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Theoretische Uberlegungen
zur experimentellen Bestimmung der spontanen
Photonenschwankungen

Mitteilung aus dem Institut fiir héhere Elektrotechnik
der Eidgenossischen Technischen Hochschule, Ziirich

von G. A. Spescha und M. J. O. Strutt
(15. VIII. 1959)

Zusammenfassung. 1912 stellten A. EinsTEIN und H. A. LoreNTz Formeln auf
iiber die spontanen Schwankungen der Hohlraumstrahlung. Im Grenzfall Av/A T < 1
beschreiben diese Formeln die Interferenzschwankungen der Strahlung und sind
experimentell schon hiufig bestitigt worden. Uber den Grenzfall, wo Av/k T > 1
ist und die Schwankungen als durch die Statistik der unabhingigen Quanten be-
dingt aufgefasst werden kénnen, sind noch keine experimentellen Untersuchungen
bekannt. In der vorliegenden Arbeit wird ein Weg aufgezeigt, wie mit einem ge-
eigneten Photonenempfinger die Schwankungen im Gebiet Av/k T > 1 gemessen
werden kénnen. Zu diesem Zweck werden die Schwankungen nach Fourier zerlegt,
und man beschrankt sich darauf, den Zusammenhang zwischen den Schwankungen
der auf den Photonenempfinger auftreffenden Strahlung und den Schwankungen
des Ausgangssignales innerhalb eines gewihlten Frequenzintervalles zu ermitteln.
Die Quantenausbeute spielt dabei eine wesentliche Rolle.

In einer spiateren Arbeit wird gezeigt werden, dass das in dieser Betrachtung
gewahlte Modell eines Photonenempfingers unter gewissen Bedingungen realisiert
werden kann. Es werden Messungen der Photonenschwankungen beschrieben
werden.

1. Spontane Schwankungen der Hohlraumstrahlung

Im Jahre 1912 wurden von A. EINsTEIN und H. A. LorRENTZ Formeln
abgeleitet fiir die spontanen Schwankungen der Hohlraumstrahlung?) ?).
Spatere Verdffentlichungen haben die von den beiden genannten Au-
toren erhaltenen Formeln bestitigt2)4)5).

Die mittlere Energie W—p [Joule] in einem Hohlraumvolumen ¥V [m?3]
im Frequenzintervall zwischen » und » + dv betrigt bei der absoluten
Temperatur 7 nach M. PLANCK:

W, = VLY foxp (hlh T) —111, (1)
Hier ist / die Plancksche, % die Boltzmannsche Konstante (6,62-10-34W s2
bzw. 1,38 - 10-28 Ws/Gradabs.) und ¢ die Lichtgeschwindigkeit (3,00 -
10® m/s). Dieser Mittelwert gilt entweder bei Mittelung in einem Hohl-
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raum fiiber eine Zeit, welche sehr lang ist verglichen mit 1/dv, oder bei
Mittelung tiber ein Ensemble von vielen gleichbeschaffenen Hohl-
raumen.

Die Energie W, weist spontane Schwankungen

AW, =W, — W,

gegeniiber dem Mittelwert auf. Fiir den Mittelwert (im obigen Sinne) des
Quadrates von AW, ergibt sich nach EINSTEIN!) und LORENTZ %) die Formel:

(W,)% ¢
8mvEdv V" (2)

(AW )2 = W, hv+

Fithren wir fiir W, den Wert aus Gleichung (1) ein, so entsteht

TATO s T exp (hvfk T)
AW,) =W, by T —1 3)

=W, -,

wo die Funktion ¢ von ¥ = Ay/k T die Form

ex X
M= @%—)—I (4)
hat. 4 wird auch Entartungsfaktor genannt.

