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Uber die Anwendung der Thermodynamik irreversibler
Prozesse auf Leitungsvorginge in Halbleitern

von W. Czaja*)
(20. XIT. 58)

Summary: The thermodynamic theory of irreversible processes is applied to
conduction phenomena in semiconductors. The principle of minimum entropy-
production in a stationary state of a system is discussed under most general con-
ditions. It is assumed to have an unequal number of even and odd forces with
additional conditions between these forces. Some isothermal as well as non iso-
thermal effects are calculated: general equations governing the behaviour of the
isothermal p-n-junction are derived and the heat conductivity of a homogenous
semiconductor under various conditions is calculated. Further applications of the
theory are discussed.

1. Einleitung

In dieser Arbeit soll gezeigt werden, dass eine konsequente Anwendung
der Methoden der Thermodynamik irreversibler Prozesse geeignet ist, die
Leitungsvorginge in Halbleitern in sehr allgemeiner Art zu beschreiben.
Insbesondere ist es das Ziel dieser Untersuchungen, eine — auch vom
Standpunkt der Thermodynamik irreversibler Prozesse — klare Formu-
lierung des Problems und des verwendeten Modells zu geben. Wir werden
uns eingehend mit den stationdren Zustdnden befassen und sehen, dass
sich dieser mit der thermodynamischen Methode leicht formulierbare
Begriff als sehr niitzlich erweist. Unseren Rechnungen legen wir als Mo-
dell einzig die Vorstellung des Elektronen-Locher-Gases zugrunde. Alles
weitere folgt dann aus dem Formalismus der Thermodynamik irreversib-
ler Prozesse.

Vor allem Tauc?)?) und Price®)4)5) haben eine Reihe von Arbeiten
publiziert, die sich mit den thermoelektrischen Effekten in Halbleitern
befassen. Die Autoren beniitzen dabei phinomenologische Methoden, die
sich mehr oder weniger auf die Thermodynamik irreversibler Prozesse
stiitzen. Unserem Vorgehen am nichsten kommen?2) und ). Im Vergleich

*) Institut fiir angewandte Physik der Universitit Basel.
1
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zu diesen Arbeiten haben wir uns bei unseren Untersuchungen der Metho-
den der Thermodynamik irreversibler Prozesse in vollem Umfange be-
dient. Die Ergebnisse unserer Rechnungen sind daher sehr allgemein,
wie wir an zwel Beispielen erlautern wollen:

1. Es ist leicht méglich, eine in sich konsistente Verallgemeinerung der
Gleichungen anzugeben, welche das Verhalten eines stromdurchflossenen
p-n-Uberganges beschreiben. Im Prinzip kénnen beliebige Rekombina-
tionsmechanismen in Betracht gezogen werden.

2. Aus den allgemeinen Grundgleichungen leiten wir die Ausgangs-
gleichungen zur Berechnung der thermoelektrischen Effekte ab. Im wei-
teren Verlauf der Rechnungen befassen wir uns aber dann speziell mit
der Wiarmeleitung und erhalten in einem Halbleiter je nach den vor-
liegenden Bedingungen verschiedene Wirmeleitfihigkeiten.

In diesem Rahmen sei noch erwidhnt, dass vaN VLIET®) kiirzlich in
anderem Zusammenhang die Thermodynamik irreversibler Prozesse auf
Erzeugungs- und Rekombinations-Vorginge von Elektronen und Lo-
chern angewendet hat. |

Abschliessend sei bemerkt, dass man bei der phanomenologischen Be-
trachtungsweise von vornherein darauf verzichtet, irgendwelche Koeffi-
zienten zu berechnen. Andererseits eréffnet aber gerade diese Methode
einen Weg, das komplizierte Zusammenwirken der einzelnen Vorginge
in Halbleitern auf Grund allgemeiner Gesetzmissigkeiten verhiltnis-
méssig einfach zu behandeln.

2. Die Grundgleichungen

Wir werden uns mit drei Problemen beschiftigen.

1. Auf Grund welcher Uberlegungen ist die Thermodynamik irrever-
sibler Prozesse auf Halbleiter anwendbar, wie lauten die Vorausset-
zungen ? | . '

2. Wie lauten die Grundgleichungen ?

3. Welches sind die Grenzen des Geltungsbereiches dieser Methode ?

Die Leitungsélektronen in Halbleitern sind praktisch frei, ihre effek-
tive Masse kann als nahezu konstant betrachtet werden, wenigstens so
lange wir uns mit Leitungsphinomenen befassen. Ferner ist die Wechsel-
wirkung der Elektronen miteinander vernachlissigbar. Die Leitungs-
elektronen in einem Halbleiter verhalten sich also wie ein ideales Gas.
Da in der Halbleiterphysik gewisse Erscheinungen nur unter Hinzunahme
des Begriffes der Lécher erkldrbar sind, handelt es sich um ein ideales
Gas mit zwei Komponenten, und zwar eine Komponente bestehend aus
Elektronen mit einer Konzentration » und die zweite Komponente be-
stehend aus Léchern mit der Konzentration p. # und $ werden in Mol pro
cm? angegeben. Die Komponenten weisen pro Mol die Ladung — F bzw.
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+ F auf. F ist die Faradaysche Aquivalentladung F = 96494 As/Mol.
Beide Komponenten kénnen gemiss der Reaktionsgleichung

n-+Pp=0

miteinander reagieren. Diese Reaktionsgleichung beschreibt die Rekombi-
nation und Erzeugung der freien Ladungstrager. Im thermodynamischen
Gleichgewicht ist die Temperatur dieses nicht entarteten Elektronen-
Locher-Gases gleich der Temperatur des Gitters. Bei der Untersuchung
von Nichtgleichgewichtszustinden beachte man, dass die Wechsel-
wirkung zwischen den Leitungselektronen und dem Gitter klein ist. Wei-
ter ist die Warmekapazitdt des Gitters, und in den meisten Fillen auch
seine Warmeleitfahigkeit, sehr viel grdsser als die des Elektronengases;
daher wird die im Gleichgewicht im Halbleiter (und damit auch im Elek-
tronen-Locher-Gas) sich einstellende Temperatur schliesslich durch die
Eigenschaften des Gitters bestimmt. Das Gitter seinerseits wird nun durch
die Wiarmemenge, welche bei den im Elektronen-Lécher-Gas ablaufenden
irreversiblen Prozessen entsteht, aufgeheizt.

Dass wir hier trotzdem nur das Elektronen-Lécher-Gas betrachten,
hat zwei Griinde. Zunichst konnen wir dieses Gas stets als Teilsystem
eines ganzen Systems behandeln. Weiter kommt es bei stationdren Zu-
stinden nicht auf die Wiarmekapazitidt des Gitters und bei stationdren
Zustinden mit vorgeschriebener Temperaturverteilung auch nicht auf
seine Warmeleitfahigkeit an, solange wir die zur Aufrechterhaltung des
Zustandes benoétigte Leistung ausser acht lassen. Mit diesen Vorbehalten
kénnen wir also unsere Betrachtungen auf das Elektronen-Loécher-Gas
beschrianken. Schliesslich setzen wir die Halbleiter durchwegs als isotrop
voraus und bemerken dazu, dass bereits ein isotropes Modell¥) die we-
sentlichen Eigenschaften eines Halbleiters liefert?).

