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Theoretische Überlegungen
zur experimentellen Bestimmung der spontanen

Photonenschwankungen
Mitteilung aus dem Institut für höhere Elektrotechnik
der Eidgenössischen Technischen Hochschule, Zürich

von G. A. Spescha und M. J. O. Strutt
(15. VIII. 1959)

Zusammenfassung. 1912 stellten A. Einstein und H. A. Lorentz Formeln auf
über die spontanen Schwankungen der Hohlraumstrahlung. Im Grenzfall hvjk T < 1

beschreiben diese Formeln die Interferenzschwankungen der Strahlung und sind
experimentell schon häufig bestätigt worden. Über den Grenzfall, wo hvjk T > 1

ist und die Schwankungen als durch die Statistik der unabhängigen Quanten
bedingt aufgefasst werden können, sind noch keine experimentellen Untersuchungen
bekannt. In der vorliegenden Arbeit wird ein Weg aufgezeigt, wie mit einem
geeigneten Photonenempfänger die Schwankungen im Gebiet hvjk T > 1 gemessen
werden können. Zu diesem Zweck werden die Schwankungen nach Fourier zerlegt,
und man beschränkt sich darauf, den Zusammenhang zwischen den Schwankungen
der auf den Photonenempfänger auftreffenden Strahlung und den Schwankungen
des Ausgangssignales innerhalb eines gewählten Frequenzintervalles zu ermitteln.
Die Quantenausbeute spielt dabei eine wesentliche Rolle.

In einer späteren Arbeit wird gezeigt werden, dass das in dieser Betrachtung
gewählte Modell eines Photonenempfängers unter gewissen Bedingungen realisiert
werden kann. Es werden Messungen der Photonenschwankungen beschrieben
werden.

1. Spontane Schwankungen der Hohlraumstrahlung
Im Jahre 1912 wurden von A. Einstein und H. A. Lorentz Formeln

abgeleitet für die spontanen Schwankungen der Hohlraumstrahlung1)2).
Spätere Veröffentlichungen haben die von den beiden genannten
Autoren erhaltenen Formeln bestätigt3)4)5).

Die mittlere Energie Wv [Joule] in einem Hohlraumvolumen V [m3]
im Frequenzintervall zwischen v und v + dv beträgt bei der absoluten
Temperatur T nach M. Planck:

W, V8^^ [exp (hv/kT) -l]-i. (1)

Hier ist h die Plancksche, k die Boltzmannsche Konstante (6,62 • 10~34Ws2

bzw. 1,38 • 10~23 JFs/Gradabs.) und c die Lichtgeschwindigkeit (3,00 •

108 m/s). Dieser Mittelwert gilt entweder bei Mittelung in einem Hohl-
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räum über eine Zeit, welche sehr lang ist verglichen mit \\dv, oder bei

Mittelung über ein Ensemble von vielen gleichbeschaffenen
Hohlräumen.

Die Energie W„ weist spontane Schwankungen

AWV=WV-WP

gegenüber dem Mittelwert auf. Für den Mittelwert (im obigen Sinne) des

Quadrates vonJ Wv ergibt sich nach Einstein x) undLorentz 2) die Formel :

W^-^l^' (2)

Führen wir für Wv den Wert aus Gleichung (1) ein, so entsteht

TÄwJ* Wphv ^.y* (3)
v "i v exp (hvjk T) — 1 v '

Wv hv • /u,

wo die Funktion /u von x hvjk T die Form

exp (*)
™

exp (x) — 1 v '

hat. fi wird auch Entartungsfaktor genannt.
Zählt man die Anzahl Photonen mit der Energie zwischen hv und

h (v + dv) in vielen gleichbeschaffenen Hohlräumen, oder in demselben
Hohlraum in vielen beliebigen Zeitpunkten und bezeichnet die Anzahl
mit n, so gilt für die mittlere quadratische Abweichung An:

