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Zones de Brillouin, liaisons chimiques et mode de conduction
de Ag2S et Ag2Se

par P. Junod
Laboratoire de physique du corps solide, E.P.F., Zurich

(15 Vili 1959)

Introduction

Les propriétés électroniques de ces combinaisons furent décrites en
détail dans un travail précédent1). Dans la modification cristalline ß

(stable à basse température), Ag2S et Ag2Se sont des semi-conducteurs
intrinsèques dont nous avons déterminé les paramètres.

Les mesures relatives à la phase a (stable à haute températures) furent
interprétées alors, sur la base d'une conduction métallique. Il nous a
semblé, dans ce travail, nécessaire de mieux fonder ce résultat, à l'aide
de considérations indépendantes de la pureté et de l'histoire des
échantillons.

Les critères de conduction généralement employésétant basés sur l'étude
de la liaison chimique, il n'est pas étonnant d'y retrouver les 2 méthodes
d'approche qui furent employées successivement lors de l'élaboration de la
théorie des valences des molécules diatomiques. Dans la théorie de

Pauling2) les atomes interagissants sont considérés comme un tout, ce qui
permet, d'introduire un rayon atomique et de discuter la liaison en fonction

des paramètres du réseau cristallin. Cette méthode permet évidemment

une bonne compréhension des propriétés physiques et stéréochimi-

ques du cristal. L'autre méthode d'approche, dite des orbites moléculaires,
(molecular orbital-theory) considère au contraire que lors de la réaction,
seul le noyau et les couches d'électrons internes gardent leur identité,
tandis que les électrons de valence interagissent. Cette méthode conduit,
pour un cristal à la théorie de Bloch et des bandes d'énergie ; loin d'être
en opposition, ces deux méthodes sont donc complémentaires, et suivant
le problème, il y aura avantage à employer l'une ou l'autre.

Dans les semi-conducteurs, les électrons de valence sont couplés par
paire, (les électrons non couplés du cation ne provoquent pas de conduction

métallique s'ils sont liés entre eux) ce qui fait que l'on peut traiter
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la question de la conduction dans le langage des liaisons saturées, (Pauling)

ou dans le langage des bandes pleines (Bloch et zones de

Brillouin) En général, c'est la première méthode qui est préférée, ainsi qu'il
ressort des travaux de Zintl3), Mooser4) et Goodman5). Nous traiterons

ici la méthode des zones en détail et nous limiterons au § 4 à la
description du cristal du point de vue stéréochimique.

Remarquons toutefois, que malgré des succès éclatants, ces deux
méthodes ne justifient pas le nom de critère de prévision, car en fait, elles
sont dans la plupart des cas applicables a posteriori seulement. Elles
deviennent d'un maniement très difficile en effet, dès que le cristal est

compliqué et spécialement dès que les électrons dans les niveaux
atomiques d jouent un rôle.

1. Définition des zones de Brillouin
Bien que le concept de zone ait été introduit par Brillouin 6) en 1930

déjà, il règne toujours dans ce domaine une confusion très grande dans
la littérature. C'est la raison pour laquelle nous nous permettrons quelques

remarques.
La division de l'espace fe, identique à l'espace du réseau réciproque du

cristal, en zones, s'introduit automatiquement lors de la résolution de

l'équation de Schroedinger (1) par les fonctions de Bloch (2)

£nAf + (E-V)f 0 (1)

?*» «**-•«*(!¦) (2)

où la fonction u(r) qui dépend généralement de fe à la même période que
le réseau cristallin (ax, a2, a3). (Les expressions mathématiques employées
dans la suite sont en fait valables pour un cristal cubique ; la généralisation à

un cristal quelconque est évidente et ne sera, pour plus de simplicité,
pas faite ici). On remarque alors facilement que la solution (2) n'est pas
définie de façon univoque pour toute valeur de fe. En effet, la translation (3)

où les composantes de m sont entières conduit à une solution
équivalante :

k k0 + ^m. (3)

Le vecteur fe ne peut donc varier de façon univoque que dans un
domaine de longueur 2nja. En général on écrit cette condition sous la
forme (4)

