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Theory of the Scattering Operator II
Multichannel Scattering*)

by J. M. Jauch*¥*)
CERN, Theoretical Study Division, Geneva

(10. VIII. 58)

Abstract. The mathematical theory of the scattering operator is developed for
the general scattering systems involving an arbitrary number of channels. Itincludes
as a special case the theory for ‘simple scattering systems’ given in an earlier paper.
The scattering system is defined as a quantum mechanical system which satisfies
certain asymptotic and completeness conditions given in Section 4. The existence
of the S-operator as well as its unitary property is then a rigorous mathematical
consequence of this property. A crucial step in these deductions is the orthogonality
theorem for the left projections of the wave operators which is proved in Section 5.
In the last Section 7, we discuss the various ways of introducing the ‘in’ and ‘out’-
operators and their relation to the S-operator.

1. Introduction

In a recent paper?!) the author has developed the theory of scattering
on a mathematically rigorous foundation for the so-called ‘simple scat-
tering systems’. This paper is an extension of this work to the case of
multichannel scattering. The basic philosophy adopted in this paper is
much the same as in the previous one. Only mathematically well defined
concepts, symbols and operations are employed. All steps are mathe-
matically rigorous. The space of the state vectors is the classical Hilbert
space and, in view of recent discussions we may add, this implies a posi-
tive definite metric. _

The main result of this paper is the precise formulation of the concept
of a multichannel scattering system and the proof of the existence of the
scattering operator as well as its unitary property in a certain subspace
of the Hilbert space. As was already pointed out by EkKSTEIN?)3) the
operator defined as S in our earlier paper, does not have a generalization
in the multichannel case. The suitable operator for this purpose is another
one defined and discussed in Section 2.

*) Supported in part by the National Science Foundation.

**) On leave of absence from the State University of Iowa, Iowa City, Towa,
U 8. A
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The results obtained are equally valid whether we are dealing with the
relativistic or non-relativistic form of the theory. Furthermore, the for-
malism is developed in such a manner that the cases with bound states
are also included. The number of channels need not be finite as it is the
case for instance in nuclear reactions.

The formulation is sufficiently broad so as to include all known types
of scattering and reaction processes. In particular, we feel confident that
the formulation presented here will serve as a sufficiently precise mathe-
matical framework within which it should be possible to accommodate
the theories dealing with fundamental particles and their interactions.

2. The operators S and §’ for simple scattering systems

A ‘simple scattering system’ was previously defined!) as a quantum
mechanical system with the following properties:
For every fe  the strong limits

im V;U,f=/,=0Q./ (2.1)

t— Foo

exist and the range of the operators £, is equal to the subspace N of the
continuum states of V,. ‘

In these expressions V, = e~ (— co < ¢ < + o0) is the transforma-
tion group of the system and H is the total energy operator. The group
U, = e " represents the free motion of the system in the absence of
the interaction. H, is the kinetic energy operator for the particles partici-
pating in the scattering process.

The conditions (2.1) have a direct interpretation in terms of the actual
- scattering process and they entail the existence of a unitary scattering
operator

S=o* 0. (22

The ‘wave operators’ 2, are isometries in all of § and they satisfy
for both signs

Q=1

2.3
Q0*—E, %)

where Ey is the projection operator into the subspace of continuum
states of H.

All these statements were proved in reference!) and are here briefly
repeated for convenience.

The definition (2.2) of the scattering operator is the one which is usually
implied in much of the current literature on this subject. It is possible to
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define a different scattering operator, which we shall temporarily denote
by S':
=02 0. (2.4)

This operator has properties very similar to S which we shall enumerate
here briefly.

The interest in this operator arises from the fact that in a multi-
channel theory it has a proper generalization while the operator (2.2)
cannot be so generalized.

