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Scattering Integral Equations in Hilbert Space

von Alberto Galindo Tixaire
Junta de Energia Nuclear, Madrid

(1. VI. 1959)

Summary. This paper is devoted to extend the mathematically and physically
rigorous theory given by Jauch for the multichannel scattering systems. With this
purpose, several integral representations of the Moéller operators are obtained which
are related to three integration methods: Riemann, Cauchy and Riemann-Stieltjes
integrals of operator valued functions. Accordingly we derive as well three types
of integral equations for the ingoing and outgoing waves within Hilbert space.
We study their validity range, and give reasonable conditions on the channel
interaction hamiltonians in order to justify them. Our results apply with a wide
class of «switching factors». The Lippmann-Schwinger equations appear as formal
solutions of our RS-integral equations outside Hilbert space.

1. Introduction

In spite of the importance that the mathematical theory of scattering
presents in relation to physics, we can say that almost every paper deal-
ing with it, is reduced to a formal and heuristic handling of some known
topics, without a careful examination of their legitimacy and physical
sense. The existence of some limiting properties was not warranted, and
every operator was handled as if it might possess all the conditions re-
quired to legitimate the expressions involving it. But, of course, that is
not a right way. A great part of the inconsistencies we meet in quantum
field theory are due to an incorrect use of senseless functions and opera-
tors, as many authors have already emphasized!)?)3). In scattering
theory we are faced with a similar situation. The time-independent for-
malism is not the most appropiate tool for its treatment because of two
main reasons: the first one, of a physical nature, since such a formalism
does not describe the evolution character of the scattering systems; the
last one, of a mathematical nature, because no scattering state can have
a well-defined energy and therefore, it cannot be a stationary state.
Even the time- dependent formalism used so far, with the exception next
quoted, needed a careful reviewing, owing to its mathematically in-
complete exposure*). Not much time ago, JaucH*)%) afforded a first

*) Although there are some other papers on scattering whose mathematical
correctness is quite complete, they lack generality and are reduced to study some
special points concerning this subject.
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approach to this problem, by giving out a rigorous basis to handle the
scattering systems. We go on this way, and we make his results more
explicit for applications, overpassing as well the above difficulties.

Let us recall some questions needed to understand the following.
$ will be the physical state space, and so, it will be considered as a
Hilbert space*), with a definite metric. The motion of the physical
system which we shall be concerned with is given by an unitary group V,,
whose infinitesimal generator is a self-adjoint?)8) time-independent
hamiltonian operator H of § (so we assume the system to be closed).
The scattering states g, always belong to the continuum subspace C < ),
i.e., the subspace associated with the continuum spectrum of H. Accord-
ing to the results by Jaucu?)5)

€C=YRP=yRY (L.1)

where ) denotes direct summation, o is the channel index, and R are
(¢4

orthogonal**) subspaces of §, ranges of partial isometries .Q(_f’ (Moller
operators) with domains D' = $***). D® need not being disjoint, since
it is possible?) that one of them be the whole § (that is the case when we
consider the -«free» channel, in wich all the particles are free either at

t = — oo, or at ¢ = + o). The operators 2P are given?)®) by the limits
29 < lim VIU® ,, &9 = lim VU™ (1.2)
l——00 t——+00

when they exist in the strong topology7)8)19); it can be shown that these
limits exist on some subspaces D® < §, and they are next prolonged to
be zero on the orthogonal complements of D). U{® are the o channel
unitary operators, generated by the self-adjoint hamiltonians H{.

The Section 2 of this paper is devoted to derive some integral represen-
tations of Q®, Q1 They are connected to three types of operator valued
functions integrals1?): the R (iemann) integration, which provides the
R-integral representation with a large class of «weight» functions, en-
closing the one given by JaucH?); the C (auchy) integration, which give
to us the C-integral representation, and finally, the R(iemann) — S(tieltjes)
integration, by means of which we obtain the RS-integral representation,

*) We do not assume § to be separable, and so, our results are also valid for
‘myriotic fields’ 1)2)3)%) in which the actual possibility of an infinite number of
‘bare’ particles makes the Hilbert space non separable.

**) The proof of this orthogonality®), is based upon the mean ergodic theorem,
which is valid also when §) is non separable?).

**%) It is not necessary to suppose that E(_?f) = D, as made by JaucH. But it

can be proved, as he remarked?), that such an equality comes from the time-
reversal invariance.
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that provides a rigorous sense to the formal results by GELL-MANN and
GOLDBERGER!).