Zahlt man die Anzahl Photonen mit der Energie zwischen A» und
h (v + dv) in vielen gleichbeschaffenen Hohlriumen, oder in demselben
Hohlraum in vielen beliebigen Zeitpunkten und bezeichnet die Anzahl
mit #, so gilt fiir die mittlere quadratische Abweichung An:

(An)? = pn, (5)

wo u auch gemiss Gleichung (4) definiert ist. Vgl. 8)7) iiber Bose-Statistik.

Bei den Messungen der spontanen Photonenschwankungen werden
nicht die Schwankungen der in einem Hohlraum befindlichen Zahl von
Photonen bestimmt. Vielmehr handelt es sich um die Bestimmung der
pro Zeiteinheit durch eine gegebene Fliche hindurchtretende Zahl von
Photonen. Wenn wir den Mittelwert dieser Zahl # iiber viele gleiche Zeit-
intervalle oder iiber viele gleiche Flichen im gleichen Zeitintervall mit
n bezeichnen und die Schwankung mit A#, so gilt wieder

(An)®

n b

w gemiss Gleichung (4). Fiir die mittlere pro Sekunde durch die relativ
zu den Hohlraumdimensionen kleine Fliche A strémende mittlere

Energie W, findet man
— = A
WV.S‘ — WV %7 . (6)
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Oben: Relative spektrale Energieverteilung nach M. PLanck und der die Schwan-
kungen kennzeichnende Faktor y als Funktion von x = Av/k T.

Mitte: Die Gebiete, innerhalb welcher das Rayleigh-Jeanssche oder das Wiensche
Strahlungsgesetz giiltig sind mit einem maximalen Fehler von 109, bzw.
19, sind schraffiert.

Unten: Wellenldnge und Strahlungsfrequenz als Funktion von x bei verschiedenen

Temperaturen als Parameter. Alle Zehnerpotenzen der Temperaturen sind
um eins zu erhohen.

2. Fourierzerlegung der spontanen Schwankungen

Der Photonenstrahl, welcher den Hohlraum verlassen hat, treffe auf
die Oberfliche eines Detektors auf und werde dort absorbiert. Die ab-
sorbierte Energie ldsst sich als Funktion der Zeit gemiss Fig. 2 dar-
stellen. Diese Darstellung dient nur zum Zwecke der Fourierzerlegung
und soll keine Aussagen iiber die Struktur eines Photons beinhalten.
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Die momentane Leistung ergibt sich durch Differentiation der Energie
nach der Zeit. Die Absorptionszeit fiir ein Photon sei mit 7 bezeichnet.
Wenn man den Begriff der Linge / eines Photons einfiihrt, so ergibt sich:

W,

&“§®$

Fig. 2
Oben: Von einem Detektor mit der Temperatur 0 absorbierte Strahlungsenergie
als Funktion der Zeit.
Unten: Momentane Leistung.

T = //c. In den vier links dargestellten Absorptionsvorgangen ist Energie
als gleichméssig tiber die Linge des Photons verteilt angenommen, in
dem rechts gezeichneten Fall als willkiirlich verteilt. Immer muss gelten

t+r

f Pdi— W, = hy, (7)
11

wenn P die momentane Leistung, von dem Auftreffen eines Photons
herriihrend, ist.

Um die Fourierdarstellung der Funktion P (f) zu gewinnen, geht man
analog vor wie bei der Berechnung des Rauschstromes einer gesattigten
Hochvakuumdiode; siehe W. ScHOTTKY®) und 9), 19), 11). Zuerst berech-
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net man die Fourierdarstellung der Funktion P (f), welche das Auf-
treffen eines einzelnen Photons darstellt. Denkt man sich das Ereignis
in Zeitintervallen T, wiederholt und macht man den Ansatz

. 27 3 2n
P(t)=a0+§ak cosk T{)At+k2’ b smk—ﬁt, (8)
so bestimmen sich die Koeffizienten zu

ak:%kvcoswto, w=k—=2nf, (9)

und by = %hv sinw f,, (10)
0

wenn das Photon zur Zeit #, die Detektoroberfliche erreicht, und sofern

f <1/t
Die Amplitude mit der Frequenz f betrigt somit

—VaE + b2 =m/w (11)