(An)2 fi n, (5)

wo fi auch gemäss Gleichung (4) definiert ist. Vgl.6)7) über Bose-Statistik.
Bei den Messungen der spontanen Photonenschwankungen werden

nicht die Schwankungen der in einem Hohlraum befindlichen Zahl von
Photonen bestimmt. Vielmehr handelt es sich um die Bestimmung der

pro Zeiteinheit durch eine gegebene Fläche hindurchtretende Zahl von
Photonen. Wenn wir den Mittelwert dieser Zahl n über viele gleiche
Zeitintervalle oder über viele gleiche Flächen im gleichen Zeitintervall mit
n bezeichnen und die Schwankung mit An, so gilt wieder

(An)2 _— /*>
M '

/li gemäss Gleichung (4). Für die mittlere pro Sekunde durch die relativ
zu den Hohlraumdimensionen kleine Fläche A strömende mittlere
Energie Wvs findet man

r A
W =W —- (6)
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Fig. 1

Oben: Relative spektrale Energieverteilung nach M. Planck und der die Schwan¬
kungen kennzeichnende Faktor fx als Funktion von x hvjk T.

Mitte : Die Gebiete, innerhalb welcher das Rayleigh- Jeanssche oder das Wiensche
Strahlungsgesetz gültig sind mit einem maximalen Fehler von 10% bzw.
1%, sind schraffiert.

Unten : Wellenlänge und Strahlungsfrequenz als Funktion von x bei verschiedenen
Temperaturen als Parameter. Alle Zehnerpotenzen der Temperaturen sind
um eins zu erhöhen.

2. Fourierzerlegung der spontanen Schwankungen
Der Photonenstrahl, welcher den Hohlraum verlassen hat, treffe auf

die Oberfläche eines Detektors auf und werde dort absorbiert. Die
absorbierte Energie lässt sich als Funktion der Zeit gemäss Fig. 2
darstellen. Diese Darstellung dient nur zum Zwecke der Fourierzerlegung
und soll keine Aussagen über die Struktur eines Photons beinhalten.
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Die momentane Leistung ergibt sich durch Differentiation der Energie
nach der Zeit. Die Absorptionszeit für ein Photon sei mit t bezeichnet.
Wenn man den Begriff der Länge l eines Photons einführt, so ergibt sich :

w'\
\

/
,1

/
/

,r. t

n
mat

l t

Fig. 2
Oben: Von einem Detektor mit der Temperatur 0 absorbierte Strahlungsenergie

als Funktion der Zeit.
Unten: Momentane Leistung.

T l\c. In den vier links dargestellten Absorptionsvorgängen ist Energie
als gleichmässig über die Länge des Photons verteilt angenommen, in
dem rechts gezeichneten Fall als willkürlich verteilt. Immer muss gelten

/ Pdt= Wx hv, (7)

wenn P die momentane Leistung, von dem Auftreffen eines Photons
herrührend, ist.

Um die Fourierdarstellung der Funktion P (t) zu gewinnen, geht man
analog vor wie bei der Berechnung des Rauschstromes einer gesättigten
Hochvakuumdiode ; siehe W. Schottky8) und 9),10), n). Zuerst berech-
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net man die Fourierdarstellung der Funktion P (t), welche das Auf-
treffen eines einzelnen Photons darstellt. Denkt man sich das Ereignis
in Zeitintervallen T0 wiederholt und macht man den Ansatz

P(t) a0+ Y ak cos/e ~ t 4- J] bk sin k -=-1, (8)

so bestimmen sich die Koeffizienten zu

ak =^=^Äc cos cot0, m k——- Inf, (9)
^o -'o

und bk=~hvsmcot(), (10)

wenn das Photon zur Zeit t0 die Detektoroberfläche erreicht, und sofern

/ < 1/T.
Die Amplitude mit der Frequenz / beträgt somit

ck ]/aJTb^ ~hv. (11)
1 0

Jeder Ordnungszahl k entspricht eine Frequenz / ß/ro. Auf den
Frequenzbereich Af entfallen daher Af-T0 aufeinanderfolgende Ä-Werte.
Daher ergibt sich für die Summe der Amplitudenquadrate im Frequenzbereich

Af:

c/ ^(hv)*Af. (12)

Unter der obigen Beschränkung in bezug auf / sind diese Amplituden von
/ unabhängig (weisses Spektrum). Das Quadrat des Effektivwertes der
Leistung beim Auftreffen eines einzelnen Photons beträgt

J\=~(hvYAf. (13)
T,

Wenn man annimmt; dass die einzelnen Ereignisse voneinander
unabhängig sind, d. h.