In Section 3 we apply the results of Section 2 to derive correspondingly
three integral equations for the ingoing (outgoing) states. Some diffi-
culties arise owing to the possible unboundness of the interaction hamil-
tonians H{*. To overpass them we state explicitly some very general con-

ditions on the domains Dy, Dy and D A of H,H and H (1"‘). Our R-in-
0

tegral equations generalizes the results by Cook2) and Hack!?), and the
RS-integral equations show a quite clear ressemblance to the LiPPMANN-
SCHWINGER!) ones, which appear to be their formal solution outside
the Hilbert space. Questions concerning the iteration solution method
and the scattering operator will be treated in a subsequent paper.

2. Integral Representations of 2, Q»1,

On brevity sake all the proofs and supplementary requirements will
be given for 2, since for the other MGLLER operators they are quite
similar; so we shall merely write mutatis mutandis the corresponding
results. In addition we shall only indicate the outlines of the proofs, the
details being omitted whenever that does not get any trouble.

a) R-integral Representation

Let g.(¢, &) be a non-negative real function of feJ_ = (— oo, 0] and
ee J., = (0, &]; we assume that g, (¢, &) is continuous in ¢, and that

0
fg+(t,a) dt=1, for every ee ], (2a.1)

The operator valued function g, (¢, &) V] U is strongly continuous in ¢,
and, in addition, its norm g, (¢, €) is integrable on J_ for every e€ J,, .
Therefore, there exists the R-integrall?)19)

0
Qe (-, )] —=~fg+(t, &) ViU dt  (2a.2)

in the strong topology*). The operator 2%[g. (-, &)] is bounded, and

| 29 (g, c-,€)] || < 1. Let us next assume that
0
1 tle, &
lim (&l 8 gy g o for every Te (0, 1,) (2a.3)
e—>+4+0 &€
*) To avoid repetitions in the following, whenever we speak on the existence
of a limit or an integral, it must be understood in the strong convergence, unless
we specify the contrary.
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Then, by means of a similar procedure to that used by JaucH?) in his
Lemma 6, it can be inmediately shown that

QP —lim Q¥[g.(.,&)] on D (2a.4)
e—>+0

Analogously

Q¥ = lim Q¥[g_(.,é&)]= lim f g (t,e)VIUPdt on D (2a.5)

e—-+0 e—>+0

and
0

QO = lim QD¢ (.,e)]=lim L [g.(t,e) UY'V,dt on RY (2a.6)
e—>-+0 e—>+0 Foo
Although for our purposes we need no more than (2a.4), (2a.5), (2a.6),
it is interesting, from a theoretical point of view, to investigate if the
restrictions on the validity domains of the above expressions can be
dropped or weakened. We know that to be true for simple scattering
systems?) whenever we take g (¢, &) = ¢ e**. However we have failed to
prove it in the most general multichannel case*).

We have then been able to write Q®, Q7 as a limit of an integral
average of the unitary operators V] U‘“’ U(Wr V,, with a suitable class of
weight functions g, (t, €), enclosing the special case treated by JAucu?).
It is worth to remark that the «adiabatic hypothesis» with a general
class of «switching factors» is not but a simple consequence of treating
with scattering systems4) 5)‘.

b) C-integral Representation

Let o, be any compact subset of the spectral set of H{®, and M(o,) its
correspondmg subspace. One has :

22171 f e R(z, HP)dz , on M(c,) (2b.1)
Clogl
where C[o,] is an oriented envelopel®) of an arbitrary bounded open
subset**) of the complex plain containing ¢, and where R(z, H®)
= (z — H{®)~ is the resolvent of H{® at 2.
If we assume that for a fixed g, (¢, ), and for every compact subset
g, there exists some C[g,(, ¢), 0,] such that |

U(a)

f g.(te) e Vidt=N_g,(.,€), 7] exists (2b.2)

*) We are indebted to Professor Jauch for a private communication on this
sub]ect
**) We suppose that this oriented envelope consists of a finite number of closed
simple Jordan curves.
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for every ze Clg.(-,¢), o,] and e€ J,, N,.[g.(", &), 2] being strongly
continuous on C[g,(+, &), 6,] as a function of z, we can sustitute (2b.1),
(2b.2) in (2a.2) to obtain, by interchanging the integration order (whose
legitimacy comes from the above conditions), the following expression

1
2m1

Q(j)[ng(' ’ 8)] =

N lg.(.,€),z] Rz, H") dz on M(o,)

Clg. (-1€) oa] (2b.3)
Therefore

09~ lim j N, lg.(.,e),z]R(z, HM) dz on M(c,) N DY
e—+0 o :
Cles("r4), 0a) (2b.4)

Q®7 _ lim N®g,(.,8),z] R(z,H)dz on M(c) "R (2b.5)

>+ 0 e, (L), o]

which are the C-integral representations we were looking for, and whose
applicability is restricted to the elements of D, R, which contain only
bounded energies in relation to H{®, H, respectively*). In the simple case
g.(te)=¢ et we get

QP = lim £ / R(z+iz,H) R(z, HM)dz on M(o,) DY (2b.6)
g—+0 Cle,00)

C(s, o)

where C(g, 0,), C(e, o) can be chosen inside the strip | Imz | < /2.

c) RS-integral Representation

Let us consider again (2a.2). If E{ is the identity resolution correspond-
ing to H{?, and if P{" is the spectral projector on a closed interval

J =14, 4,], one has?)

