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Temperature Dependence of Magnetic Susceptibility

by C.P. Enz
Physikalisches Institut der ETH, Ziirich

(15. VIII. 1959)

Zusammenfassung. Der in der vorangehenden Arbeitl) abgeleitete Ausdruck
fiir die Suszeptibilitit geniigt nicht zur Erklirung einer bei einigen Halbleitern
im Bereich missig tiefer Temperaturen gemessenen Temperaturabhingigkeit.
Hier wird der Rahmen der Theorie erweitert durch Heranziehung der Elektron-
Phonon Wechselwirkung. Diese gibt zu einer zusitzlichen Suszeptibilitit An-
lass, welche zwar hier nicht explizit berechnet wird, von der jedoch plausibel
gemacht wird, dass sie den Effekt erklart.

1. Introduction

- The temperature dependence of the formulae (4.9-13) derived in
the previous paper?) (all quotations of the type (4.9) refer to this paper)
1s governed by the Fermi distribution f(E) and by the functionG(E,, E,,).
Although the result (4.14) is likely to account for the y — T depen-
dence of many crystals, anomalous behaviour is empirically found for
some semiconductors. These substances show a diamagnetic susceptibility
of the form

Xexp%““‘FbT; b>0 (1)

at moderately low temperatures where the density of conduction carriers
is practically zero2). Since in the region of validity of (1) the minimum
| E, — | of the energy difference | E,(k) — | is of the order of about
20-kT the total susceptibility (4.14) there is of the form

22 s b gl T A

where y, is independent of 7. Because of the factor exp (— (E, — {)/&T)
the second term in the latter formula is practically zero simultanously
with the density of conduction carriers. Therefore our formula for ¥ does
not account for the behaviour (1).

Some time ago an explanation for such an anomalous temperature
dependence was proposed by KrRumMHANSL and Brooks?). According to
these authors a van Vleck magnetism of the form (4.22) should be of im-
portance, the leading term being one which connects valence and con-
- duction band states. In their proposal the behaviour (1) is due to a temp-
erature variation of the energy denominator which for the states in
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question is well known empirically. It was pointed out earlier4), however,
that from the point of view of a more general theory the justification for
picking out this special term (4.22) is not convincing. Moreover, the
temperature dependence assumed by KrRUMHANSL and BROOKS is of a
rather special nature. In fact, the variation of the energy gap between
valence and conduction band as function of temperature has long pre-
viously been explained by FAN and others®) as a second order effect of
the electron-phonon interaction. Therefore a more rigorous theory of the
anamlous behaviour (1) would have to develop from this interaction. In
what follows we shall develop the general lines of such a theory without,
however, entering into a detailed calculation. It will become clear, at
least in tight binding approximation, that a new type of function of T,
different from those occuring in eqgs. (4.9-13) comes into play, which
qualitatively may well account for (1).

2. Statistics of the electron-phonon system

Since we are interested only in statistical effects of the electron-
phonon interaction a second quantisation point of view is appropriate for
the whole system.

The basic electronic states without electron-phonon interaction are
the eigenstates | ) of the Hamiltonian § with a magnetic field present,
&4 12.3); -

H|k) = Wy |k) (2)
Then the second quantized electron Hamiltonian is
‘g’EL = 2 N, W, | (3)
%
where N.=a, a, (4)

s the occupation number of electrons in state | k), N, = 0 or 1, and a,
a, are emission and absorption operators obeying the anticomutation rule

{ar, @} = Opr (3)
The phonon amplitude at the lattice site R, we write as (the lattice
is supposed here to be of Bravais type)

u,lt)=©2«G M)*%Z w,"2e,b, ¢"9Re— 238 | herm. conj. (6)
q

where G is the number of atoms in the crystal (which is assumed here to
be finite) and M their mass. ¢ stands for the phonon wave vector ¢ and
the polarisation index s =1, 2,3, g = (s, q). e, is a polarization vector
satisfyin

yine (es,q e, q) — ass’; all q (7)
b, 1s an absorption operator which obeys the commutation rule

5, BEd=1d, - (8)
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Then the free phonon Hamiltonian is

gPh = ZZ (ui —u, ua) = Z N, Wy (9)
o q
where

N, = b; b, (10)

is the number of phonons in state ¢. In §p, the zero point energy has
been eliminated by an appropriate ordering of operators.