Nun kénnen wir die Grundgleichungen aufstellen und verweisen fiir
die Begriindung unseres Vorgehens auf bE GrooT#®) sowie MEIXNER?) und
10), Wir formulieren zuerst die Erhaltungssidtze pro Volumeneinheit fiir
die Energie sowie die Konzentrationen jeder Komponente.

= —divIW + (o B) — @ div ], o

—F2 L divf,=—FI+F2 raivj,=+F. (2

Hierin bedeutet U die innere Energie des gesamten (Gases pro Volumen,
W den Energiestrom ohne Konvektionsanteil und J, die gesamte elek-
trische Stromdichte. J, enthilt einen Anteil der Elektronen und einen

*) In diesem Sinne 1sotrop sind auch kubische Kristalle, solange wir von Defor-
mationen absehen.
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Anteil der Locher fl = fn -+ ]:,. E bedeutet die elektrische Feldstirke,

die mit dem Potential @ iiber E = — grad @ verkniipft ist. /" ist die
«Netto-Erzeugungsrate» in Mol pro cm3 und sec. Eine negative Erzeu-
gung tritt als Rekombination in Erscheinung. Ferner ist in der Schreib-
weise von (2) bereits berticksichtigt, dass Elektronen und Lécher nur
paarweise erzeugt werden. Treten Trap-Niveaux oder die teilweise Ioni-
sation von Storstellen in Erscheinung, so kann man dies durch Einfithrung
weiterer Komponenten beriicksichtigen.

Als wesentliche Voraussetzung wird in der Thermodynamik irrever-
sibler Prozesse gefordert, dass die Gibbssche Beziehung

TdS = dU — n, dn + n, dp*) (3)

thre Giiltigkeit auch fiir Nichtgleichgewichtszustdnde behilt. Dabei be-
deutet S die Entropie pro Volumen. Da wir es mit Komponenten zu tun
haben, die aus elektrisch geladenen Teilchen bestehen, treten in (3) an
Stelle der chemischen Potentiale {, pro Mol die elektrochemischen Po-
tentiale 2, pro Mol in Erscheinung. Beziiglich der Definition der #,, ver-
weisen wir auf Anhang I. Mit (1) und (2) ldsst sich aus (3) eine Bilanz fiir
die Entropie gewinnen
0S . W 1 (5 g
7}7+d1V[T+T(fn%+fr%)]= @)
= ~1—{V? ——]i—grad T —1—27- (Tgrad—ci— — grad@) —I'(n,—n )}.
T ’ T _ v TF " ?

'i=n!p

Der zweite Term der linken Seite von (4) ist die Divergenz des durch T°
dividierten Entropiestromes, wihrend die rechte Seite die Entropie-

—_

erzeugung ¢ darstellt. & ist eine Bilinearform in den Strémen ﬁ}, o f;,

und ['sowie den Kraften — 1/7-grad T, X, X;, und — (, — #,). Dabei
bedeuten

—

X, = (Tgrad ;’i}’; — grad@), )—()p = (Tgrad

Cp
)

== — grad @) :

T bezeichnen wir als Energiedissipation, die wir in allgemeiner Form
To=x3J, X,
k

schreiben kénnen. 79 ist positiv definit. Die Strome [, sind die zu den
Kriften X, konjugierten Variablen. Unter Kriften verstehen wir allge-
mein die einem bestimmten Problem angepassten unabhingigen Va-

*) Zur Begriindung des Vorzeichens von 7, vgl. Anhang I.
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riablen. In diesem Sinne fithren wir spiter auch die elektrische Strom-
dichte als «Kraft» ein. T ist invariant bei linearen Transformationen der
X . Die [, sind also kontragredient zu den X,.

Zwischen den so definierten Kriften und Stromen existieren noch wei-
tere Beziehungen. Sie geben an, welche Krifte Anlass zu den einzelnen
Prozessen, das heisst Stréomen geben. Wir beschrianken uns auf lineare
Ansitze zwischen den Kriften und Stréomen und erwarten, dass im all-
gemeinen jeder Strom linear von allen Kridften abhidngen wird. Diese
phinomenologischen Ansitze vereinfachen sich jedoch auf Grund all-
gemeiner Symmetrieeigenschaften zu

;i a I e ! o~r
W:n——T-grad Tr+b,X,+5,X,,
jn: — bz’{: grad T + cm)—(:n—l— cm,)_i;p,
" (6)

— b/’ —_
= ———%’—grad T4 cppn Xy + €pp Xy,

I' = — 5(7711 - 77::1)-

Aus diesen Symmetrieeigenschaften folgern wir fiir einen isotropen
Halbleiter, dass die Koeffizienten a, b,’, b,’, b, usw. keine Tensoren,

sondern Skalare sind. Ferner hiangen die Vektoren W, ﬂ, 71, nicht vom
Skalar (1, — #,) ab, und umgekehrt ist der Skalar I’ keine Funktion der

Vektoren — 1/7T -grad T, )—(:n und X » weil eine Kraft mit bestimmten
Symmetrieeigenschaften keinen Strom mit davon verschiedenen Sym-
metrieeigenschaften erzeugen kann*). Die phdnomenologischen Bezie-
hungen (6) sind in dem Sinne linear, als die Koeffizienten a, 8,/, b,’, b,
usw. nicht von den Kriften, das heisst von den Abweichungen vom
Gleichgewichtszustand abhidngen sollen. Hingegen werden sie im allge-
meinen noch von den Zustandsvariablen im Gleichgewicht abhingen, so
zum Beispiel von der Temperatur, den Konzentrationen » und p usw.

Definieren wir Krifte und Strome in dieser Art, so bestehen zwischen
den 10 Koeffizienten der Gleichung (6) die Onsager-Casimirschen Be-
zichungen

b/ =—8,"=%b, (¢ =mn, p),
C'np = Cpn'

Bei linearen Transformationen von Kriften und Strémen gelten auch
fir die Koeffizienten der neuen Grossen wieder Onsager-Casimirsche

*) Sogenanntes Curiesches Theorem. In allgemeiner Form ist dies wohl zuerst
von P. CurikE erkannt worden. Vgl. P. Curig, Oeuvres, Gauthier Villars, Paris
(1908), S. 127, sowie DE Groot8) und MEIXNER10).
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Beziehungen. Aus der Definition des Elektronen- bzw. Locherstromes fn
und J, folgt, dass in (6) ¢,, = ¢pp = 0 und cpp = 0y, ¢,, = 0, ist. o, und
o, bedeuten wie tiblich den Anteil der Elektronen bzw. Locher an der
elektrischen Leitfahigkeit*). Aus (6) wird somit

W=——2gradT+b,X,+b,X,, (62)
T e | 2n grad T + 0, X, (6b)
71, = %‘3— grad T + o, ;(p, (6¢)
I" = — 6(na — ny). (64d)

Zu den Gleichungen (1), (2), (4), (6a) bis (6d) tritt noch eine Beziehung
zwischen dem elektrostatischen Potential @ und der Ladungsverteilung
mit den Donator- und Acceptor-Konzentrationen N, und N, hinzu

divgrad® = — (N, — N, + p — n). (7)

Im homogenen Halbleiter herrscht Neutralitit und es folgt aus (7) in
diesem Falle die Divergenzfreiheit des elektrischen Feldes sowie

an = dp.

