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Groupe mésonique et conservation de la parité?)

par A. Pétermann
CERN, Division théorique, Genéve

et Henri Ruegg
(Instltut de Physique de I’ Umversfce Geneve)

Summary. A principle of invariance under a continuous local group of trans-
formations, the mesic group, is being investigated. This principle has the following
consequences:

1. For the pseudoscalar Yuxkawa interaction of two Fermions with the pseudo-
scalar s--meson it entails PC invariance.

2. If the Fermions have equal bare masses with respect to electromagnetic
interaction (a hypothesis which is plausible for the nucleons), the principle imposes,
for the ps mteractlon with 7, the conservation of isotopic spin and separate P and
C invariance.

3. For the FErMI interactions of the pairs (pn), {vy. (ve™), etc. it involves V
and A coupling, with non conservation of parity.

Our arguments leading to this principle are based on a generahza,tlon of the
demonstration of the Dyson-Foldy equivalence theorem as given by STUECKEL-
BERG and one of us.

1. Introduction

Maintenant qu’il est admis que la parité n’est pas conservée dans cer-
tains processus élémentaires, il s'agit de comprendre ce qui distingue,
mise a part la grandeur de la constante de couplage, lesinteractions faibles
de celles parmi les interactions fortes qui conservent la parité. Il serait
utile, en outre, de connaitre le nombre de constantes arbitraires admises
par chaque type d’interaction. Ceci revient & étudier les propriétés de
symétrie de la Lagrangienne qui détermine ces différents processus.

De nombreuses tentatives ont été faites pour expliquer, par un principe
d’invariance ad hoc, certains des problémes que nous venons d’évoquer.
Leurs avantages et inconvénients ont déja souvent été discutés dans la
litérature. Nous proposons, dans ce travail, un principe d’invariance
par rapport & un groupe de transformations continues, qui posséde les
avantages suivants: .

10 11 s’applique a certaines interactions fortes ef faibles ol intervient
le méson 7, y compris a la désintégration de m par couplage de FERMI
(mt > P+ n>et ).

20 11 laisse invariante la Lagrangienne totale, méme lorsque la masse
des particules est non nulle. Le principal défaut de nombreux essais an-
térieurs était la non-invariance du terme d’inertie.

2) Recherche subventionnée par le Fonds National Suisse.
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3% Pour Yinteraction pseudoscalaire de YukawA de 2 Fermions avec
le méson 7z pseudoscalaire, il entraine I'invariance PC.

Si la différence de masse des 2 Fermions est due a l'interaction
électromagnétique — hypothése qui est trés plausible dans le cas des
nucléons —, le principe d’invariance a pour conséquence la conservation
du spin isotopique et de la parité.

40 Pour les interactions de Ferwr il force la non conservation de P
et interdit les couplages scalaire, pseudoscalaire et tensoriel.

59 Sous I'’hypothése de la «symétrie restreintey, il force la conservation
de la parité dans les interactions de YukawA du méson 7z avec les parti-
cules A et X. Les résultats préliminaires ont été donnés par 1).

2. Interaction entre les nucléons et les mésons 71
avec conservation de parité

Dans ce paragraphe, nous allons expliquer notre méthode dans un cas
particulier, et, incidemment, prouver un théoréme nouveau. DYSON-
ForLpy?) et d’autres avaient montré ’équivalence, en 17¢ approximation’
du couplage pseudoscalaire (PS) et pseudovectoriel (PV). STUECKELBERG
et un de nous?®) ont prouvé, pour l'interaction avec le méson neutre /19,
que la transformation de DysoN-FoLDY est un cas particulier d'un groupe
qu’ils appellent groupe de transformation mésonique. Nous allons prou-
ver I'existence d'un groupe plus général, qui laisse invariante la Lagran-
gienne d’interaction des nucléons avec les trois mésons 7 et le champ
électromagnétique. Plus précisément, il existe une fonction L(y(l), D(l)),
ou /=17 (x) est un paramétre local, et une transformation p > v’,
@ —> @' qui laisse L invariante, de telle maniére que pour une certaine
valeur de /, L représente l'interaction PS, et pour une autre, l'inter-
action PV (plus des termes non linéaires).

Nous posons pour L:

L=Ly+ L, +L,+L,+L,+L,+1L, (1)
e Ly == 3 p7,0,9— 3, 97,v]

Lo =h®) y

Ly —igyys T Ps()y

Ly, =ifypysy,® Pl y

L, =i®ypy, 1P,y

L, =iepy,d,~ )
D v =V =V Vs =Vs V= HVS V=~V ¥ =7

YuVyt MV = 4 6#"; B SHE B (ii)
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et pour la transformation infinitésimale de y(/):

Op=ifysTspol;, Op=1ifypy;Te;dl (2)

alors qu’il reste a déterminer les lois de transformation des fonctions
®i(l) de maniére 4 assurer l'invariance de L. Ces fonctions @(l), D,(!),
D, 5(), P,(l) sont respectivement de caractére scalaire, pseudoscalaire,
pseudovectoriel et vectoriel dans I'espace ordinaire, scalaire et (pseudo)
vectoriel dans l'espace isotopique. ¢, représente le méson m, avec
0@/0l = 0, L, la partie libre et l'interaction électromagnétique du mé-
son gr, qui ne varie pas dans la transformation.