[i=l, bzw. (An)2= n,

wo n die Anzahl der im Zeitintervall T0 auftreffenden Photonen ist, so
wird das Quadrat des Effektivwertes der Leistung, welche durch das
Auftreffen des gesamten Photonenstrahles entsteht, in folgender Weise
durch Summation gebildet10) :

Z7l-£2^Af n.2^Af. (14)
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Bei Einführen des Wertes P für die mittlere Leistung

P=~-hv (15)
* n

erhält man für den quadratischen Mittelwert der Schwankungsleistung
im Frequenzintervall Af (und solange / < 1/r) :

P2 2 hv PAf. (16)

Dieses Leistungsquadrat ist proportional zum mittleren Schwankungsquadrat

(An)2. Wenn im allgemeinen Fall

(An)2 fin,
so muss demzufolge auch

~p2 2hvfiPAf (17)

sein. Das mittlere Schwankungsleistungsquadrat im Strahlungsfrequenzband

von Vj bis i>2 erhält man durch Integration von Gleichung (17) über
v von v1 bis v2.

3. Grenzfall nach Lord Rayleigh
Im Gebiet x <^ 1 geht das Plancksche Strahlungsgesetz in dasRayleigh-

sche Gesetz über. Der Faktor fi wird gross gegen 1. In Gleichung (2) wird
das zweite Glied, welches nach H. A. Lorentz2) die Interferenzerscheinungen

der elektromagnetischen Wellen beschreibt, viel grösser als das

erste Glied.

3.1. Tiefe und mittlere Temperaturen

Bei Temperaturen bis zu einigen 1000° K tritt dieser Grenzfall erst auf
für Wellenlängen, die über dem sichtbaren Gebiet liegen. Siehe Fig. 1.

Das Gebiet sehr grosser Wellenlängen (Radiowellen) ist der Messtechnik
relativ leicht zugänglich bei Verwendung von Antennen und empfindlichen

Anzeigegeräten. Die Antenne selbst ist kein eigentlicher
Strahlungsdetektor. Erst die Verbindung der Antenne mit einem (am besten

quadratisch) gleichrichtenden Anzeigeinstrument ist ein Strahlungsdetektor.

Aus den Gleichungen (1), (3) und (6) und der Bedingung x <^1 lassen sich
die Schwankungen A Wâvs der von einer Umgebung mit der Temperatur
T auf die Antennenfläche A im Strahlungsfrequenzintervall Av pro s

auftreffenden Strahlungsenergie berechnen. Man erhält :

2 n v2 Av
(AWAvs)2 ^-(kT)2A. (18)
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Mit dem Ausdruck ^ _ ^ ng\
2 71

für die äquivalente mittlere Empfangsfläche einer Antenne 12)13)14), ergibt
sich

(AWâvs)2 k2 T2Av. (20)

Nach 13) tritt infolge dieser Schwankungsleistung eine normal verteilte
Rauschspannung am Antennenausgang auf. Die verfügbare mittlere
Rauschleistung am Antennenausgang kann aus Gleichung (20) berechnet
werden :

Pv kTAv. (21)

Dasselbe Ergebnis erhält man auch ohne Verwendung des

Schwankungsgesetzes durch Berechnung der mittleren Leistung, welche nach
dem Rayleighschen Strahlungsgesetz der Antenne zugeführt wird15)16).
Gleichung (21) sagt aus, dass die Antenne gleich rauscht, wie wenn ihr
Strahlungswiderstand ein ohmscher Widerstand wäre, welcher die

Temperatur der Umgebung aufweist. Da Pv ~ T ist, lassen sich auf diese
Weise Temperaturmessungen durchführen (Radioteleskope).

3.2. Hohe Temperaturen

Bei sehr hohen Temperaturen tritt der Grenzfall, wo x <^ 1, schon im
Gebiet der sichtbaren Strahlung auf. Siehe Fig. 1.