Jeder Ordnungszahl % entspricht eine Frequenz f = &/T,. Auf den Fre-
quenzbereich Af entfallen daher Af-7T, aufeinanderfolgende A-Werte.
Daher ergibt sich fiir die Summe der Amplitudenquadrate im Frequenz-
bereich Af:

¢ = % (k)2 Af. (12)

Unter der obigen Beschriankung in bezug auf f sind diese Amplituden von
f unabhidngig (weisses Spektrum). Das Quadrat des Effektivwertes der
Leistung beim Auftreffen eines einzelnen Photons betrigt

Py = (b 4t. (13

Wenn man annimmt; dass die einzelnen Ereignisse voneinander un-
abhdngig sind, d. h.

w=1, bzw. (An)2= n,

wo n die Anzahl der im Zeitintervall 7'; auftreffenden Photonen ist, so
wird das Quadrat des Effektivwertes der Leistung, welche durch das
Auftreffen des gesamten Photonenstrahles entsteht, in folgender Weise
durch Summation gebildet19):

=X h= 2

(hv)?
*1:0" Af. (14)
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Bei Einfithren des Wertes P fiir die mittlere Leistung

P = %-hv (15)

erhédlt man fiir den quadratischen Mittelwert der Schwankungsleistung
im Frequenzintervall Af (und solange f <€ 1/7):

p2 =2 hv P Af. (16)

Dieses Leistungsquadrat ist proportional zum mittleren Schwankungs-
quadrat (4#)2. Wenn im allgemeinen Fall

(An)E=um,
so muss demzufolge auch
p2=2hvu P Af (17)

sein. Das mittlere Schwankungsleistungsquadrat im Strahlungsfrequenz-
band von », bis v, erhdlt man durch Integration von Gleichung (17) iiber
v von »; bis v,.

3. Grenzfall nach Lord Rayleigh

Im Gebiet x <€ 1 geht das Plancksche Strahlungsgesetz in das Rayleigh-
sche Gesetz tiber. Der Faktor 4 wird gross gegen 1. In Gleichung (2) wird
das zweite Glied, welches nach H. A. LoreNTz?) die Interferenzerschei-
nungen der elektromagnetischen Wellen beschreibt, viel grésser als das
erste Glied.

3.1. Tiefe und maittlere Temperaturen

Bei Temperaturen bis zu einigen 1000° K tritt dieser Grenzfall erst auf
fiir Wellenldngen, die iiber dem sichtbaren Gebiet liegen. Siehe Fig. 1.
Das Gebiet sehr grosser Wellenlidngen (Radiowellen) ist der Messtechnik
relativ leicht zugdnglich bei Verwendung von Antennen und empfind-
lichen Anzeigegeriten. Die Antenne selbst ist kein eigentlicher Strah-
lungsdetektor. Erst die Verbindung der Antenne mit einem (am besten
quadratisch) gleichrichtenden Anzeigeinstrument ist ein Strahlungs-
detektor.

Aus den Gleichungen (1), (3) und (6) und der Bedingung x < 11lassen sich
die Schwankungen AW ,,, der von einer Umgebung mit der Temperatur
T auf die Antennenfliche 4 im Strahlungsfrequenzintervall A» pro s
auftreffenden Strahlungsenergie berechnen. Man erhalt:

—— 2mx v Av

(AW, )5 = r g (RT)2 A. (18)
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Mit dem Ausdruck 4" (19)

2n

fiir die 4quivalente mittlere Empfangsfliche einer Antenne 12)13)14), ergibt
sich

(AW, )2 = k2 T2 A. (20)

Nach 13) tritt infolge dieser Schwankungsleistung eine normal verteilte
Rauschspannung am Antennenausgang auf. Die verfiigbare mittlere
Rauschleistung am Antennenausgang kann aus Gleichung (20) berechnet
werden:

P,=kT A (21)

Dasselbe Ergebnis erhdlt man auch ohne Verwendung des Schwan-
kungsgesetzes durch Berechnung der mittleren Leistung, welche nach
dem Rayleighschen Strahlungsgesetz der Antenne zugefithrt wird?!®)16),
Gleichung (21) sagt aus, dass die Antenne gleich rauscht, wie wenn ihr
Strahlungswiderstand ein ohmscher Widerstand wire, welcher die Tem-
peratur der Umgebung aufweist. Da P, ~ T ist, lassen sich auf diese
Weise Temperaturmessungen durchfithren (Radioteleskope).

3.2. Hohe Temperaturen

Bei sehr hohen Temperaturen tritt der Grenzfall, wo ¥ < 1, schon im
Gebiet der sichtbaren Strahlung auf. Siehe Fig. 1.

Im folgenden wird gezeigt werden, wie im sichtbaren und im nahen
infraroten Gebiet die Strahlungsschwankungen gemessen werden kénnen
mit eigentlichen Photonenempfingern. Durch Messung von $2 und P
kann dann nach Gleichung (17) leicht der Faktor u bestimmt werden.
Weil unter der Bedingung, dass x <€ 1, u eine Funktion der Temperatur
ist (u ~ kT [hv), so muss sich durch Messung von y die Temperatur der
Strahlungsquelle bestimmen lassen. Voraussetzung dafiir ist, dass die
Strahlungsquelle so stabil ist, dass die Schwankungen im Messfrequenz-
intervall Af im wesentlichen die von A. EINSTEIN beschriebenen sind.
Es ist denkbar, dass diese Messmethode bei Temperaturmessungen an
heissen Plasmen wertvolle Dienste leistet. Das wiirde heissen, dass man
die Temperatur eines Koérpers definiert durch die Grosse der relativen
Schwankungen der von demselben ausgesandten Strahlung.

Bei dem raschen Fortschritt im Bau von langwelligen Infrarot-
Detektoren (Photonenempfinger) ist es nicht ausgeschlossen, diese Mess-
methode bald auch fiir Strahler mit Temperaturen bis etwa auf 103 °K
hinunter anzuwenden.
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4. Grenzfall der Photonenschwankungen

Wenn x > 11ist, so geht das Plancksche Strahlungsgesetz in das Gesetz
von W. Wien iiber. Beziiglich der Schwankungen gilt

M=
und damit AW =hyW, (22)
bzw. (A n)2 = n. (23)

Nach A. EINSTEIN und H. A. LORENTZ ist die experimentelle Bestdtigung
dieses Grenzfalles, Gleichung (22), ein Beweis fiir die Quantenstruktur
des Lichtes.

Aus Fig. 1 ist ersichtlich, dass im Gebiet der sichtbaren und kiirzeren
Wellen, die von einem Strahler mit einer Temperatur unter etwa 103 °K
herriihrt, die Bedingung ¥ > 1 erfiillt ist. Dieser Grenzfall soll mit einem
empfindlichen Detektor untersucht werden.

5. Theorie eines Photonenempfingers

5.1. Idealer Photonenempfinger

Um die spontanen Photonenschwankungen experimentell erfassen zu
konnen, ist ein Strahlungsdetektor notwendig, bei welchem das Ausgangs-
signal (Anzeige) moglichst eng mit dem Eingangssignal (Photonenstrom)
zusammenhidngt. Es sind zwel geeignete Arten von Detektoren denkbar:

1. Der Detektor ist ein Leistungsdetektor, d. h. das Ausgangssignal ist
proportional zur eingestrahlten Leistung. Damit kénnen die in Glei-
chung (17) nach FouRrligRr dargestellten Leistungsschwankungen in einem
Frequenzintervall Af gemessen werden.

2. Der Detektor zdhlt die einfallenden Quanten. Macht man haufige
Zahlungen der in lauter gleichen Zeitintervallen auf den Detektor auf-
treffenden Quanten und bezeichnet den jeweiligen Wert mit », so fithrt
dies auf eine Kontrolle der Gleichung (5).

