstante Zl2 durch

ô 4 pt (1 - cosy) + oc [4 (1 4- Zi2)]"1'". (48)

(47) wird damit zu

zX2 oc [4 (1 4- ZÏ2)]-1'" - a [4 (1 4- Zi2)]-1'" - i e. (49)

Ist nun A2 y- A2 und e genügend klein, so liegt die rechte Seite dieser
Gleichung im Keil (12). Dann kann das so bestimmte zX2 nach co

aufgelöst werden, wobei das e-Glied bewirkt, dass dieser Pol von T (um einen
solchen handelt es sich ja) nicht gerade auf die reelle Achse zu hegen
kommt.

Eine Dispersionsrelation besteht also nicht für zl2 > Zl2!
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Zl2 ist nicht beliebig wählbar. Aus den Bedingungen (40) und (46)
ergibt sich:

[4 (i + J2)yi" =-r-°A- —, > ~,- ^ ' ô - 4 /x (1 - cos 95) à

4 (1+Ä2) >(-¦)"> J/33,

also

A2> V3^-. (50)

Sei nun umgekehrt ein Zl2 vorgegeben, das (50) erfüllt. Ebenso geben
wir ein <5<^ 1 vor. Zu jedem n ergibt dann (48) einen Wert von oc.

Bedingung (46) kann offensichthch durch Wahl eines genügend grossen n
erfüllt werden (cp n/n kann beliebig klein gemacht werden). Aus (48)

folgt
A ±E(l _cos cp) + [4(1+ ZP)]-1'».

Man erhält daraus

lim
ô

)2n [16 (1 -f Ä2)2]-1 < 33-1.
\ a. cos m 1 v

Für ein genügend grosses n ist also auch Bedingung (40) erfüllt.
Wir haben somit folgendes Ergebnis: Die Konstanten a, ct., n und e

in unserem Beispiel können so gewählt werden, dass r alle Bedingungen
mit Ausnahme von II erfüllt, dass aber die zugehörige Streuamphtude
für Impulsübertragungen Zl2, die grösser als eine vorgegebene Zahl zl2

sind, keiner Dispersionsrelation genügt, wenn nur diese Zahl Zl2 der
Bedingung (50) entspricht. Die in (50) gegebene Schranke ist aber kleiner
als die Lehmannsche Schranke Zl2 2.

Damit ist unsere Behauptung bewiesen, dass $ zumindest im Fähe
nicht verschwindender Ruhemasse noch nicht das volle Regularitätsgebiet

von r ist.

Meinem verehrten Lehrer, Herrn Professor Jost, möchte ich danken
für die Anregung zu dieser Arbeit und für zahlreiche fördernde Diskussionen

während ihrer Ausführung. Dem Schweizerischen Nationalfonds
zur Förderung der wissenschafthchen Forschung habe ich für ein Stipendium

zu danken.
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