For the electron-phonon interaction we take (see e.g. PEIERLSSY),
p.- 125)

Din=2 W (x— R,)u,0) (11)
which in second quantization leads to

D, =2 2 k] Dim| ) @ =

(12)
=)' 3" Y (k| C,| k) a; ay b, + herm. conj.
E kK g
with
C,*)=R2GCMw)t3 e, W(x—R,)cR (12"
Our task is now to analyse the canonical ensemble defined by the total
Hamiltonian
D =9, + 9, (13)
where

‘g’f - @El + gPh (13')

is the free Hamiltonian, by treating the electron-phonon interaction ©,
and later also the magnetic field as perturbations. As usual we circum-
vent the subsidiary condition that

N = %‘ N, (14)

should be constant by going to the grand canonical ensemble where this
condition is relaxed by introducing a Lagrange multiplier {, the Fermi

energy. Then
1

=T
defines the total thermodynamic potential £,,, = @ — N+ and the

total free energy @y, N being the average number of electrons.
The perturbation expansion in ), can be performed exactlyin the same
way as in section 2 of ref. 1, writing

e~ *otal = ~2311; Eﬁ dz e ** Trace (z — 9, + NO) 7! (16)

e~ *“total — Trace e % (Drotar = N ) , o (15)

‘&
.
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and

(2= B + N = (e~ 9, + N+ l

+ =9+ NP, -9, + N+ (16")
+ (=0, 4+ NP, :—D,+ NP, (e -0, + N1+ }

By going into the representation where the occupation numbers N, and
n, are diagonal the trace of the first order term in (16’) is seen to vanish
since §  1s diagonal and $. has no diagonal elements. Therefore we can
write

Qtoml - Qf+ '9’ + (17)
g™ hotal — =% (1 — 0 Q'+ -+ )
where
e~ *% = Trace e~ *®i - N0 (17)
and
e % O — %{dz e~ * Trace [(z—@f+NC)'1 ]
mi (177)

- D, NP, D, N |

Calling | 4 > a general state in the representation by the occupation
numbers N, n,, N, the value of (14) and E, the eigenvalue of 9, in this

state, ,
O/ /4>=E,|4> (18)
egs. (17') and (17") read

_an Ze—a (Eq-Ny40) (19)

and

e Q= ffdze‘“ZZ (z— E, + N,0)~2

(A|9;|B) (z — Ez+ N3 )1 (B|9,|4)
Making use of (3.18) and of the identity

[+.4
g—0a—g—ob _ r _ _
e Z_Bab/dle/l(ab)

we obtain
e %9 = 22 ](A ]@i§B>|2 g% Eg—Ngt) .
A B

3 (20)
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We first want to calculate the expressions
Serg = 2<A|@ | By {B|a, a, b,| Ay e~ *EB-NB%

kk’q = 2 <4
for # = A'. Let ’
il =4 o5 By s n s Bign e (21)
Then there is just one state | B > which contributes to S and 7. Since
a|Ny>=YN|1 = Ny>; a}|Ny>=)1 - N1 -N,>
bqlnq>=V;¢1‘nq—1>; b;l”q>:}’/mlnq+l>
it follows from (12) and (3), (9) that
Siwg= (R| G| B')* l—Nk) Ny n, e (Pa=Nat4Wy= Wy —ay)
Tixg= (|G| ®') Ny (1 — Ny) (m, + 1) e * (Fa=Nat=Wi+ Wy o)
The case £ = &’ need not be considered since from gauge invariance it

follows that (2| C, | k) = o for ¢ =+ 0. Indeed, a shift of the coordinate
system through R, induces a gauge transformation

04 ied(x
A@F—R,)=A) + 5 5 wE—R,)=e""y(x)

—-AE N
v @ b, | Ay e *EB-NBY

iz A(x) =1 H (x x R;)
A(x) being given by (2.8). Therefore
y* (# —R,) W(x—R)y (¥ —R,) =yp*) W (¥ —R,) yp(*)

Integrating over the crystal volume (which here again is assumed to
be infinite) it follows that

fd3x1p ZWx— ) &' 9Ra g (x) —Ze“"* fd3xw (%) W () p(*)

which for ¢ + 0 is zero on account of (A. 4). Thus

T A Byt et Bnmnt = =1 0aad 2 57 ST k] )

{1-N) Nenge™* e W29 4 N (1—N,) (n,+1) et Wa=Wir=g} J
Since according to (21)

E, =) NW,+ ) no, (23)
we have from (19), (14) ' ’

=T ( 5 et [T S -

Np=0,1 ny=0

=]k](1+e-“(Wk N ] —e e

(22)
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1 B 1 Cvw ,
or .Qf:_—-a—;log(l—ke W ))+T{§10g(1—6 79 (24)
Here the electron part (note that spin is neglected in (2)) is identical with

V[2-Q as defined in (2.2, 4). With the help of egs. (22), (23), (24), (19),
eq. (20) can be written as

— o 2 = Z 2;;1 i{(l_Nk)'