Im folgenden wird gezeigt werden, wie im sichtbaren und im nahen
infraroten Gebiet die Strahlungsschwankungen gemessen werden können
mit eigentlichen Photonenempfängern. Durch Messung von p2 und P
kann dann nach Gleichung (17) leicht der Faktor /j, bestimmt werden.
Weil unter der Bedingung, dass x <^ 1, fx eine Funktion der Temperatur
ist (fi x kT/hv), so muss sich durch Messung von /j die Temperatur der
Strahlungsquelle bestimmen lassen. Voraussetzung dafür ist, dass die

Strahlungsquelle so stabil ist, dass die Schwankungen im Messfrequenzintervall

Af im wesentlichen die von A. Einstein beschriebenen sind.
Es ist denkbar, dass diese Messmethode bei Temperaturmessungen an
heissen Plasmen wertvolle Dienste leistet. Das würde heissen, dass man
die Temperatur eines Körpers definiert durch die Grösse der relativen
Schwankungen der von demselben ausgesandten Strahlung.

Bei dem raschen Fortschritt im Bau von langwelligen Infrarot-
Detektoren (Photonenempfänger) ist es nicht ausgeschlossen, diese
Messmethode bald auch für Strahler mit Temperaturen bis etwa auf 103 ° K
hinunter anzuwenden.



60 G. A. Spescha und M. J. O. Strutt H. P. A.

4. Grenzfall der Photonenschwankungen
Wenn x > 1 ist, so geht das Plancksche Strahlungsgesetz in das Gesetz

von W. Wien über. Bezüglich der Schwankungen gilt

fi 1

und damit (AWv)2 hvWv (22)

bzw. (An)2 n. (23)

Nach A. Einstein und H. A. Lorentz ist die experimentelle Bestätigung
dieses Grenzfalles, Gleichung (22), ein Beweis für die Quantenstruktur
des Lichtes.

Aus Fig. 1 ist ersichtlich, dass im Gebiet der sichtbaren und kürzeren
Wellen, die von einem Strahler mit einer Temperatur unter etwa 103 °K
herrührt, die Bedingung x ^> 1 erfüllt ist. Dieser Grenzfall soll mit einem

empfindlichen Detektor untersucht werden.

5. Theorie eines Photonenempfängers

5.1. Idealer Photonenempfänger

Um die spontanen Photonenschwankungen experimentell erfassen zu
können, ist ein Strahlungsdetektor notwendig, bei welchem das Ausgangssignal

(Anzeige) möglichst eng mit dem Eingangssignal (Photonenstrom)
zusammenhängt. Es sind zwei geeignete Arten von Detektoren denkbar:

1. Der Detektor ist ein Leistungsdetektor, d. h. das Ausgangssignal ist
proportional zur eingestrahlten Leistung. Damit können die in
Gleichung (17) nach Fourier dargestellten Leistungsschwankungen in einem

Frequenzintervall Af gemessen werden.
2. Der Detektor zählt die einfallenden Quanten. Macht man häufige

Zählungen der in lauter gleichen Zeitintervallen auf den Detektor
auftreffenden Quanten und bezeichnet den jeweiligen Wert mit n, so führt
dies auf eine Kontrolle der Gleichung (5).

Diese beiden Detektorarten unterscheiden sich nicht wesentlich
voneinander. Wenn man nur ein schmales Strahlungsfrequenzband Av im
Vergleich zu v betrachtet, so haben alle Photonen nahezu die gleiche
Energie hv. Hier besteht der Unterschied nur in der Art der Auswertung
des Ausgangssignals (Zählung der Ereignisse oder Messung einer Amplitude

in einem Frequenzintervall Af).
Wir beschränken uns hier auf die Darstellung eines Detektors der

ersten Art. Wird der Anzeigewert mit / bezeichnet, so ist

I aP. (24)
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Wir setzen voraus, dass a konstant ist, auch kurzzeitig. Ferner nehmen
wir an, dass das Ausgangssignal des Detektors ein elektrischer Strom sei.