Diese beiden Detektorarten unterscheiden sich nicht wesentlich von-
einander. Wenn man nur ein schmales Strahlungsfrequenzband Ay im
Vergleich zu » betrachtet, so haben alle Photonen nahezu die gleiche
Energie hv. Hier besteht der Unterschied nur in der Art der Auswertung
des Ausgangssignals (Zihlung der Ereignisse oder Messung einer Ampli-
tude in einem Frequenzintervall Af).

Wir beschrinken uns hier auf die Darstellung eines Detektors der
ersten Art. Wird der Anzeigewert mit I bezeichnet, so ist

I=aP. - (24)
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Wir setzen voraus, dass a konstant ist, auch kurzzeitig. Ferner nehmen
wir an, dass das Ausgangssignal des Detektors ein elektrischer Strom sei.
Weil der elektrische Strom auch von diskreten Partikeln getragen wird,
treffen wir die Annahme: Pro auftreffendes Photon soll sogleich ein
Elektron das Anzeigeinstrument passieren. Bei einer festen Strahlungs-
frequenz schreibt sich dann Gleichung (24) zu

e
I = P L ﬁ’ . (25)
Hier ist e der Betrag der elektrischen Elementarladung (1,6-10-1° As).
Aus Gleichung (17) und Gleichung (25) ldsst sich eine Formel fiir das
Rauschstromquadrat des trigheitslosen Detektors ableiten:

L=2epdf. (26)

Mit den Gleichungen (25) und (26) ist die Charakteristik des angenom-
menen idealen Photonendetektors bei der Frequenz » gegeben.

5.2. Nichtidealer Photonenempfinger

Es diirfte nicht moglich sein, den beschriebenen idealen Detektor her-
zustellen, schon infolge von Reflexionen. Wir nehmen an, dass der an sich
ideale Detektor eine Oberflache aufweist, welche die auftreffende Strah-
lung teilweise reflektiert. Der Bruchteil « der Gesamtstrahlung P, werde
dem idealen Detektor zugefithrt und mit P, (absorbierte Leistung) be-
zeichnet, der Teil 1 — « werde an der Oberfliche reflektiert, mit P, be-
zeichnet. « ist daher gleich dem Quantenwirkungsgrad, wenn wir den-
selben definieren als das Verhiltnis der Anzahl der pro Zeiteinheit das
Anzeigeinstrument passierenden Elektronen zur Anzahl der pro Zeiteinheit
auf den Detektor auftreffenden Photonen. Die Oberfliche sei homogen,
z. B. ein fehlerfreies Kristallgitter, so dass die Annahme gerechtfertigt
ist, dass alle Photonen einer gegebenen Strahlungsfrequenz, die in einem
gegebenen Winkel auftreffen, mit derselben Wahrscheinlichkeit absorbiert
werden.

Damit sind gegeben: Die Schwankungen der auftreffenden Strahlung,
der Reflexionsmechanismus und der ideale Detektor. Gesucht sind die
Schwankungen der absorbierten Strahlung, bzw. die Schwankungen des
Ausgangssignales. Das Problem ist analog dem Problem der Berechnung
des Rauschstromes einer Mehrgitterréhre, wo aus dem gegebenen Rausch-
strom der Kathode der Rauschstrom einer positiven Elektrode, auf

welche der Anteil « des Kathodenstromes entfillt, berechnet werden
kann!® S 262),
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Die Statistik des gesuchten Vorganges lasst sich wie folgt darstellen:

In einem Gefiss befinden sich sehr viele rote und weisse Kugeln. Der
Bruchteil o aller Kugeln sei rot, der Bruchteil (1 — &) sei weiss. Die
Wahrscheinlichkeit, in einer Ziehung eine rote zu ziehen, ist daher gleich
o (Bernoulli-Experiment). Wir ziehen nun in einem Zeitintervall T, je-
weils # Kugeln; davon seien 4 rot und B weiss. Es ist 4 + B = ». Nach
den Gesetzen der Binomialverteilung gilt fiir die Abweichung vom Mittel-
wert bei Mittelung {iber sehr viele Ziehungen

