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Über die Anwendung der Thermodynamik irreversibler
Prozesse auf Leitungsvorgänge in Halbleitern

von W. Czaja*)
(20. XII. 58)

Summary: The thermodynamic theory of irreversible processes is applied to
conduction phenomena in semiconductors. The principle of minimum entropy-
production in a stationary state of a system is discussed under most general
conditions. It is assumed to have an unequal number of even and odd forces with
additional conditions between these forces. Some isothermal as well as non
isothermal effects are calculated : general equations governing the behaviour of the
isothermal ^-«-junction are derived and the heat conductivity of a homogenous
semiconductor under various conditions is calculated. Further applications of the
theory are discussed.

1. Einleitung

In dieser Arbeit soll gezeigt werden, dass eine konsequente Anwendung
der Methoden der Thermodynamik irreversibler Prozesse geeignet ist, die

Leitungsvorgänge in Halbleitern in sehr allgemeiner Art zu beschreiben.
Insbesondere ist es das Ziel dieser Untersuchungen, eine - auch vom
Standpunkt der Thermodynamik irreversibler Prozesse - klare Formulierung

des Problems und des verwendeten Modells zu geben. Wir werden
uns eingehend mit den stationären Zuständen befassen und sehen, dass
sich dieser mit der thermodynamischen Methode leicht formulierbare
Begriff als sehr nützlich erweist. Unseren Rechnungen legen wir als Modell

einzig die Vorstellung des Elektronen-Löcher-Gases zugrunde. Alles
weitere folgt dann aus dem Formalismus der Thermodynamik irreversibler

Prozesse.

Vor allem Tauc1)2) und Price3)4)5) haben eine Reihe von Arbeiten
publiziert, die sich mit den thermoelektrischen Effekten in Halbleitern
befassen. Die Autoren benützen dabei phänomenologische Methoden, die
sich mehr oder weniger auf die Thermodynamik irreversibler Prozesse

stützen. Unserem Vorgehen am nächsten kommen2) und 4). Im Vergleich

*) Institut für angewandte Physik der Universität Basel.
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2 W. Czaja H.P.A.

zu diesen Arbeiten haben wir uns bei unseren Untersuchungen der Methoden

der Thermodynamik irreversibler Prozesse in vollem Umfange
bedient. Die Ergebnisse unserer Rechnungen sind daher sehr allgemein,
wie wir an zwei Beispielen erläutern wollen :

1. Es ist leicht möglich, eine in sich konsistente Verallgemeinerung der
Gleichungen anzugeben, welche das Verhalten eines stromdurchflossenen
^»-«-Überganges beschreiben. Im Prinzip können beliebige
Rekombinationsmechanismen in Betracht gezogen werden.

2. Aus den allgemeinen Grundgleichungen leiten wir die
Ausgangsgleichungen zur Berechnung der thermoelektrischen Effekte ab. Im
weiteren Verlauf der Rechnungen befassen wir uns aber dann speziell mit
der Wärmeleitung und erhalten in einem Halbleiter je nach den
vorliegenden Bedingungen verschiedene Wärmeleitfähigkeiten.

In diesem Rahmen sei noch erwähnt, dass van Vliet6) kürzlich in
anderem Zusammenhang die Thermodynamik irreversibler Prozesse auf
Erzeugungs- und Rekombinations-Vorgänge von Elektronen und
Löchern angewendet hat.

Abschliessend sei bemerkt, dass man bei der phänomenologischen
Betrachtungsweise von vornherein darauf verzichtet, irgendwelche
Koeffizienten zu berechnen. Andererseits eröffnet aber gerade diese Methode
einen Weg, das komplizierte Zusammenwirken der einzelnen Vorgänge
in Halbleitern auf Grund allgemeiner Gesetzmässigkeiten verhältnismässig

einfach zu behandeln.

2. Die Grundgleichungen

Wir werden uns mit drei Problemen beschäftigen.
1. Auf Grund welcher Überlegungen ist die Thermodynamik irreversibler

Prozesse auf Halbleiter anwendbar, wie lauten die Voraussetzungen

2. Wie lauten die Grundgleichungen
3. Welches sind die Grenzen des Geltungsbereiches dieser Methode
Die Leitungselektronen in Halbleitern sind praktisch frei, ihre effektive

Masse kann als nahezu konstant betrachtet werden, wenigstens so

lange wir uns mit Leitungsphänomenen befassen. Ferner ist die Wechselwirkung

der Elektronen miteinander vernachlässigbar. Die
Leitungselektronen in einem Halbleiter verhalten sich also wie ein ideales Gas.

Da in der Halbleiterphysik gewisse Erscheinungen nur unter Hinzunahme
des Begriffes der Löcher erklärbar sind, handelt es sich um ein ideales
Gas mit zwei Komponenten, und zwar eine Komponente bestehend aus
Elektronen mit einer Konzentration n und die zweite Komponente
bestehend aus Löchern mit der Konzentration p. n und p werden in Mol pro
cm3 angegeben. Die Komponenten weisen pro Mol die Ladung — F bzw.
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+ F auf. F ist die Faradaysche Äquivalentladung F 96494 As/Mol.
Beide Komponenten können gemäss der Reaktionsgleichung

n + p=± 0

miteinander reagieren. Diese Reaktionsgleichung beschreibt die Rekombination

und Erzeugung der freien Ladungsträger. Im thermodynamischen
Gleichgewicht ist die Temperatur dieses nicht entarteten Elektronen-
Löcher-Gases gleich der Temperatur des Gitters. Bei der Untersuchung
von Nichtgleichgewichtszuständen beachte man, dass die Wechselwirkung

zwischen den Leitungselektronen und dem Gitter klein ist. Weiter

ist die Wärmekapazität des Gitters, und in den meisten Fällen auch
seine Wärmeleitfähigkeit, sehr viel grösser als die des Elektronengases;
daher wird die im Gleichgewicht im Halbleiter (und damit auch im
Elektronen-Löcher-Gas) sich einstellende Temperatur schliesslich durch die
Eigenschaften des Gitters bestimmt. Das Gitter seinerseits wird nun durch
die Wärmemenge, welche bei den im Elektronen-Löcher-Gas ablaufenden
irreversiblen Prozessen entsteht, aufgeheizt.