Weil der elektrische Strom auch von diskreten Partikeln getragen wird,
treffen wir die Annahme: Pro auftreffendes Photon soll sogleich ein
Elektron das Anzeigeinstrument passieren. Bei einer festen Strahlungsfrequenz

schreibt sich dann Gleichung (24) zu

/ P *
(25)

hv

Hier ist e der Betrag der elektrischen Elementarladung (1,6-10-19 As).
Aus Gleichung (17) und Gleichung (25) lässt sich eine Formel für das

Rauschstromquadrat des trägheitslosen Detektors ableiten :

~=2efiAf. (26)

Mit den Gleichungen (25) und (26) ist die Charakteristik des angenommenen

idealen Photonendetektors bei der Frequenz v gegeben.

5.2. Nichtidealer Photonenempfänger

Es dürfte nicht möglich sein, den beschriebenen idealen Detektor
herzustellen, schon infolge von Reflexionen. Wir nehmen an, dass der an sich
ideale Detektor eine Oberfläche aufweist, welche die auftreffende Strahlung

teilweise reflektiert. Der Bruchteil a der Gesamtstrahlung P0 werde
dem idealen Detektor zugeführt und mit Pa (absorbierte Leistung)
bezeichnet, der Teil 1 — oc werde an der Oberfläche reflektiert, mit P,
bezeichnet. <x ist daher gleich dem Quantenwirkungsgrad, wenn wir
denselben definieren als das Verhältnis der Anzahl der pro Zeiteinheit das

Anzeigeinstrument passierenden Elektronen zurAnzahl der pro Zeiteinheit
auf den Detektor auftreffenden Photonen. Die Oberfläche sei homogen,
z. B. ein fehlerfreies Kristallgitter, so dass die Annahme gerechtfertigt
ist, dass alle Photonen einer gegebenen Strahlungsfrequenz, die in einem
gegebenen Winkel auftreffen, mit derselben Wahrscheinlichkeit absorbiert
werden.

Damit sind gegeben : Die Schwankungen der auftreffenden Strahlung,
der Reflexionsmechanismus und der ideale Detektor. Gesucht sind die
Schwankungen der absorbierten Strahlung, bzw. die Schwankungen des

Ausgangssignales. Das Problem ist analog dem Problem der Berechnung
des Rauschstromes einer Mehrgitterröhre, wo aus dem gegebenen Rauschstrom

der Kathode der Rauschstrom einer positiven Elektrode, auf
welche der Anteil a des Kathodenstromes entfällt, berechnet werden
kann11'3-262).
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Die Statistik des gesuchten Vorganges lässt sich wie folgt darstellen:
In einem Gefäss befinden sich sehr viele rote und weisse Kugeln. Der

Bruchteil a aller Kugeln sei rot, der Bruchteil (1 — oc) sei weiss. Die
Wahrscheinlichkeit, in einer Ziehung eine rote zu ziehen, ist daher gleich
oc (Bernoulli-Experiment). Wir ziehen nun in einem Zeitintervall T0
jeweils n Kugeln ; davon seien A rot und B weiss. Es ist A + B n. Nach
den Gesetzen der Binomialverteilung gilt für die Abweichung vom Mittelwert

bei Mittelung über sehr viele Ziehungen

(A -A)2= (B - B)! «a(l -oc). (27)

Identifiziert man die absorbierten Photonen mit den roten Kugeln und
die reflektierten mit den weissen, so erhält man für die Energieschwankungen

im Zeitintervall T0

Bezeichnet man mit P0 die gesamte, mit Pa die absorbierte und mit Pr
die reflektierte Leistung, so erhält man für die Leistungsschwankungen,
wobei die auftreffende Energie im Zeitintervall T0 zur Leistungsbestimmung

gebraucht wird :

(P0-PB)* (^)ana(l-a). (29)

In der Fourierdarstellung hat man zu setzen (vgl. Abschnitt 2) :

-l-=2Af, (30)
J- n

Pl (Pa - ~Pa)\ (31)

wo pa der Effektivwert der Schwankungsleistung ist.