Abschliessend wollen wir einige Bemerkungen iiber die Giiltigkeit der
soeben aufgestellten Grundgleichungen machen. Zunichst sei wiederum
auf die Seite 3 zitierten Arbeiten verwiesen, sowie auf die Untersuchun-
gen von REIK!). Aus diesen Arbeiten ist zu entnehmen, dass die Giiltig-
keit von (3) auch im Nichtgleichgewicht zutrifft, solange die Abweichun-
gen vom Gleichgewicht geniigend klein sind. Bei Gasen lassen sich zur
Abgrenzung dieses Geltungsbereiches, wohldefinierte Ungleichungen an-
geben. Der Anwendungsbereich der Thermodynamik irreversibler Pro-
zesse ist unter diesen Einschrinkungen immer noch tiberraschend gross
(vgl. besonders MEIXNERY?)). Bei der Anwendung auf Halbleiter erwarten
wir ganz entsprechende Ungleichungen fiir den Anwendungsbereich der
Thermodynamik irreversibler Prozesse**). Auf dieses Problem soll jedoch
hier nicht nidher eingegangen werden. Der lineare Ansatz zwischen Krif-
ten und Stromen ist bei kleinen Abweichungen vom Gleichgewicht sicher
berechtigt. Die Erfahrung zeigt, dass die Gleichungen (6a), (6b) und (6¢)

*) 0, = Fu,n, o, = Fu,p, ferner sind —u, und +pu, die. Beweglichkeiten der
Elektronen und Locher. Ausserdem gilt ¢ = g, + 0,

**) Soergibt sich zum Beispiel die Grenze des low-injection-und deshigh-injection-
Gebietes in der Basis eines p-n-p-Transistors aus der Bedingung, dass die Anderung
der Elektronenkonzentration iiber eine Debye-Linge von der Gréssenordnung der
Gleichgewichtskonzentration wird.
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fiir alle praktisch auftretenden Fille geniigen. Gleichung (6d) ist in ihrem
Geltungsbereich eher eingeschrinkt. Die Annahme grosser Abweichungen
vom Reaktionsgleichgewicht, wie sie zum Beispiel im gehemmten Reak-
tionsgleichgewicht auftreten kénnen, bedeutet nicht notwendig, dass die
Thermodynamik irreversibler Prozesse nicht angewendet werden kann.
In héherer Ndherung wire (6d) dann durch ‘

I'=— 3 04 (s — 1p)*
k

zu erweitern. Diese Verallgemeinerung liesse sich in unseren Rechnungen
beriicksichtigen, wir wollen jedoch darauf verzichten. Es sei noch darauf
hingewiesen, dass der Ansatz

vom phymkahschen Standpunkt aus begrundeter ist, als der in der Lite-
ratur hiufig beniitzte

I'=—r(np —np).

Die Aussagen beider Beziehungen sind im Falle geniigend kleiner Ab-
weichungen vom Gleichgewicht identisch («lineare Rekombination»).

3. Thermodynamisches Gleichgewicht und V
stationires Gleichgewicht
Als eine Anwendung der soeben abgeleiteten Grundgleichungen unter-
suchen wir die Bedingungen fiir das thermodynamlsche und das statio-
nire Gleichgewicht in einem Halbleiter.

Thermodynamisches Gleichgewicht

Die Entropie eines abgeschlossenen Systems ist im thermodynamischen
Gleichgewicht ein Maximum. Demnach verschwindet im Gleichgewicht
die gesamte Entropieerzeugung. Weiter kénnen wir die gesamte Entro-
pieerzeugung als Raumintegral iiber die lokale Entropieerzeugung &
schreiben. Im thermodynamischen Gleichgewicht ist also der Integrand
dieses Integrals, das heisst & selber, gleich null. Unter Berficksichtigung
der phinomenologischen Ansitze zwischen Kriften und Strémen bedeu-
tet & =0, dass entweder alle Stréme oder alle Krifte verschwinden,
Fordern wir, dass die Krifte im Gleichgewicht null sind, so bedeutet dies*)

1
Tgrad de=10
Ci‘ — ¥ .
T grad — w0 (t=mn, P}, ' (8)
Ny — Np=0.

*) Wenn Krifte und Strome wie im 2. Abschnitt gewdhlt werden.
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Aus den Grundgleichungen erhidlt man dann die Aussagen, dass die
Temperatur ortlich und zeitlich konstant ist, dass das elektrochemische
Potential ort- und zeitunabhingig wird, sowie dass iiberall chemisches
Gleichgewicht herrscht, #,, also stets gleich #, ist. Ferner sind die Kon-
zentrationen zeitunabhingig aber nicht notwendig ortsunabhingig. Die
Ortsabhingigkeit der Konzentration ist eine Frage des Verlaufs des
Potentials. Variiert grad @, so erhilt man einen Gleichgewichtszustand
von der Art des atmosphdérischen Gleichgewichts. Ein Beispiel fiir einen
derartigen Zustand ist ein stromloser p-n-Ubergang. Aus

grad », =0,
(8a)
Nn= Yyp>»

lassen sich zusammen mit (7) bei vorgegebenem Potientialverlauf die
Konzentrationen als Funktionen des Ortes berechnen. In einem homo-
genen Halbleiter, das heisst @ = const., folgt aus dem Massenwirkungs-
gesetz 9, = 1, mit (Al), (A2) und (A3)*)

nep=NyP, e 4EET, (9)
wobel als Abkiirzung
AE = E, — E,,

beniitzt wurde. (9) gilt offenbar sehr allgemein, insbesondere auch dann
noch, wenn wir einen Ansatz der Art ['= — Xd,(n, — 7,)* machen. Die
k

Aussage des Massenwirkungsgesetzes bezieht sich hier auf die Brutto-
reaktion der Erzeugung und Rekombination ven freien Elektronen und
Lochern und ist somit unabhingig vom Vorhandensein von Trap-
Niveaux.

Zur Frage, ob die aus & = 0 gezogenen Folgerungen (8) die einzig mog-
lichen sind, sei auf die Literatur verwiesen (vgl. zum Beispiel MEIXNER?),
DE GROOT?)).