"¦<|*|<—. (4)11/7 r

— H _- 1 T I r- H

a

Le vecteur fe ainsi défini est appelé vecteur fe réduit. On voit donc que
grâce à la symétrie de translation du réseau, on peut se limiter lors de la
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résolution de l'équation de Schroedinger à une seule cellule élémentaire
du réseau cristallin, et que de plus, on peut limiter la variation de fe à

l'intérieur d'une cellule élémentaire du réseau réciproque (réseau des

bj tels que aibi= ô{j).
Définition: le domaine dans lequel le vecteur fe réduit peut varier est

appelé première zone de Brillouin. Cette zone de l'espace réciproque
peut être choisie d'un grand nombre de façons. On a cependant avantage
à choisir une zone symétrique autour d'un point fe 0 et à travailler
avec les plus petites valeurs possibles de | fe |. Ceci conduit à hmiter la
zone de Brillouin par des plans répondant à l'équation générale (5) où
n est un vecteur du réseau réciproque à composantes entières.

n* + ---|n|2 (*-è) m

Remarques: a) On peut dans certains cas être amené à introduire des

zones de Brillouin d'un ordre supérieur. Un raisonnement géométrique
montrerait que toutes ces zones ont le même volume.

b) Les zones de Brillouin étant complètement définies par les
vecteurs bj, tous les cristaux ayant la même symétrie auront les mêmes

zones, quel que soit la base de la cellule élémentaire.

c) Les limites de zones sont définies par l'équation (5). Or, on peut
montrer que cette dernière est complètement identique à la condition de

Bragg pour la réflexion sélective d'une onde électromagnétique de

vecteur * sur les plans normaux à n. On retrouve donc la propriété
fondamentale du réseau réciproque qui fait correspondre à un vecteur de ce

réseau, le plan réticulaire normal du réseau primitif.

Discontinuité de l'énergie à la limite d'une zone de Brillouin

La grandeur de la discontinuité de l'énergie E des électrons à la limite
d'une zone dépendra évidemment de l'approximation employée pour le

potentiel V dans l'équation de Schroedinger. En général, le calcul est
fait pour des électrons quasi libres ; Slater7) cependant a montré que
l'essentiel des résultats de Brillouin reste valable, si l'on résoud le
problème de Mathieu par la théorie des perturbations.

Dans l'approximation des électrons presque libres, le potentiel périodique

du réseau est supposé petit par rapport à l'énergie cinétique des

électrons. Ce potentiel pourra donc être développé en série de Fourrier
et considéré comme une perturbation.

V=£Vne2™^ (6)
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On obtient alors les résultats suivants :

1° L'énergie des électrons est donnée par (7) tant que fe ne satisfait pas
l'équation (5) 2 2

E=dA- W

2° Si au contraire, l'extrémité du vecteur fe se trouve dans un des plans
limites de zone (5) l'énergie cinétique subit une discontinuité égale au
double du coefficient de Fourrier du potentiel dans la direction
déterminée:

22
E y- ± Vn • (8)

2m n

2. Définition des zones de Jones

Une zone de Brillouin, appliquée à une structure particulière, n'aura
de signification physique précise, que si elle satisfait en plus à quelques
conditions supplémentaires formulées par Jones8) et que nous résumerons

brièvement :

1° Une zone n'est intéressante que si elle est très voisine de la surface
de Fermi.

2° Une zone ne jouera un rôle physique important que si l'énergie subit
en chacun de ces points une discontinuité.

Définition: Une zone de Brillouin satisfaisant aux conditions 1° et
2° sera par la suite appelée zone de Jones.

Pratiquement, une zone de Jones devra donc être construite à l'aide
des plans (5) pour lesquels le coefficient de Fourrier est différent de zéro.
Cette dernière condition peut être précisée. Calculons à cet effet Vn a

partir du développement de Fourrier (6)

Vn= ~ f Ve~2ni {nr) d*R (9)

R

où R est le volume de la cellule élémentaire du cristal, et V le potentiel
en un point de cette cellule, égal à la somme des potentiels des différents
atomes du cristal. Supposons une cellule avec base comprenant s atomes
différents de potentiel Vj centrés aux coordonnées r,-. Le coefficient Vn

peut alors être mis sous la forme (10)

Vn l f e
-zm (nr) (V1 + V2e

2M {nr'] + + Vse27,i ,nrs) d*R • (10)