Mlt P« 4«=^ (32)

schreibt sich das Leistungsschwankungsquadrat p\v des absorbierten
Photonenstrahles wie folgt :

pZ=2hvPa(l~*)Af. (33)

Zu diesen von der Verteilungsstatistik herrührenden Schwankungen
addieren sich die Schwankungen des ursprünglichen Photonenstrahles p0
im Anteil oc, nämlich:

pî=*2-f0 *22hvfiP0Af (34)

~tfac 2hv[iPa«.Af (35)
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Die gesamte Schwankungsleistung des absorbierten Photonenstrahles
erhält man durch Addition von p%, Gleichung (33) und p2ao, Gleichung (35) :

pl 2hvPa[l + oi(fc-l)]Af. (36)

Bei Einführen eines Schwankungsfaktors y für die absorbierte Strahlung,
so dass

~ ~
(37)

(38)

beträgt
pl 2hvyPaAf,

y 1 + a [fi - 1).

Weil der absorbierte Photonenstrahl im oben beschriebenen idealen
Detektor in einen elektrischen Strom umgesetzt wird, so ist y zugleich
auch der Schwankungsfaktor des Photostromes, also

i2 2eIyAf.
In Fig. 3 ist y als Funktion von /j, und a dargestellt.

(39)

r

oc

/i*3

05

7

05

7

7

05

0

V

/ »¦

Fig. 3

Links: y als Funktion von a; p Parameter
Rechts : y als Funktion von fi ; a Parameter

<*=7

05

«0

Aus dieser Darstellung ist unmittelbar ersichtlich, dass der
Quantenwirkungsgrad a der Photodiode darüber entscheidet, wie genau man aus
einem gemessenen Wert y auf den Schwankungsfaktor fjt der auftreffenden

Strahlung schliessen kann.
Es kann nun sein, dass sich schon zwischen der Lampe und der

Detektoroberfläche eine Schicht befindet, welche nur einen Teil der Strahlung
passieren lässt. Ist diese Schicht sehr homogen, so dass auch hier die
Annahme, dass jedes auftreffende Photon dieselbe Chance hat,
durchgelassen zu werden, sinnvoll ist, so lässt sich das Problem gleich lösen wie
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oben. Bezeichnet man die Transmissionswerte zweier aufeinanderfolgender
Schichten mit oc! und oc2 und den Quantenwirkungsgrad des beschriebenen

Detektors mit oc3, und beträgt der Schwankungsfaktor der
ursprünglichen Strahlung ju, so beträgt der Schwankungsfaktor nach der
ersten Schicht (oc-J :

/u'^l + xtifi- 1), (40)

nach der zweiten Schicht (a2)

/i' 1 4- «2 (ß - 1), (41)

und der Schwankungsfaktor des Detektor-Ausgangssignales

y 14- oc3 (fi" - 1) 1 4- c«! • a2 • oc3 (/jl - 1). (42)

Massgebend ist also der gesamte Wirkungsgrad, welcher sich
zusammensetzt aus den Produkten der Wirkungsgrade sämtlicher Schichten
zwischen Strahlungsquelle und idealemQuantendetektor. Es ist praktisch,
alle Verluste beim Auslösen von Ladungsträgern im Detektor durch die

vom Strahler emittierten Quanten zusammenzufassen, indem man alle
oc-Werte multipliziert :

a ocj • a2 a„. (43)

5.3. Photonenempfänger mit variablen Verlusten

Obige Betrachtungen gelten in einem schmalen Frequenzbereich Av,
so dass man v als konstant betrachten kann, und für einen konstanten
Wert oc. Vergrössert man die Bandbreite Av, so muss man im allgemeinen
die Abhängigkeit der Grösse oc von v berücksichtigen.

Gegeben sei eine Quelle, welche in Richtung des Photodetektors die
spezifische Leistung im Frequenzintervall dv

~P(v)

emittiert. Der Schwankungsfaktor der Strahlung betrage

mW.

der gesamte Wirkungsgrad gemäss Gleichung (43) betrage

Es ist günstig, die Spektralabhängigkeit von P(v) durch die relative
Funktion cp(v) auszudrücken, welche die spezifische Anzahl Quanten n
pro s bei der Frequenz v darstellt, indem man setzt :

n (v) n0(p (v) (44)

Mittels der Funktion cp(v) kann dann P(v) geschrieben werden als

P(v) =vcp(v) ¦ B. (45)
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Von diesen Werten ausgehend erhält man für das spezifische mittlere
Rauschstromquadrat am Detektorausgang gemäss Gleichung (38) und
(39)

\i(v)f 2el(v) [l + a(v) (fi(v) - l)] Af, (46)

wobei I(v) P(v) hv
oc (v) B — • <p(v) • ol(v). (47)

Das gesamte Rauschstromquadrat beträgt

0 oo

2eB~Af I <p(v) a(v) [l + a(v) (p(v) - l)] dv.