Das stationidre thermodynamische Gleichgewicht

Wie pE GRrOOT?®) verstehen wir unter dem stationdren thermodyna-
mischen Gleichgewicht den Zustand, der sich in einem offenen System
einstellt, wenn der Wert einer (oder mehrerer) Krifte durch irgendwelche
dussern Massnahmen zeitlich konstant vorgeschrieben wird. Der Zustand
des stationdren Gleichgewichts ist durch die Bedingung minimaler Entro-
pieerzeugung charakterisiert. Geben wir ¢ Krifte vor, so stellt sich ein
stationdrer Zustand p. Ordnung ein. Wird speziell keine Kraft vorge-

*) Vgl. Anhang I.
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schrieben, so liegt ein stationdrer Zustand 0. Ordnung vor, der mit dem
Zustand des thermodynamischen Gleichgewichts identisch ist. Im Gleich-
gewicht ist das System dann von selbst abgeschlossen.

Die Berechnung der stationdren Zustdnde ist nach dem soeben Ge-
sagten leicht moglich. Ein System sei durch # unabhingige Stréme J;
und ebenso viele unabhingige Krifte X, charakterisiert. Zwischen den
Kriften und den Strémen existieren die phidnomenologischen Bezie-
hungen

]k:Za’.’cz‘ X,

(4, k=1, ... 0, 0+ 1, ... n). Die p ersten Krifte seien vorgeschrieben.
Aus der Bedingung der minimalen Entropieerzeugung im stationidren
Zustand

0 k=po+1, ...2n
(kaﬁ)X;:O /

folgt mit dem phanomenologischen Ansatz und

T¢ =33 a,, X; X,,,
I m

dass die restlichen ¢ + 1, ... # Stréme null sind, wenn die phdnomeno-
logischen Koeffizienten a,,, den Onsagerschen Reziprozitdtsbeziehungen
Ay = Gy geniigen. Dies ist stets dann der Fall, wenn sich alle Krifte
beziiglich der Zeitumkehr symmetrisch oder antisymmetrisch verhalten
(vgl. bE GrOOT?)). Diese Aussage haben wir nun zu verallgemeinern: Ge-
niigen namlich die Koeffizienten a,,, den von CASIMIR erweiterten Onsa-
gerschen Beziehungen

Ay = — Ay

sind also die zugehorigen Krifte paarweise symmetrisch und antisymme-
trisch beziiglich der Zeitumkehr, so folgt sofort, dass statt derp + 1,... %
restlichen Stréme [, die o + 1, ... n restlichen Krifte X, verschwinden.
Im allgemeinen werden die Verhiltnisse nicht so tibersichtlich sein. Die
Krifte miissen beziiglich der Zeitumkehr nicht nur paarweise gerade und
ungerade auftreten. Daher kénnen sowohl symmetrische als auch anti-
symmetrische Beziehungen zwischen den phidnomenologischen Koeffi-
zienten vorliegen, und es wird notwendig, im einzelnen Fall abzukldren,
welche Strome und Krifte im stationdren Zustand verschwinden.
Weiter ist zu beachten, dass zwischen einzelnen Kriften und Strémen
zusitzliche Bedingungen bestehen kénnen (vgl. Anhang II). Im statio-
ndren Zustand ist dann die Entropieerzeugung unter Beriicksichtigung
dieser Nebenbedingungen zu einem Minimum zu machen. Dazu kann man
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sich im konkreten Fall zum Beispiel der Methode der Lagrangeschen Mul-
tiplikatoren bedienen. In unseren folgenden Untersuchungen haben wir
stets mit Systemen zu tun, deren stationire Zustdnde nur mit den beiden
soeben besprochenen Verallgemeinerungen behandelt werden koénnen.

Wir haben bereits gesehen, dass der stromlose p-n-Ubergang einen
thermodynamischen Gleichgewichtszustand darstellt. Im folgenden soll
der stromdurchflossene p-n-Ubergang als Beispiel fiir einen stationiren
Zustand behandelt werden. Von Interesse sind ein stationdrer Zustand
1. Ordnung (nur ]_; vorgeschrieben) und ein stationdrer Zustand 2. Ord-

nung (/, und — 1/7 - grad T vorgeschrieben). Wir betrachten also einen
Halbleiter, der nicht ausschliesslich homogen ist, und werden daher die
aus (7) und der Neutralitdt folgende Nebenbedingung (A8) nicht beriick-
sichtigen. Es erweist sich zunédchst als zweckmaissig, die folgenden Krifte
einzufithren

— Lgrad T, ]y, ], (10)
mit
Li=Tat+Tor  Jo=Tu— T
Diesen Kréften entsprechen die Strome

>

1 — —
Xlz“z“(Xn_{_Xm):
K=t (K= X,).

Die phanomenologischen Ansitze lauten

—

-~

—_ %gradT—{—ﬁ; Ji + 85 Ja,

X1=———ﬁ%agradT—{—y11 Ji+ v e

Xp=— ﬁ; grad T + yy ]1"}“7’22]2:

I' = — 6(77%_” 771))-

Zwischen den 10 Koeffizienten liefern die Onsager-Casimirschen Be-
ziehungen folgende Zusammenhinge

B@I' =_'ﬂi”=ﬁi’ (i=1:2),

Viz = Yo1-
(11) wird damit zu

W

—%gradT+ﬂ1]1+52]2’ (12a)
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sy = %gde+7’11f1+}’1.2]2: (12 b)
Xo= Pgrad Ty i+ va ) (12¢)
I' = — (. —ny) - | (124d)

Wir untersuchen nun den stationiren Zustand, der durch

_%gradT—__O, ]_;=COI'lSt

charakterisiert ist. Mit dieser Vorschrift sowie mit den Nebenbedingun-
gen (A5) und (A7) ist das Minimum der Entropieerzeugung bereits voll-
stindig festgelegt. Es sei darauf hingewiesen, dass hier die Lagrange-
schen Multiplikatoren Funktionen des Ortes sind, weil sowohl & als auch
die Bedingungsgleichungen (A5) und (A7) explizit von den Raumkoordi-
naten abhidngen. Diese explizite Ortsabhidngigkeit kommt durch die Orts-
abhingigkeit der phanomenologischen Koeffizienten zustande, wenn diese
zum Beispiel Funktionen der Gleichgewichts-Konzentrationen# und p
sind. Im thermodynamischen Gleichgewicht kénnen aber nun #» und 2,
wie bereits erwdhnt, ortsabhingig sein. Statt (A7) kann man im iso-
thermen Fall auch :

grad div J, = (2F)? 6 X, — 2F - grad 8 (13)
schreiben. |
Nach einigen Umformungen erhilt man aus den Gleichungen (12a),
(12b) und (12c¢) '