We observe first that the operator product in (2.4) is well defined since
the £ and £2* are bounded operators and are therefore defined in the
entire space §. We can further form without restriction the products

S'S*=0. 00 Q*-0 Q' =E,, (2.5)
and similarly
S*S'=E,. (2.6)
Furthermore
'=Q. 20 Q-0 O*=-5, (2.7
and similarly
S'Ey=5'. . (2.8)

The operator S’ annihilates therefore all the elements in M = N1 and
in the invariant subspace N it is unitary. We shall say S’ is ‘quasi-
unitary’.

The following relations between the two operators S and S’ are direct
consequences of the definitions (2.2), (2.4) and the relations (2.3).

QSR =S=0*5'Q_, (29)
Q% §'Qu=1, (2.10)
QT S'Q =852 (2.11)

The operator S’ commutes with V', but not with U,. This follows from
the intertwining property of £ which was proved in reference?):

V,.Q2=0QU,. (2.12)
For instance one obtains
SV=0 2"V=020 UQ"=V,2 Q"=VS".

Since U, does not commute with S’ the operator S'(f) = U; S U, de-
pends on ¢. It satisfies the following relations

S§'(— o00) =8"(+00)=S. (2.13)
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These limits are understood in the strong operator topology. This means
for every fe $ we have

1S @H—-S)f|—=0 for t — 4 oo. (2.14)
One may verify this by using the relations proved in reference?):
2, (+00)=5=0_(-oo)
2, (~00)=T=Q_(+09),
where Q(t) = U; Q U,. Thus for the limit £ > oo we write the decompo-

sition ) .
S'() — S = Q) (2% (1) = 1) + (2, () — 5).
Using the boundedness of the (¢), we find
[SO =7 = 1R -Nf] + | (2 - (2.10)

Since both terms on the right hand side tend to zero with ¢ > + oo by
(2.15) the left hand side does so too and one of the relations (2.13) is
established. The other is verified similarly.

(2.15)

3. The channel energy

The most characteristic feature of the general scattering process is the
occurrence of ‘free’ particles before and after the collision. Every set of
free particles is characterized by a set of parameters which expresses the
values of the rest masses, spin, charge and whatever other variables are
needed for a full description of the free particles. Each possible set of
values for these parameters determines a different ‘channel’ of the
system.

A free particle is one which moves exactly the same as if other particles
were not present. The Hamiltonian for the free motion of the particles
in a channel (also called the channel Hamiltonian) is therefore merely the
sum of the kinetic energy of all the particles in the channel. This Hamil-
tonian is in general not obtained from the total Hamiltonian by the mere
omission of certain terms, as it was the case in the simple scattering
systems.

We shall illustrate this on one of the simplest examples of multi-
channel scattering. Let us consider three fundamental particles labelled
1, 2 and 3.

Let the total Hamiltonian be of the form

2 2 2
He Sl p P Py ot Vst Vi

_2m1 2 my 2 my

where the potentials V', describe the three possible two-body interactions
of these particles. Let us assume the interaction between 1 and 2 is such



Vol. 31, 1958 Theory of the Scattering Operator I1 665

that there exists one or more bound states, represented by square inte-
grable solutions of the Schrédinger equation

(Fs B n)ww

2 my 2 my

The state vector ¥ describes then a fragment which can enter a scattering
process or which may be produced as a final state. The total mass of the
fragment is

M:ml“]"”llg_[E[,

and the total kinetic energy is given by
_F ¥ non relativistic
g | 2m
0 - S e e T
VM 2 + P2 relativistic
where P = (p; + p,) is the momentum of the centre of mass.
It is conceivable that the interaction between another pair, say 2 and

3, 1s sufficiently strong so as to produce also a bound state. This will give
rise to a new fragment of the mass

M’ —=my+mg— | E"|

where E’ is the binding energy of particle 2 and 3. The corresponding
expression for the kinetic energy of this fragment is then given by

b

HO _ 2M’

]/M 24 P2 relativistic

P2 non relativistic

where P’ = (p, + p,)-

In this description every bound state which leads to a different binding
energy is in a different channel. For a degenerate bound state we obtain
a fragment with additional internal degrees of freedom.