(A—A2=(B—-B?=na(l —a). (27)

Identifiziert man die absorbierten Photonen mit den roten Kugeln und
die reflektierten mit den weissen, so erhélt man fiir die Energieschwan-
kungen im Zeitintervall T,

kv — hy\2 hv\2
(AT—O—AT—O) =(T0) no(l — o) (28)
Bezeichnet man mit P, die gesamte, mit P, die absorbierte und mit P,
die reflektierte Leistung, so erhidlt man fiir die Leistungsschwankungen,
wobei die auftreffende Energie im Zeitintervall T, zur Leistungsbestim-
mung gebraucht wird:

= SR W hov\2
P,—pP)= 1 — o). 29
(Pe— Py =(7) na(l—a (29)
In der Fourierdarstellung hat man zu setzen (vgl. Abschnitt 2):
1
=241, (30)
Pon = (Pa— P, 31)
wo p, der Effektivwert der Schwankungsleistung ist.
Mit Pazn};—va:ma (32)
0

schreibt sich das Leistungsschwankungsquadrat 2, des absorbierten
Photonenstrahles wie folgt:

po=2hvP, (1 —a)Af. (33)

Zu diesen von der Verteilungsstatistik herriihrenden Schwankungen
addieren sich die Schwankungen des urspriinglichen Photonenstrahles #,
im Anteil o, ndmlich:

;izocz-%:o@Zhv‘uFOAf (34)

pic=2hvy FaocAf (35)
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Die gesamte Schwankungsleistung des absorbierten Photonenstrahles
erhilt man durch Addition von $2,, Gleichung (33) und $2,, Gleichung (35):

p —2hv P, [1 + o (u— 1)] 4f. (36)

Bei Einfithren eines Schwankungsfaktors y fiir die absorbierte Strahlung,
so dass

pa=2hvy P, Af, (37)
betriagt

y=14a(u—1). (38)

Weil der absorbierte Photonenstrahl im oben beschriebenen idealen
Detektor in einen elektrischen Strom umgesetzt wird, so ist y zugleich
auch der Schwankungsfaktor des Photostromes, also

2=2¢1yAf. (39)

In Fig. 3 ist y als Funktion von u und « dargestellt.

3 u=3 3 ozt
I I

2 2 2 o5
! 1 7 =0

as as

o al
—_— — -
0 0
0 as ! 0 1 2 3
Fig. 3

Links: y als Funktion von o; y Parameter
Rechts: p als Funktion von u; oo Parameter

Aus dieser Darstellung ist unmittelbar ersichtlich, dass der Quanten-
wirkungsgrad « der Photodiode dariiber entscheidet, wie genau man aus
einem gemessenen Wert y auf den Schwankungsfaktor u der auftreffen-
den Strahlung schliessen kann.

Es kann nun sein, dass sich schon zwischen der Lampe und der Detek-
toroberfliche eine Schicht befindet, welche nur einen Teil der Strahlung
passieren ldsst. Ist diese Schicht sehr homogen, so dass auch hier die
Annahme, dass jedes auftreffende Photon dieselbe Chance hat, durch-
gelassen zu werden, sinnvoll ist, so lisst sich das Problem gleich 15sen wie
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oben. Bezeichnet man die Transmissionswerte zweier aufeinanderfolgen-
der Schichten mit «; und «, und den Quantenwirkungsgrad des beschrie-
benen Detektors mit ez, und betrigt der Schwankungsfaktor der ur-
spriinglichen Strahlung u, so betrdgt der Schwankungsfaktor nach der
ersten Schicht (e,):

po=1+0 (p—1), (40)
nach der zweiten Schicht (a,)
p' =14y (i — 1), (41)
und der Schwankungsfaktor des Detektor-Ausgangssignales
y=1+4oa3(u" —1) =14 a;-ay- oz (& —1). (42)