W=p8.]1+ B2 2, (14a)
— — 1 —
Xy == % Xo=—(y11Y22 — 7’122) Ji, _ (14b)
22 VYaz
Xo= 12 1+Va2 2, (14c)

wihrend man aus (14¢) und (13) eine Aussage iiber fz als Funktion von
J, abliest.

grad div J,— (2F)2 8y Jo = e ) yasJi— 2F 2 grad 6. (14d)
: ' 22

Schliesslich sei darauf hingewiesen, dass I” wegen (14d) und (A7) einer
inhomogenen Wellengleichung mit der komplexen Wellenzahl

R = — (2F)*dyn’)

geniigt. Im Spezialfall sehr kleiner Abweichungen vom Gleichgewicht

*) Man {iberzeugt sich leicht, dass | k2 | gleich dem reziproken Quadrat der Dif-
fusionslidnge ist.
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(das heisst Terme [, grad ... sind vernachldssigbar klein), oder bei ort-
lich konstanten Leitfahigkeiten o,, o, und &rtlich konstantem ¢ (4 ist im
wesentlichen die reziproke Lebensdauer der freien Ladungstrager) wird
die Wellengleichung fiir /" homogen.

Die Gleichungen (14a) bis (14d) beschreiben zusammen mit (7) und
(A7) unser Problem vollstindig. Um dies zu zeigen, transformieren wir
unsere Beziehungen zundchst auf unser altes System zuriick. Der Ver-
gleich von (12a) bis (12d) mit (6a) bis (6d) liefert zwischen den phéno-
menologischen Koeffizienten die Zusammenhinge

1 1
a:a:ﬁlz"z_'(bn-'_bp)r ﬁ2:?(bn_bp):
(15)
— =i(_1_+_1_) y =i(_1___1_)
Y =7%Yae =7 a, ,)° 12 =\ o,)"

Mit (15) ergibt sich aus (14a)
ﬁ/: bn fn+bp.]_:!l' (14a’)

Diese Beziehung lasst erkennen, dass die Koeffizienten &,, b, eine ein-
fache anschauliche Bedeutung besitzen. Sie geben die Wiarmemenge an,
die von der Komponente # (Elektronen) bzw. der Komponente p (Locher)
pro transportierte Ladung F mitgefiihrt wird. b, und b, sind im wesent-
lichen die von MEIXNER!?) in die Thermodynamik irreversibler Prozesse
ibernommenen Uberfithrungswirmen (vgl. auch pE Groot?)). Weiter er-
hilt man aus (14b) mit (15)

]1=0'an+0'po (14b’)

und schliesslich aus (14c¢)
- = f; j* ,
Xy = Xp="m 2 2, (14c")

Aus der Kombination von (14b’) mit (14c¢’) liest man die bekannten
Verkniipfungen

]n:Gan’ ]p:GpXiﬂ (16)

ab. Die Krifte )_(: und }? sind wegen der in diesem Beispiel voraus-
gesetzten Isothermie die Grad1enten der ]ewelhgen elektrochemischen
Potentiale. Schliesslich entnimmt man fir ]n und ]1, aus (14d) und
] 1= ] n+ ] » = const. die beiden gleichbedeutenden Differentialglei-
chungen:

—

graddivf;—l—kzj;:—kzgi]IHZF—'g—grad 0, (17a)

—

grad div [, + K], = — i 22 [, - 2F L grad6.  (17b)
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Man kann nun weiter zeigen, dass im Rahmen des betrachteten statio-
ndren Zustandes sowohl der einfache Fall eines homogenen Halbleiters
als auch zum Beispiel SHOCKLEY’s Theorie13) des p-n-Uberganges aus
den Gleichungen (14a’) bis (14¢"), (16), (17a) und (17b) folgen. Dazu hat
man die in dem entsprechenden Modell vorgeschriebenen Randbedin-
gungen bei der Integration der Differentialgleichungen (17a) bzw. (17b)
zu beniitzen*). Es sei noch bemerkt, dass die hier abgeleiteten Gleichun-
gen (14a’), (14b’"), (16), (17a) sehr allgemein sind. Sie gelten solange,
als die linearen Ansitze (12a) bis (12d) zutreffen. Weitere Voraussetzun-
gen wurden im Verlaufe der Rechnungen nicht gemacht. (14a’), (14b’)
und (16) gelten unabhingig vom Rekombinationsmechanismus an jeder
Stelle des Halbleiters, also auch in der Raumladungszone eines p-n-Uber-
ganges. In diesem Gebiet ist allerdings zu beriicksichtigen, dass ¢, und
o, stark ortsabhingig sind. Verwendet man an Stelle des linearen An-
satzes (12d)

I'=— 30 (u — 1,)"
k

fiir die Rekombination und Erzeugung, so erhédlt man statt (14d) bzw.
(17a) und (17b) auch bei kleinen Abweichungen vom Gleichgewicht
nichtlineare Differentialgleichungen.

Auf den eingangs erwidhnten stationdren Zustand erster Ordnung (/,
vorgeschrieben) wollen wir hier nicht eingehen. Diese Rechnungen wiir-
den eine Theorie des adiabatisch isolierten p-n-Uberganges liefern, mit
der man Aussagen iiber die Temperaturverteilung in einer stromdurch-
flossenen Diode erhilt.

4. Die thermoelektrischen Effekte

Bei den thermoelektrischen Effekten handelt es sich um die Verkniip-
fung des Temperaturgradienten mit dem elektrischen Strom sowie mit
den Gradienten des chemischen und des elektrischen Potentials.

Wir werden uns vor allem mit der Warmeleitung in einem homogenen
Halbleiter beschiftigen, in dem gleichzeitig noch andere Vorgédnge ab-
laufen kénnen.

Wir fragen also nach der Verkniipfung zwischen den einzelnen in un-
serem Halbleiter ablaufenden Prozessen. Diese Zusammenhédnge ergeben
sich aus den phianomenologischen Beziehungen. Es ist zundchst zweck-

*) Die Voraussetzungen fiir die Shockleysche Theorie der p-n-Junction lauten:
An den Réindern der sich unendlich weit erstreckenden homogenen p- bzw. n-
Gebiete gilt f; = j;, bzw. ]71 Ausserdem wird die p-n-Diode als eindimensionales
Problem behandelt, die Abweichungen vom Gleichgewicht als so klein angenom-
men, dass nur in den Abweichungen lineare Terme beriicksichtigt werden miissen,
und schliesslich soll in der Raumladungszone die Rekombination und Erzeugung
von Elektronen und Lochern vernachlissigbar sein.
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missig folgende Krifte einzufiihren:

—_—

— % grad T, ]_;, Xy . (18)
Die zugehorigen Strome sind
W, X,/
und die phanomenologischen Ansitze zwischen diesen Strémen und den
Kriften (18) lauten |

W == —% grad T—{-wl’fl—sz')_{;,
X, = _Et% grad T 4 Ay fﬁ“lm fz:

o " o . (19)
Jo= —%ﬁ—grad T+ Ay J1+ 29 X,

I'= — 6(n, — n,).

