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Groupe mésonique et conservation de la paritéa)

par A. Pétermann
CERN, Division théorique, Genève

et Henri Ruegg
(Institut de Physique de l'Université, Genève)

Summary. A principle of invariance under a continuous local group of
transformations, the mesic group, is being investigated. This principle has the following
consequences :

1. For the pseudoscalar Yukawa interaction of two Fermions with the pseudo-
scalar jr-meson it entails PC invariance.

2. If the Fermions have equal bare masses with respect to electromagnetic
interaction (a hypothesis which is plausible for the nucléons), the principle imposes,
for the ps interaction with n, the conservation of isotopie spin and separate P and
C invariance.

3. For the Fermi interactions of the pairs (pn), (vu,-), (ve~), etc. it involves V
and A coupling, with non conservation of parity.

Our arguments leading to this principle are based on a generalization of the
demonstration of the Dyson-Foldy equivalence theorem as given by Stueckel-
berg and one of us.

1. Introduction
Maintenant qu'il est admis que la parité n'est pas conservée dans

certains processus élémentaires, il s'agit de comprendre ce qui distingue,
mise à part la grandeur de la constante de couplage, les interactions faibles
de celles parmi les interactions fortes qui conservent la parité. Il serait
utile, en outre, de connaître le nombre de constantes arbitraires admises

par chaque type d'interaction. Ceci revient à étudier les propriétés de

symétrie de la Lagrangienne qui détermine ces différents processus.
De nombreuses tentatives ont été faites pour expliquer, par un principe

d'invariance ad hoc, certains des problèmes que nous venons d'évoquer.
Leurs avantages et inconvénients ont déjà souvent été discutés dans la
literature. Nous proposons, dans ce travail, un principe d'invariance
par rapport à un groupe de transformations continues, qui possède les

avantages suivants:
1° Il s'applique à certaines interactions fortes et faibles où intervient

le méson n, y compris à la désintégration de ti par couplage de Fermi
(tc+ -> p 4- n -> e+ 4- v).

2° Il laisse invariante la Lagrangienne totale, même lorsque la masse
des particules est non nulle. Le principal défaut de nombreux essais
antérieurs était la non-invariance du terme d'inertie.

a) Recherche subventionnée par le Fonds National Suisse.
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3° Pour l'interaction pseudoscalaire de Yukawa de 2 Fermions avec
le méson n pseudoscalaire, il entraîne l'invariance PC.

Si la différence de masse des 2 Fermions est due à l'interaction
électromagnétique - hypothèse qui est très plausible dans le cas des

nucléons -, le principe d'invariance a pour conséquence la conservation
du spin isotopique et de la parité.

4° Pour les interactions de Fermi il force la non conservation de P
et interdit les couplages scalaire, pseudoscalaire et tensoriel.

5° Sous l'hypothèse de la «symétrie restreinte», il force la conservation
de la parité dans les interactions de Yukawa du méson n avec les particules

A et 27. Les résultats préliminaires ont été donnés par x).

2. Interaction entre les nucléons et les mésons n
avec conservation de parité

Dans ce paragraphe, nous allons expliquer notre méthode dans un cas

particulier, et, incidemment, prouver un théorème nouveau. Dyson-
Foldy2) et d'autres avaient montré l'équivalence, en lre approximation'
du couplage pseudoscalaire (PS) et pseudovectoriel (PV). Stueckelberg
et un de nous3) ont prouvé, pour l'interaction avec le méson neutre/7°,
que la transformation de Dyson-Foldy est un cas particulier d'un groupe
qu'ils appellent groupe de transformation mésonique. Nous allons prouver

l'existence d'un groupe plus général, qui laisse invariante la Lagrangienne

d'interaction des nucléons avec les trois mésons n et le champ
électromagnétique. Plus précisément, il existe une fonction L(ip(l), &'(l)),
où 1 1 (x) est un paramètre local, et une transformation ip^-tp',
0 -> 0' qui laisse L invariante, de telle manière que pour une certaine
valeur de l, L représente l'interaction PS, et pour une autre, l'interaction

PV (plus des termes non linéaires).
Nous posons pour L :

Lv+Le + Lv (1)L L0+LSA- Lps 4- Lpv

avec Lo - y tv 7^^" dp

Ls hf0o(l)y>
Eps igy>y5T *6(J) xp

Lpv ifyysYpi ®iÀl) w

Lv : t 0 y y, r #„(*) f
Le

b) y y*~ y„; rî^Ys'- Y* +Yi-

YMYv + y y 2 ô :'v'n ptv' *.-«* ,-(sj)
y4 -Yv y* -Ys
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et pour la transformation infinitésimale de xp(l) :

òxp ifyòr (pòxp dl; ôxp ifxpy5T<psôl (2)

alors qu'il reste à déterminer les lois de transformation des fonctions
&'(l) de manière à assurer l'invariance de L. Ces fonctions 0o(l), 0&(l),
0ßi(l)> &p(l) sont respectivement de caractère scalaire, pseudoscalaire,
pseudovectoriel et vectoriel dans l'espace ordinaire, scalaire et (pseudo)
vectoriel dans l'espace isotopique. <jp5 représente le méson n, avec
dfpjdl 0, L,, la partie libre et l'interaction électromagnétique du méson

n, qui ne varie pas dans la transformation.
Pour calculer la transformation de L, les relations suivantes sont utiles:

(T 9P) (T #) y> 0 + i T (<jp X 0)

(r 4>) (t y>) tp 0 — i t (çp x 0)

(TÇP)T3 ç>3 A-i(TX(p)3

T3(T(p) =ç>3 -i(tXfp)3
On obtient alors, avec ô& 00[dl òl et dA^dl 0.