Dass wir hier trotzdem nur das Elektronen-Löcher-Gas betrachten,
hat zwei Gründe. Zunächst können wir dieses Gas stets als Teilsystem
eines ganzen Systems behandeln. Weiter kommt es bei stationären
Zuständen nicht auf die Wärmekapazität des Gitters und bei stationären
Zuständen mit vorgeschriebener Temperaturverteilung auch nicht auf
seine Wärmeleitfähigkeit an, solange wir die zur Aufrechterhaltung des
Zustandes benötigte Leistung ausser acht lassen. Mit diesen Vorbehalten
können wir also unsere Betrachtungen auf das Elektronen-Löcher-Gas
beschränken. Schliesslich setzen wir die Halbleiter durchwegs als isotrop
voraus und bemerken dazu, dass bereits ein isotropes Modell*) die
wesentlichen Eigenschaften eines Halbleiters liefert7).

Nun können wir die Grundgleichungen aufstellen und verweisen für
die Begründung unseres Vorgehens auf de Groot8) sowie Meixner9) und
10). Wir formulieren zuerst die Erhaltungssätze pro Volumeneinheit für
die Energie sowie die Konzentrationen jeder Komponente.

^- - div W A (Ji, E)-0 div A, (1)

- F *L + div /„ - F.T, + F -g- + div /, + FR (2)

Hierin bedeutet U die innere Energie des gesamten Gases pro Volumen,
W den Energiestrom ohne Konvektionsanteil und /x die gesamte
elektrische Stromdichte. J1 enthält einen Anteil der Elektronen und einen

*) In diesem Sinne isotrop sind auch kubische Kristalle, solange wir von
Deformationen absehen.
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Anteil der Löcher J1 Jn + ]v. E bedeutet die elektrische Feldstärke,
die mit dem Potential 0 über E — grad 0 verknüpft ist. r ist die
«Netto-Erzeugungsrate» in Mol pro cm3 und sec. Eine negative Erzeugung

tritt als Rekombination in Erscheinung. Ferner ist in der Schreibweise

von (2) bereits berücksichtigt, dass Elektronen und Löcher nur
paarweise erzeugt werden. Treten Trap-Niveaux oder die teilweise
Ionisation von Störstellen in Erscheinung, so kann man dies durch Einführung
weiterer Komponenten berücksichtigen.

Als wesentliche Voraussetzung wird in der Thermodynamik irreversibler

Prozesse gefordert, dass die Gibbssche Beziehung

TdS dU-rfndn + tj^ dp *) (3)

ihre Gültigkeit auch für Nichtgleichgewichtszustände behält. Dabei
bedeutet S die Entropie pro Volumen. Da wir es mit Komponenten zu tun
haben, die aus elektrisch geladenen Teilchen bestehen, treten in (3) an
Stelle der chemischen Potentiale £ft pro Mol die elektrochemischen
Potentiale rjf. pro Mol in Erscheinung. Bezüglich der Definition der rjk
verweisen wir auf Anhang I. Mit (1) und (2) lässt sich aus (3) eine Bilanz für
die Entropie gewinnen

~\W,

dt ^ [ T T \ F Jp F )\ ,4)

-L grad T + £ J„ T grad -£. - grad <2>) - F(rln - nÀ
¦ n, p

Der zweite Term der linken Seite von (4) ist die Divergenz des durch T
dividierten Entropiestromes, während die rechte Seite die

Entropieerzeugung & darstellt. # ist eine Bilinearform in den Strömen W, Jn, Jv
und F sowie den Kräften — 1/T-grad T, Xn, XP und — (r/n — rjA. Dabei
bedeuten

Xn (rgrad-!^- grad<Z>), X, (rgrad^, - grad<Z>).

T& bezeichnen wir als Energiedissipation, die wir in allgemeiner Form

k

schreiben können. T& ist positiv définit. Die Ströme Jk sind die zu den
Kräften Xk konjugierten Variablen. Unter Kräften verstehen wir allgemein

die einem bestimmten Problem angepassten unabhängigen Va-

Zur Begründung des Vorzeichens von r]p vgl. Anhang I.
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riablen. In diesem Sinne führen wir später auch die elektrische Stromdichte

als «Kraft» ein. T& ist invariant bei linearen Transformationen der
Xk. Die Jk sind also kontragredient zu den Xk.

Zwischen den so definierten Kräften und Strömen existieren noch weitere

Beziehungen. Sie geben an, welche Kräfte Anlass zu den einzelnen
Prozessen, das heisst Strömen geben. Wir beschränken uns auf lineare
Ansätze zwischen den Kräften und Strömen und erwarten, dass im
allgemeinen jeder Strom linear von allen Kräften abhängen wird. Diese

phänomenologischen Ansätze vereinfachen sich jedoch auf Grund
allgemeiner Symmetrieeigenschaften zu

W - -Jr- grad T A b'„ Xn + b'p Xp

J n~ j"gra-d 4 A cnn Xn A cnp A,,,

Jp - -f- Srad T A cvn Xn A cv]) X„,

r - ò(t]n- f]v).

(6)

Aus diesen Symmetrieeigenschaften folgern wir für einen isotropen
Halbleiter, dass die Koeffizienten a, bn', bp', bn" usw. keine Tensoren,

sondern Skalare sind. Ferner hängen die Vektoren W, Jn, Jv nicht vom
Skalar (r/n — r]P) ab, und umgekehrt ist der Skalar r keine Funktion der

Vektoren — 1/T-grad T, Xn und Xv, weil eine Kraft mit bestimmten
Symmetrieeigenschaften keinen Strom mit davon verschiedenen
Symmetrieeigenschaften erzeugen kann*). Die phänomenologischen
Beziehungen (6) sind in dem Sinne linear, als die Koeffizienten a, bn', bv', bn"
usw. nicht von den Kräften, das heisst von den Abweichungen vom
Gleichgewichtszustand abhängen sollen. Hingegen werden sie im
allgemeinen noch von den Zustandsvariablen im Gleichgewicht abhängen, so

zum Beispiel von der Temperatur, den Konzentrationen n und p usw.