Pour calculer la transformation de L, les relations suivantes sont utiles:

TP (T P)=9P+i7(pxP)
@) (1) =9 @ —iT(pxXP)
Tz, =g¢3 +i(TXP);
(TP =@ —i(TX@)

On obtient alors, avec 0@ = 0@[0l ol et 04,,/0l = 0.

L 0Ly =ifpysy,To,(Ps 0y
0L, =ifpysy, TOP 9 —2ifyy, T(p;x D5 p -
oL, :—Zif@yﬁyﬂ’r(q%xipﬂ)zp61—!—1’5;)”1é@‘uzp
0L, = —iefypysy, A, (T X @53y dl J
0L, =21fhypy; Pyt s 0l + hy 0Dy y |
0L, =igypysT 0Py —2gfp sy dl (3b)
oL, =0 )

Comme 9 y5 9,y y5, %, etc. sont linéairement indépendants, § L =0
conduit aux équations suivantes:

0P 5= —0,(9;0l) —ed, O; 5l +2¢; x P, 0l (4a)

0D, =21 (5 X D 5) O (4b)
gO0P, = —-2fhd; ¢ dl (5a)
hod®Dy=2¢fD, @, bl (5b)

avec 60, = —p,; Oy = ¢,; 6, = 0,

10 H.P.A. 33, 2 (1960)
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L’équation (4b) montre que le terme inhabituel L, a da étre introduit
dans (1) pour des raisons de covariance, pour compenser le terme ;X @ 5
provenant de L,,. L’autre possibilité, ;<P 5 = 0 est incompatible avec
(4a).

La solution la plus générale des équations (4) et (5) est®):

¢ﬂ5‘=—-a (QPSZ)HeAﬂ @5l"—2(p‘u><(p5l
1 a, %@ — 1 B
— 57 T sin@ 5 ) + o PEEP cos2 1)+ Pro .
6
) :
B, = 25 [0, s+ ed, @) X 995]+ e cos(Z]'(pl)

+ 5 sin@ 17D + 1,5 95
h @y =agcos (2f@l) + bysin (2/pl)

(7)
g Py =[—aysin(2/pl) + boCOS(ZfW)] =+ g &

avec @ = V ®%; 2 .= 920, Ps + e 4, O5) X @5]; ag, by, &5, &y, Bl Pus,
7,5 sont des constantes d’intégration indépendantes de / telles que:

P58 =0, @, @;=0; B, ¢;=0; ¢, X @;=0.

Avant de passer a 'interprétation physique de (6) et de (7), il faut re-
marquer que ces solutions, ainsi que les équations (3), (4), (5), ne sont
rigoureuses que pour des champs classiques. Pour des champs quantifiés,
on remarque que D5 ne commute pas avec 5, parce que [0, ¢;, ¢;] * 0.
Pour donner un sens a (6), il faut symétriser toutes les expressions
ambigties, par exemple 0, @, @, >1/2 (0, @;* ; + ¢; 0, @;). Ceci est
nécessité par le fait que lorsqu’on calcule (3), on obtient précisément des
expressions de cette forme. Par exemple:

OLyy=ify (ifys T s O) sy, TDusy
+/‘£f—'¥-’7’57’#7@ﬂ5 @Cfys T s 5l)ip+if@y5y_ﬂ’f (5@.“51/)

Les problémes soulevés par le passage du cas classique au cas quantique
sont en principe les mémes que ceux déja traités dans 3).

Revenons a la discussion de (6) et de (7). Les fonctions @(7), introduites
dans L, donn ent une Lagrangienne qui peut représenter une situation
physique trés générale: interaction PS, PV des nucléons avec des
champs, S, PS, PV, V. Nous allons, a titre d’exemple, particulariser les

¢) Remarquons que l'invariance par rapport a (2) et (4) assure antomatiquement

(
I'invariance de jauge électromagnétique de L, et L.
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constantes d’intégration, pour obtenir les deux cas les plus intéressants,
soit, pour une valeur déterminée de /, un ‘

a) couplage PS pur avec un méson PS;
b) couplage PV pur avec un méson PS.

Dans les deux cas, L devra représenter le terme d’inertie des nucléons.
Nous aurons donc

a) Lg=—mypyp Lps=igpy;T@syp Lpy=1L;y=0 ]
b) Lg=—myy Lpy=1ifeysy,T0,9;+ed, Oy (8)
| L;,S:L;,:OJ

Le " indique une valeur particuliére de /
Le cas a) est réalisé pour / = 0 avec

ag=—m; by=g@; &=0;, a,=—-2¢,; B,=0; @,=0=1n,; (9)
~ Lecas b) est réalisé pour (/ = — 1) avec

ay = —mcos (21 @), by=msin (2f¢@); &=0

a,=—[2cos (2f@)+4fpsin (2fp)] ¢, ~ (10)
B,=1[2sin(2f¢)—4fpcos2fp]gp,
Dans le cas a) on obtient:

Ly ~l-meos (2150 +gpsin 2fF 1]y

g% sin(2f z)] "

Lpys=1g9ysT Qs [COS(ZJCEZ) I
-LPV:if_'l/;y5ny{_' 0y(¢5l)_e‘4y ®5Zﬁ

1 ' 1. -
— 2o [0, Ps ¢4, 05) X 93] X 3 (I — 57 sin (275D} p

; 1
LV ztwyﬂ,r W[(Opﬁps‘f‘ eA,u @5)
X @s) (1—cos2fpl))p]

Résumons: Les expressions (11), introduites dans (1), donnent une
fonction L invariante par rapport a la transformation (2). Pour différen-
tes valeurs de /, L peut prendre, en fonction de w(l), des formes diffé-
rentes, mais équivalentes, tous les champs (/) ayant la méme Langran-
gienne libre. En particulier, pour [ = 0, le terme d’interaction avec le
champ ¢ (méson ) ne comprend qu’'une partie pseudoscalaire PS, et pour
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I =1/2 f arctg (— g p/m) une partie pseudovectorielle, plus des termes
non linéaires, qu’il serait facile de déterminer a partir de (11). Il suit
de ces considérations, que la matrice S, qui est la seule grandeur phy-
sique donnée par l'expérience, est indépendante de I/, donc que les
couplages PS et PV sont équivalents en 1™ approximation.

Nous avons donc trouvé:

L(yp(l')) = L(w(t"))
I=1"=0 L(y(l")) = Lo(p(t')) —myp(l) p() + Lw@))+L,

+igpys T sl

L" = Ly(yp(")) — mp@") p(") + L (w(") + L, +

. = 1n " =T :
i f B Yy, 70, 95+ e A, O) pl') + Py, L T, Ps+
2 fm 1 4 m

+e A, ©;5) X @y + termes non linéaires en ¢.

On obtient I'équivalence en posant g = 2 fm. Pour / = (¢, la théorie est
renormalisable, elle I’est donc pour tout 7, ce qui explique I'apparition des
termes non linéaires, les infinités provenant de ces termes compensant
celles du couplage PV pur.

Il serait facile d’établir des formules analogues dans le cas b), mais
nous nous contenterons de remarquer que pour = —1 L, =L, =0
et I'on obtient un couplage PV pur, alors que pour / =0 Ly, = 0, et I'on
obtient un couplage PS plus des termes non linéaires. L’équivalence, en
1*¢ approximation, de PS et de PV exige de nouveau g = 2 fm.

L’avantage de cette démonstration du théoréme d’équivalence réside
dans la généralité des formules (6) et (7), qui permettent d’étudier d’autres
types d’'interaction, notamment avec des particules de spin 1.

3. Forme la plus générale de l’interaction de Yukawa

Nous arrivons maintenant & 1’objectif principal de notre étude. Dans
le paragraphe précédent, nous avons vu que l'invariance de la Lagran-
giennen totale par rapport a une transformation du type (2) (c’est-a-dire
une transformation continue comprenant un facteur y,) nécessite 1'in-
troduction des fonctions @(/). Nous avons montré la signification phy-
sique de ces fonctions dans plusieurs exemples. Cependant, nous nous
sommes limités aux interactions ou la parité et le spin isotopique sont
conservés. La question que nous nous posons maintenant est la suivante:
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existe-t-il des fonctions @(/) plus générales, telles qu'il soit possible d’in-
troduire dans la Lagrangienne des termes qui ne conservent pas la parité
et le spin isotopique, sans détruire l'invariance? La réponse est affir-
mative, avec certaines restrictions, si nous nous limitons a la transfor-
mation (2). Par contre, si nous postulons I'invariance par rapport a la
transformation suivante:

oy =1(E+ nys) T sy 8l avec & = 4 7 (nombres) (12)

le choix des fonctions @(/) est limité et la Lagrangienne est soumise aux
restrictions citées dans l'introduction, c’est-a-dire:

1. Invariance PC de l'interaction pseudoscalaire de YUKAwaA des deux
Fermions avec le méson « pseudoscalaire.

2. Conservation de P et C séparément, et CI (indépendance de charge)
de l'interaction, si les masses nues des deux Fermions sont égales.

Le but de ce paragraphe est donc de trouver la fonction L(/) la plus
générale qui soit invariante sous la transformation (12). Nous ferons ce-
pendant les restrictions suivantes:

a) L(l = 0) décrira une interaction purement pseudoscalaire (théorie
renormalisable), donc L, (0) = L (0) = 0.

b) Les fonctions @(/) seront des fonctions des trois composantes (dans
I'espace isotopique) du champ g, du méson 7.

La transformation (12), de méme que (2), couple les termes L et L,
d’une part, et les termes possédant un facteur y, d’autre part (L, + L,
+ L, + L,). Etudions d’abord l'invariance de L+ L,..