ÔL0 =ifyy5y/lT d^tp^ Ol) xp

ÔLpv iff y5 yA T 00^ xp-2if2'xp~yflT (Ç5aX$f5) y <K

<5I„ « - 2 »'/ y y, y, T (ç>6 x^yS + iyy,!^^
(5Le =-««/fys)',i/,(rx y5)3 y) «

(5LS 2 » / A y y6 0O T y>5 xp òl + hxp ô&0 xp

(3 a)

àLps igxpy&T ô<Psxp 2gfxp (p^^xpòl

ÔLÇ =0

(3 b)

Comme xp y5xp,xp ys y xp, etc. sont linéairement indépendants, ô L 0

conduit aux équations suivantes :

à®,, -d^K ôl) -eA/l0sòlA-2<p6x&/l òl (4a)

ô*ll=2f2(9>sx*/lti)ol (4 b)

gò&b--2fh®0<pòl (5a)

ho0, 2gf0-o(phôl (5b)

avec 0X — (p2 ; 02 cp1 ; 03 0.

10 H.P.A. 33, 2 (1960)
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L'équation (4b) montre que le terme inhabituel Lv a dû être introduit
dans (1) pour des raisons de covariance, pour compenser le terme <jp5 x 0 5

provenant de Lpv. L'autre possibilité, <jP5X0„5 0 est incompatible avec
(4 a).

La solution la plus générale des équations (4) et (5) estc):

®„o - d„($P, l)-eAß0!>l-2<p/iX(p;il

- h - -/-'- sin<2 tv i) + if ßj%-- cos(2 m+y*
*, 2V [(d" ^5 + eAK 0&) X ^ + "i cos (2 / *)>

+ 4-sin(2/9/)4- VIP*
h &0= a0 cos (2 / <p l) + b0 sin (2 f\pl)

g #5 [-«0 sin (2 / y /) -f- b0 cos (2 / y l)] |5 4- g £5

(6)

(7)

avec tp j/ çpi ; 2 çp„ çr» [(d <p6 + e Aß 05) x çp5] ; a0, b0, es, ap ßß, (f^,
rj^ sont des constantes d'intégration indépendantes de / telles que:

Avant de passer à l'interprétation physique de (6) et de (7), il faut
remarquer que ces solutions, ainsi que les équations (3), (4), (5), ne sont
rigoureuses que pour des champs classiques. Pour des champs quantifiés,
on remarque que 0 6 ne commute pas avec çp5, parce que [d,ç>;, <p,] 4= 0.
Pour donner un sens à (6), il faut symétriser toutes les expressions
ambiguës, par exemple dß cp^ • q>t -> 1/2 (dß ¦ cp{ • (p{ 4- (pi d (p(). Ceci est
nécessité par le fait que lorsqu'on calcule (3), on obtient précisément des

expressions de cette forme. Par exemple:

àEpv ify>(ify5T <pò àï) y5y/iT0/tixp

+ ifv>y-o yfl * <*V (* fYsi<Pïol)xpA-ify yh yßr o0ß5 xp

Les problèmes soulevés par le passage du cas classique au cas quantique
sont en principe les mêmes que ceux déjà traités dans 3).

Revenons à la discussion de (6) et de (7). Les fonctions 0(1), introduites
dans L, donn ent une Lagrangienne qui peut représenter une situation
physique très générale: interaction PS, PV des nucléons avec des

champs, S, PS, PV, V. Nous allons, à titre d'exemple, particulariser les

c) Remarquons que l'invariance par rapport à (2) et (4) assure automatiquement
l'invariance de jauge électromagnétique de Lvv et Lv.
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constantes d'intégration, pour obtenir les deux cas les plus intéressants,
soit, pour une valeur déterminée de l, un

a) couplage PS pur avec un méson PS ;

b) couplage PV pur avec un méson PS.

Dans les deux cas, Ls devra représenter le terme d'inertie des nucléons.
Nous aurons donc

a.) L's =-mxp~xp L'ps i gf y5 t <pb xp L'PV L'v 0

b) L's^-myixp L'PV ifyybyß r(dß <y5 + e Aß ©B) xp • (8)

T' — T — 0

Le ' indique une valeur particulière de /
Le cas a) est réalisé pour 1=0 avec

«o=-m; b0 gy; £5 0; aß=-2(pß; ßß 0; <pßi 0 rj^ (9)

Le cas b) est réalisé pour (/ — 1) avec

a0 — m cos (2fcp); b0 m sin (2 / <p) ; £5 0

a/4=-[2cos(2/^)+4/^sin(2f^)] gpß (10)

ßß [2sin (2/p) - 4/p cos (2 f <?)] <pß

Dans le cas a) on obtient :

Es xp {_— m cos (2 f tpl) + g<p sin (2 / <p l)~] xp

1g ¥ Ys T fb cos (2 / <p l) + — sin (2f(pl)\xp

eAß0,lLPV ify>Y5y/lri~ <ygp6l)