Definieren wir Kräfte und Ströme in dieser Art, so bestehen zwischen
den 10 Koeffizienten der Gleichung (6) die Onsager-Casimirschen
Beziehungen

b! =-b/ bt, (i n, p),

Bei linearen Transformationen von Kräften und Strömen gelten auch
für die Koeffizienten der neuen Grössen wieder Onsager-Casimirsche

*) Sogenanntes Curiesches Theorem. In allgemeiner Form ist dies wohl zuerst
von P. Curie erkannt worden. Vgl. P. Curie, Oeuvres, Gauthier Villars, Paris
(1908), S. 127, sowie de Groot8) und Meixner10).
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Beziehungen. Aus der Definition des Elektronen- bzw. Löcherstromes /„
und /j, folgt, dass in (6) cnp cm 0 und cnn an, cvv av ist. an und
er,, bedeuten wie üblich den Anteil der Elektronen bzw. Löcher an der
elektrischen Leitfähigkeit*). Aus (6) wird somit

+ bvXv, (6 a)

(6b)

(6c)

r =-ò(rln-Vp). (6d)

Zu den Gleichungen (1), (2), (4), (6 a) bis (6d) tritt noch eine Beziehung
zwischen dem elektrostatischen Potential 0 und der Ladungsverteilung
mit den Donator- und Acceptor-Konzentrationen Nd und Na hinzu

diVgriicl0=-^(Nd-Na + p-n). (7)

Im homogenen Halbleiter herrscht Neutralität und es folgt aus (7) in
diesem Falle die Divergenzfreiheit des elektrischen Feldes sowie

dn dp.

Abschliessend wollen wir einige Bemerkungen über die Gültigkeit der
soeben aufgestellten Grundgleichungen machen. Zunächst sei wiederum
auf die Seite 3 zitierten Arbeiten verwiesen, sowie auf die Untersuchungen

von Reik11). Aus diesen Arbeiten ist zu entnehmen, dass die Gültigkeit

von (3) auch im Nichtgleichgewicht zutrifft, solange die Abweichungen

vom Gleichgewicht genügend klein sind. Bei Gasen lassen sich zur
Abgrenzung dieses Geltungsbereiches, wohldefinierte Ungleichungen
angeben. Der Anwendungsbereich der Thermodynamik irreversibler
Prozesse ist unter diesen Einschränkungen immer noch überraschend gross
(vgl. besonders Meixner10)). Bei der Anwendung auf Halbleiter erwarten
wir ganz entsprechende Ungleichungen für den Anwendungsbereich der

Thermodynamik irreversibler Prozesse**). Auf dieses Problem soll jedoch
hier nicht näher eingegangen werden. Der lineare Ansatz zwischen Kräften

und Strömen ist bei kleinen Abweichungen vom Gleichgewicht sicher

berechtigt. Die Erfahrung zeigt, dass die Gleichungen (6a), (6b) und (6c)

*) an F/Ltnn, av Ffxpp, ferner sind —/<nund 4-fJtj, die Beweglichkeiten der
Elektronen und Löcher. Ausserdem gilt a an4op.

**) So ergibt sich zum Beispiel die Grenze des low-injection-und des high-injection-
Gebietes in der Basis eines /»-»-^-Transistors aus der Bedingung, dass die Änderung
der Elektronenkonzentration über eine Debye-Länge von der Grössenordnung der
Gleichgewichtskonzentration wird.
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für alle praktisch auftretenden Fälle genügen. Gleichung (6d) ist in ihrem
Geltungsbereich eher eingeschränkt. Die Annahme grosser Abweichungen
vom Reaktionsgleichgewicht, wie sie zum Beispiel im gehemmten
Reaktionsgleichgewicht auftreten können, bedeutet nicht notwendig, dass die

Thermodynamik irreversibler Prozesse nicht angewendet werden kann.
In höherer Näherung wäre (6 d) dann durch

k

zn erweitern. Diese Verallgemeinerung liesse sich in unseren Rechnungen
berücksichtigen, wir wollen jedoch darauf verzichten. Es sei noch darauf
hingewiesen, dass der Ansatz

-T= - ò(t]n- t]v)

vom physikalischen Standpunkt aus begründeter ist, als der in der
Literatur häufig benützte

r — r(np — nA).

Die Aussagen beider Beziehungen sind im Falle genügend kleiner
Abweichungen vom Gleichgewicht identisch («lineare Rekombination»).

3. Thermodynamisches Gleichgewicht und
stationäres Gleichgewicht

Als eine Anwendung der soeben abgeleiteten Grundgleichungen
untersuchen wir die Bedingungen für das thermodynamische und das stationäre

Gleichgewicht in einem Halbleiter.

Thermodynamisches Gleichgewicht
Die Entropie eines abgeschlossenen Systems ist im thermodynamischen

Gleichgewicht ein Maximum. Demnach verschwindet im Gleichgewicht
die gesamte Entropieerzeugung. Weiter können wir die gesamte
Entropieerzeugung als Raumintegral über die lokale Entropieerzeugung &
schreiben. Im thermodynamischen Gleichgewicht ist also der Integrand
dieses Integrals, das heisst # selber, gleich null. Unter Berücksichtigung
der phänomenologischen Ansätze zwischen Kräften und Strömen bedeutet

& 0, dass entweder alle Ströme oder alle Kräfte verschwinden.
Fordern wir, dass die Kräfte im Gleichgewicht null sind, so bedeutet dies*)

-=- grad 7"= 0

rgrad-Al-grad0 0, (i n, p), (8)

t]n - Vv ° •

*) Wenn Kräfte und Ströme wie im 2. Abschnitt gewählt werden.
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Aus den Grundgleichungen erhält man dann die Aussagen, dass die
Temperatur örtlich und zeitlich konstant ist, dass das elektrochemische
Potential ort- und zeitunabhängig wird, sowie dass überall chemisches
Gleichgewicht herrscht, r\n also stets gleich r/p ist. Ferner sind die
Konzentrationen zeitunabhängig aber nicht notwendig ortsunabhängig. Die
Ortsabhängigkeit der Konzentration ist eine Frage des Verlaufs des

Potentials. Variiert grad 0, so erhält man einen Gleichgewichtszustand
von der Art des atmosphärischen Gleichgewichts. Ein Beispiel für einen
derartigen Zustand ist ein stromloser ^»-«-Übergang. Aus

grad Vn 0
(8 a)

lassen sich zusammen mit (7) bei vorgegebenem Potientialverlauf die
Konzentrationen als Funktionen des Ortes berechnen. In einem homogenen

Halbleiter, das heisst 0 const., folgt aus dem MassenWirkungsgesetz

7]n rj,, mit (Al), (A2) und (A3)*)

n-p -R0V0e-AE'RT, (9)

wobei als Abkürzung

AE= EL- Ev

benützt wurde. (9) gilt offenbar sehr allgemein, insbesondere auch dann
noch, wenn wir einen Ansatz der Art r — Zòk(r)n — rjB)k machen. Die

Aussage des Massenwirkungsgesetzes bezieht sich hier auf die
Bruttoreaktion der Erzeugung und Rekombination von freien Elektronen und
Löchern und ist somit unabhängig vom Vorhandensein von Trap-
Niveaux.

