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Methode zur Bestimmung von Diffusionskoeffizienten
in Flüssigkeiten II

von F. Grün und B. Marzetta
Physikalisch-Chemische Anstalt der Universität Basel

Zusammenfassung. Es wird gezeigt, dass die in einer früheren Arbeit beschriebene
Schalenmethode zur Bestimmung von Diffusionskoeffizienten wenig empfindlich
ist auf die Abänderung einzelner Versuchsbedingungen.

1. Einleitung
In einer kürzlich erschienenen Arbeit1) haben wir über eine neue

Methode zur Bestimmung von Diffusionskoeffizienten berichtet. In der
vorliegenden Mitteilung werden einige theoretische Fragen beantwortet,
die dort noch offengeblieben sind.

Die erwähnte Methode benützt « Schalenversuche ». Wir schildern diese
zunächst kurz ; für Einzelheiten verweisen wir auf 1). Die radioaktiv
markierte diffundierende Substanz S befindet sich gleichmässig verteilt in
dünner Schicht auf dem Boden einer nach oben offenen zylindrischen
Schale. Man überschichtet S mit dem flüssigen Diffusionsmediüm M;
die Substanz S löst sich und verteilt sich durch Diffusion in M. Mit einem
Zählrohr misst man die Stärke der von S ausgehenden und M nach oben
durchdringenden Strahlung. Die Zählgeschwindigkeit wächst dabei mit
dem allmählichen Auftauchen von S und nähert sich asymptotisch einem
konstanten Wert; er entspricht der stationären, gleichmässigen Verteilung

von S in M. Die Gesamtzahl N der seit Beginn des Versuchs, d. h.
seit dem Überschichten registrierten Impulse ist asymptotisch eine
lineare Funktion der Zeit (siehe Fig. 1). Den Zeitachsenabschnitt L der

Asymptoten nennen wir Induktionszeit ; diese ist ein Mass für die Schnelligkeit,

mit der der stationäre Zustand erreicht wird, und hängt daher von
D, dem Diffusionskoeffizienten von S in M, ab. Da sich L experimentell
gut bestimmen lässt, ergibt sich, sobald man die Beziehung zwischen L
und D kennt, eine Methode zur Bestimmung von D; dies ist unsere
« Schalenmethode ».

Die erwähnte Beziehung zwischen L und D haben wir in x) unter
folgenden ..Voraussetzungen-hergeleitet..

VI : S löst sich unendlich rasch in M. Unmittelbar nach dem
Überschichten ist S nur in Lösung und nicht mehr als Bodenkörper vorhanden.
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V2: In den Richtungen parallel zum Schalenboden bestehen keine
Konzentrationsunterschiede.

V3 : Unmittelbar nach ihrer Auflösung ist die Substanz S in unendlich
dünner Schicht am Boden der Schale konzentriert.

V4: Die Abhängigkeit der Zählgeschwindigkeit von der räumlichen
Verteilung von S in M beruht nur auf der Absorption der Strahlung
von S in M. Die Absorption erfolgt nach einem Exponentialgesetz.

Unter diesen Voraussetzungen gilt

L l
(1.1)e»d-l-/td-fi,2d2/2

~/AcA(A<r~y)

(siehe (17), (19) und (24)*)).
Nun sind aber beim eingangs geschilderten Versuch die Voraussetzungen

VI bis V4 höchstens angenähert erfüllt. Am bedenklichsten sind V3

Fig. 1

Die Induktionszeit L

und V4. Beim Überschichten wird stets etwas von S durch Konvektion
ins Innere von M verschleppt, obwohl wir natürlich Vorkehrungen treffen,

dass dies nur in geringem Umfange geschieht. V4 gilt zwar näherungsweise,

aber es ist schwer anzugeben, wie gut die Näherung ist. Von der
Voraussetzung VI können wir im allgemeinen lediglich sagen, dass sie

umso besser erfüllt ist, je weniger Substanz S wir verwenden. Immerhin
konnten wir zeigen, dass bei den in 1) beschriebenen Versuchen der
Zeitbedarf der Auflösung sehr klein ist. Am wenigsten Bedenken bestehen bei
V2. Aus dem Gesagten folgt, dass (1.1) bei unseren Versuchen nicht
streng gilt. Wenn wir dennoch, wie wir es in J) getan haben, die Versuche

*) Der Ausdruck für L ist gegenüber dem in a) leicht umgeformt. Die Rechnung,
die zu L führt, ist in ]) übrigens nicht vollständig wiedergegeben; die Lücke wird
durch die Herleitung in dieser Arbeit ausgefüllt.
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nach dieser Formel auswerten, so sind die erhaltenen Werte für D nur
näherungsweise richtig.