Par L, nous entendons le terme de masse des deux Fermions. Si les
masses sont quelconques, nous aurons:

L, = my @y(0) py 1y + my Po(0) 295 (13
L'interaction de YUKAwWA pseudoscalaire la plus générale est:

Ly, = 914"+ B y5) @5 ya + hoc. + $:(C + i Dyy) @359
ke ;/;2 (E+ 1 Fys) @359, (13")

olt 9,, est un Fermion de charge positive, y, neutre, g, = 1/)/2(py + 7 ¢y)s
crée n+, annihile 77—, @,.5 crée ou annihile 7%¢). 4, B sont complexes, C,
| D, E, F réels. L,,S comprend donc 8 coefficients réels.

Pour que L, + L, soit invariant, 4, B ... doivent étre des fonctions
de / et de ¢;. Englobons les facteurs ¢, etc. dans ces fonctions, nous ob-
tiendrons 4; (I, ¢;) ..., etc. Pour les commodités du calcul, nous pouvons

1

introduire de maniére purement formelle un espace isotopique, en posant

d) L’indice 5 met en évidence le caractére pseudoscalaire, les indices 1, 2, 3
désignent les trois composantes de @, dans 'espace isotopique.
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Y= ( )et @s =1V 2 (@, + 4 @s)5, €tc. Les expressions équivalentes a (13)
seront alors®): '

e . I ,
L, =my @)y — 0% p+m®l) p 5y (14)

Ly, =y(@;0) +7 @O ys) Ty +p(es) +id;(Dys)y  (147)
QD' et @, possédant chacun trois composantes réelles. Le passage de (13")
(14”) s’obtient aisément en posant (@] + ¢ D)5 = Agp,; (@] + 1 D)5 =
— By, c5+ Dy = Cagy; c5— D, = Egy; etc. Remarquons que
la conservation du spin isotopique exigerait @, = a @5, P, = b @,
c; = ds = 0. La conservation de la parité: @; = ¢, = 0. L’invariance
PC:1®P5=a(t X @5)s, P"=bp;, c;=0, d; = dos,s.
En tenant compte des régles de commutation des opérateurs 7, la va-
riation de L, + L,, lors de la transformation (12) sera:

8L, =172 6@y + T 6By Y 1oy
+ &(my — my) Dy Ol (T X P5)5y
+ 1 (my — my) Dy Sl i ysp + 1(my + my) Dy 6L P59 Ty
0Ly = (—2np; P 8l + oc5) pyy + (27 s D, Ol + ods) yiysy
+[2E(ps X BL) S+ OB, — 20 ds s 01 P Ty
+ [2&(ps X D) 6l + 0D, +2mcs s Sl wiy, Ty

La condition 6L, + 6L,, = 0 donne autant d’équations qu’il y a de termes
linéairement indépendants (y w, P ¢ y5 9, P T, 9, P To Y, P T3 P, etc.). Remar-
quons que ; P; y y est indépendant de é ¢, p y, le premier terme étant
un scalaire, le second un pseudoscalaire. Nous obtenons alors le systéme
d’équations:
1a) [ﬁ"’ﬂ 5By — 2 7 D! g, az] D=0
b) despyp=0
2a) 20 Py s Ol piysyp =0
b) Od5 + 7 (my — my) Py a5 Sl iysp =0 :
3a [2§¢5><45 —29dy ;) 0l + "1 60, .93] pry=0/( (15

)
)
)
b) (0D, — &(my — my) D, @561]1/)1'1/)20
)
)

4a) 2E@; X Py +2nc; ;) Olypiy; Ty =0
b) (o ¢g+77(m1+m2) PPy S piy; Ty =0
ou & =(0,0,1); — @; = (p25, — P15, 0).

€) A condition que @’(l) et @ ”(!) soient tels que I'interaction conserve la charge.
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L’équation (4a), multipliée par ¢, donne 27 @2 dl-c; =0 d’olt ¢; = 0.
Ceci implique alors @, X @; = 0, donc @, = Ag; 1a) et 4b) donnent
maintenant

@D, = Acos2nel)+ Bsin2ygl)

(16")

D! — l??1+m2 [— Asin(2ypl) + Bcos(2% )] %
3a) multiplié par g05 montre que 27 2 0-dg — 1/2 (m, — my) %,5 0D,,
d’ou

dg= "7 [~ Asin@ngl) + Beos2np )] T (167)

expression qui satisfait a 2b). Enfin, de 3b), 2a) et 3a) on tire

q;;: "y~ My i [_«Asin(Znal)-i_-BCOS(zﬁgl)]

2 S5 @ = (167)

Dans ces expressions, 4 et B sont des constantes d’intégration indépen-
dantes de /, mais peuvent encore étre des fonctions (scalaires) de ¢; ;.
Pour / = 0 on obtient une interaction linéaire en ¢, ; en posant 4 = — 1
et B =2 ¢ (m, + my)"1g. , _

En résumé, I'invariance de L, + L,; par rapport a la transformation
(12) impose 1'existence des fonctions données par (16). (16) et (14) mon-
trent alors que l'interaction est invariante sous PC et, lorsque m, = m,
(s = D35 = 0), elle conserve la parité et le spin isotopique. Remarquons
que D, ds et @} ont en commun le facteur ® = — A sin 279 ¢l) + B
cos (27 @) tel que @ + @2 — A? + B2 est invariant (1ndependant de 7).
Pour m; = m, cet invariant devient @} + 1/m? @[? (car ;% = ¢?).