- -|r [(d/< 5Pe + e 4, 0s) X ÇP5] X 9P5 {l- -~ sin (2 /y /))} y

»yy^ [(dj,5P« «^®6)
X 5P5] (l - cos (2 f(pï))xp

(11)

Résumons: Les expressions (11), introduites dans (1), donnent une
fonction L invariante par rapport à la transformation (2). Pour différentes

valeurs de /, L peut prendre, en fonction de xp(l), des formes
différentes, mais équivalentes, tous les champs xp(l) ayant la même Langran-
gienne libre. En particulier, pour .1=0, le terme d'interaction avec le
champ (p (mésonn) ne comprend qu'une partie pseudoscalaire PS, et pour
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I 1/2 / xp arctg (— g xp\m) une partie pseudovectorielle, plus des termes
non linéaires, qu'il serait facile de déterminer à partir de (11). Il suit
de ces considérations, que la matrice S, qui est la seule grandeur
physique donnée par l'expérience, est indépendante de Z, donc que les

couplages PS et PV sont équivalents en lre approximation.
Nous avons donc trouvé :

L(xp(l')) L(xp(l"))

1 1' =0 L(xp(l')) L0(xp(l')) -mx}(l')y(V) + Ee{xp(l'))+Lv

4- i g y y5 t Vs y(0

' '" T-Î--W—)ïfrp \ m }

L" L0(xp(l")) - m \}(l") xp(l") + Le(xp(l")) + L,+
+ • t Tfm ^(/,,) ?• y* T^ 9>s + eAt<e«) W) + i^y, -fm2 T^ v* +

4- e ^ 05) X <jp5 y 4- termes non linéaires en ç?.

On obtient l'équivalence en posant g 2 fm. Pour l 0, la théorie est
renormalisable, elle l'est donc pour tout l, ce qui explique l'apparition des

termes non linéaires, les infinités provenant de ces termes compensant
celles du couplage PV pur.

Il serait facile d'établir des formules analogues dans le cas b), mais
nous nous contenterons de remarquer que pour l — 1 L'ps L'v 0

et l'on obtient un couplage PV pur, alors que pour 1 0 Lpv 0, et l'on
obtient un couplage PS plus des termes non linéaires. L'équivalence, en
lre approximation, de PS et de PV exige de nouveau g 2 fm.

L'avantage de cette démonstration du théorème d'équivalence réside
dans la généralité des formules (6) et (7), qui permettent d'étudier d'autres
types d'interaction, notamment avec des particules de spin 1.

3. Forme la plus générale de l'interaction de Yukawa
Nous arrivons maintenant à l'objectif principal de notre étude. Dans

le paragraphe précédent, nous avons vu que l'invariance de la Lagran-
giennen totale par rapport à une transformation du type (2) (c'est-à-dire
une transformation continue comprenant un facteur y6) nécessite
l'introduction des fonctions 0(1). Nous avons montré la signification
physique de ces fonctions dans plusieurs exemples. Cependant, nous nous
sommes limités aux interactions où la parité et le spin isotopique sont
conservés. La question que nous nous posons maintenant est la suivante :
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existe-t-il des fonctions 0(1) plus générales, telles qu'il soit possible
d'introduire dans la Lagrangienne des termes qui ne conservent pas la parité
et le spin isotopique, sans détruire l'invariance? La réponse est
affirmative, avec certaines restrictions, si nous nous limitons à la transformation

(2). Par contre, si nous postulons l'invariance par rapport à la
transformation suivante :

òxp — i (| 4- r/ yb) T <pbxp ôl avec f ± r\ (nombres) (12)

le choix des fonctions 0(1) est limité et la Lagrangienne est soumise aux
restrictions citées dans l'introduction, c'est-à-dire:

1. Invariance PC de l'interaction pseudoscalaire de Yukawa des deux
Fermions avec le méson ti pseudoscalaire.

2. Conservation de P et C séparément, et CI (indépendance de charge)
de l'interaction, si les masses nues des deux Fermions sont égales.

Le but de ce paragraphe est donc de trouver la fonction L(l) la plus
générale qui soit invariante sous la transformation (12). Nous ferons
cependant les restrictions suivantes :

a) L(l 0) décrira une interaction purement pseudoscalaire (théorie
renormalisable), donc Lpv(0) L„(0) 0.

b) Les fonctions 0(1) seront des fonctions des trois composantes (dans
l'espace isotopique) du champ <p5 du méson n.

La transformation (12), de même que (2), couple les termes Ls et Lps
d'une part, et les termes possédant un facteur y d'autre part (L0 + Lpv

+ Lv 4- Le). Etudions d'abord l'invariance de Ls 4- Lps.
Par Ls nous entendons le terme de masse des deux Fermions. Si les

masses sont quelconques, nous aurons :

Es mx 0o(l) \}1 xpt A- m2 0o(l) xp~2 xp2 (13')

L'interaction de Yukawa pseudoscalaire la plus générale est :

Eps fi(A* A- B' y5) tpl xp2 A-h.c.A- y^C + i Dyb) <p35 xp1

4-y2(£ + iFyi)(PSibxp2 (13")

où xpx, est un Fermion de charge positive, xp2 neutre, <p5 l/j/2 (^ 4- i <p2)$

crée n+, annihile tc~, ç>3.5 crée ou annihile tt0'1). A, B sont complexes, C,

D, E, F réels. Lps comprend donc 8 coefficients réels.
Pour que Ls 4- Lps soit invariant, A, B doivent être des fonctions

de / et de q>{. Englobons les facteurs <ps etc. dans ces fonctions, nous
obtiendrons A6 (l, <p{) etc. Pour les commodités du calcul, nous pouvons
introduire de manière purement formelle un espace isotopique, en posant

d) L'indice 5 met en évidence le caractère pseudoscalaire, les indices 1, 2, 3

désignent les trois composantes de qp5 dans l'espace isotopique.
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V (£)et?,=
seront alorse) :