R

Si l'on suppose pour simplifier que tous les atomes du réseau sont égaux,
Vf — Vl on obtient la formule bien connue:

Vn £ e2™(nri) A f Vx e~ "' ("r) d3R (11)
/=i g
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que l'on écrit généralement :

Vn AnFn (12)

où F„ est la partie géométrique du facteur de structure. La condition
Vn + 0 est donc équivalante dans ce cas à la condition (13) :

F„ + 0 (13)

Un plan limite de zone de Jones devra donc satisfaire aux conditions (5)

et (13)

La condition (13) permet une construction aisée des zones de Jones
dans le cas des métaux et des cristaux covalents élémentaires. Les plans
cristallins satisfaisant (13) donneront en effet des réflexions de Bragg
dans le cas d'un diagramme de rayons X, une ligne intense correspondant
à un plan avec forte discontinuité de l'énergie V„. On pourra donc se

contenter dans ce cas, de choisir les plans intéressants dans un diagramme
Debye-Scherrer par exemple.

Le cas des cristaux à liaison partiellement ionique est plus compliqué.
Si l'on suppose en effet un motif cristallin comprenant p atomes identiques
entre eux d'une certaine espèce, le potentiel de chacun étant Vlt et q
atomes d'une autre espèce de potentiel V2, la formule (10) prend la forme
suivante:

P <?

V^-1— / V1e'lninrd^R + j-1
R - / V2e-27linr'd3R (14)

R 'R

que l'on peut écrire :

Vn ^-f V-, e-2ni {nr) d3R+^-j \\ e'2ni <nr) d5 R (15)

R R

Ve cristal étant ionique, les contributions dues aux atomes de potentiel V-,

et V2, auront en général des signes opposés, contrairement à ce qui se

passe en cristallographie où tous les facteurs de structure atomique ont
évidemment le même signe, et où le facteur de structure du cristal a la
forme (16)

Fn ifj't"i™ (/i>0) (16)

;-i
On devra donc être particulièrement prudent dans le choix des plans
limites, car en principe, il est possible que la condition Fn 4= 0 conduise
quand-même à un plan tel que V„ 0. On aurait donc une ligne de
diffraction à laquelle ne correspondrait pas de plan limite de zones de Jones.
Cette éventualité est certainement très improbable; elle montre cependant

que si la condition (13) (Fn #= 0) est nécessaire, on ne peut rechercher
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aucune corrélation entre l'intensité d'une ligne de diffraction et la grandeur

de la discontinuité de l'énergie.
Le cas contraire d'un plan limite de zone anquel ne correspondrait pas

de figure de diffraction est également possible, si l'on suppose un cristal
dont les atomes seraient différents du point de vue du potentiel, mais
auraient néanmoins des facteurs de structure atomique égaux (KCl).

Une autre question qui pourrait également jouer un rôle est soulevée

par Reitz9) qui remarque que la diffraction des photons (rayons X)
ne suit en général pas les mêmes lois que celle des électrons de basse

énergie. Tous ces faits prouvent que la relation entre figure de diffraction

et zones de Jones est qualitative mais non quantitative.

Nombre de niveaux d'énergie à l'intérieur d'une zone de Jones

Le nombre des états d'énergie dans le volume de phase dû dW d3 p
étant 1/A3, on montre facilement, en tenant compte de la relation p= ttk,
que la densité des états dans l'espace k est égale à 1.

Une zone de Jones de Volume Vj pourra donc contenir par cm3 de

cristal un nombre d'électrons n donné par la formule n 2 Vj. Si le
volume atomique est VA, une zone pourra contenir Z électrons de
valence par atome : „y Z=2VAVj (17)

3. Zones de Jones de Ag2S et Ag2Se

3.1. Phase semi-conductrice

Les mesures électriques prouvant de façon certaine que cette phase
est semi-conductrice, on peut se borner à rechercher une zone pleine.
Les plans qui peuvent jouer un rôle dans la construction doivent obligatoirement

être tirés des diagrammes de rayons X; la position exacte des

atomes d'Ag dans la cellule élémentaire n'étant pas connue, on ne peut
en effet, calculer les facteurs de structure. Boettcher dans son étude à

l'aide de la diffraction électronique indique les indices suivants pour les

plans réflecteurs :

(101) (020) (111) (120) (201) (121) (220) (002) (030).