Il nous reste maintenant a examiner la transformation des termes de la
Lagrangienne totale contenant v, en facteur. Ces termes ne nous appren-
dront rien de neuf quant a l'interaction, puisque nous avons fait I’hypo-
theése

L,,(0) = L,0) =0 17)

donc que l'interaction avec le méson 7 est pseudoscalaire. Il nous suffit
donc de déterminer va et L, de maniére & satisfaire (17) et assurer I'in-
variance de la Lagrangienne. Rappelons que la partie libre L, des Fer-
mions et leur interaction électromagnétique L, s’écrivent respectivement

LD - T [TP Yu O;HP 0;11;’}}#1#] | (18’)
L1467 YAy o - (18”)

Comme la transformation (12) est continue, la présence des dérivées dans
(18') exige lintroduction de fonctions @ (7, ¢) dans L,, Remarquons
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qu'au moyen de ; on peut former le pseudovecteur 0,¢; et le vecteur
@5 < 0,95. Ecrivons,  titre d’essai, pour I'interaction:

L, = iy T(Q;s + ‘p:ﬁs Vs) Vu ¥ (18")
L, =ipt(D, + P, y5) v, v (18™)

La variation de ces termes est analogue a (3a) et 6 (L, + L, + L,, + L,)
= 0 donne les équations (voir (4)):

0D s =205 X (B, 7 — D, &) ol + &[0,(ps ) + ¢4, O]
6@;5 =2 @; X (@;17 — @ &)1 [0#((p5 0l) +eA, ;0]
0D, =2¢,x (Psn— P& 0l
oD’ :2q>5><(d>;577ﬁ¢;5§) 8l

(19)

Les deux derniéres équations montrent la nécessité d’indroduire L, (car
@5 X (D5 — ®,5 &) = 0 n'est pas compatible avec les deux premiéres
équations), la premiere équation celle d'introduire @  (apreés multiplica-
tion scalaire avec g on obtiendrait & (p;0, @50l + ¢4, @5 ;6l) =0
si @,; = 0). Les équations (19) possédent une solution, ce qui justifie
I'essai (18") et (18"):

D, = 55 0,95+ ¢ 4, 6) x Py + @, cos [+ 1) 25 ]
+ B, sin[(E+7n) 29l +y,cos[E—n)2¢]]

+6,sin[(E— ) 2@+ 1,5 Ps
¢Z = —@a,cos [(§+17)2§l]—ﬂ‘usin[(S—i—n)Zal] (20)
+y,cos[(E—n) 290 +6,sin[(E—n) 20+ x,59s

@' — E[0,(@;]) + e A, 6,1 +2 @ % fdl(d);nﬁdi;é)

ud

Pl 0,(ps D)+ e 4, 0,1+ 29 x [ AU,y B8

&y, B, Y O, N5 X5 sOnt des constantes d’intégration avec @, - g5 = 0
B, ¥5=0, etc.

L’analogie de ces solutions avec les expressions (6) du paragraphe pré-
cédent saute aux yeux. Montrons comment on peut en extraire les solu-
tions qui satisfont (17):
f;osongs @y =Y, =~ (2920, Ps+ €4, 0) X Psi 1],5 = Y45 = B, =

IL —_—
Pour £ =5 =1/2 f (20) et (21) donnent:
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' 1 —
D), = or [0, 95+ ¢4, ) x p;] (1 cos(2/ 1) |
D, =—-D,
Bl = —10,(50) + ¢ 4, O,1 (22

2f@l
— 4 [0, s + ¢ 4,09 X 9] x @, (1= PN

D, =—D,;
Pour &£ = — 7= — 1/2{ on obtient les mémes expressions pour @, et
&), mais des signes opposés pour @), et @, .: @, = + P} Les solutions

(22) pour @, et @} sont identiques aux solutions correspondantes (11)
du paragraphe précédent.

Les interactions (18"”) et (18"”), apparemment, ne conservent pas la
parité. Cependant, pour m; = m,, L, conserve la parité, et, comme
L,,(0) = L,0) = 0, la Lagrangienne totale la conserve aussi. Grice a I'in-
variance, il en sera de méme pour tout /, en particulier pour I’ tel que
L,(") = 0. On a donc ici I'exemple d’une interaction PV ne conservant
pas la parité, qui est équivalente (en premiére approximation) a une inter-
action PS conservant la parité.

L’imvariance de la Lagrangienne nous permet de formuler le théoréme
d’équivalence. Dans (16), posons A = — 1, B = 2g @ (m, + my) L. Avec
ce choix, on obtient pour / = 0:

— 1—1

_ 14
L) = —myp ‘*‘zjg’ MY ——5 ¥

(23)

L0) =P [ig7 @ops— 222 g (S 7 05+ igusys)| v

My + My n

L,,=0pourtg(2f@l)=A|B=—2g¢ (m + m,) 1 Pour cette valeur
de /, L,, vaut en 1™ approximation:

’ ! - S
L) =it s ¥ (=5 +75) 74T 0 9ev-
Nous avons donc équivalence pour g = (m; + m,)f. Le coefficient du
terme de L,, qui ne conserve pas la parité vaut, pour /= 0: (m, — m,)
(my + my) ™1 g = (m; — my)f. Lorsque m, = m,, ce coefficient est nul,
et g = 2 mf. Pour m, = 0 (neutrino), il vaut + g.