Ny [ AL VR LN (L= N (1, + 1)

Np=01

o0
g Py g 2: e %"
ng:O

Introducing average occupation numbers

Ny= X Npe s M0 37 ems(hmd M)t = (678 1) = f())

‘Vk 0,1 ‘\*"k=0,1
(25)

n, = Z%qe"““’q”q [Z eﬁ“”’qnq}‘l = (" — 1)1 =glw,) (26)

'nq=0

[e 4
f ldleﬁ.(Wk—-Wk'wq)} { 2 e~ Wp=0 Np |
0

-1

Np=0,1

(note that in (25) f is the Fermi functlon introduced in (4.1)) the last
expression for — a2’ becomes

eI

[(1 o Nn) Ivk’ ﬁq f A dA 64}- (Wi= Wi =g =+ (27)
0

R

4= ﬁk(l — ]Vk,) (%q + 1) /;{ d}.e"‘"“(Wk-Wk'—wq)}

This formula may be simplified further by exploiting the symmetry of
C, which in view of the relations
wy=w, e, =e; g=(s,9); 3=(s, —q)
and of its definition (12') is
C,=¢C;
Thus
|RIGIE) 2= [(*[C; [R) ]2
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and after relabelling the summation indices in the second term of the
curled bracket of (27) according to & - &', k' >k, ¢ - ¢ this formula
simplifies to

—m9’=§k2,2Hklcqlk')lza—zvi)z\i,- ]

; (28)
f AdA 6“1(Wk—Wk') {ﬁq ettty + (ﬁq ol 1) e—lwq} J
0

For the evaluation of £’ as a perturbation expansion in the magnetic
field it is important that eq. (28) may be rewritten in a form which is
independent of the representation (2). In fact, with use of (25), (26) we
can write

e Zf AdA Trace [(1 — /($)) e * 5 . (28')

A * Ao -Aw
-G (D) e P C7] glw,) (et 20 + &l* =P )
where now the trace goes over one-electron states as in (2.2). The modi-

fication of the electronic thermodynamic potential 2, eqgs. (2.1, 2), due
to the interaction with the phonons is

2 ., 1
— =00 — = g H (29)

where y;,, is the additional susceptibility due to this interaction. The
calculation of £’ as a power series in the magnetic field H can, in prin-
ciple, be carried through with the method used in ref. 1, writing the
functions (1 — f($)). exp (— 4 $) and f(H) -exp (+ 4 ) in (28’) as Cauchy
integrals and making use of the expansion (2.6). The evaluation may
again be carried out in the field free representation (2.7).

The matrix element of C, in this representation is obtained by means
of a reduction of the domain of integration to the cell £, using (A. 1, 2),

CQCMw)ink|C|n' k)= ) ¢Rxe (nk|W (x — R,)|n' k)

o
:ZZ‘quRd o ' k) Ry f B, (&)
a B

£
Uy (%) ¢ e W (5" + Ry — R).
With

this may be written as
CGMw)t nk|C|n k)= Z gilg ik —B) Ry,

. Z f d3 x' ei(k'-—k) (%" +R,) u;k Wy eq W (xr 4+ Ry)

Y 2,
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Making use of (A.4) and going back to the full domain ofintegration we obtain
(k|G| k)= C 5(q 4k —k) 26 Mw)} enk|W @) |n k)
(30)

3. Temperatur dependence of Q'

It is evident from eq. (28') that, due to the phonon variables but also
to the A-integration, a new type of temperature variation is present in
£2’. With the use of (30) we may write eq. (28') as

o
3
; 1 glwq_g.g(oc—ﬂ)wq e. . e,
2 :“?fmmz; [ asq e XN
0 sl e

where e ; is the j-component of the polarisation vector e,. To simplify
the discussion we assume that

ws,q:Cs |q1

¢, being the velocity of phonons of mode s =1, 2,3. With the new
variables

P LY _ ~ 9
x:awa —z: xm_awm:?

where w,, is the maximum frequency and @ the Debye temperature, we
obtain

:—ffd«f( )fxd Mggdgqew e, Ty

In the temperature region of interest, ® > T holds, so that we can re-
place the limit of integration x,, by infinity. Now in tight binding approxi-
mation T';;, does not depend on q asis seen from (30), (28) and AppendixC
of ref. 1, so that, recalling (7)

o0

3 e
1 4= esxte(l-8) =
,:-—ﬁ‘.-——_— "‘“3 ot i
R fgdsz e fa) [rdn ST
B 0

Thus £’ contains an overall factor 1/« = k7 in addition to the dependence
of T;; on a. According to (29) the same is true for y;,,, so that

Xotal — X i3 Kint (31)
is likely to account for the behaviour (1).
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