L P fe"'“dEf) in the norm topology, (2¢.1)
4

*} Although it is not easy to check mathematically if these elements exist, it
is very likely to happen that on physical grounds. In the worst case, however,
we can perform a double limit in (2b.3), by putting P{o,) (spectral projector on
0y) on the right of R(z, H(Oa)) and making g4 —> (— 00, +00), e > +0.
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Let g be a partition of J, and U{® P a corresponding sum in (Zc.1).
We form the operator

0
090, (-.6), e PP= [g.(t VU PP (Zc2)
If p e H, one gets

| Q9. (., 1 PPe— QP (., ,0 PPy | <

0
< [, (t.8) [UP PPy — UAPPg | dt +
v

—~T

7
[e.tte) | UP PPy — UBPPg|di (2c3)
We can choose 7" to be large enough such that, for an arbitrary 6 > 0,

/g+(t, g)dt < o4 ¢ (2c.4)

and since ¢~*** in uniformly continuousin Ae J, te[— T, 0],
f g, (e | UPPPe - UNPPg|dt < /2 (2c.5)
=T

for a partition norm | ¢ | sufficiently small. Therefore, we have

Qg (., )] PP =lim Qg (., ¢),0] P (2¢.6)
le|—0
Writing
0
fg+(t,e) Vie**dt=N_[g.(.,¢€), 4]
we deduce B

Qg (., 6] PP = f N.g.(., &), AdE® (2¢.7)

Since ng‘) [g.(-, )] is a bounded operator, we can pass to the limit
when J > (— oo, + o0), and so

Q97 ( f N.fg.(., &), A]dES (2¢.8)

27
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Finally, by tending & - + 0, we can write in general

+o0
QP —lim [N_[g.(.,¢),A)dE® on DY (2¢.9)
6-4-{—0_00
0P'=tm  [N@.(.,, dE, o R (2c10)
s~++0__oo

If one takes g (¢, &) = € ¢, (2¢.9) and (2¢.10) bring over the follow-
Ing expressions

QP =lim £ie fR(AiiB,H) dE@on D@ (2c.11)

e—>+0

e—>+0

+o0
QT = lim + e fR(l +ie H®)AE, on R®  (2c.12)
which gives a precise meaning to previous results!l).

3. Scattering integral equations

The integral expressions obtained in Section 2, although rigorous, are
not suitable enough for practical purposes, owing to the non explicit
appearance of the interaction hamiltonians H{* = H — H{®, which in the
most physical cases are treated as small perturbations whose effects one
studies in different approximations. Nevertheless, we are faced with the
difficulties arising from the possible unboundness of H{®. We cannot
avoid them because they often appear, as, for instance, the Coulomb
potential with an appropiate cut-off and some velocity-dependent inter-
actions. Not much time ago, it has been proved!2)13) that even with
unbounded singular potentials satisfying some general conditions, it is
possible to get simple scattering systems, whose Moller operators admit
integral representations in which H, appear explicitly, but whose validity
is restrained to a suitable domain everywhere dense in §. Guided by
their results and trying to generalize them, we shall be able to perform
the same steps for each one of the integral representations that we have
just found out. :

a) R-integral equations

Let us suppose that for each H(® there exists a domain :6&2‘) everywhere
dense in D such that

a’) f)ﬁf)_CMDH., " Uga)iﬂi‘)giﬁﬂ, ZDHETO;) for tej_

b') HP U™ is strongly continuous on D as a function of fe]_.
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Conditions a’) and b’) able us to provide a mathematical sense to the
forecoming expressions. In particular b’) indicates that H{® is «well-

behaved» enough on 5(+°‘) Both conditions are reasonable on mathemati-
cal grounds. We suppose, in addition, that for some g, (¢, ),

0
) [8.0.0) | HPURp|dt < 400 for every ped.

t
where g, (¢,¢) = fg+(zf, g)dt
—o
With these conditions in mind*), we obtain inmediately
i _
Qg (.,8)]=1—14 /‘gﬂr(t, &) VIHPU®dt on D (3a.1)
Therefore, and with similar considerations for ), Q@1

0
Q9 —1_4lim f gLt e) VIHPU®dt on D (32.2)

e—>+10
e

0
QO — 144 lim j gL (t,e) UMTHPY,dt on R®  (3a.3)
e—-+0 oo
By applying (32.3) to a p € R, we get
0

pE=¢,—1lim gLt &) UPTHXV, p; dt (3a.4)