4. Interactions de Fermi

Dans ce paragraphe, nous allons voir que le postulat de I'invariance de
la Lagrangienne totale sous la transformation (12) a des conséquences
intéressantes pour les interactions de FErRMI. A cet effet nous groupons
les Fermions en paires y; = (p, n), (v ¢e), (vu), ol y; sont des spineurs a
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deux composantes dans l'espace de charge. Ceci n’implique pas que les
masses des particules d'une paire soient égales. On peut en effet écrire
pour le terme d’inertie de chaque paire y; I'expression (14'):

LY = m) S0 F,0 5% 9,0 + m O F, 59,0 (14)

Cependant, comme le neutrino apparait dans plusieurs paires, donc dans
plusieurs L, sa masse doit étre nulle. Il va sans dire que les opérateurs v
n’ont, dans cette expression et dans les suivantes, qu’une signification
formelle, donnée par leur action sur les ;.

Nous postulons maintenant l'invariance de la Lagrangienne totale
lorsque chaque paire est soumise a la transformation (12):

oy; =1(5+ mys) T sy, 0L(E = 77) (12)
La Lagrangienne que nous considérons est la suivante:

1¢ Systéme nucléons — mésons 7 f)
20 Partie libre des leptonsf)
3% Interactions de FERMI des paires ;.

10 a été décrit au paragraphe précédent dans les équations (23) (avec
my = m,), (18) et (22).

20 il est possible d’exclure, si on le désire, 1'interaction directe des
leptons avec le méson z. Il suffit de poser, dans (14) et (16), m, = O,
A= —1, B=0, ce qui est possible, puisque 4 et B ne dépendent pas
du paramétre /. Ceci donne, pour [ = 0,

1 — —_
L0)+ Ly(0) = — 5 map; (1 —75) p; = — m, p, 9y,

pour l'électron, par exemple). La désintégration du méson z se fait
alors par l'intermédiaire d’une paire virtuelle de nucléons:

at>p+n->ut+vouet+o.
(18) et (22) restent valables pour les termes vectoriels.
3% Considérons maintenant I'interaction de FErRMI L:
Ly = [’—l’-z 0 7. v E’;; O.(a, + b, ys) T_ ;] + h. c. (24)
O =19V Yw?u¥s @u=v)
Lorsque & =7 = 1/2 f dans (12), on obtient pour la variation de Ly:
OLp= 5 if OL{[pi(~1) (1 —75) O 7 9 7, 9] [¥;0.e, + b,y T_3)]
+ [ O.(L+ ) T, 7oyl [9, 0 (a, + b y5) T_9j]
+ [v; 0, 7, v;] [@j(‘" ) (1 —ys) Ofa, + b, vs5) T @ T_y;]
+ 90 vy [y, 0.1+ ys) (4, + b, y5) T_T @y}
+ h. c.

f) Avec leurs interactions électromagnétiques.
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Il est élémentaire, mais fastidieux, de montrer que seule une combinaison
particuliére de V et A est invariante. Nous allons, a titre d’exemple,
écrire quelques termes de 0L ®).

Deux termes typiques de 6L, pour O, = 1, y;, sont respectivement:

1 . Y — -
28 (Y 2% b Ty 9 (0 + bye) Ty et

B (26)
% if ol (— ]/ 2% [9; y5 7. )] (9 (aps Vs + bps) T3 9]

qui ne sont compensés par aucun autre terme. Les expressions corres-
pondantes pour O, = y,, ¥, V5 sont resp.:

%‘ 1] oL~ (— VEQJ*) [y Vi Tt ¥i

. . [@j ?’,u(“V + by ys) (L4195 73 y;] resp. @7

% ifol- (=Y 2¢%) [W:7,7s 7 9]

d [{0_; Yu (ay + by vs) (1 + ¥5) 73 ;]
qui sont nulles pour a,= —b,; a, = — b,. Considérons encore deux
autres termes de 6 Ly, pour O, =7y, ¥, ¥5: '

% ifol- (V§‘P) [y; Yu(l + 75) T3 il |
(9, 7,(@y + by ye) T Tesp. | (28)
S iF 0 (V20) Byl + ) 79 9 7, (@, vs + b)) T )]

qui se compensent pour a, = —b, et b, = —a,, d’olt
ay =a,=—b,=—b,
Finalement, le calcul complet montre que pour & =7 resp. = — 1, la

seule forme invariante de L, est: ,
a [y, vull —v5) 7o 94] [ V(1 —vs) T_y;] + h. c. resp. (29)
a [y, V,u(l + ¥s) T il B_U-j Yl +ys) Tyl + hc (30)