It is clear from this example how one would obtain the most general
channel Hamiltonian for the fragments composed of any number of
particles. We shall not elaborate this approach however. Instead we shall
formulate the properties of channel Hamiltonians which we believe to be
essential for the mathematical formulation of multichannei scattering
theory.

These properties are purposely fromulated sufficiently general so that
they would presumably be satisfied for elementary particles as well as
stable fragments. From the point of view of scattering theory the distinc-
tion between elementary particle and composite fragments is an entirely
superficial one and this is as it should be. The physical picture of an
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elementary particle breaks down as soon as internal structure reveals
itself in certain collision processes. On the other hand, a stable fragment
may in every respect behave like a fundamental particle as long as the
collisions are sufficiently slow to leave the fragment intact. In a good
scattering theory therefore this distinction should not appear as an essen-
tial element. .

In agreement with this requirement we shall describe the properties
of the channel Hamiltonian which are derived from the description of
channels in terms of fragments but which are presumed to have general
validity for any kind of particle composite or elementary. Instead of
working with the channel Hamiltonian H we shall immediately express
the characteristic properties in terms of the ‘channel operators’

U = g~ iHat

Channel operators U\ are a set of continuous unitary representations
of the additive group of real numbers (— co < ¢ < + o0) in the under-
lying Hilbert space of state vectors with the following three properties:
(1) All U commute with one another for all o and all ¢:

(U@, U =0, all «,f,2,. (3.1)

(2) The family of spectral projections of the infinitesimal generators of
the group are continuous. There are no discrete eigenvalues.

(3) The operators U™ are ‘essentially different’ for different indices.
With this we mean

U= UPf for all ¢ implies f =0 unless o = 3. (3.2)

4. The definition of a scattering system

The channel operator which we have defined in the preceding section
are rarely known explicitly. Instead one usually knows only the total
energy operator H or its corresponding unitary group

V,=e . (4.1)

It is clear that all the information as to the possible occurrence of various
particles as well as their physical properties should be contained in the
structure of the group (4.1). The different particles form the different
channels and are described by certain channel operators U{*. We shall
now formulate the condition which is needed in order that the group (4.1)
describes particles associated with certain channel operators U™:

A unitary group U with the three properties described in the preced-
ing section is a channel of the system defined by V, if there exists at
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least one element f € §), f = 0, for which the strong limits
lim V}U®f—=f® (+.2)
t— F oo
exist.

The condition (4.2) may be considered the defining property of a
channel energy. It extracts from the total transformation operator the
kind and energy of the stable fragments which can be associated with it.
Since this condition is an asymptotic property the definition of particles
which are obtained in this way includes already all the possible self inter-
actions. In the language of field theory: The particles are ‘dressed
- particles’.

On the other hand, we see that in general it is not possible of introduc-
ing one single free-particle Hamiltonian. Every channel, that is every
kind of free particles, has its own energy operator associated with it.

As a first consequence of the defining property (4.2) we shall show that
if there exists one single element f for which (4.2) is satisfied, then there
exists an infinite-dimensional subspace of § with the same property.

Let D, be the set of elements f such that the limit (4.2) exists. We first
observe that D, is a closed linear manifold, that is a subspace of §. The
linear property is obvious. In order to prove the closure property we
consider an arbitrary sequence f, € D, for which f, - f with # - oo,
We must show that the limit (4.2) exists for the element f.

Let us define W, , = V] U, — V; U,, then

| Werd 1 <IWeoful + 1 We (= Fa [
The second term may further be estimated by

I Weol ( =) | <I W [ 1 F=F | <2[F—Tul-
The last step is a consequence of the triangle inequality
|[4+B|=[4]+]B]

for the bounds of bounded operators.
We have therefore in all

[ Wl | <IW,ifull +2[ /=1l

‘We choose first a fixed » such that, independently of ¢, and #, the last
term is < ¢/2 for an arbitrary € > 0. We then determine a 7', such that
for¢, > T and #, > T the first term is < €/2 too. This is possible because
In € Dy. For such values of #, and #, we have then

| W, f]<e allt,> T, t,> T.
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The elements of the form V} U,f satisfy therefore the Cauchy criterion

and because of the completeness of § lim VU, f exists. The limit £ > — oo
t— 4+ 00
1s established in the same manner. Thus D, is closed, q.e.d.