In der vorliegenden Arbeit behandeln wir wiederum den oben geschilderten

Schalenversuch, lassen dabei aber die am schlechtesten erfüllten
Voraussetzungen V3 und V4 fallen; die Anfangsverteilung von S und
die Abhängigkeit der Zählgeschwindigkeit von der Verteilung sollen also
keinen Einschränkungen mehr unterliegen. VI und V2 sollen nach wie
vor gelten*). Der Versuch wird also weniger stark schematisiert als in x)

und die Beziehung zwischen L und D, die wir herleiten werden, hat daher
einen weiteren Gültigkeitsbereich als (1.1). Dies wird es uns auch
gestatten, die Güte der durch (1.1) dargestellten Näherung zu beurteilen.

Im folgenden wird in § 2 zunächst die Induktionszeit L allgemein
definiert und dann in § 3 für einen beliebigen Schalenversuch berechnet.
In § 4 werden aus den erhaltenen Resultaten Abschätzungen zur
Auswertung der Versuche gewonnen. In § 5 folgt eine zusammenfassende
Diskussion.

2. Definition der Induktionszeit

Da es für die Zwecke des § 3 genügt, geben wir die Formulierungen für
einen eindimensionalen, durch ein Zählrohr beobachteten Diffusionsvorgang.

Von diesem Vorgang setzen wir lediglich voraus, dass die
Konzentration der diffundierenden Substanz S asymptotisch zeitunabhängig
wird, wobei die Annäherung an den stationären Zustand derart erfolgen
soll, dass das zeitliche Integral über die Konzentration c(x, t) asymptotisch

eine lineare Funktion der Zeit ist :

C(x, t)= f c(x, r)dr G(x) (t - H(x) + o(l)) (t -> oo). (2.1)

o

G ist die Verteilung von S im stationären Zustand und H ist der Abschnitt
der Asymptoten auf der t-Achse ; beide sind im allgemeinen Funktionen
von x. (2.1) ist für eine weite Klasse von Diffusionsvorgängen erfüllt,
insbesondere für beliebige Schalenversuche, wie wir in § 3 zeigen
werden**). Wir gelangen zur Zählgeschwindigkeit n, indem wir den aus der
Schicht zwischen x und x A dx herrührenden Beitrag in der Form

Ac(x, t) cp(x) dx (2.2)

ansetzen und dann über die Schichtdicke d integrieren. Wir erhalten so
d

n(t) A I c(x, t) cp(x) dx (2.3)

o

*) In einer weiteren Arbeit sollen Schalenversuche unter den Voraussetzungen
V2 und V3, also unter Verzicht auf VI behandelt werden.

**) Wir wollen in dieser Arbeit nicht allgemein untersuchen, unter welchen
Voraussetzungen (2.1) gilt.
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Dabei ist der Faktor A wie in x) so gewählt, dass die «Schwächungsfunktion»

cp dimensionslos ist und cp(d) 1 gilt. Für die Gesamtzahl N
der Impulse erhält man nun

* t d d

N(t) j n(x)dx A j c(x, x) cp(x)dx dr A I C(x,t) cp(x)dx (2.4)

0 Ö 0 0

und, indem man (2.1) in (2.4) einsetzt,
d d

N(t) t-AfG(x)cp(x)dx-AfG(x)H(x)cp(x)dx + o(l) (t-+oo). (2.5)

0 0

Nach (2.5) ist die in Figur 1 eingeführte Induktionszeit
d

fC(x) H(x)<p(x)dx

L ±-d (2.6)

G(x) q>(x)dx
o

Um die Formeln der nächsten Paragraphen zu vereinfachen, setzen wir

L ~ F (2.7)

wobei
d

jG(x) K(x) cp(x) dx

F=^-d (2.8)

G(x) cp(x) dx
o

K(x)=^H(x). (2.9)

3. Berechnung der Induktionszeit für Schalenversuche

Wir berechnen nun die durch (2.8) definierte Grösse F für den in § 1

geschilderten Schalenversuch unter den Voraussetzungen VI und V2.
Wegen V2 ist der DiffusionsVorgang eindimensional, und es gelten, wenn
wir x vom Schalenboden weg nach oben positiv rechnen, für die Konzentration

c(x, t) folgende Relationen :

deUV u 0

JA^Au' (3.1)