Zur Frage, ob die aus & 0 gezogenen Folgerungen (8) die einzig
möglichen sind, sei auf die Literatur verwiesen (vgl. zum Beispiel Meixner9),
de Groot8)).

Das stationäre thermodynamische Gleichgewicht

Wie de Groot8) verstehen wir unter dem stationären thermodynamischen

Gleichgewicht den Zustand, der sich in einem offenen System
einstellt, wenn der Wert einer (oder mehrerer) Kräfte durch irgendwelche
äussern Massnahmen zeitlich konstant vorgeschrieben wird. Der Zustand
des stationären Gleichgewichts ist durch die Bedingung minimaler
Entropieerzeugung charakterisiert. Geben wir q Kräfte vor, so stellt sich ein
stationärer Zustand q. Ordnung ein. Wird speziell keine Kraft vorge-

*) Vgl. Anhang I.
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schrieben, so liegt ein stationärer Zustand 0. Ordnung vor, der mit dem
Zustand des thermodynamischen Gleichgewichts identisch ist. Im
Gleichgewicht ist das System dann von selbst abgeschlossen.

Die Berechnung der stationären Zustände ist nach dem soeben

Gesagten leicht möglich. Ein System sei durch n unabhängige Ströme Jt
und ebenso viele unabhängige Kräfte X{ charakterisiert. Zwischen den

Kräften und den Strömen existieren die phänomenologischen
Beziehungen

Jk= Z aia X{
i

(i, k 1, q, q + 1, n). Die q ersten Kräfte seien vorgeschrieben.
Aus der Bedingung der minimalen Entropieerzeugung im stationären
Zustand

/ d \ k g + 1, n
(-—•&) =0\ dxk jXj 7=1, » 7e k

folgt mit dem phänomenologischen Ansatz und

Tê ZZalmXlXm,
l m

dass die restlichen q + 1, n Ströme null sind, wenn die phänomenologischen

Koeffizienten alm den Onsagerschen Reziprozitätsbeziehungen
atm ami genügen. Dies ist stets dann der Fall, wenn sich alle Kräfte
bezüglich der Zeitumkehr symmetrisch oder antisymmetrisch verhalten
(vgl. de Groot8)). Diese Aussage haben wir nun zu verallgemeinern:
Genügen nämlich die Koeffizienten alm den von Casimir erweiterten
Onsagerschen Beziehungen

sind also die zugehörigen Kräfte paarweise symmetrisch und antisymmetrisch

bezüglich der Zeitumkehr, so folgt sofort, dass statt der q + 1,... n
restlichen Ströme Jk, die q + 1, n restlichen Kräfte Xk verschwinden.
Im allgemeinen werden die Verhältnisse nicht so übersichtlich sein. Die
Kräfte müssen bezüglich der Zeitumkehr nicht nur paarweise gerade und
ungerade auftreten. Daher können sowohl symmetrische als auch
antisymmetrische Beziehungen zwischen den phänomenologischen
Koeffizienten vorliegen, und es wird notwendig, im einzelnen Fall abzuklären,
welche Ströme und Kräfte im stationären Zustand verschwinden.

Weiter ist zu beachten, dass zwischen einzelnen Kräften und Strömen
zusätzliche Bedingungen bestehen können (vgl. Anhang II). Im stationären

Zustand ist dann die Entropieerzeugung unter Berücksichtigung
dieser Nebenbedingungen zu einem Minimum zu machen. Dazu kann man
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sich im konkreten Fall zum Beispiel der Methode der Lagrangeschen
Multiplikatoren bedienen. In unseren folgenden Untersuchungen haben wir
stets mit Systemen zu tun, deren stationäre Zustände nur mit den beiden
soeben besprochenen Verallgemeinerungen behandelt werden können.

Wir haben bereits gesehen, dass der stromlose ^»-«-Übergang einen

thermodynamischen Gleichgewichtszustand darstellt. Im folgenden soll
der stromdurchflossene /»-w-Übergang als Beispiel für einen stationären
Zustand behandelt werden. Von Interesse sind ein stationärer Zustand
1. Ordnung (nur J1 vorgeschrieben) und ein stationärer Zustand 2.

Ordnung (J1 und — ljT-grad T vorgeschrieben). Wir betrachten also einen
Halbleiter, der nicht ausschliesslich homogen ist, und werden daher die
aus (7) und der Neutralität folgende Nebenbedingung (A8) nicht
berücksichtigen. Es erweist sich zunächst als zweckmässig, die folgenden Kräfte
einzuführen

- ì grad T, h,f2 (10)

mit

Jl=Jn-cJp, J 2 ~ J n Jp*

Diesen Kräften entsprechen die Ströme

%i y (X„ A Xj,),

X2 y (X„ — Xp).

Die phänomenologischen Ansätze lauten

W=- f grad T + /?/ A +ß2'J2,
— g n _» _
Xi - -^r-grad T + yn Jx + yn J2,

-+ O II — _r
x2 - % grad T + y21 J1 + y22 J2

r - ò(tln - rjj,)

(H)

Zwischen den 10 Koeffizienten liefern die Onsager-Casimirschen
Beziehungen folgende Zusammenhänge

ßi =-ßi" ßi,(i l,2),
}'12 721 -

(11) wird damit zu

W=-±grad T+ ßx Jx + ß2J2, (12a)
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Xt= § grad T A yn 7i + 7i2 72. (12 b)

X2 & grad T + yu/x + y22 J2, (12 c)

r =-ò(nn-ni). (i2 d)

Wir untersuchen nun den stationären Zustand, der durch

— ¦=- grad T 0, Jx const

charakterisiert ist. Mit dieser Vorschrift sowie mit den Nebenbedingungen

(A5) und (A7) ist das Minimum der Entropieerzeugung bereits
vollständig festgelegt. Es sei darauf hingewiesen, dass hier die Lagrangeschen

Multiplikatoren Funktionen des Ortes sind, weil sowohl & als auch
die Bedingungsgleichungen (AS) und (A7) explizit von den Raumkoordinaten

abhängen. Diese explizite Ortsabhängigkeit kommt durch die
Ortsabhängigkeit der phänomenologischen Koeffizienten zustande, wenn diese

zum Beispiel Funktionen der Gleichgewichts-Konzentrationen n und^>
sind. Im thermodynamischen Gleichgewicht können aber nun n und p,
wie bereits erwähnt, ortsabhängig sein. Statt (A7) kann man im
isothermen Fall auch

grad div J2 (2FY ÒX2~2F~ grad <5 (13)

schreiben.
Nach einigen Umformungen erhält man aus den Gleichungen (12 a),

(12b) und (12c)