La cellule élémentaire est quadratique à faces centrées, de volume a2c

et contient 4 atomes de sélénium et 8 atomes d'argent. Le volume
atomique moyen VA est donc «2c/12 ; le nombre moyen d'électrons de valence

par atome est de 8/3. Une zone de Jones remplie exactement par ce
nombre d'électrons devrait donc d'après la formule (17) avoir un volume
donné par (18) 7 1fi
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On peut voir qu'un tel volume est justement défini par les familles de

plans (220) et (002). La multiplicité de ces plans est en effet de:

4 pour (220), soit (220) (220) (220) (220)

2 pour (002), soit (002) (002)

>'Â

«£---
<*&

--"<

Fig. 1

Zones de Jones de /S-Ag2S et ß- Ag2Se. Plans limites (220) et (002)

Ces deux familles de plans déterminent une zone prismatique droite à

base carrée de côté 2 |/2/a et de hauteur 2/c. La figure 1 illustre cette
zone et il est facile de contrôler que le volume est bien 16/a2c ce qui est

en accord avec les propriétés semi-conductrices de ß — Ag2S et ß — Ag2Se.

3.2. Phase métallique

Va cellule élémentaire de la phase a étant cubique centrée intérieurement,

le nombre des plans susceptibles de jouer un rôle sera limité du
fait de cette haute symétrie. Boettcher indique les indices suivants :

(110) (020) (121) (220) (231)

Les lignes correspondant aux plans (020) et (121) sont de loin les plus
intenses, mais nous avons montré au paragraphe précédent qu'il n'y a

pas de corrélation nécessaire entre l'intensité due à un plan réflecteur et
l'énergie d'activation dans la direction correspondante de l'espace fe. La
seule condition nécessaire est l'existence d'un facteur de structure non
nul, donc la présence d'une ligne de diffraction. Un autre point dont on
doit tenir compte ici, est la répartition statistique des 4 atomes d'argent
suivant les 42 places géométriquement possibles (voir figure 1 de *)).
L'annulation d'un facteur de structure Fn ne peut en effet dépendre que
des indices de ce plan et doit être indépendant de la répartition des
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atomes d'Ag. Dans le cas contraire, la définition d'une zone de Jones
pour un tel cristal n'aurait pas de sens. Nous avons donc calculé les
facteurs de structure pour les 3 familles de positions, soit 6 (e), 12 (h) et
24 (g) d'après les coordonnées indiquées par Strock10). Le facteur de

structure donné par la formule (16) peut être mis sous la forme:

E„ Zfj cos 2 M^iXj A n2yj + n3Zj)

.s

+ i Xfj sm 2 n(n-,Xj + n2yij + n3Zj).
,-i

Tableau I
Facteurs de structure de Ag2S et Ag2Se

Phase a (cubique, centrée)
Répartition statistique des atomes d'Ag suivant les positions 6 (e)

(19)

n,n2n3 i M Se
11 T ' Fas

/2

77r total

100 0 0 0

110 2 0 2/i
111 0 0 0

200 2 4 2/1+4/,
210 0 0 0

211 2 0 2/1
220 2 4 2/x + 4/2
221 0 0 0

300 0 0 0

310 2
4 2/i-j/2

311 0 0 0

222 2 4 2/x + 4/,
320 0 0 0

321 2
4 2/i-|/2

On montre facilement que la partie imaginaire est ici nulle (voir Int.
Tables for crystallography) le cristal possédant un centre de symétrie.
De plus la contribution des atomes de Se (centrés intérieurement) suit
la loi suivante :

(Fkkl)se=2fse St nx +
(Fhkùse=° Si nx + n2-

+ n3 est pair

is est impair

Les résultats sont résumés par les tableaux I, II et III, dans lesquels
/j et /2 désignent les facteurs de structure atomique respectifs du sélénium
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et de l'argent. Les symboles FSe et FAg désignent les contributions au
facteur de structure de tous les atomes de Se et d'Ag. On voit que les plans

pour lesquels les facteurs de structure s'annullent sont les mêmes dans
les 3 cas. Les différentes positions sont donc équivalentes du point de vue
diffraction.