Ox
(x 0,t > 0) (3.2)

^ 0
Ox

(x d,t > 0), (3-3)

/(*) (0 <x ^d,t 0), (3.4)



Vol. 32, 1959 Methode zur Bestimmung von Diffusionskoeffizienten 343

wobei f(x), gemäss VI die Anfangskonzentration von S, zunächst keinen

Einschränkungen unterliegt.
Um zu dem gesuchten Ausdruck für F zu kommen, leiten wir zuerst

aus (3.1) bis (3.3) eine Beziehung zwischen c(x, t) und der zeitlichen
Ableitung ct(x, t) her. Wir entwickeln dazu,c(x, t) an der Stelle.^ d und
brechen nach dem zweiten Gliede ab :

d

c(x, t) c(d, t)-(d- x) cx(d, t) + f(S - x) cxx(l t)d£. (3.5)

x

Berücksichtigt man hier (3.3) und (3.1), so erhält man
d

c(x, t) c(d, t)+~ [(§ - x) cf(|, t) di (3.6)

x

und hieraus nach Integration und Division durch d
d d

l|c(|, t)dê= c(d, t) + -±Q A%(f. t)dS. (3.7)

o o

Eliminiert man nun c(d, t) aus (3.6) und (3.7), so ergibt sich

i d

c(-x' ') ~c - JJöf^0^' t] d* + ifß - *>c^- '- d* ' (3-8)
0 x

wobei die mittlere Konzentration
d

c ^fe(lt)di (3.9)
o*

zeitunabhängig ist, weil die Menge von S wegen (3.2) und (3.3) konstant
ist. Aus (3.8) folgt durch Integration und unter Berücksichtigung von (3.4)

t d

C(x, t) fc(x, x) dx ct- -2j-- ft:2 c(|, t) dÇ +
'° ó

(3.10)
d d d

V '

0 x x

Nun gilt bekanntlich für die Lösung des Problems (3.1) bis (3.4)

c(x, t) c 4- o.(l) (t -> oo) (3.11)

(vgl. z. B. 2) (4.56)). Setzt man dies in (3.10) ein, so erhält man
d

c(x.t)--ct--g + -£sfPMie+
(3.12)

+ -/F (d - x)2 - 1 /" (f - x) /(|) d$ A o(l) (t^oo).
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Somit ist für Schalenversuche die Voraussetzung (2.1) mit

G(x) c (3.13)
und

d d

H(x)=^-Y^ïfi2m)di-^(d-xY+-iïf(i-x)m)di
0 * (3.14)

erfüllt, und es folgt durch Einsetzen in (2.8) und (2.9)

l
mit

F _ _ Fl - F2 + F3

77

/(t),/(ö**
1 0 '

1 1 2 d

(3.15)

(3.16)

//(fl <*£

+ ^>!
/i-T)?>W^

/ <p(#) rf*
o

d d

[f^f(ï)<p(x)dÇdx
F* ~d d ¦ t3-18)

ff{£)dÇfcp(X)dX
0 0

Mit F erhalten wir schliesslich nach (2.7) die gesuchte Beziehung zwischen
L und D. Sie gilt für behebige Schalenversuche, die die Voraussetzungen
VI und V2 erfüllen.

Diese Beziehung zwischen L und D nimmt eine recht einfache Gestalt
an, wenn wir für f(x) Funktionen wählen, die einer Rechteck- oder einer
Dreieckverteilung von S entsprechen, und wenn cp(x) eine Exponential-
oder Potenzfunktion ist. Besonders einfach wird die Beziehung unter den
Voraussetzungen

V3: f(x) dcò(x) (3.19)
und

V4: cp(x) e-"id-x). (3.20)

Damit wird nämlich aus (3.16) bis (3.18)

F1=i-3 0, F2=e—

und dies liefert zusammen mit (3.15) und (2.7) die Formel (1.1)*).

p _ p _ o F - ^-l-/^-/»2^ ,o 21ì

Damit ist die Formel für L nun vollständig hergeleitet.
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4. Anwendung der Ergebnisse auf die Versuche

Bei der Anwendung der Ergebnisse von § 3 auf unsere Schalenversuche

ergibt sich die Schwierigkeit, dass / und cp nicht im einzelnen bekannt
sind. Wir werden nun zeigen, dass wir unter Ausnützung der beschränkten

Kenntnisse, über die wir verfügen, für F brauchbare Abschätzungen
erhalten können.