1/|/2 (cp1 4- i <p2)b, etc. Les expressions équivalentes à (13)

mx0$)xp 1+r
y m2<P0(/)y

1 T:!
V2 r ' "-a * ivi r 2

^s ?(*éW + * *6Wy5)^+ y M) + »<*.W ys) v

(14')

(14")

<ï>5 et 4>g possédant chacun trois composantes réelles. Le passage de (13")
à (14") s'obtient aisément en posant (0[ A- i0'2)s A<pb;(0[ + i0'2\
— B <ps; c5 + 035 C 993,B; c6 — 0'35 E(p3:i; etc. Remarquons que
la conservation du spin isotopique exigerait 0'h a çp6, 0"b b <jp5,

c5 d5 0. La conservation de la parité : 05 c5 0. L'invariance
PC: T05 a(T x gp5)3, 0" b(p5, cb 0,d&=d(p3,b.

En tenant compte des règles de commutation des opérateurs t, la
variation de L

ÒL,

Lps lors de la transformation (12) sera :

4- !(>»!- w2)0o ôlxp (tx(p6)3xp

-f r? (?% — m2) 0O ôlxp iy5xp + r] imx 4- m2) 0O òl <jp6 xp t «¦' y5 y

M* (- 2 J? 9P5 #6 « + öc5) y xp A- (2 »? <p5 01 òl 4- <M5) yz>6y
+ [2 £((jp5 x #J) « 4- <5#5 - 2 »7 <i5 çp5 óq y T y
+ [2 f (y, X *£) « 4- ô^' + 2 rç c6 £>5 Ôl]xpiybTf

La condition cJL^ 4- clL^ 0 donne autant d'équations qu'il y a de termes
linéairement indépendants (xpxp,xpi yBxp, xp~x^xp,xpr2xp, xpr3 xp, etc.). Remarquons

que <jp5 0'b xp xp est indépendant de ò c5 y xp, le premier terme étant
un scalaire, le second un pseudoscalaire. Nous obtenons alors le système
d'équations :

la) pÄ ô0o

b) ô c5 y y 0

2a) 2r/0b<pbôlxp~iybxp O

b) <W5 Arr\(mr- m2) 0O <p3:b ôlxpiybxp 0

3a) [(2|SPsx4):-2>] ^ gp6) <K + 3=ÜL

b) [Ô0'5 -%(mx- m2) 0o0iôl]xp~Txp O

4a) (2 | 5p5 x 0g 4- 2 rç c5 çp5) ôly iy5Txp 0

b) ((5<&5 4- »? (»% 4- >«2) çp5 (P0 ol)xpiy5Txp 0

2r) 0"h tp6ôlIxpxp 0

<50oe: y T y 0

où £3 s (0,0,1);- ©5 (?>2 9>i,5- 0).

(15)

e) A condition que <&'(?) et ^"(Z) soient tels que l'interaction conserve la charge.
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L'équation (4a), multipliée par (p, donne 2r\ (p2 ôl-cb 0 d'où cb 0.
Ceci implique alors <jp5 x 0"b 0, donc 0"b =X(pb la) et 4b) donnent
maintenant

(16')

0O A cos(2 r) y l) A- B sin(2rj\pl)

01= _m_iJpL [-A sm(2r]çl) + B cos (2 v y l)] -P-

3a) multiplié par <jp5 montre que 2rjxp2ôl-db= 1/2 (m1 — m2) y3i5 Ô0O,

d'où

db 3^pL r_ 4 sin (2 ^ y i) + b cos (2 ri y Z)] ¦&*- (16 ")

expression qui satisfait à 2b). Enfin, de 3b), 2a) et 3a) on tire

0'0 ^IZ^. A [_ A sin (2 y /) 4- B cos (2 v y I)] ^5-; (f r/2) (16 '")

Dans ces expressions, A et B sont des constantes d'intégration indépendantes

de l, mais peuvent encore être des fonctions (scalaires) de (pbli.
Pour /=0on obtient une interaction linéaire en y5i i en posant A — 1

et B 2!p (mx 4- m2)~xg.
En résumé, l'invariance de Ls A- Lps par rapport à la transformation

(12) impose l'existence des fonctions données par (16). (16) et (14) montrent

alors que l'interaction est invariante sous PC et, lorsque ml m2
(db — 0b 0), elle conserve la parité et le spin isotopique. Remarquons

que 0"b, db et 0b ont en commun le facteur 0 — A sin (2rj<pl) A- B

cos (2r]<pl) tel que 0\ A- 02 A2 A- B2 est invariant (indépendant de T).