Le choix des plans utiles parmi ceux pour lesquels Fn 4= 0 est en fait
imposé par une des conditions placées à la base de la définition des zones

Tableau II
Facteurs de structure de Ag2S et Ag2Se

Phase a (cubique, centrée)
Répartition statistique des atomes d'Ag suivant les positions 12 (h)

n1 n2 n3
/l /2

Ftotal

100 0 0 0

110 2
4

~y 2/1-3 /2

111 0 0 0

200 2
4

y 2/i + y/,
210 0 0 0

211 2
4

y 2/1+ 3 /2

220 2
4

~y 2/i-y/2
221 0 0 0

300 0 0 0

310 2
4

~
3 2/t-y/.

311 0 0 0

222 2 -4 2/1-4/,
320 0 0 0

321 2
4

y 2/i + y/2

de Jones. Une telle zone doit être limitée par une surface voisine de celle
de Fermi. La cellule élémentaire comprenant 2 atomes de Se et 4 atomes
d'Ag, le volume atomique moyen VA est a3/6. Une zone pleine comprenant
8/3 électrons par atome aurait donc un volume F,- déterminé par la
formule (17)

VJ-
Z

2VA (20)
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Ce volume étant justement limité par les plans (200), a — Ag2S serait un
semi-conducteur; ce fait est en contradiction avec les mesures et prouve
que la zone de Jones doit être construite à l'aide des plans (200) et (211).
La multiplicité est de 8 pour le groupe (200) et de 24 pour le groupe (211).
Ces différents plans limitent un polyèdre de forme compliquée, illustré par
la figure 2. Ce polyèdre peut être décomposé en 3 zones de volume
respectif V-,, Vu, Vuh ayant les caractéristiques suivantes:

a) le cube limité par les plans (200)- de volume Vx 8/a3 ;

b) une zone plus petite, soit le cube de volume Vx dont chaque sommet
est coupé par 3 des plans (211). Le volume de cette zone est Vn 7ja3.

Tableau III
Facteurs de structure de Ag2S et Ag2Se

Phase a (cubique, centrée)
Répartition statistique des atomes d'Ag suivant les positions 24 (g)

«1»2«3 ~r " FSe
11

1

T2
• FAg *'total

100 0 0 0

110 2
2- 8 fi

3 ^A-AY
111 0 0 0

200 2
4

y 2/1 + Ì/,
210 0 0 0

211 2
2

3~ 2/1 + |/,
220 2 0 2/i
221 0 0 0

300 0 0 0

310 2
2

~ + 2 >*-!>¦
311 0 0 0

222 2 0 2/!
320 0 0 0

321 2
2

~3 2/x-f/,

c) La zone suivante est limitée par les plans (200) et les prolongements
des plans (211). On obtient donc son volume en ajoutant à VY les

6 pyramides de sommet St ce qui donne : Vul 10/a3.

Une comparaison de la valeur absolue des vecteurs fe dans les différents
volumes montre que du point de vue énergétique, les niveaux situés dans
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les pyramides de sommet (Sx) sont plus favorables que les niveaux
correspondant au voisinage des sommets (S2) du cube. On a donc conduction à
l'intérieur de 2 zones partiellement pleines, ce qui explique les propriétés
métalliques de la phase a. L'éventualité d'un recouvrement de 2 zones
ne peut être discutée puisque la grandeur de la discontinuité de l'énergie
au travers des plans limites n'est pas connue.

Fig. 2
Zones de Jones de oc-Ag2Se etoc-Ag2Se Plans limites (200) et (211)

4. Remarques relatives à la stéréochimie de la phase a

Une étude de la phase ß apparaît impossible tant que l'on ne connaît

pas la position exacte des atomes d'argent à l'intérieur du réseau cristallin.
L'examen des zones de Jones a permis de tirer des conclusions quant

aux phénomènes de conduction qui intéressent l'ensemble des électrons
libres du réseau. Cette méthode ne donne cependant aucun renseignement
à propos des phénomènes se passant à l'échelle moléculaire, d'où cette
brève description du cristal.