4.1. Die Funktion f und der Wert von Fv Die Schalenversuche sind so

angelegt, dass für t 0 viel von der Substanz S in der Nähe von x 0

und wenig bei x d ist. Experimente zeigen (siehe 1) 4.7), dass für
t 0 ein Teil der Schale überhaupt von S frei ist, d. h.

f(x) 0 (v Ax Ad) (4.1)

Die Breite v der Anfangsverteilung von S ist bei unseren Versuchen

^ 0,015 cm ; d können wir für diese Betrachtung zu 0,06 cm annehmen.
Auch ohne zu wissen, wie S im Intervall (0, v) verteilt ist, gelangen wir
zu einer Abschätzung von Fv wenn wir die plausible Annahme machen,
dass f(x) monoton fällt :

f(Xl) 2; f(x2) (Xl < x2) (4.2)

Dann sind nämlich x2 und f(x) «gegenläufige» Funktionen, und wir können

den Zähler von (3.16) mit Hilfe einer Ungleichung von Tscheby-
scheff (siehe Anhang) nach oben abschätzen. Unter Berücksichtigung
von (4.1) erhält man

Fl=ii^ S2_m)^=i(i)\ (4.3,

ff® H o

0

4.2. Die Funktion cp und der Wert von F2. Während / von den Zufälligkeiten

des einzelnen Versuches abhängt, ist cp für eine gegebene Anordnung

eine feste Funktion. Wir haben in *) 4.1 ausgeführt, dass cp das
Zusammenwirken mehrerer Effekte wiedergibt, und gezeigt, dass für einen

gewissen Bereich von x in vielen Fällen cp (x) durch eine Exponentialfunktion

(vgl. (3.20)) wiedergegeben werden kann. (3.20) stellt aber stets

nur eine Näherung dar, und es ist schwer, die Güte dieser Näherung
anzugeben. Diese Schwierigkeit können wir vermeiden, wenn wir uns damit
begnügen, F2, ähnlich wie oben Flt abzuschätzen. Wir setzen dazu voraus,
dass S mit einem oc- oder einem ß-Strahler markiert ist, deren Strahlen
eine beschränkte Reichweite r haben, und dass weiter r < d. Letzteres
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ist z. B. bei den Versuchen mit d 0,06 cm und der von uns verwendeten
Markierung mit C14 (r 0,02 cm) der Fall. Dann gilt*)

cp(x) =0 (0 < x < d-r). (4.4)

Im übrigen genügt es, vorauszusetzen, dass cp(x) monoton wächst :

<p(xi) ^ <p(xt) (xi < X2> ¦ (4-5)

Diese Annahme ist berechtigt, da die in der Funktion cp zusammen-
gefassten Effekte einzeln durch monoton wachsende Funktionen
wiedergegeben werden.

Analog wie oben schätzen wir nun den Zähler von (3.17) mit Hilfe der
Ungleichung von Tschebyscheff ab und erhalten

F2=2
dx d"-' S + /(>-+^+-+)-. (4.6)

f (p(x) dx d-r

4.3. Der Wert von F3. Wir schätzen F3 nacheinander gegen F1 und F2
d tr ç — x

ab. Durch Ableiten stellt man fest, dass J --.— /(f) de, im Intervall
X

(0, d) monoton fällt und damit gegenläufig zu tp(x) ist. Die Tscheby-
scHEFFsche Ungleichung lässt sich also auf den Zähler von (3.18)
anwenden, und man hat

d d c d d £

ftp(x)f^-f{£)dÇdx ff^A^f(i)dÇdx
F* ^T^ d' -4 ^-d - *i ¦ (4-7)

J f(i)dS fcp(x)dx ff(§)d£
0 0 o

Um F3 gegen F2 abzuschätzen, vertauschen wir in (3.18) die Reihenfolge
£ — %

der Integrationen und stellen fest, dass J —-,— cp(x) dx im Intervall
u

(0, d) monoton wächst und damit gegenläufig zu /(f) ist. Man schliesst
wie oben und erhält

i S — X fr f — X
ff(S)f^-cp(x)dxdÇ ff^-cp{x)dxdH

F3 ^r d- -^^-d —*,. (4-8)
d

j f(i) dÇ f <p(x) dx j<p(x) dx

*) Dabei ist vorausgesetzt, dass die sogenannte Bremsstrahlung nicht registriert
wird, oder, was damit gleichwertig ist, dass alle Zählerablesungen durch eine
entsprechende Korrektur von der Bremsstrahlung befreit werden.
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Wegen f(x) S; 0 und cp(x) A 0 einerseits und aus (4.7) und (4.8) andererseits

folgt schliesslich
0 ^ F3 iA min (F1: F2) (4.9)

4.4. Mit den Abschätzungen (4.3), (4.6) und (4.9) folgt jetzt aus (3.15)

iMW]^s+ («»i

Hierbei ist bemerkenswert, dass vjd und rjd nur quadratisch in die
Abschätzung für F eingehen.