0

Der gesamte mittlere Ausgangsrauschstrom beträgt
00 oo

/ / I(v) dv B — / <p(v) a.(v) dv.

Ò 0

Aus den Gleichungen (48) und (49) ergibt sich

CO

/ a.(v)2 <p(v) [(i(v) — 1] d

(48)

(49)

i2 2 ei Af ¦ 14-
' a(f) <p(v) dv

(50)

Wenn man den Ausdruck in der eckigen Klammer wiederum als y
bezeichnet, und wenn man fi(v) als Konstante betrachten kann, (immer im
Fall hv/kT > 1), so wird der Ausdruck für y:

j a2(v) <p(v) dv

ja.(v) <p(v)

(f* - !)• (51)

dv

Die Normierung der Funktion <p(v), welche den relativen Verlauf der
Quantenemissionsfunktion über v gibt, kann beliebig sein.

Der Vergleich mit Gleichung (38) zeigt, dass an der Stelle von a ein

Integralausdruck steht. Indem man

/ a?(v) <p(v) dv

(52)

j <x.(v) <p(v) dv

5 H. P.A., 33, 1 (1960)
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setzt, erhält man statt Gleichung (38) den Ausdruck

y=l+&(ßt-l). (53)

Wenn a sowohl von der Frequenz v als auch vom Ort der
Detektoroberfläche a abhängig ist, und auch die auftreffende Strahlungsleistung
sowohl frequenzabhängig ist als auch örtlich verschieden über die
einzelnen Flächenelemente, und wenn man diese Funktionen wie folgt
ansetzt :

%(v, a), <p(v, a),

und wenn A die Summe aller Flächenelemente da ist, so schreibt sich

der Ausdruck für oc* zu :

' da/ / a2(>>, a) (p(v, a) dv t

Ò Ò

oo A

/ / a(c, a) (p(v, a) dv da

oc* lässt sich interpretieren als der gewogene Mittelwert von oc. Die
einzelnen oc-Werte werden bewertet mit dem Stromanteil, welcher von dem
zugehörigen Teildetektor (dv da) herrührt. Ausführlicheres darüber siehe

6. Möglichkeit der experimentellen Bestätigung
Wenn der oben beschriebene Photonenempfänger realisiert werden

kann und die angestellten statistischen Betrachtungen über die
Photonenabsorption der Wirklichkeit entsprechen, so ist damit der Zusammenhang
zwischen den Schwankungen des Ausgangssignales, durch die Grösse y
beschrieben, und den Schwankungen des auftreffenden Photonenstrahles,

durch die Grösse /,« beschrieben, festgelegt. Das heisst, dass sich aus
der messbaren Grösse y die Grösse fi bestimmen lässt. Der Fehler von fi
bestimmt sich aus dem Messfehler Ay gemäss Gleichung (38) wie folgt :

Afi l Ay. (55)

Entscheidend für die Messgenauigkeit ist der Wert von x, wie auch aus
Abbildung 3 ersichtlich ist.

Die mittels der Funktion y(/u) beschriebene Korrelation zwischen den

Schwankungen der Strahlung und den Schwankungen des Ausgangssignales

kann auf folgende Weise überprüft werden:
1. Man eliminiert die durch die Natur des Detektors bedingten

Eigenschwankungen möglichst gut durch Auswahl eines geeigneten Detektors.
Sein Dunkelsignal soll klein sein, und die vom Dunkelsignal herrührenden
Schwankungen sollen von den gesamten Schwankungen separiert werden
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können. Ferner soll das Ausgangssignal im Detektor keine zusätzlichen
Schwankungen bewirken (z. B. Funkelrauschen in einem Halbleiterdetektor).