Zwischen den 10 Koeffizienten liefern die Onsager-Casimirschen Bezie-
hungen folgende Zusammenhinge

C()l = e 0)1 == C()1 y
W= " =y,
M= — a1,
mit denen wir aus den Gleichungen (19) dann
I/E:m%gradT—f—wlﬁ—f—wzfg, (20a)
},Z:l = a%grad T+ }-1171 + s i2 . (20D)
72 =~~C%?—gradT—lmf1+222)_€2, (20 c)
I" = — 60— 7,) (20d)

erhalten. (20a) sowie (20b) sind nun bereits die gesuchten Beziehungen.
Die Gleichungen (20a) bis (20d) gestatten zusammen mit (1), (2) und (4)
natiirlich auch zeitlich variable Vorginge zu berechnen. Zum Beispiel
ldsst sich auf diese Weise in einem Halbleiter unter vorgegebenen Anfangs-
bedingungen der zeitliche Verlauf der Temperatur bestimmen. Bei der
Diskussion der Beziehungen (20) werden wir uns zunichst auf stationire
Vorgidnge beschrianken und aus der Vielfalt der méglichen stationidren
Zustdnde zwei spezielle herausgreifen. Der Einfachheit halber betrachten
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wir hier im Gegensatz zum 3. Abschnitt nur kleine Abweichungen vom
Gleichgewicht, vernachldssigen also alle in den Abweichungen quadra-
tischen Terme.

Wir fragen zunichst nach W und X, 1» wenn die Krifte
— % grad T = const., 71 = {}

vorgeschrieben sind. Berechnen wir das Minimum der Entropieerzeugung
unter Beriicksichtigung der Nebenbedingungen (A5), (A7) und (A8), so .
ergibt sich, dass im stationdren Zustand

—

X, =0, 5,—1n,=0 (21)

sein muss. Bei diesem Minimalproblem sind die Lagrangeschen Multipli-
katoren konstant, weil wir hier homogene Halbleiter vorausgesetzt haben
und die phdnomenologischen Koeffizienten damit ortsunabhingig werden
(vgl. auch S. 11). Mit (21) erhalten wir aus (20a) bis (20d)

W = — %ﬁ grad 7T,
R (22)
Sy ETI" grad T
und ausserdem
_]*2_:=l — % grad T. ' (23)

Es muss betont werden, dass die aus (22) folgende Warmeleitfahigkeit
% = /T zunéchst nur in dem hier betrachteten stationdren Zustand gilt.
Weiter untersuchen wir die Verhiltnisse, die sich einstellen, wenn wir
nur

1
- grad T = const.

vorschreiben. Dann folgt aus der Minimalbedingung fiir die Entropie-
erzeugung, wieder unter Beriicksichtigung der Nebenbedingungen (A5),
(A7) und (AS), '

—_

X;=0, 5,—n,=0, J,=0. (24)

Aus (24) lasst sich folgendes Resultat entnehmen: Auch wenn wir nur
— 1/T -grad T = const. vorschreiben, stellt sich der stationdre Zustand

ein, bei dem im ganzen Halbleiter der Gesamtstrom 71 verschwindet. Es
gelten also auch hier die Gleichungen (22) und (23) mit der Wirmeleit-
fahigkeit % == g/T. Dieses Ergebnis ist iiberraschend.

Zum Abschluss unserer Untersuchungen beschiftigen wir uns noch
etwas mehr mit dem soeben betrachteten Zustand, bei dem — 1/7 - grad T’
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= const. vorgeschrieben ist. Nehmen wir an, dass sich der betrachtete
Halbleiter urspriinglich im thermodynamischen Gleichgewicht befand
und dann plétzlich in ein Temperaturfeld gebracht wird, so dass

— :11; grad T = const.

gilt. Dann werden sich im Innern des Halbleiters folgende Prozesse ab-
spielen: Der Temperaturgradient im Halbleiter wird praktisch momentan
aufgebaut, noch lange bevor sich in den Konzentrationen Abweichungen
vom Gleichgewicht bemerkbar machen. Als Folge davon werden « Thermo-
diffusions»-Stréme w4+ 1/7 grad T und — wy+1/T grad T zu fliessen be-
ginnen und einen Konzentrationsgradienten verursachen. Dieser gibt
nun wieder Anlass zu Diffusionsstrémen, die den Konzentrationsgradien-
ten auszugleichen trachten. Schliesslich wird nach geniigend langer Zeit
ein stationdrer Zustand erreicht, wie wir ihn oben beschrieben haben.
In diesem Zustand stellt sich auf die soeben beschriebene Art ein Kon-

—

zentrationsgradient ein, dessen Grdsse wir aus (24), X, = O und (A5) ent-
nehmen kénnen:

Fi — h:D
RT(1/n+1/p) "

Man beachte, dass der Halbleiter neutral und daher d» = dp ist. DE
Groot) hat den zeitlichen Verlauf der Konzentration bei einer bindren
Gasmischung unter dhnlichen Bedingungen berechnet. Fiir weitere Ein-
zelheiten beziiglich des zeitlichen Verlaufs der Konzentrationen verweisen
wir hier auf diese Arbeit.

Es ist interessant, nach dem Wirmeleitungskoeffizient im ersten Mo-
ment nach der Stérung zu fragen. Beachtet man, dass unter diesen Be-
dingungen

_ e (0 &k 0 & B 1
0 = grad @, grad = (F’f —T—)nk grad T, (?)“T T)nk == by,

grad n = %— grad T

gilt, wobei 4, die Enthalpie der Komponente % bedeutet, so ergibt sich
aus (20a)

1 w,? 1 A

Im allgemeinen wird die Wirmeleitfahigkeit zeitabhidngig sein. Im
ersten Moment nach der Stérung eines Gleichgewichtes (£ = 0) ist % = %,
(25). Hat sich der stationidre Zustand eingestellt (! > o0), so ist die Wir-
meleitfahigkeit » durch x. = o/T gegeben. Wie MEIXNER!?) und DE
Groot?®) bei Gasmischungen bereits darauf hingewiesen haben, ist die
Differenz x, — ., proportional zu den «Thermodiffusionskoeffizienten»
w, und w,. Der Vergleich von x, mit x,, zeigt, dass man auch bei einem
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Halbleiter definieren muss, unter welchen Bedingungen die Warmeleit-
fahigkeit gemessen werden soll.
Es bleibt nun noch die Riicktransformation auf unsere alten Krifte

f%grad z, }?n und jf‘ﬂ

durchzufiihren. Diese Zustandsvariablen erweisen sich als bequem beim
Vergleich unserer Resultate mit den in der Literatur angegebenen. Zu
diesem Zweck vergleichen wir die Beziehungen (20a), (20b) und (20c)
mit den entsprechenden Gleichungen (6a) bis (6¢). Als Ergebnis erhdlt
man

o=a+ 2272 (b, — b2,

o
Oy o
w]_:"o_—bn“*“-; b:p,
~ (26)
Wy =2 7272 (b, — by),
M=y Ay =20 fy = 4 Tn
(20a) und (20b) schreiben sich nun
e . \ 1 '
W= — (a—!— UG% (bnﬂbp)z)—fgrad T+ (20a")