We now show that the subspace D, is invariant under the group U™.
This means if f € D, then U™ f € D,. Indeed :

lim V;UPU®f= lim V,V;U*f=7V,}., (4.3)
t--+ 00 t—+ oo
and D, is seen to be invariant under U®.

We can now easily complete the proof that D, is infinite dimensional.
Assume to the contrary that D, is finite dimensional. Then the reduction
of U™ to the invariant subspace D, furnishes a finite dimensional
unitary representation of the group of real numbers. Such a representa-
tion has only discrete eigenvalues, this contradicts the basic property (2)
of the previous section. Thus D, is infinite dimensional, q. e. d.

It was shown previouslyl) that the mapping f - /) is a linear iso-
metry. The ranges R of this correspondence are therefore closed linear
manifolds, that is subspaces.

The set of subspaces R as o runs through all the channels of the

system span a linear manifold which we denote by{R(j[‘)}. Its closure shall
be denoted by

R, ={R7}. (4.4)

We shall further write IV for the subspace of continuum states of V',
that is, the orthogonal complement of the subspace M of proper elements
of V.. '

With these preliminaries out of the way we define the general scatter-
ing system as follows:

A quantum mechanical system, described by the unitary group V., is a
scattering system if there exists a set of channels «, together with their unitary
groups U™, such that

R,=N=R_. (4.5)

The physical meaning of the requirement (4.5) is simply this: Every
continuum state must be a superposition of scattering states, that is,
states which are in the ranges R'".

It is readily seen that this definition of the scattering system is a gener-
alization of the definition!) for a ‘simple scattering system’ to which
it reduces if there exists only one channel.

The number of channels may be finite or infinite. We shall see in the

next section, however, that in case it is infinite it is necessarily countably
inifnite.
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This definition of a scattering system embodies the minimum require-
ments which must be placed on a scattering system. Yet there are some
far reaching conclusions which can be drawn from it as we shall see in
the following sections.

5. The wave operators

We shall now assume that V', describes a general scattering system as
defined in the preceding section. There exists then a set of commuting
unitary groups U\ such that for all f € D, |

lim VyU®f—f2. (5.1)
t— F 00 '

Let R'Y be the set of elements /. According to the previous paper?)
the mapping of D, onto R(j:‘) is a linear isometry, and R(:‘;‘) is a subspace
(= closed linear manifold). This mapping defines therefore a bounded
linear operator 2" on D, by the condition

QOf_fD feD,. (5.2)

Such an operator can always be extended in a continuous manner to
the whole space by, for instance, the following procedure: Let f € § and

f=g-+h geD, heD). Define
N = g, (5.3)

We shall denote this extended operator with the same symbol.
To every bounded operator 2% can be associated uniquely%) an ad-
joint operator 2{”* by the condition

(Q¢%,8) = (1,2V¢) (54

for all f, g € $. It follows from this definition that .Q(f)* vanishes on the
orthogonal complement R‘®+ of the range of 2%,

In order to survey some of the general properties of the wave operators
we shall introduce a few definitions and deduce from them some elemen-

tary consequences.

Definition 1.

A bounded linear operator £ is a partial isometry if £ =Q*Q is a
projection. _ :

It follows that if £ is a partial isometry then F = 0* is also a pro-
jection. ' |
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In order to see this we note that
(QE-IVE-DN=E-T)QQE-I=(E-NEE-I)=0.
Therefore for any f € §
| QE —I)f = (1, (2(E — D)*QE ~ 1) ) =0,

thatis Q(E — I) f=0forany f € §,
or QE-—-I1)=0, (5.5)
or also QE=Q. (5.6)

From this we obtain

PP DR Q¥ — DEQ* — Q0F . F

and e
The last two relations express that F is a projection.