W ßJ1 + ßJ2, (14 a)

^i -^2 ^(711722-7i22)7i, (14b)

^2= 712/1+722/2, (14c)

während man aus (14 c) und (13) eine Aussage über /2 als Funktion von
J1 abliest.

grad div 72- (2F)*òy22J2 ^ (2F)* Ò y22fx - 2F-J- grad Ò. (14d)

Schliesslich sei darauf hingewiesen, dass F wegen (14 d) und (A7) einer
inhomogenen Wellengleichung mit der komplexen Wellenzahl

k*=-(2FYÒy22*)

genügt. Im Spezialfall sehr kleiner Abweichungen vom Gleichgewicht

*) Man überzeugt sich leicht, dass [ £2 | gleich dem reziproken Quadrat der
Diffusionslänge ist.
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(das heisst Terme Jk grad sind vernachlässigbar klein), oder bei örtlich

konstanten Leitfähigkeiten an, 0+ und örtlich konstantem ò (ò ist im
wesentlichen die reziproke Lebensdauer der freien Ladungsträger) wird
die Wellengleichung für r homogen.

Die Gleichungen (14 a) bis (14 d) beschreiben zusammen mit (7) und
(A7) unser Problem vollständig. Um dies zu zeigen, transformieren wir
unsere Beziehungen zunächst auf unser altes System zurück. Der
Vergleich von (12 a) bis (12 d) mit (6 a) bis (6d) liefert zwischen den
phänomenologischen Koeffizienten die Zusammenhänge

a a, ßx — (bn + bp), ß2 ^-{bn- &„)

1

7i2=-+

(15)
2

1/1 1 \
7n 722 T(- + -),

Mit (15) ergibt sich aus (14 a)

W=bnJn + bJP. (14 a')

Diese Beziehung lässt erkennen, dass die Koeffizienten bn, bp eine
einfache anschauliche Bedeutung besitzen. Sie geben die Wärmemenge an,
die von der Komponente n (Elektronen) bzw. der Komponente p (Löcher)
pro transportierte Ladung F mitgeführt wird. bn und bp sind im wesentlichen

die von Meixner12) in die Thermodynamik irreversibler Prozesse
übernommenen Überführungswärmen (vgl. auch de Groot8)). Weiter
erhält man aus (14b) mit (15)

Jt anXn + apXp (14 b')
und schliesslich aus (14 c)

*»-*, £--£-. (14c')

Aus der Kombination von (14b') mit (14c') liest man die bekannten
Verknüpfungen

Jn VnXn > Jp ap Xp (16)

ab. Die Kräfte Xn und Xv sind wegen der in diesem Beispiel
vorausgesetzten Isothermie die Gradienten der jeweiligen elektrochemischen

Potentiale. Schliesslich entnimmt man für /„ und Jp aus (14d) und

/1 Jn A /j, const, die beiden gleichbedeutenden Differentialgleichungen

:

grad div fn + k*fn =-k*^-h-2F~ grad Ò, (17a)

grad div J, + k*Yv -k^f1-2F~ grad ô (17 b)
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Man kann nun weiter zeigen, dass im Rahmen des betrachteten stationären

Zustandes sowohl der einfache Fall eines homogenen Halbleiters
als auch zum Beispiel Shockley's Theorie13) des /»-«-Überganges aus
den Gleichungen (14a') bis (14c'), (16), (17a) und (17b) folgen. Dazu hat
man die in dem entsprechenden Modell vorgeschriebenen Randbedingungen

bei der Integration der Differentialgleichungen (17a) bzw. (17b)
zu benützen*). Es sei noch bemerkt, dass die hier abgeleiteten Gleichungen

(14a')( (14b'), (16), (17a) sehr allgemein sind. Sie gelten solange,
als die linearen Ansätze (12a) bis (12d) zutreffen. Weitere Voraussetzungen

wurden im Verlaufe der Rechnungen nicht gemacht. (14a'), (14b')
und (16) gelten unabhängig vom Rekombinationsmechanismus an jeder
Stelle des Halbleiters, also auch in der Raumladungszone eines p-n-Über-
ganges. In diesem Gebiet ist allerdings zu berücksichtigen, dass an und

av stark ortsabhängig sind. Verwendet man an Stelle des linearen
Ansatzes (12 d)

r=-Zòk(rìn~Vì>)*
k

für die Rekombination und Erzeugung, so erhält man statt (14d) bzw.
(17a) und (17b) auch bei kleinen Abweichungen vom Gleichgewicht
nichtlineare Differentialgleichungen.

Auf den eingangs erwähnten stationären Zustand erster Ordnung (J-,

vorgeschrieben) wollen wir hier nicht eingehen. Diese Rechnungen würden

eine Theorie des adiabatisch isolierten /»-«-Überganges Hefern, mit
der man Aussagen über die Temperaturverteilung in einer stromdurch-
flossenen Diode erhält.

4. Die thermoelektrischen Effekte

Bei den thermoelektrischen Effekten handelt es sich um die Verknüpfung

des Temperaturgradienten mit dem elektrischen Strom sowie mit
den Gradienten des chemischen und des elektrischen Potentials.

Wir werden uns vor allem mit der Wärmeleitung in einem homogenen
Halbleiter beschäftigen, in dem gleichzeitig noch andere Vorgänge
ablaufen können.

Wir fragen also nach der Verknüpfung zwischen den einzelnen in
unserem Halbleiter ablaufenden Prozessen. Diese Zusammenhänge ergeben
sich aus den phänomenologischen Beziehungen. Es ist zunächst zweck-

*) Die Voraussetzungen für die Shockleysche Theorie der ^»-»-Junction lauten :

An den Rändern der sich unendlich weit erstreckenden homogenen p- bzw. «-
Gebiete gilt J-, Jp bzw. Jn. Ausserdem wird die ^-»-Diode als eindimensionales
Problem behandelt, die Abweichungen vom Gleichgewicht als so klein angenommen,

dass nur in den Abweichungen lineare Terme berücksichtigt werden müssen,
und schliesslich soll in der Raumladungszone die Rekombination und Erzeugung
von Elektronen und Löchern vernachlässigbar sein.
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massig folgende Kräfte einzuführen :

--^gradJ, j[,X2. (18)

Die zugehörigen Ströme sind

W.XiJ,
und die phänomenologischen Ansätze zwischen diesen Strömen und den
Kräften (18) lauten

W=-jr grad T A cox'Jx + co2'X2,

X1=-~r grad T + Ân JX+XX2 X2,
(19)

/2 - °^-grad T + X2X Jx + l22 X2,

r= - ò(rjn- rjv).