G, Op
o

(2 bu+ 225, (T + To) + 272 (b0 — b,) (X — X,

By of G, o " 1 | .4 7 '
S Xy T Xy = (Db, + ,) pgrad T+ (Ju+ ). (200)

(20a’) und (20b’) sind bis auf den letzten Term der Gleichung (20a’) iden-
tisch mit den bereits frither (vgl. z. B. MADELUNG?)) angegebenen Aus-
driicken. Sie gelten, wenn gleichzeitig alle drei Krifte, — 1/7T-grad T,

:f(n und X » vorgegeben sind. Der letzte Term in (20a’) rithrt von der so-
genannten ambipolaren Diffusion her (vgl. PricE?®) und 7)) und ist im all-
gemeinen nicht vernachlidssigbar. Untersuchen wir hingegen den speziel-
len Fall eines Halbleiters im stationidren Zustand mit fl =Qund — 1/7T -
grad T = const.,so verschwindet dieser Term, wie wir bereits gesehen haben.

Formen wir (20b’) etwas um und fithren die Ausdriicke fiir X » und X 3
ein, so erhdlt man durch Vergleich mit dem entsprechenden Ausdruck in
7) (Gleichung (38.10), S. 91) quantitative Ubereinstimmung des Koeffi-

zienten von 1/7 - grad T (absolute Termokraft ¢), wenn man

1 1
by=——5@RT + Ey), b,=— (2 RT — E,) (27)
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wihlt. Im Anhang IIT wird gezeigt, dass man fiir ¢ auch im Falle des
Eigenhalbleiters den richtigen Ausdruck erhilt, wenn die Beziehungen
fir {, und {, verwendet werden. Bemerkenswert ist schliesslich, dass mit
der Wahl (27) fiir 4, und b, auch der Zusatzterm zur Wiarmeleitfdhigkeit
in (20a’) mit dem in der Literatur bekannten tibereinstimmt. Dieser Term
rithrt vom Energietransport durch Diffusion von Elektron-Loch-Paaren
her, wie man sich anhand von (22) und (23) tiberlegt, und ist in der Lite-
ratur als Anteil der ambipolaren Diffusion an der Wirmeleitung?)7) be-
kannt.

Uber den Anteil a an der Wirmeleitung sind im Rahmen unserer
Theorie keine Aussagen moglich. Dieser Term enthilt den Beitrag der
beweglichen Ladungstriger. Identifizieren wir % mit der Wirmeleit-
fahigkeit des gesamten Halbleiters, so ist in @ auch der Anteil des Gitters
an der Wirmeleitfihigkeit enthalten.

Abschliessend geben wir die Wirmeleitfahigkeit fiir die drei von uns
diskutierten Fille in den urspriinglichen Koeffizienten an

a) stationdrer Zustand 2. Ordnung, vorgegeben: fl =0, —1/T-grad T
= const. sowie
b) stationirer Zustand 1. Ordnung, vorgegeben: — 1/T - grad T = const.

= g s (a+ 2% (5, — bp)z) (28)

ag

c¢) Im ersten Moment nach der Stérung durch — 1/7 - grad T # Oeines
urspriinglich im Gleichgewicht befindlichen Systems
1

1 ’
T).‘ (Gn bn + Oy b;o)z F (Gﬂ bn hn s Op bp hp)] . (25 )

1
xsz:%OO+T[ 7

Die Enthalpien 4, und 4, sind im Anhang I angegeben.

5. Schlussbemerkungen

Wir wollen noch einige Uberlegungen anfiigen, die sich mit der Anwen-
dung des hier beniitzten Formalismus der Thermodynamik irreversibler
Prozesse auf weitere Halbleiterprobleme befassen.

Wir haben bereits erwihnt, dass man Aussagen {iber die Temperatur-
verteilung in einem stromdurchflossenen p-n-Ubergang verhdltnisméissig
einfach gewinnen kann. Ganz entsprechend liesse sich auch die Tempe-
raturverteilung in einem Leistungstransistor berechnen.

Eine interessante Moglichkeit ist die Anwendung dieser Theorie auf
Erscheinungen, bei denen ein komplizierterer Rekombinationsmechanis-
mus ausschlaggebend ist. Wir denken zum Beispiel an dhnliche wie die
von SAH und Mitarbeitern®) bei p-n-Dioden und Transistoren unter-
suchten Probleme. Arbeiten in dieser Richtung sollten ohne wesentliche
Anderungen mit der hier verfolgten Methode ausgefiihrt werden kénnen.
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Die Erweiterung dieser Theorie auf die Effekte in stationdren Magnet-
feldern ist ebenfalls méglich und lohnend, vgl. u. a. dazu die Arbeiten
von CALLENS),

Schliesslich sei erwidhnt, dass mit der Beriicksichtigung der Variabili-
tit von E; und Ey eine weitere Verallgemeinerung unserer Rechnungen
erreicht werden kann. Dies wiirde gestatten, die Erscheinungen in Uber-
gingen zwischen Halbleitern mit verschieden breiten verbotenen Zonen
zu erfassen. Uber die praktische Verwendbarkeit derartiger Uberginge
hat letzthin ARMSTRONG?) berichtet.

Herr Professor Dr. E. BALDINGER hat durch sein Interesse an diesen
Untersuchungen meine Arbeit sehr geférdert, wofiir ich ihm herzlich
danke. Herrn Professor Dr. M. FIErz habe ich sehr fiir eine kritische
Durchsicht des Manuskriptes zu danken.

Die Stiftung Hasler-Werke-Bern hat in dankenswerter Weise durch ihre
finanzielle Unterstiitzung diese Untersuchungen ermdoglicht.

Anhang 1

Der Vollstindigkeit und der Geschlossenheit der Darstellung wegen
werden wir hier die elektrochemischen Potentiale einfithren und ihren
Zusammenhang mit den von SHOCKLEY!®) beniitzten «Quasi-Fermi-
Niveaux» erliutern. Schliesslich wird aus dem chemischen Potential die
Enthalpie der einzelnen Komponenten abgeleitet.

Elektronen geniigen der Fermi-Statistik mit der Verteilungsfunktion

1
Bl —er
Fnl(E) JE—En) kT

+1

welche die Wahrscheinlichkeit angibt, dass ein Zustand der Energie E
mit einem Elektron besetzt ist. ¢, ist die freie Enthalpie pro Elektron*),
das heisst das chemische Potential.