2. Man misst den Frequenzgang des Detektors. Die über den idealen
Detektor getroffenen Annahmen sind nur berechtigt, wenn ein auftreffender

Photonenimpuls einen unverformten Ausgangsimpuls bewirkt.
Wenn man sowohl das Eingangs- wie das Ausgangssignal nach Fourier
zerlegt, so heisst das, dass der Detektor in einem grossen Frequenzbereich
frequenzunabhängig in bezug auf Betrag und Phase des Übertragungs-
masses arbeiten muss. Wenn man die Schwankungen nur in einem
Frequenzintervall /, /4-/1/ betrachtet, so genügt die Bedingung, dass sich
der Detektor in diesem Frequenzgebiet noch nicht unterscheidet von
seinem Verhalten bei der Frequenz / 0.

3. Die Kontrollen unter 1. und 2. genügen, um das Rauschverhalten
des idealen Detektors abzuklären. Um den Einfluss der Verluste (oc < 1)

experimentell zu erfassen, kann man wie folgt vorgehen : Man moduliert
den Photonenstrahl mit einem Rauschsignal. Dadurch werden die von
der Strahlungsquelle herrührenden Schwankungen, durch ^„beschrieben,
vergrössert. Der von dem aufmodulierten Rauschsignal herrührende
Schwankungsfaktor sei /um. Somit beträgt /i fi0 + fim und kann beliebig
vergrössert werden. Indem man die zugehörigen Werte y misst, lässt sich
die Funktion y (p) auf experimentelle Art bestimmen. Wenn diese Funktion

gegeben ist, kann man durch Messung von y (fi) an der Stelle fim 0

auf den Wert //„ schliessen.
Die obigen Arbeiten wurden durch mehrere Kredite des Schweizerischen

Nationalfonds für wissenschaftliche Forschung ermöglicht. Hierfür
sprechen die Autoren ihren besten Dank aus.

Literaturverzeichnis
Einstein, A., Vortrag am Congrès Solvay, 1912.

Lorentz, H. A., Les théories statistiques en thermodynamique (Vorträge
gehalten 1912). Teubner, Leipzig 1916.

Einstein, A., Quantentheorie des einatomigen idealen Gases. Sitzungsberichte
der Berliner Akademie, 1925, S. 3-14.
Born, M., Heisenberg, W. und Jordan, P., Zur Quantenmechanik. Z. Physik,
Bd. 35, 1926, S. 557-615.
Bothe, W., Zur Statistik der Hohlraumstrahlung. Z. Physik, Bd. 41, 1927,
S. 345-351.
Lewis, W. B., Fluctuations in streams of thermal radiation. Proc. Phys. Soc,
Vol. 59, p. 34-40, 1947.
Zeise, H., Thermodynamik, 1. Bd., Hirzel, Leipzig 1944.
Schottky, W., Zur Berechnung und Beurteilung des Schroteffektes. Ann. Phys.
Bd. 68, 1932, S. 157-176.
Rice, S. O., Mathematical analysis of random noise. Bell syst, techn. journ.,
Vol. 23, 1944, p. 282-332.



68 G. A. Spescha und M. J. O. Strutt H. P. A.

10) Rothe, H. und Kleen, W., Elektronenröhren als Anfangsstufen-Verstärker.
Akad. Verlagsgesellschaft, Leipzig 1948.

11) Strutt, M. J. O., Elektronenröhren. Springer, Berlin 1957.
12) Jones, R. C, Performance of visible and infrared detectors. Advances in Elec¬

tronics, Vol. 5, 1953, p. 1-96, Acad. Press, New York.
13) Fellgett, P. B., On the ultimate sensitivity and practical performance of

radiation detectors. Journ. opt. soc. America, Vol. 39, 1949, p. 970-976.
14) Slater, J. C, Microwave Transmission. Mc. Graw-Hill, New York, 1942, p. 264.
15) Lehmann, G., Etude de l'équilibre thermodynamique des antennes de T. S. F.

Annales des Télécommunications, Vol. 7, 1946, p. 91-98.
18) Strutt, M. J. O., Ultra- and extreme-short wave reception. D. Van Nostrand

Co., New York 1947.
1?) Spescha, G. A., Experimentelle Untersuchungen über spontane Photonen¬

schwankungen. Diss. ETH, 1959, Nr. 2952.


	Theoretische Überlegungen zur experimentellen Bestimmung der spontanen Photonenschwankungen