Zwischen den 10 Koeffizienten liefern die Onsager-Casimirschen
Beziehungen folgende Zusammenhänge

0)1 — 0)i co-,

f.\2 -^21

mit denen wir aus den Gleichungen (19) dann

W -|-gradr + a>xJx + w2X2, (20a)

Xx= ^ grad T A hi /1 + K2 X (20 b)

72 - ^- grad T - lX2 Jx A X22 X2, (20 c)

r - ò(rln - ri,) (20d)

erhalten. (20a) sowie (20b) sind nun bereits die gesuchten Beziehungen.
Die Gleichungen (20 a) bis (20 d) gestatten zusammen mit (1), (2) und (4)

natürlich auch zeitlich variable Vorgänge zu berechnen. Zum Beispiel
lässt sich auf diese Weise in einem Halbleiter unter vorgegebenen
Anfangsbedingungen der zeitliche Verlauf der Temperatur bestimmen. Bei der
Diskussion der Beziehungen (20) werden wir uns zunächst auf stationäre
Vorgänge beschränken und aus der Vielfalt der möglichen stationären
Zustände zwei spezielle herausgreifen. Der Einfachheit halber betrachten
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wir hier im Gegensatz zum 3. Abschnitt nur kleine Abweichungen vom
Gleichgewicht, vernachlässigen also alle in den Abweichungen quadratischen

Terme.

Wir fragen zunächst nach W und Xx, wenn die Kräfte

=- grad T const., ]x 0

vorgeschrieben sind. Berechnen wir das Minimum der Entropieerzeugung
unter Berücksichtigung der Nebenbedingungen (A5), (A7) und (A8), so

ergibt sich, dass im stationären Zustand

X2 0, nn-np 0 (21)

sein muss. Bei diesem Minimalproblem sind die Lagrangeschen Multiplikatoren

konstant, weil wir hier homogene Halbleitervorausgesetzt haben
und die phänomenologischen Koeffizienten damit ortsunabhängig werden
(vgl. auch S. 11). Mit (21) erhalten wir aus (20a) bis (20d)

W =-Ar grad T,

CO,

(22)

Z1 ^-gradr
und ausserdem

0)/2=-^gradr. (23)

Es muss betont werden, dass die aus (22) folgende Wärmeleitfähigkeit
x QJT zunächst nur in dem hier betrachteten stationären Zustand gilt.
Weiter untersuchen wir die Verhältnisse, die sich einstellen, wenn wir
nur

=- grad T= const.

vorschreiben. Dann folgt aus der Minimalbedingung für die
Entropieerzeugung, wieder unter Berücksichtigung der Nebenbedingungen (A5),
(A7) und (A8),

X2 0, nn-riv 0, /1 0. (24)

Aus (24) lässt sich folgendes Resultat entnehmen : Auch wenn wir nur
— IjT-grad T const, vorschreiben, stellt sich der stationäre Zustand

ein, bei dem im ganzen Halbleiter der Gesamtstrom Jx verschwindet. Es

gelten also auch hier die Gleichungen (22) und (23) mit der Wärmeleitfähigkeit

x QJT. Dieses Ergebnis ist überraschend.
Zum Abschluss unserer Untersuchungen beschäftigen wir uns noch

etwas mehr mit dem soeben betrachteten Zustand, bei dem — 1/7+ grad T
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const, vorgeschrieben ist. Nehmen wir an, dass sich der betrachtete
Halbleiter ursprünglich im thermodynamischen Gleichgewicht befand
und dann plötzlich in ein Temperaturfeld gebracht wird, so dass

— — grad T const.

gilt. Dann werden sich im Innern des Halbleiters folgende Prozesse
abspielen : Der Temperaturgradient im Halbleiter wird praktisch momentan
aufgebaut, noch lange bevor sich in den Konzentrationen Abweichungen
vom Gleichgewicht bemerkbar machen. Als Folge davon werden
«Thermodiffusions »-Ströme oj-i-ljT grad T und — w2-ljT grad T zu fliessen
beginnen und einen Konzentrationsgradienten verursachen. Dieser gibt
nun wieder Anlass zu Diffusionsströmen, die den Konzentrationsgradienten

auszugleichen trachten. Schliesslich wird nach genügend langer Zeit
ein stationärer Zustand erreicht, wie wir ihn oben beschrieben haben.
In diesem Zustand stellt sich auf die soeben beschriebene Art ein

Konzentrationsgradient ein, dessen Grösse wir aus (24), X2= 0 und (A5)
entnehmen können :

i z, h

grad n — grad T ¦
RT(l/n + l/p) -

Man beachte, dass der Halbleiter neutral und daher dn dp ist. de
Groot14) hat den zeitlichen Verlauf der Konzentration bei einer binären
Gasmischung unter ähnlichen Bedingungen berechnet. Für weitere
Einzelheiten bezüglich des zeitlichen Verlaufs der Konzentrationen verweisen
wir hier auf diese Arbeit.

Es ist interessant, nach dem Wärmeleitungskoeffizient im ersten
Moment nach der Störung zu fragen. Beachtet man, dass unter diesen

Bedingungen

ÒT T nk T*
0 grad 0, grad -*L (-^-^ grad T, (.;+ -^ „ - ;,', hk

Ko — j^

gilt, wobei hk die Enthalpie der Komponente k bedeutet, so ergibt sich

aus (20 a)

[e +i + M(^-Wlt){K-^+Z{hn + h4- (25)

Im allgemeinen wird die Wärmeleitfähigkeit zeitabhängig sein. Im
ersten Moment nach der Störung eines Gleichgewichtes (t 0) ist x x0

(25). Hat sich der stationäre Zustand eingestellt (t -> oo), so ist die
Wärmeleitfähigkeit x durch x^ qjT gegeben. Wie Meixner10) und de
Groot8) bei Gasmischungen bereits darauf hingewiesen haben, ist die
Differenz x0 — ^proportional zu den «Thermodiffusionskoeffizienten»
cox und a)2. Der Vergleich von x0 mit x^ zeigt, dass man auch bei einem
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Halbleiter definieren muss, unter welchen Bedingungen die Wärmeleitfähigkeit

gemessen werden soll.
Es bleibt nun noch die Rücktransformation auf unsere alten Kräfte