Massgebend ist also der gesamte Wirkungsgrad, welcher sich zusam-
mensetzt aus den Produkten der Wirkungsgrade samtlicher Schichten
zwischen Strahlungsquelle und idealemQuantendetektor. Es ist praktisch,
alle Verluste beim Auslosen von Ladungstrigern im Detektor durch die
vom Strahler emittierten Quanten zusammenzufassen, indem man alle

o-Werte multipliziert :
06 = 0%y ¢ g s ms s (43)

5.3. Photonenempfinger mit variablen Verlusten

Obige Betrachtungen gelten in einem schmalen Frequenzbereich A,
so dass man » als konstant betrachten kann, und fiir einen konstanten
Wert a. Vergrossert man die Bandbreite Av, so muss man im allgemeinen
die Abhdngigkeit der Grosse o von » berticksichtigen.

Gegeben sei eine Quelle, welche in Richtung des Photodetektors die
spezifische Leistung im Frequenzintervall d»

P
emittiert. Der Schwankungsfaktor der Strahlung betrage
p),
der gesamte Wirkungsgrad gemiss Gleichung (43) betrage
o ().
Es ist giinstig, die Spektralabhiingigkeit von P(») durch die relative

Funktion ¢(») auszudriicken, welche die spezifische Anzahl Quanten #
pro s bei der Frequenz v darstellt, indem man setzt:

n(v) = ny @) (44)
Mittels der Funktion ¢(») kann dann P(v) geschrieben werden als

Pp)=v-p( - B. (45)
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Von diesen Werten ausgehend erhilt man fiir das spezifische mittlere
Rauschstromquadrat am Detektorausgang gemiss Gleichung (38) und

(39) e — :
)P =2eI() [1+a(y) (u()—1)] 4, (46)

wobei I@) =P®) - hiv a(v) = B% c@ly) - a). (47)

Das gesamte Rauschstromquadrat betragt

oo

K =/’ )P dv =
0 o

=ZeB%Af/ o) () [1+ () (p(v) — 1)] dr. (48)
0
Der gesamte mittlere Ausgangsrauschstrom betrigt
1= f I6)dv =B~ f o(v) oa(v) dv. (49)
0 0

Aus den Gleichungen (48) und (49) ergibt sich

e o]

[0 90) (i) - 17 dv
2=2elAf- | 1+ . (50)
jﬁwwww

0

Wenn man den Ausdruck in der eckigen Klammer wiederum als y be-
zeichnet, und wenn man u(v) als Konstante betrachten kann, (immer im
Fall Av/RT > 1), so wird der Ausdruck fiir y:

o

fﬁmwm@
0

y=1l+—o———(u-—-1). (51)
f w(v) @(v) dv
0
Die Normierung der Funktion ¢(v), welche den relativen Verlauf der
Quantenemissionsfunktion iiber » gibt, kann beliebig sein.
Der Vergleich mit Gleichung (38) zeigt, dass an der Stelle von « ein
Integralausdruck steht. Indem man

5 H.P.A., 33,1 (1960)



66 G. A. Spescha und M. J. O. Strutt H. P. A.

setzt, erhdlt man statt Gleichung (38) den Ausdruck
y=1+a* (u—1). (53)

Wenn « sowohl von der Frequenz » als auch vom Ort der Detektor-
oberfliche a abhingig ist, und auch die auftreffende Strahlungsleistung
sowohl frequenzabhingig ist als auch ortlich verschieden iiber die ein-
zelnen Flichenelemente, und wenn man diese Funktionen wie folgt
ansetzt:

a(v, a), e, a),
und wenn A die Summe aller Flichenelemente da ist, so schreibt sich

der Ausdruck fiir o* zu:
oo A

[/az(v, a) (v, a) dv da
e (54)