Pour m1 m2 cet invariant devient 0\ 4- l\m2 0"b2 (car <jp62 y2).
Il nous reste maintenant à examiner la transformation des termes de la

Lagrangienne totale contenant y en facteur. Ces termes ne nous apprendront

rien de neuf quant à l'interaction, puisque nous avons fait l'hypothèse

Lpv(0) L„(0) 0 (17)

donc que l'interaction avec le méson n est pseudoscalaire. Il nous suffit
donc de déterminer Lpv et Lv de manière à satisfaire (17) et assurer
l'invariance de la Lagrangienne. Rappelons que la partie libre L0 des
Fermions et leur interaction électromagnétique L0 s'écrivent respectivement

Lo= - y [yy^y-^yy^y] (18')

Le ieyyßAß^-xp .(18")

Comme la transformation (12) est continue, la présence des dérivées dans

(18') exige l'introduction de fonctions 0„b(l, (p) dans Lpv. Remarquons
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qu'au moyen de tpb on peut former le pseudovecteur djpb et le vecteur
<pbxdjpb. Ecrivons, à titre d'essai, pour l'interaction:

Lpv ixpT(0'ßbA- 0"ßiyi)y,iw

Lv =*'yr(*; 4- 0"ß yb)yßxp

(18'")

(18"")

La variation de ces termes est analogue à (3 a) et ô (L0 + Le -f- Lpv 4- Lv)
0 donne les équations (voir (4)) :

o0'ßb 2<pbx (0;n-0'j)ôi + ç[<ygpsôi) + eAß0bôi\

Ô0'*b 2<pbx(0'ßri-0"ß!;)ol-ri [ÒA\<pb dl) + e Aß 0b òl]

O0'ß 2<pbx(0"ßbrl~0'ßbC)ol

00"ß =2<pbx(0'ßbV^0'ß[bi)ol

(19)

Les deux dernières équations montrent la nécessité d'indroduire Lv (car
<jP5X (0"ßb fj — 0'ßb £) 0 n'est pas compatible avec les deux premières
équations), la première équation celle d'introduire # B (après multiplication

scalaire avec (pb on obtiendrait | (tpb d çp6 ôl + e A 0b <pb òl) 0
si 0 b 0). Les équations (19) possèdent une solution, ce qui justifie
l'essai (18'") et (18""):

0' 2w2 (dß (pbA-eAß 0b) x<pb + aß cos [(f 4- rj) 2 y 1}

(20)

+ ßß sin [(f + r,) 2 y F] + y„ cos [(£ - rj) 2 y Z]

+ f. sin [(f - r/) 2 y q 4- i^ y6

^Z -«^cos[(|4-r/)2yq-/3/tsin[(| 4-»?)2yZ]

+ 7^ cos [(f - r?) 2 y q -f Ôp sin [(f - rj) 2 y /] 4- %ßb (pb

^;5 ^ làA\<p6l) + eAß0bl] + 2<pbx J dl(0; V-0'ßi)

*U=~rllaß(<pbl) + eAß0il\ + 2<pbx Jdl(0'ßV-0'^)

aii> ßß. Yp <V V' %/»* sont des constantes d'intégration avec aß ¦ <pb 0

ßß-(pb 0,etc.
L'analogie de ces solutions avec les expressions (6) du paragraphe

précédent saute aux yeux. Montrons comment on peut en extraire les
solutions qui satisfont (17) :

Posons aß=yß=- (2y)~2 (d <pb+eAß 0b) x (pb; rj 5 %ßb ß

Pour f 77 1/2 / (20) et (21) donnent :
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[(dß <pb + eAß 0b) X SPJ (1 - cos (2 / y l))
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*:5=-/[d.(9P60+"«^O«fl
/ [(ö„ (f, eAß0b) X9P5] xy5 (/- sin (2fyl)

2fq>

*:* <p"

(22)

Pour |= — rj — 1/2 / on obtient les mêmes expressions pour 0^ et
<«9^5, mais des signes opposés pour <P^ et <&^5: 0^ 4- 0"ß- Les solutions
(22) pour 0'ß et 0"ßb sont identiques aux solutions correspondantes (11)
du paragraphe précédent.

Les interactions (18'") et (18""), apparemment, ne conservent pas la
parité. Cependant, pour m1 m2, Lps conserve la parité, et, comme
Epv(0) Lv(0) 0, la Lagrangienne totale la conserve aussi. Grâce à

l'invariance, il en sera de même pour tout Z, en particulier pour V tel que
Eps(l') 0. On a donc ici l'exemple d'une interaction PV ne conservant
pas la parité, qui est équivalente (en première approximation) à une
interaction PS conservant la parité.

L'invariance de la Lagrangienne nous permet de formuler le théorème
d'équivalence. Dans (16), posons A — 1, B 2g y (m1 4- m2)~x. Avec
ce choix, on obtient pour 1 0:

4(0) -Wlyi±I?

Eps(0) y \igT(pby

^ps

\p — m2xp

1 - "H

1-T3
2

n

V

T0S
(23)

19?3,5 y5j\ y

0 pour tg(2 / y T) AjB — 2 g y (m1 4- m2)_1. Pour cette valeur
de l, Lpv vaut en lre approximation:

Lpv(l')=if + y5) y^dßtpbxp.