Mit N * wird die Zahl pro cm?® der im Leitungsband vorhandenen Zu-
stinde bezeichnet. Dividieren wir N,* durch die Loschmidtsche Zahl, so
lasst sich

Ny = N ¥/ L

als die maximal mégliche Konzentration in Mol/cm?® von freien Elektro-
nen im Leitungsband interpretieren. Es gilt

N,L = z(wz ‘“’Z’;n”)s/z .

*) Vgl. etwa den Artikel von A. SoMMERFELD und H. BeTHE, Elektronentheorie
der Metalle, im Handbuch der Physik (GeicEr und ScuHeEiLr), Bd. 24/2, S. 333.
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Entsprechend ldsst sich eine Verteilungsfunktion fiir die Locher ein-
fithren

fpzl_'in

und das chemische Potential 7, der freien Lécher im Valenzband defi-
nieren. I'iir die maximal mogliche Konzentration freier Locher im Valenz-
band ergibt sich |

h2

P, L=2(

\

2mmy kT)3/2

Eine Moglichkeit zur Berechnung von {, und (,, die wir nun pro Mol
zdahlen, liefert das Integral tiber simtliche von den Leitungselektronen
besetzten Zustinde

E=00

n 2 / 1 (E—EL)I/Zd( E)
No  Vm J ~JEGIRT T\ RT RT

;EL

Der Einfachheit halber nehmen wir die Energien der Bandrander des
Valenz- und des Leitungsbandes E£; und E als temperaturunabhingig
und ortlich konstant an und setzen weiter voraus, dass die Storstellen der
von uns betrachteten Halbleiter vollkommen ionisiert sein sollen.

Im Grenzfall verschwindender Entartung (das heisst #n <€ N,) erhilt
man

P o e¥n—ELIRT
N, ’
also
(w=E, + RTIn—. (A1)
0
Analog ergibt sich fiir die Locher
Cp:EVﬁRTln-;—. (A2)

0

Bei elektrisch nicht neutralen Komponenten und beim Vorliegen elek-
trischer Felder mit dem Potential @ treten an Stelle der chemischen Po-

tentiale {; die elektrochemischen Potentiale 7. Sie sind durch
Nn = Zn - FQ,
(A3)
No = bn— Fo

mit den chemischen Potentialen verkniipft. Zu den Vorzeichen des che-
mischen und elektrochemischen Potentials der Locher ist zu bemerken,
dass sich streng genommen an Stelle von (A2)

t*=—E,+ RTln%o
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ergibt und fiir das elektrochemische Potential wie iiblich

Np* = Cp* + FO.
Aus Griinden der bequemeren Schreibweise setzen wir jedoch

o= — Lo Mp=— 1%,
wobei dann allerdings im 2. Abschnitt in (3) das Vorzeichen von 7, im
Vergleich zu 5,* wechselt*).
Die von SHOCKLEY?!?) verwendeten «Quasi-Fermi-Levels» (Q. F. L.)
@y, fiir Elektronen und ¢, fiir Lécher hingen mit den elektrochemischen
Potentialen (A3) wie folgt zusammen:

— Fp, =10 — Foy =1,
Gleichzeitig wird das elektrische Potential v anders gezdhlt**) und
hidngt mit dem von uns eingefiihrten @ iiber '

y=P+y
RT P, E;+Ep
= By | g ]
_ RT L+ Ey
— Fr =g |z i+ S

zusammen. Es ist zu beachten, dass y auch bei konstant angenommenen
E; und E, von der Temperatur abhingt. Man erhilt schhesshch in
Ubereinstimmung mit SHOCKLEY

-7 (@@=
n=mne =¥ ’

T

e

+ ‘ (p Y.
j (2

Die Q. F. L. sind in dieser Art nur fiir ein nichtentartetes Elektronen-
Lécher-Gas definiert.

Aus den chemischen Potentialen (A1) und (A2) folgt fiir die Enthalpien

o ¢, 1 0 £ 1
(OT T) =7z Fn (_O_f—f“p—)ﬂ: — 7z b
und durch Einsetzen von (A1) und (A2) ergibt sich
b= By - T(2E2) 4 BT (0%%)
n

0T No \ 0T},
B 0Ey\ RT2 (0P,
b= Ev= 157 =7 (57,

*) Wegen dieser Vorzeichenfragen vergleiche man die guten Darstellungen von
SHockrLev!®), S. 178ff., und SPENKE??), S. 60ff.

**) Man ordnet — Fy = E; eine Energie E; zu, wobei E; praktisch in der Mitte
der verbotenen Zone liegt.
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Beriicksichtigt man die Ausdriicke fiir P, und N,, so wird

B, = By — T(%&.);r - RT,

h,— E, — T(%—E%m)ﬂ— 2 RT:

Anhang 11

Bedingungsgleichungen zwischen Stromen und Kriften

Allgemein folgt aus der Definition von X %

—r

X,= ZLF T grad @; L (A5)

Im stationidren Zustand, das heisst 0 .../0f = 0, erhalten wir aus den
Massenbilanzen (2) der Komponenten

div 71 ==, (A6)
div J, = 2 F 8(1, — 0,)- (A7)
Schliesslich ergibt sich aus der Neutralitatsbedingung
divgrad@:—-?(Nd—NG+gb—n):O, an = dp

fiir homogene Halbleiter eine weitere Beziehung, die im Falle
— 1/T -grad T = const. und bei kleinen Abweichungen vom Gleichge-

wicht die Form
— 7

div X, = T;M div X, (A8)

annimmt, wie man durch Ausrechnen leicht bestitigt.

Den 4 Kriften bzw. Stromen steht als erste Bedingung (A5) gegeniiber,
als zweite tritt im stationdren Zustand (A7) hinzu und im Falle des homo-
genen Halbleiters, wenn ausserdem — 1/7 - grad 7 = const., erhdlt man
als dritte Bedingung (AS8).

Anhang 111

Aus (20b’) wird mit den im Text erwihnten Umformungen
o, .
o grad —CF_‘ + -%'L grad 51—;3.9~ —grad ® = (A9)

Mit den entsprechenden Bemerkungen, wie wir sie fiir die Wiarmeleit-
fahigkeit auf Seite 16 gemacht haben, befassen wir uns hier mit dem
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stationdren Zustand 2. Ordnung fl =0, — 1/T - grad T = const. Dann
folgt aus der zweiten Gleichung von (22) mit (21) und (26) fiir den Koeffi-
zienten von grad T

(p=—%[(2wln%)uﬂ%—(Z—ln—%—)MpP] (A10)

wobei noch {, = {, zu berlicksichtigen ist. Insbesondere ergibt sich fiir
einen Eigenhalbleiter mit # = p und N, = Mm, >, Py = Mm,>*

. R [ p,—u, AE 3 m,, -

Schliesslich erhilt man fiir die Warmeleitfihigkeit aus (22) bzw. (28)
mit (26)

a "R \2 0,0 AE 2
e (B 7o (25 ) 12

in Ubereinstimmung mit 7).
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