Les résultats qualitatifs indiqués ici sont valables pour Ag2Se et
correspondent aux valeurs suivantes des rayons atomiques étabhs par
Pauling et cités par Wells11) :

R, ,Secovalent *-

-"covalento*-&

R ¦ Se=* ionique^^
R- ¦ Ae+Jvionique-ri6

(environnement tétraédrique) 1,14 Â

(environnement tétraédrique) 1,53 Â

1,91 Â

1,26 Â



612 P. Junod H. P. A.

Les atomes de Se occupent dans la phase a de Ag2Se une cellule élémentaire

cubique centrée intérieurement de paramètre a 4,98 Â. Les
4 atomes d'Ag étant répartis statistiquement suivant les 3 familles de

positions 6 (e), 12 (h), 24 (g), nous étudierons successivement ces 3 cas.

a) Atomes d'Ag dans les positions 6 (e)

Les atomes situés sur les milieux des côtés peuvent avoir un rayon
maximum de 1,35 Â. Dans le cas d'occupation simultanée d'une telle
position et du centre d'une face adjacente, le rayon ne peut plus être que
de 1,245 Â. Cette double occupation étant nécessaire à la stoechiométrie,
on peut affirmer que les positions 6 (e) sont occupées par de l'argent sous
forme d'ions Ag+ qui remplit donc les trous octaédriques du réseau.

b) Atomes d'Ag dans les positions 12 (h) (fig. 3)

Ces atomes sont localisés dans les faces suivant les coordonnées (1/2,
0, 1/4). Chaque atome métallique possède un environnement tétraédrique
d'atomes de Se à la distance de 2,78 Â, l'angle des liaisons étant de

127°. La situation serait simple si la présence d'un atome d'Ag dans

chaque face suffisait à la stoechiométrie. Ce n'est évidemment pas le cas,
4 des faces doivent être occupées doublement par 2 atomes d'Ag séparés

par la distance de 2,49 Â. L'un des 2 atomes métalliques doit dans
ces conditions, obligatoirement être ionisé. On a donc en fait une liaison

tétraédrique mixte, partiellement covalente (par hybrides sp3) et
partiellement ionique, pivotant entre les différentes configurations
possibles. Cette résonance entre configurations partiellement ioniques
provoquera une conduction métallique12).

c) Atomes d'Ag dans les positions 24 (g) (fig. 4)

Les positions 24 (g) peuvent être obtenues par un léger déplacement
des positions 6 (e) ; ce déplacement a pour résultat d'augmenter la distance
entre atomes de Se et d'Ag et permet l'introduction d'atomes métalliques
non ionisés.

L'environnement des atomes d'Ag devient alors trigonal, coplanaire,
chaque atome métallique étant entouré par 3 atomes de Se situés à la
même distance, soit 2,64 Â. Cet environnement trigonal est difficilement
explicable du point de vue électronique. Généralement, l'argent
monovalent forme soit 2 liaisons collinéaires, soit 4 liaisons tétraédriques,
tandis que l'argent bivalent forme 4 liaisons complanaires. La formation
de 3 liaisons ne peut avoir lieu que par excitation de l'un des électrons
4d de l'argent dans les niveaux 5 p. Un tel processus est en effet facile-
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ment réalisable, l'énergie d'excitation nécessaire étant faible, ainsi que
l'a montré Orgel13). Le niveau p de l'argent ne sera évidemment que
partiellement occupé, et cette présence d'orbites vides conduit certainement

à une conduction métallique.
Nous avons considéré ici chacun des 3 cas séparément ; il est cependant

évident que dans le cristal réel, ces 3 possibilités sont présentes simultané-

Oy
Se

O

A3

Ag

Fig. 3

Directions des liaisons chimiques dans la phase a de Ag2Se
Atomes d'Ag dans les positions 12 (h)

5e

«9

Fig. 4

Directions des liaisons chimiques dans la phase a de Ag2Se
Atomes d'Ag dans les positions 24 (g)
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ment, ce qui complique notablement la discussion. On peut remarquer que
ces 3 familles de positions, équivalentes du point de vue des zones
d'énergie sont foncièrement différentes en ce qui concerne la liaison
chimique. Les conclusions concernant le mode de conduction sont
cependant les mêmes, que l'on se base sur la théorie des zones, ou sur les
liaisons chimiques.

Nous tenons à remercier vivement Monsieur le Professeur G. Busch
pour l'aide efficace et bienveillante qu'il nous a accordé tout au long de

ce travail. Notre gratitude va également à la «Gesellschaft zur Förderung
der Festkörperphysik an der ETH» pour son aide généreuse.
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