(m1 A- m2)f. Le coefficient du

1—yf-i-
(utx + m^ f r \ rj

Nous avons donc équivalence pour g
terme de Lps qui ne conserve pas la parité vaut, pour 1 0: (mx — m2)

(m1 + m2)~l g (m1 — m2)f'. Lorsque m1 m2, ce coefficient est nul,
et g 2 mf. Pour mx 0 (neutrino), il vaut Az g-

4. Interactions de Fermi
Dans ce paragraphe, nous allons voir que le postulat de l'invariance de

la Lagrangienne totale sous la transformation (12) a des conséquences
intéressantes pour les interactions de Fermi. A cet effet nous groupons
les Fermions en paires y- (p, n), (ve), (vpt), où xpj sont des spineurs à
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deux composantes dans l'espace de charge. Ceci n'implique pas que les

masses des particules d'une paire soient égales. On peut en effet écrire

pour le terme d'inertie de chaque paire y ¦ l'expression (14') :

Lf m? 0f(l) y,(Z) I±5L f. + mf 0f(l) y. 1^ yß) (i4')

Cependant, comme le neutrino apparaît dans plusieurs paires, donc dans

plusieurs L®, sa masse doit être nulle. Il va sans dire que les opérateurs t
n'ont, dans cette expression et dans les suivantes, qu'une signification
formelle, donnée par leur action sur les y,-.

Nous postulons maintenant l'invariance de la Lagrangienne totale
lorsque chaque paire est soumise à la transformation (12) :

ôxpj i(Ç+V Yè r <pb Wj àl (I2 r,2) (12)

La Lagrangienne que nous considérons est la suivante :

1° Système nucléons - mésons ti ')
2° Partie libre des leptons')
3° Interactions de Fermi des paires xpj.

1° a été décrit au paragraphe précédent dans les équations (23) (avec

mi mè, (18) et (22).
2° il est possible d'exclure, si on le désire, l'interaction directe des

leptons avec le méson n. Il suffit de poser, dans (14) et (16), mx 0,
A — 1, B 0, ce qui est possible, puisque A et B ne dépendent pas
du paramètre l. Ceci donne, pour 1=0,

Ls(°) + EPM =- Ym2. Wj (1 - t3) f] -mefe fe,

pour l'électron, par exemple). La désintégration du méson n se fait
alors par l'intermédiaire d'une paire virtuelle de nucléons :

7i+ -> p A- w -> fi+ 4- v ou e+ A- v.

(18) et (22) restent valables pour les termes vectoriels.
3° Considérons maintenant l'interaction de Fermi Lf:

EF [f, Or t+ y,.] [y, Or (ar + br yb) x _ y,.] 4- h. c. (24)

°r i. r5.5V v y^ y5 (y,* yf)
Lorsque | rj 1/2 / dans (12), on obtient pour la variation de LF:

ÔLF — ifôl{[xpi(-l)(l- y5) 0r T §P T+ y,] [y7- Or(ar + ôr y5) x_xpj]

+ [fi Or (1 + y6) t+ T çp y,.] [y^ Or (ar 4- br y5) t_ y^]

+ [yf Or T+ y{] [fj (- 1) (1 - yb) Or(ar 4- br ys) T çp T_ y,-]

+ [y j Or r+ xp,] îxp~j Or (1 A- ys) (a, 4- br y5) t_ r çp y,]}
4- A. c.

•) Avec leurs interactions électromagnétiques.
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Il est élémentaire, mais fastidieux, de montrer que seule une combinaison

particulière de V et A est invariante. Nous allons, à titre d'exemple,
écrire quelques termes de ôLFg).

Deux termes typiques de ôLF pour Or 1, yb, sont respectivement :

=- if ôl • (- j/ 2 y*) [y,- t+ xp,] [y,- (as + bs y5) t3 xpj] et

(26)

(27)

y if ôl ¦ (- ]/ 2 y*) [y,- y5 t+ yj [y,- («PS y6 4- bPS) x3 xpj]

qui ne sont compensés par aucun autre terme. Les expressions
correspondantes pour Or y y^ y5 sont resp. :

|*7 <«•(-}/2 y*) [y^r+y,.]
• [fi Yß(av + K Ys) + Ys) T3 fji resp.

T if ôl ¦ (- |/ 2 y*) [y; y, y6 t+ yj
• [V»i yAK + K YÙ (1 + Va) t3 yy]

qui sont nulles pour av= — bv; aA —

autres termes de ô LF pour Or y y yb:

y ifòl-ifz y) [y,- y, (1 + y5) t3 y;]

• [fi Y?(av + hv YÙ * fji resp

— ifôl-(\/2tp) [y j y^ (1 4- y6) r3 y,] [y,- yß (aA yb A- bA) x jtpA

bA. Considérons encore deux

(28)

qui se compensent pour av -bA et bv — aA, d'où

-b.
Finalement, le calcul complet montre que pour f rj resp. f — rj, la
seule forme invariante de LF est :

a [fi Y? (1 - Ys) T+ ¥«] Ifi Ypi1- Ys) i- fi\ + h- c- resP- (29)

« [fi Yh (1 + Ys) t+ fiî [fi Yii (1 + Ys) *- fj\ + h- c- (30)

Bludman4) a considéré une transformation analogue à (12), où (pb ôl
est remplacé par ôo), vecteur indépendant de x. En plus, il postule que
les interactions de Fermi résul
lui-même, où J est donné par

2

les interactions de Fermi résultent de l'interaction du courant /„ avec

J^ Ei Vj Y? Y t1 + y&) r VJ

8) Pour le calcul de dLF on utilisera

[r y, t+]_ ]/2 t3çp-2 y3 t+ [r y, t+]+ ]/~2>

[r y, t_]_ - J/ 2 r3 ç>* + 2 çjj t_ [r y, r_]+ i/ 2 y*
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lf G Jp • Jfl 2J \G [fi Yß (1 + Ys) Ï+ fil [fj Yß (1 + Ys) r- xpj]