- — grad T, Xn und XP

durchzuführen. Diese Zustandsvariablen erweisen sich als bequem beim
Vergleich unserer Resultate mit den in der Literatur angegebenen. Zu
diesem Zweck vergleichen wir die Beziehungen (20 a), (20 b) und (20 c)
mit den entsprechenden Gleichungen (6 a) bis (6 c). Als Ergebnis erhält
man

Q a + ^- (bn - bp)\

^i=a~fbnAafbp,

co2 2 2n2iL (bn - b,)

J _
X

J _ °p-°nAll —- ~ > ^12 ~ > /l22

(26)

(20 a) und (20 b) schreiben sich nun

W =-(a + ^L(bn-bP)*)±r grid T+ (20a')

+ (~K+^- bv) [fn + /,) + -^ (bn - bP) (Xn - XP),

-£- Xn A °f Xp (£ bn A % b,) i grad T + ±-(fn+ /„) (20b')

(20 a') und (20 b') sind bis auf den letzten Term der Gleichung (20 a') identisch

mit den bereits früher (vgl. z. B. Madelung7)) angegebenen
Ausdrücken. Sie gelten, wenn gleichzeitig alle drei Kräfte, — 1/7+grad T,
Xn und XP vorgegeben sind. Der letzte Term in (20 a') rührt von der
sogenannten ambipolaren Diffusion her (vgl. Price3) und 7)) und ist im
allgemeinen nicht vernachlässigbar. Untersuchen wir hingegen den speziellen

Fall eines Halbleiters im stationären Zustand mit Jx 0 und — 1/7+
grad T const., so verschwindet dieserTerm, wie wirbereits gesehen haben.

Formen wir (20 b') etwas um und führen die Ausdrücke für Xn und XP
ein, so erhält man durch Vergleich mit dem entsprechenden Ausdruck in
7) (Gleichung (38.10), S. 91) quantitative Übereinstimmung des

Koeffizienten von IjT¦ grad T (absolute Termokraft cp), wenn man

bn=-^(2RT+EL),bp^~(2RT-Ev) (27)

2
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wählt. Im Anhang III wird gezeigt, dass man für cp auch im Falle des

Eigenhalbleiters den richtigen Ausdruck erhält, wenn die Beziehungen
für f„ und £„ verwendet werden. Bemerkenswert ist schliesslich, dass mit
der Wahl (27) für b„ und bp auch der Zusatzterm zur Wärmeleitfähigkeit
in (20 a') mit dem in der Literatur bekannten übereinstimmt. Dieser Term
rührt vom Energietransport durch Diffusion von Elektron-Loch-Paaren
her, wie man sich anhand von (22) und (23) überlegt, und ist in der
Literatur als Anteil der ambipolaren Diffusion an der Wärmeleitung3)7)
bekannt.

Über den Anteil a an der Wärmeleitung sind im Rahmen unserer
Theorie keine Aussagen möglich. Dieser Term enthält den Beitrag der

beweglichen Ladungsträger. Identifizieren wir x mit der Wärmeleitfähigkeit

des gesamten Halbleiters, so ist in a auch der Anteil des Gitters
an der Wärmeleitfähigkeit enthalten.

Abschliessend geben wir die Wärmeleitfähigkeit für die drei von uns
diskutierten Fälle in den ursprünglichen Koeffizienten an

a) stationärer Zustand 2. Ordnung, vorgegeben : Jx 0, — 1/ T ¦ grad T
const, sowie
b) stationärer Zustand 1. Ordnung, vorgegeben : — 1/7+ grad T const.

H*A^(bn-bp)z) (28)

c) Im ersten Moment nach der Störung durch — 1/7+ grad T ^ 0 eines

ursprünglich im Gleichgewicht befindlichen Systems

* *o "oo + Y [+7 ^n bn + °v bp}2 + A ^" bn hn + a* hv h"A ¦ (25')

Die Enthalpien hn und hp sind im Anhang I angegeben.

5. Schlussbemerkungen
Wir wollen noch einige Überlegungen anfügen, die sich mit der Anwendung

des hier benützten Formalismus der Thermodynamik irreversibler
Prozesse auf weitere Halbleiterprobleme befassen.

Wir haben bereits erwähnt, dass man Aussagen über die Temperaturverteilung

in einem stromdurchflossenen /»-«-Übergang verhältnismässig
einfach gewinnen kann. Ganz entsprechend liesse sich auch die
Temperaturverteilung in einem Leistungstransistor berechnen.

Eine interessante Möglichkeit ist die Anwendung dieser Theorie auf
Erscheinungen, bei denen ein komplizierterer Rekombinationsmechanismus

ausschlaggebend ist. Wir denken zum Beispiel an ähnliche wie die

von Sah und Mitarbeitern15) bei /»-«-Dioden und Transistoren
untersuchten Probleme. Arbeiten in dieser Richtung sollten ohne wesentliche
Änderungen mit der hier verfolgten Methode ausgeführt werden können.
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Die Erweiterung dieser Theorie auf die Effekte in stationären Magnetfeldern

ist ebenfalls möglich und lohnend, vgl. u. a. dazu die Arbeiten
von Callen16).

Schliesslich sei erwähnt, dass mit der Berücksichtigung der Variabilität

von EL und Ev eine weitere Verallgemeinerung unserer Rechnungen
erreicht werden kann. Dies würde gestatten, die Erscheinungen in
Übergängen zwischen Halbleitern mit verschieden breiten verbotenen Zonen

zu erfassen. Über die praktische Verwendbarkeit derartiger Übergänge
hat letzthin Armstrong17) berichtet.

Herr Professor Dr. E. Baldinger hat durch sein Interesse an diesen

Untersuchungen meine Arbeit sehr gefördert, wofür ich ihm herzlich
danke. Herrn Professor Dr. M. Fierz habe ich sehr für eine kritische
Durchsicht des Manuskriptes zu danken.

Die Stiftung Hasler-Werke-Bern hat in dankenswerterweise durch ihre
finanzielle Unterstützung diese Untersuchungen ermöglicht.

Anhang I
Der Vollständigkeit und der Geschlossenheit der Darstellung wegen

werden wir hier die elektrochemischen Potentiale einführen und ihren
Zusammenhang mit den von Shockley13) benützten «Quasi-Fermi-
Niveaux» erläutern. Schliesslich wird aus dem chemischen Potential die

Enthalpie der einzelnen Komponenten abgeleitet.
Elektronen genügen der Fermi-Statistik mit der Verteilungsfunktion

L(E)
AE-Cn)lkT + 1

welche die Wahrscheinlichkeit angibt, dass ein Zustand der Energie E
mit einem Elektron besetzt ist. £M ist die freie Enthalpie pro Elektron*),
das heisst das chemische Potential.