Brupman?) a considéré une transformation analogue a (12), ou ¢pg 6!
est remplacé par dw, vecteur indépendant de x. En plus, il postule que
les interactions de FERMI résultent de l'interaction du courant J, avec
lui-méme, ou J , est donné par

. — 1
J;‘:Zzw.fy,“‘z‘ (1 +ys5) Ty,
i
g8) Pour le calcul de dLg on utilisera

rp vl =)2n9-2¢7, te. vl =)2¢
Terl = -)25¢* +2¢;7_ [T® ], = V2o*
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Lp=GJ,J "Z{ wzn (14 ys) T3] [w; v, (L + 75) r_w,-]l
& T [%V;;(l + ¥s5) T3 il (31)
: W_f Vu 1+ Vs) T3 1,01-]} J

Si l'on postule seulement 1'invariance sous la transformation (12), on
arrive aux conclusions suivantes: 1° En excluant les termes de (31) con-
tenant 7;, seul (29) est invariant pour & =1, ou (30) pour &= —#;
2% En admettant les termes avec 73, (31) est invariant, mais les deux
signes devant y, sont possibles, ceci aussi bien pour & =7 que pour
& = —n. Lorsque & =1, par exemple, les termes (27) sont nuls pour
a, =—"b,, a;,=—>b, Pour a, =10, et a, =b,, ils ne sont pas nuls,
mais compensés par la variations du dernier terme de (31). Le raisonne-
ment est inverse pour £ = — # (remplacer 1 4 y5 par 1 — y; dans (27)).

5. Interactions fortes des particules étranges

I1 est intéressant de voir s’il existe un groupe analogue au groupe (12)
s’appliquant & d’autres interactions fortes ou intervient le méson z.
Considérons I'interaction de YukawA entre A, X et 7, conservant le

spin isotopique:
Ly, = Eﬂs(“z + i byys) A° + hoc. + 1 E(as+ 1byys) 2 X 7 (30)

Une forme particuliére de (30) est aisée a discuter: c’est celle ou I'on fait
les hypothéses de la symétrie restreinte:

1° Les masses nues de A° et de 2 sont égales.

2% ity = R, by = Uy

On est alors amené a poser

Yo= o (40— 20 Z0= - (404 29y = (Z)v=(2) @

Cherchons l'expression de (30) en fonction des grandeurs définies
n (31)

FExEa= (55— L) mt (55— 5 5 m

avec m=—@m+a) my,=—=(t — ) W3 = 7
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T IX Zm= (O E— T IOt 4 (5 T Z0 54 - + (E+ D — 2= Z)
SmA = L3 At X A0 - 1 20 A0 70
AT = N0 -7+ LAYt A0 X0 q0
1—§X2'JI+EJTA°+/IBET£:

== ]
~y2 T - (A8 — ]/2 < (4 — D) I+
= e =
+ 3+ g0 — - 0) 70 020
+ 2t 2tm l/ - (A — 2% n 7 (A )
N T '
+]/2 + A7t T2 S B~ T
A0+ZO A0+20 o —
+_V2 WO‘A'VZQZQPlT”%Ul%‘WzTﬂ’Pz
(30) devient donc:
Ly = (a+ibys) Ty + pa(a+iby;) Ty, (32)

(32) se compose de deux termes qui sont chacun formellement identiques
a (13b). Tous les raisonnements faits au paragraphe 3 s’appliquent a
(32) si I'on exige I'invariance par rapport aux transformations

Oy; = i(E+nys) T p; 00 =12 (33)
(33) peut aussi s’écrire
=(E+ny) GaAd+ 2 X7 ol
= (E+ny)imZdl

Nous pouvons donc énoncer le théoréme suivant:

Lorsque les interactions entre les particules A, X et 7w conservent le spin
1sotopique, satisfont aux conditions de la symétrie restreinte et sont inva-
riantes par rapport au groupe de transformation mésonique (32), elles sont
nécessarrement invariantes par rapport @ P et C séparément.

L’expérience ne permet pas encore de décider si les hypothéses de la
symétrie restreinte sont valables.

6. Propriétés de la transformation mésonique

Cherchons d’abord les invariants de la transformation (12) dy; =
1§ 1/2(1 £ 95) T @s9; 6I. En premier lieu, nous trouvons le courant
nucléonique — L L
PV VY = Y VW T Pa Y Y (33)
et des expressions semblables pour les paires (u, ¥), (e, ¥), (2+,Y?), (£°, 27).
Un deuxiéme invariant est

LY Vs V¥ (34)
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alors que % Vi _’fﬁj Vs Yj» h'/;j Vo Vi (35)

ne sont pas invariants. (33), (34) et (35) ont pour conséquence la sélection
de V' + A ou V — A dans les interactions de FERMI.

Le courant électrique [, =1ep;y,1/2 (1 + 75)y; est modifié de la
quantité infinitésimale

0J, =—defp 5 (1tys)y, TOspol TO=—(TX@); (30)

Ceci est heureux. En effet, si, pour ! = 0 l'interaction de Yukawa est
purement pseudoscalaire, elle comporte des dérivées 0, g5 pour I # 0.
(36) a pour conséquence que tout terme f 7 0, @5 est accompagné d’'un
terme fe A, T @, Ainsi, l'invariance (22) assure automatiqguement 1'in-
variance de jauge.