Q
+ T [fi yA1 +Ys) TsvJ

• [fi Y/, (i + ys) *s fil]

(31)

Si l'on postule seulement l'invariance sous la transformation (12), on
arrive aux conclusions suivantes : 1° En excluant les termes de (31)
contenant t3, seul (29) est invariant pour £ rj, ou (30) pour £= — rj;
2° En admettant les termes avec t3, (31) est invariant, mais les deux
signes devant yb sont possibles, ceci aussi bien pour f rj que pour
I — rj. Lorsque f rj, par exemple, les termes (27) sont nuls pour
av — bv, aA — bA. Pour av bv et aA bA, ils ne sont pas nuls,
mais compensés par la variations du dernier terme de (31). Le raisonnement

est inverse pour f — rj (remplacer 1 4- y5 par 1 — y5 dans (27)).

5. Interactions fortes des particules étranges
Il est intéressant de voir s'il existe un groupe analogue au groupe (12)

s'appliquant à d'autres interactions fortes où intervient le méson n.
Considérons l'interaction de Yukawa entre A, 27 et n, conservant le

spin isotopique :

Lps Znb (a2 A- i b2 yb) A0 + h. c. + 2(a3 + i ba yb) 27 X Ji (30)

Une forme particulière de (30) est aisée à discuter: c'est celle où l'on fait
les hypothèses de la symétrie restreinte :

1° Les masses nues de A0 et de 27 sont égales.
2° a2 «3, b2 b3.

On est alors amené à poser

Y° s -L (A° - 27°) Z» ± (,lo + re) Wi s (Z+\ Vt s l£\ (31)

Cherchons l'expression de (30) en fonction des grandeurs définies
en (31)

-. 27 X 2-71=-r (272 273 - 273 272) nx + — (27, Zx - Zx 273) n2

— (2-! 2,2 — 272 27]) 7i3

l / »
1

avec 7lx —= (ll+ + 7C~) 7l2 —=¦ (tI+ — 7T~) 7l3 71°

2^ ^ (27++27-), etc.



Vol. 33, 1960 Groupe mésonique et conservation de la parité 157

~ 2 x 2.n (27°27--27+ 27°) n+ + (2> 27°-27°27+) ar A- (2+ 27+-27127~) 7t°

27^/1° + 2+A0 n++ 2~ A0 ji~ + Z0A07z°

A°2n =Z°27-7c+ +Z027+7ï~4-i°27°7!:0

1
27 x 27 • ti 4- 27 n A0 4- Â° 2 n

\/~2 2+71+
y_ (A0 - 27°) + fï ¦

-jp- (i° - 2°) ar 2+

+ 27+ 2+7t° ~ — (i° - 27°) Tr« ~ (/1°- 27°)
y2 H

4- /2~ (27° 4- /î°) 71+ 2- A- j/2 2>ar A^±Ä\ -Z-Ztx*
/F + f» „ /to + Z" - -+ — p=~ ^° j^j— f1T7txp1 + f2T7ff2

(30) devient donc:

4s xpx(a + i b y6) t JTyx + y2(a 4- i b y5) T JTy2 (32)

(32) se compose de deux termes qui sont chacun formellement identiques
à (13b). Tous les raisonnements faits au paragraphe 3 s'appliquent à

(32) si l'on exige l'invariance par rapport aux transformations

ôxpj i (i + V yb) r 7lb xpj ôl j 1,2 (33)

(33) peut aussi s'écrire

02 (| 4- rjyb) (inA + 2 x 7t) ôl

ÔA (| 4- rj ys) in 2 ôl

Nous pouvons donc énoncer le théorème suivant :

Lorsque les interactions entre les particules A, 2 et n conservent le spin
isotopique, satisfont aux conditions de la symétrie restreinte et sont
invariantes par rapport au groupe de transformation mésonique (32), elles sont
nécessairement invariantes par rapport à P et C séparément.

L'expérience ne permet pas encore de décider si les hypothèses de la
symétrie restreinte sont valables.

6. Propriétés de la transformation mésonique
Cherchons d'abord les invariants de la transformation (12) ôy>j

i f 112(1 ± y5) T <pb xpj ôl. En premier heu, nous trouvons le courant
nucléonique _ _ _

1 fi Y» fi i fp Y il fp + *' fn Y? fn (33)

et des expressions semblables pour les paires (pi, v), (e, v), (27+, Y°), (Z°, 2~).
Un deuxième invariant est

* fi Ys Yp fi (34)
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alors que fjfi', fjYsfj. fiY^fj (35)

ne sont pas invariants. (33), (34) et (35) ont pour conséquence la sélection
de V 4- A ou V — A dans les interactions de Fermi.

Le courant électrique Je ie y. y 1/2 (1 4- r3) xpj est modifié de la
quantité infinitésimale

Oje=-iefy\(l±yb)yßx0bxpol; X 0b - (x X <p)3 (36)

Ceci est heureux. En effet, si, pour 1 0 l'interaction de Yukawa est

purement pseudoscalaire, elle comporte des dérivées d <jp5 pour 1^0.
(36) a pour conséquence que tout terme f T dß(pb est accompagné d'un
terme fe A x 0b. Ainsi, l'invariance (22) assure automatiquement
l'invariance de jauge.