Mit den obigen Angaben über v, r und d wird aus (4.10)

4-• 0,82< F<-^, (4.11)
6 — 6

während sich aus (3.21), wenn wir pt 261 cm"1, d. h. ungefähr gleich
dem' Absorptionskoeffizienten von Cu-ß-Strahlen in einer organischen
Flüssigkeit, setzen (vgl. *) 4.1),

F i-0,98 (4.12)

ergibt. Wenn wir also unsere Versuche nach (1.1), d. h. unter den
Voraussetzungen V3 und V4 auswerten, dann ist der Fehler des so errechneten
Wertes von D höchstens 20%. Allgemein können wir sagen: Sobald
Reichweite r der Strahlen und Breite v der Anfangsverteilung von S klein
sind gegenüber der Schichtdicke d, dürfen wir Schalenversuche mit
F 1/6 auswerten, ohne einen grossen Fehler zu begehen.

5. Diskussion

Die Schalenmethode zur Bestimmung von Diffusionskoeffizienten
benützt «Auslaufversuche», d. h. Versuche, bei denen die zeitlich konstante
Verteilung der diffundierenden Substanz erreicht wird und wesentlich
zum betrachteten Vorgang gehört. Darauf beruhen die beiden folgenden
Eigentümlichkeiten und Vorteile der Methode.

5.1. Die Grösse der Induktionszeit L hängt in wenig empfindlicher
Weise von den Anfangsbedingungen der Versuche ab. Im Gegensatz dazu
sind die oft zur Messung von Diffusionskoeffizienten verwendeten
«Anlaufversuche» natürlich empfindlich auf die Anfangsbedingungen. Da es
bei Diffusionsversuchen stets schwer ist, bestimmte Anfangsbedingungen
zu verwirklichen, bietet die neue Methode in dieser Hinsicht einen Vorteil.
Auf der andern Seite müssen dafür «Auslaufversuche» stets länger dauern
als die entsprechenden «Anlaufversuche». Dies braucht aber nicht zu
ungünstig langen Versuchsdauern zu führen : In vielen Fällen ist es möglich,

d und damit L und die Versuchsdauer klein zu machen.
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5.2. Es genügt, das asymptotische Verhalten der Lösung des

Diffusionsproblems zu kennen. Daraus lässt sich die zur Auswertung der
Versuche benötigte Beziehung zwischen L und D leicht und direkt gewinnen.
Eine kürzlich erschienene Arbeit von Frisch3) bildet ein anderes Beispiel
dafür, wie man, ohne die vollständige Lösung eines Diffusionsproblems
zu kennen, allein durch Ausnutzung des asymptotischen Verhaltens zum
Ziele gelangen kann.

ANHANG

Eine Ungleichung von Tschebyscheff

Die im Text benützte Ungleichung ergibt sich aus dem folgenden Satz

(siehe 4) Theorem 236) :

Sind f(x) und g(x) im Intervall a <J x A. b «gegenläufige» Funktionen,
d. h. ist

(/(*) - f(y)) (g(x) - g(y)) ^0 (aAx^b, a^y^b), (A.l)
so gilt

b b b

(b - a) f f(x) g (x) dx ^ ff(x) dx I g(x) dx (A.2)
a a a

Beweis. (A. 2) folgt aus (A. 1), wenn man die Ungleichung (A. 1)
sowohl nach x als auch nach y integriert und das erhaltene Resultat
umordnet. - (A. 1) ist insbesondere dann erfüllt, wenn von den Funktionen
/ und g die eine monoton wachsend, die andere monoton fallend ist.

Diese Mitteilung gehört zu einem vom Schweizerischen Nationalfonds zur
Förderung der wissenschaftlichen Forschung subventionierten Forschungsprojekt; wir
danken auch hier für die uns gewährten Mittel.
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