Mit N0* wird die Zahl pro cm3 der im Leitungsband vorhandenen Zu-
:ände be:

lässt sich
stände bezeichnet. Dividieren wir N0* durch die Loschmidtsche Zahl, so

N0 N,*jL
als die maximal mögliche Konzentration in Mol/cm3 von freien Elektronen

im Leitungsband interpretieren. Es gilt

NnL=2(27l™"kTJ/*"oJ

*) Vgl. etwa den Artikel von A. Sommerfeld und H. Bethe, Elektronentheorie
der Metalle, im Handbuch der Physik (Geiger und Scheel), Bd. 24/2, S. 333.
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Entsprechend lässt sich eine Verteilungsfunktion für die Löcher
einführen

1p -1 In

und das chemische Potential t>p der freien Löcher im Valenzband
definieren. Für die maximal mögliche Konzentration freier Löcher im Valenzband

ergibt sich

Eine Möglichkeit zur Berechnung von £„ und Çp, die wir nun pro Mol
zählen, liefert das Integral über sämtliche von den Leitungselektronen
besetzten Zustände

£ oo

-- — f 1 SE-ELyi2 I E

Der Einfachheit halber nehmen wir die Energien der Bandränder des

Valenz- und des Leitungsbandes EL und Ev als temperaturunabhängig
und örtlich konstant an und setzen weiter voraus, dass die Störstellen der
von uns betrachteten Halbleiter vollkommen ionisiert sein sollen.

Im Grenzfall verschwindender Entartung (das heisst n<^N0) erhält

11

«, e(in-EL)IRT

also
N„

a.

t;n=EL+RTln^. (AI)

Analog ergibt sich für die Löcher

CV=EV- RThi-£-. (A2)

Bei elektrisch nicht neutralen Komponenten und beim Vorliegen
elektrischer Felder mit dem Potential 0 treten an Stelle der chemischen
Potentiale f£ die elektrochemischen Potentiale r\k. Sie sind durch

Vn £„ - F0,
(A3)

Vp Cp- F0

mit den chemischen Potentialen verknüpft. Zu den Vorzeichen des
chemischen und elektrochemischen Potentials der Löcher ist zu bemerken,
dass sich streng genommen an Stelle von (A2)

Çp* -Ev+RT In+*r
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ergibt und für das elektrochemische Potential wie üblich

V CS A F0.
Aus Gründen der bequemeren Schreibweise setzen wir jedoch

S p S p > tfp t]P '

wobei dann allerdings im 2. Abschnitt in (3) das Vorzeichen von rjp im
Vergleich zu rjp* wechselt*).

Die von Shockley13) verwendeten «Quasi-Fermi-Levels» (Q. F. L.)
cpn für Elektronen und cpP für Löcher hängen mit den elektrochemischen
Potentialen (A3) wie folgt zusammen :

- Fcpn rjn, - Fcpp ilp.

Gleichzeitig wird das elektrische Potential ip anders gezählt**) und
hängt mit dem von uns eingeführten 0 über

rp 0AX

1 2 [ N0 ^ RT J '

_ FX — f— In 2*. -i- i;l+ev
2 [2 mn

' RT

zusammen. Es ist zu beachten, dass % auch bei konstant angenommenen
EL und Ev von der Temperatur abhängt. Man erhält schliesslich in
Übereinstimmung mit Shockley

f

+ OT(Vfl-

n «j e

F

p nte
Die Q. F. L. sind in dieser Art nur für ein nichtentartetes Elektronen-
Löcher-Gas definiert.

Aus den chemischen Potentialen (AI) und (A2) folgt für die Enthalpien

/iÌi]-_l)i (l^AjL\---^h\dT T )n Tznn, ydT T ^ T2nv
und durch Einsetzen von (AI) und (A2) ergibt sich

*) Wegen dieser Vorzeichenfragen vergleiche man die guten Darstellungen von
Shockley18), S. 178ff., und Spenke19), S. 60ff.

**) Man ordnet — Fy_ Et eine Energie Et zu, wobei Et praktisch in der Mitte
der verbotenen Zone liegt.
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Berücksichtigt man die Ausdrücke für P0 und iV0, so wird

K-el-t(-^-)+1rt, ^
Anhang II

Bedingungsgleichungen zwischen Strömen und Kräften

Allgemein folgt aus der Definition von X2

X2 ~ T grad HspL. (A5)

Im stationären Zustand, das heisst d .jdt 0, erhalten wir aus den
Massenbilanzen (2) der Komponenten

div J1 0 (A6)

àivJ2 2FÓ(Vn-rjp). (A7)

Schliesslich ergibt sich aus der Neutralitätsbedingung
pdiv grad 0 (Na — Na + p - n) 0 dn dp

für homogene Halbleiter eine weitere Beziehung, die im Falle
— 1/T-grad T const, und bei kleinen Abweichungen vom Gleichgewicht

die Form

div Xx ^L div X2 (A8)1 p4n l v '

annimmt, wie man durch Ausrechnen leicht bestätigt.
Den 4 Kräften bzw. Strömen steht als erste Bedingung (A5) gegenüber,

als zweite tritt im stationären Zustand (A7) hinzu und im Falle des homogenen

Halbleiters, wenn ausserdem — ljT¦ grad T const., erhält man
als dritte Bedingung (A8).

Anhang III
Aus (20b') wird mit den im Text erwähnten Umformungen

^f- grad -fr + ~- grad -^-- grad 0= (A9)

jV K (K + AA)+a» (b* + ¥)} Srad r + ~ (/« + Jp) ¦

Mit den entsprechenden Bemerkungen, wie wir sie für die Wärmeleitfähigkeit

auf Seite 16 gemacht haben, befassen wir uns hier mit dem
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stationären Zustand 2. Ordnung Jx 0, — 1/7" • grad T const. Dann
folgt aus der zweiten Gleichung von (22) mit (21) und (26) für den
Koeffizienten von grad T

cp - -L [(2 - In JL) pn n - (2 - In ±-) ptpp\ (AIO)

wobei noch £„ £s zu berücksichtigen ist. Insbesondere ergibt sich für
einen Eigenhalbleiter mit n p und Ar0 Mmnsl2, P0 MmJ*12

'—fteirie+wK-^]- •-*¦ ,A11>

Schliesslich erhält man für die Wärmeleitfähigkeit aus (22) bzw. (28)
mit (26)

4-+(4)2^(#+4)2 (A12)00 j-

in Übereinstimmung mit 7).
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