Enfin, nous avons encore les invariants

y(h0o + igx0b yb) xp et <2>2 4- #5 (37)

0O et 0b donnés par (7) (voir aussi (16)) et le commentaire qui suit (37)
montre comment les termes de masse sont couplés aux termes d'interaction

pseudoscalaire par la transformation (12), qui peut s'exprimer
comme une rotation dans l'espace sous-tendu par 0O et 0b.

Si l'on fait abstraction du facteur (1 ± y5), (12) représente pour y une
rotation d'angle / (p dl(x) dans l'espace isotopique. Cependant, 0O, 0b,
0 6, 0 ne sont pas affectés par cette rotation (par exemple 0b
A(l) • <jp5 donc<&5 reste parallèle à (pb lors de (12)). (12) n'entraîne donc

pas nécessairement la conservation du spin isotopique.
La transformation (12) est continue. A toute invariance de ce type

correspond une équation de continuité, d /„ 0 (voir Noether et
Bludman)5).

Considérons la fonction L(yA, yB, où yA xp, xp, 0O, 0S, etc.,
invariante sous la transformation

ôyA aA 01 + bA dß òl (38)

où ôl est le paramètre et aA et bA des fonctions de x.

ÔL 0
A

ôyA 4—3T7T—-n- ô(d„ yA) avec sommation sur A
ÔyA ' d(dßyA) \ fis >

(¦%- -d» F(l^) èyA +d» hw^r ôyA]

- ^ *y* +d» hw^vôyA]
[[E]AaA-dß([L]Abß)]olA-

à, \[L]A bA öl + ^^r- (aA ôl + bf d, ôl)] (39)
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Les fonctions 0' ne satisfont pas à des équations de mouvement \L]Oi=0.
Cependant, eUes satisfont aux identités

Z{[L]AaA-dß([L]AbAß)} 0 (40)
A

Considérons d'abord l'interaction, conservant la parité, des nucléons
avec le méson neutre 7t°. Nous avons alors la fonction L(xp, xp, 0O, 0b, 0^j
suivante :

L= - =-§yßdßxp - dßy yßxp] a- ^0^
A-igfyb0bf + iffy&yß0ßbf (41)

invariante sous la transformation

ôxp =ifyb<pbxpôl ôy ifx}yb(piôl Ô0O 2 / g\h0b<pb ôl

Ô0b=-2f hjg0O y5 ôl Ö0ßb - (dß y5) Ôl - y5 (dß ôl)

Donc, dans (38)

»? «/«„.«.. -*°^i ^6r, „ -h 5Tu g

(42)

a" ifyb9bxp av=ifxpyb<pb a*« ^0bcpb a**=^0o<pb
«*"5 =~àll9s W bT" è*° ô*« Q b*0 _?6 oßv.

Avec (41) et (42) on vérifie aisément (40). (39) devient alors:

à, \[L]A bA ôl + -j^. (aA ôl + bA dx öl)] 0 (43)

Comme ôl, dßöl, dßdx òl sont des variations indépendantes, (43) fournit
les trois équations :

^[m.^ + ^r^]=° <44>

^ K + TWyW
aA + d> {-TWyW bA) ° (45)

(44) donne l'équation de continuité cherchée, avec

En définissant :

(46) devient

et (45)

u* ine** (48)

UM +UÄß 0 (49)

J»=aÄUß, (50)
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Cependant, en calculant / au moyen de (41) et (42), on trouve / 0.
Ceci provient du fait que le seul bA ^ 0 est ô*"5. Mais dHd(dß0Ab) 0.

La transformation générale (12) présente les mêmes propriétés. L'équation

de continuité d,.J„ 0 est donc triviale et ne fournit aucun résultat
nouveau.

7. Conclusion

Le postulat d'invariance par rapport au groupe mésonique implique
la conservation de la parité des interactions des nucléons avec les mésons

n, la non-conservation de la parité des interactions de Fermi des nucléons
avec les paires de leptons (pi, v) et (e, v), parmi lesquelles il sélectionne les
formes V A- A ou V — A. Il établit donc une corrélation entre des faits
expérimentaux qui n'avaient pas trouvé place, jusqu'ici, dans une
théorie unifiée.

Il donne un critère qui permet de distinguer les interactions de Yukawa
qui conservent la parité de celles qui ne la conservent pas.

Ainsi les propriétés de symétrie des interactions des nucléons et des

leptons, que l'expérience a établie jusqu'à ce jour, sont entièrement
décrites par le postulat.

Enfin, il donne certaines indications concernant les interactions fortes
des particules étranges.

Les auteurs remercient vivement le professeur E. C. G. Stueckelberg,
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Genève, le 28 mai 1959.

Bibliographie
H. Ruegg, Helv. Phys. Acta 32, 256 (1959).

2) F. J. Dyson, Phys. Rev. 73, 929 (1948) ; L. L. Foldy, Phys. Rev. 84, 168 (1951).
3) E. Stueckelberg et A. Pétermann, Helv. Phys. Acta 26, 499 (1953) ; A. Pétermann,

Nucl. Phys. 3, 592 (1957).
4) S. A. Bludman, Nuovo Cimento 9, 433 (à958).
5) E. Noether, Nachr. Ges. Wiss. Göttingen, Heft 2, 235 (1918); S. A. Bludman,

Phys. Rev. 700, 372 (1955).


	Groupe mésonique et conservation de la parité