[oz(v, a) @y, a) dv da
00

ot
<

o.* ldsst sich interpretieren als der gewogene Mittelwert von «. Die ein-
zelnen o-Werte werden bewertet mit dem Stromanteil, welcher von dem
zugehorigen Teildetektor (dv da) herrithrt. Ausfiihrlicheres dartiber siehe

17)_

6. Moglichkeit der experimentellen Bestidtigung

Wenn der oben beschriebene Photonenempfinger realisiert werden
kann und die angestellten statistischen Betrachtungen iiber die Photonen-
absorption der Wirklichkeit entsprechen, so ist damit der Zusammenhang
zwischen den Schwankungen des Ausgangssignales, durch die Grésse y
beschrieben, und den Schwankungen des auftreffenden Photonenstrah-
les, durch die Grésse i beschrieben, festgelegt. Das heisst, dass sich aus
der messbaren Grosse y die Grosse u bestimmen ldsst. Der Fehler von
bestimmt sich aus dem Messfehler Ay gemiss Gleichung (38) wie folgt:

Au = i Ay. (55)

Entscheidend fiir die Messgenauigkeit ist der Wert von z, wie auch aus
Abbildung 3 ersichtlich ist.

Die mittels der Funktion y(u) beschriebene Korrelation zwischen den
Schwankungen der Strahlung und den Schwankungen des Ausgangs-
signales kann auf folgende Weise tiberpriift werden:

1. Man eliminiert die durch die Natur des Detektors bedingten Eigen-
schwankungen moglichst gut durch Auswahl eines geeigneten Detektors.
Sein Dunkelsignal soll klein sein, und die vom Dunkelsignal herriihrenden
Schwankungen sollen von den gesamten Schwankungen separiert werden
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kénnen. Ferner soll das Ausgangssignal im Detektor keine zusitzlichen
Schwankungen bewirken (z. B. Funkelrauschen in einem Halbleiter-
detektor).

2. Man misst den Frequenzgang des Detektors. Die iiber den idealen
Detektor getroffenen Annahmen sind nur berechtigt, wenn ein auftref-
fender Photonenimpuls einen unverformten Ausgangsimpuls bewirkt.
Wenn man sowohl das Eingangs- wie das Ausgangssignal nach FOURIER
zerlegt, so heisst das, dass der Detektor in einem grossen Frequenzbereich
frequenzunabhingig in bezug auf Betrag und Phase des Ubertragungs-
masses arbeiten muss. Wenn man die Schwankungen nur in einem Fre-
quenzintervall f, f + Af betrachtet, so geniigt die Bedingung, dass sich
der Detektor in diesem Frequenzgebiet noch nicht unterscheidet von
seinem Verhalten bei der Frequenz f = 0.

3. Die Kontrollen unter 1. und 2. geniigen, um das Rauschverhalten
des idealen Detektors abzukliren. Um den Einfluss der Verluste (a << 1)
experimentell zu erfassen, kann man wie folgt vorgehen: Man moduliert
den Photonenstrahl mit einem Rauschsignal. Dadurch werden die von
der Strahlungsquelle herrithrenden Schwankungen, durch g, beschrieben,
vergrossert. Der von dem aufmodulierten Rauschsignal herrithrende
Schwankungsfaktor sei u,,. Somit betragt u = y, + u,, und kann beliebig
vergrossert werden. Indem man die zugehdrigen Werte ¢ misst, ldsst sich
die Funktion ¥ (u) auf experimentelle Art bestimmen. Wenn diese Funk-
tion gegeben ist, kann man durch Messung von y(u) an der Stelle ,,, = 0
auf den Wert g, schliessen.

Die obigen Arbeiten wurden durch mehrere Kredite des Schweizeri-
schen Nationalfonds fiir wissenschaftliche Forschung erméglicht. Hierfiir
sprechen die Autoren ihren besten Dank aus.
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