1
e—>—+0 Too

which are the scattering R-integral equations. For g (¢, &) = ¢ et¢!, they
adopt the following form:

0

9t — ¢F —ilim f =S UDTHOY, p dt (3a.5)
e—=+0 ¥

Foo
In (32.4) as well asin (3a.5), ¢ belongs to Q) gi(f) In the particular case
where H be bounded, the conditions a’), b’) and ¢’) can be partially
removed and (3a.4) are valid for any 3" € R®. Indeed we need only assume
the existence of domains D, (R®), everywhere dense in D®, (R®),

such that U DY < Dy, (V, RY < Dy(), to legitimate (32.2), ((3a.3))

*) These three conditions are satisfied in 12) 13),
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on D, (R®). We must note that we can only assert (3a.4) to be the
scattering R-integral equation in that case where the initial data ¢F

~

belongs to 2 R, which is everywhere dense in D®; therefore in prac-
tical problems, that must be kept well in mind*).
b) C-integral equations

We adopt the same notations as in 2.b). We assume that

0
/gle(t, & e Vidi=N"[g.(.,¢),z2] (3b.1)

and H® R(z, H{) exist, and that they are strongly continuous as func-
tions of zeClg, (-, €), 0,] on a subset "D (c,) everywhere dense in

35(1) NM(o,), for every e €], . Then, we can proceed with (3a.1) in the
same fashion as with (2a.2), to obtain

o 1 2 oL o
Qg () =1-5; [ Nilg,(..e), ] HPR(H)dz on
Cle.(",8), 0ul f@(i)(aa) (3 b.Z)

and similarly for Q@ [g (., &)], 2" [g. (., €)]. Next we can take limits
when ¢ >+ 0 to derive the corresponding expressions for %, (2T
on 'D®(a,), (R (¢)), and from these, the C-integral equations.

If g.(t,e)=¢ee*’, (3b.1) is authomatically satisfied whenever
| Imz | < ¢/2; the C-integral equations are in this case

€1 1 1 . & o
pE =gt + ‘z“ﬂglff:o R(z+ie, HO)HPR(z, Hydzyt  (3b.3)
C(g, o)

for every p* € 'R (o).
c) RS-integral equations

Let us suppose that for every bounded | = [4,, 4,] and any partition
pof J, H U P exists on some "D everywhere dense in D, and that

0
/gf%(t, e) | HP U PP | dt < +oo for every pe’"DP (3c.1)

*) It is clear that the requirement of f)(i“), (g{(f), being everywhere dense in

D, (RY) is not essential to derive (3a.2), ((3a.3)). But we have given it in
order toE)rovide some importance to them, since if so, we can approach any
element of D), (9{{;:‘)) as much as needed by means of solution elements of the
correspondingi’ﬁ’-integral equations.
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If in addition H U P ——» H U P on "D®, uniformly with
L= Q=
respect tofe[ — T, 0] (T any finite positive number), we can proceed

as in (2.a) to derive from (3a.1)

400
Q9 (.,8)]=1—3 [ N'g,(..&), HPIE® on "DD  (3c.2)

and similar expressions for 2 [g_(., )], @ [g, (., €)], in each one of
them we would take limits when ¢ -> + 0 to obtain (), Q®1,
In the special case where g, (£, £) = ¢ e**!, they become

+00

y . 1 ” o (et

Gt 11, [pgint w5 e
+00

0Pt =1 —tim [ 2

H®AE, on "R® (3c.4
e>t0 ) Atie—HP ! = )

From (3c.4), we get

400
. 1 -
Yy = qaf+lufo / rEp— HY dE, y, for every yy e "RY  (3.5)
&£—> cT 0

whose analogy with those of LIPPMANN-SCHWINGERM) is quite evident.
However (3c.5) hold inside the Hilbert space, while these other ones are
their formal solutions outside §). We shall come back to this point else-
where.

4. Conclusion

The results obtained in this paper show clearly the complications in-
herent to the problem which we have been concerned with. One of the
most striking facts is the appearance of E,, in the RS-integral represen-
tations of Q®7, and the RS-integral equations. This is due to the fact
that to approach their direct expressions or solutions we need to know
the very spectral structure of the hamiltonian operator H, a matter that
is almost entirely uniknown. A method to derive it from the E{*, would
be of great interest for specific applications.

Finally, we want to emphasize that, in spite of the restrictions imposed
to justify the derived expressions, it is very likely that it may be possible
to fulfill them in the majority of the practical situations, as stressed by
the fact that the potentials studied by Hack??), although very general,
satisfy them.
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Note added in proof. After this paper was written, Prof. Jauch kindly pointed
out to me that condition a” is very similar to what he calls "admissible interaction
operator’ (J. M. JaucH and 1. 1. Zinngs, Nuovo Cim. /7, 553 (1959)).
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