Enfin, nous avons encore les invariants

YhPy+igT Pyys)y et D+ D} (37)

D, et @, donnés par (7) (voir aussi (16)) et le commentaire qui suit (37)
montre comment les termes de masse sont couplés aux termes d’inter-
action pseudoscalaire par la transformation (12), qui peut s’exprimer
comme une rotation dans l'espace sous-tendu par @, et @,

Sil'on fait abstraction du facteur (1 4 94), (12) représente pour y une
rotation d’angle f ¢ dl(x) dans I'espace isotopique. Cependant, @,, @,
D5, P, ne sont pas affectés par cette rotation (par exemple @; =

A(l) - gps donc @, reste paralléle a ¢, lors de (12)). (12) n’entraine donc
pas nécessairement la conservation du spin isotopique.

La transformation (12) est continue. A toute invariance de ce type
correspond une équation de continuité, 0,J,=0 (voir NOETHER et
BLUuDMAN)?),

Considérons la fonction L(y?, y%, ...), ot 4 = », p, @, P;, etc., in-
variante sous la transformation

oyA = ad 81 + b4 0, Ol (38)
ol1 0/ est le paramétre et a? et & des fonctions de x.
0L =0 = 0(11;1 dy? + T)'(_gfﬁ)_ (0, ") avec sommation sur 4
oL oL A oL i
= (opr =2 0,5m) " + O o050 7]

= L1 8" + 0, [ @]

= [[L]A aA _ dﬂ([L:fA p)} al a5

0, [ (L1 81+ 55"

A A
0, @A+ 0, 51)] (39)
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Les fonctions @! ne satisfont pas a des équations de mouvement [L]4,=0.
Cependant, elles satisfont aux identités

;‘ {{L]ya* —0, (L], b5} =0 (40)

Considérons d’abord l'interaction, conservant la parité, des nucléons
# 9 . —
avec le méson neutre n°. Nous avons alors la fonction L(y, g, Dy, D5, D 5)
suivante:

1 — _— —
L=—=(py,0,p—0,9y, 9] +hypPy
+igpysPsp+ifwysy, Py (41)

invariante sous la transformation

Oy =ifyspsp ol dp=ifpyspsdl 0Py=2FghD;q, ol

0Ds= —2[hlg®@yp; 60 0D ,5=—(0,¢s5) 0l — @5 (0, 0

Donc, dans (38)

=iy gy F=ifPysps a®="TEd g, a%= 210 @y g4

(42)

™ =—0,p; B =0 =0%=0%=0 " =—g;0,.
Avec (41) et (42) on vérifie aisément (40). (39) devient alors:

oL
0, [[L]A bﬁ ol + 00 yA) (at 8l + b5 0, 55)] =0 (43)

Comme 07, 0,0/, 0,0; 0! sont des variations indépendantes, (43) fournit
les trois équations:

oL
0y [[L]A b + 0 (0p y4) aA] =0 )
4 oL 4 oL 4\
[L]a b + 30w y4) ° +0, ( 0 (O y4) b”) =l (43)

1 oL .4, OL 4] _ 46
2 [o(owA) 2 T 505 94) bﬂ] =0 )

(44) donne 1'équation de continuité cherchée, avec

_ A oL A
Jo=1L. b, + 0. A (47)
En définissant:
. oL 4
Ui = 50, 74 (48)
(46) devient '
U,u}i. w lJ}u,u =0 (49)

et (45)
J n 0/1 U,ul (50)
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Cependant, en calculant J, au moyen de (41) et (42), an trouve J, = 0.
Ceci provient du fait que le seul by # 0 est b2*°. Mais 0L/0(0,D,5) = O.

La transformation générale (12) présente les mémes propriétés. L'équa-
tion de continuité 0, J, = 0 est donc triviale et ne fournit aucun résultat
nouveau.

7. Conclusion

Le postulat d’invariance par rapport au groupe mésonique implique
la conservation de la parité des interactions des nucléons avec les mésons
7, la non-conservation de la parité des interactions de FErRMI des nucléons
avec les paires de leptons (u, ) et (e, v), parmi lesquelles il sélectionne les
formes V - 4 ou V — A. Il établit donc une corrélation entre des faits
expérimentaux qui n’avaient pas trouvé place, jusqu’ici, dans une
théorie unifiée.

Il donne un critére qui permet de distinguer les interactions de Yukawa
qui conservent la parité de celles qui ne la conservent pas.

Ainsi les propriétés de symétrie des interactions des nucléons et des
leptons, que 1'expérience a établie jusqu’a ce jour, sont entierement dé-
crites par le postulat.

Enfin, il donne certaines indications concernant les interactions fortes
des particules étranges.

Les auteurs remercient vivement le professeur E. C. G. STUECKELBERG,
grace auquel le présent travail a pu étre mené a bien. L'un des deux
(H. R.) remercie la division théorique du CERN pour son hospitalité.
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