Definition 2:
If Q is a partial isometry then
E = Q*Q is called the right-projection and
F = QQ0* the left-projection of £.
It follows obviously that conversely E is the left-projection and F the
right-projection of Q*.
Left- and right-projections have a maximal property as follows:
The projection E is the smallest projection with the property
QE =8
and F is the smallest projection with the property
Fi= 4.

We recall the partial ordering of projections: The projection E is
smaller than E,, if for every f €

|EF<|E.f]-

This will be written as E < E;. An equivalent fromulation of this rela-
tion is E.E = BE;, = E,

In order to verify the maximal property of the projection E let us
assume that E; is another projection such that

QE, - Q.
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We have then
O*QFE, = Q*Q =E

or
EE,=E

Since both E and E, are projections we obtain also by taking the adjoint

which means E < E,. The second half of the assertion is proved in a
similar manner.

The subspaces which are the ranges of the projections E and F are
respectively the ranges of * and of £. For instance if f is in the range
of F then Ff = f = Q0*f, hence it is in the range of L. Conversely if f is
in the range of 2 there exists a g such that f = Qg = F{g. Therefore f
is also in the range of FF. The two ranges are identical. In a similar way
one verifies the second half of the statement.

We shall now apply these concepts to the operators 2. From the
earlier paper!) and the extension (5.3) it follows that they are partial
isometries. We define

E, — Q@ QO (5.7)
Fl® — QW Q@x, (5.8)

For the projections E, the distinction between the two cases 4 is un-
necessary since the two projections are identical.
We shall now prove the main result of this section:

T heorem.:

The projections F (j:‘) are orthogonal for different channels, in the sense
FOFP_FWF® -0 for wa%p. (5.9)

Proof:

We shall prove the case with the minus sign and omit the sign index.
A fully equivalent statement of the theorem is the following: Let f*®
and gl® be any two elements of § with the property

F@ [ _ fo) FB) olB) _ glP) (5.10)
then '
(f@, ) =0 for a=+f. (5.11)

We shall prove the theorem in this form.
According to the preceding remarks the elements f® and g'#) are in
the ranges of the operators 2% and 2'? respectively. This means there
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exists element f € D, and g € D such that

A=V UP =% for i-—>ee (5.12)

gP=VIUPf— P for ¢— oco. (5.13)

We shall first show that for any pair of elements f and g the operators

W, = U+ Ug# (5.14)

which are also a unitary group, converge weakly to zero in the limit
t > oo. This means

(f,Wig) =0, fort—oco; feD,, geD,. (5.15)

We shall first show that the limit exists and then that it is zero.
That it exists may be seen from

(1, W,e) = (/i &) - (5.16)

Both £ and g” strongly converge to f* and g® respectively and their
scalar product converges to (/*, g®):

| (52, &7) — (1, )|
< l ((ﬁa) f(oc) (6) I + l f(cx) (:5’) — g(ﬁ))) |
<[A2=121 16?1+ 112] 187 -1

We have made use of Schwartz’s inequality and || g’ | = | ¢ |. Since
each of the ¢-dependent factors goes to zero (Equation (5 12) and (5.13))
the assertion that the limit (f, W,g) exists for £ - oo follows. Moreover,
it is shown that this limit is equal to (f*, g'/).

We shall next show that this limit is zero. This is easily established by
using a corollary of the mean ergodic theorem of v. NEUMANN®). Accord-
ing to this

lim - [ (1, W,g) = (1P (5.17)
—00 b

where P is the projection operator into the subspace of proper elements
of W, with eigenvalue + 1. On the other hand, since the integrand has
the limit (/*, g!#) for ¢ - oo we also have

(f.Pg)=(/¢"). C (518)

It remains to show that P is the zero operator.
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Suppose f is in the range of P then by definition of P
W.,f=f forallt¢

or

URf=UPS (a+f). (5.19)

According to property (3) of the channel operators (Section 3) this imples
f = 0. Consequently P = 0 and therefore by (5.18) (f*, g!¥)) = 0. Since
f® and g were arbitrary elements in the ranges F® and F¥) we have

F@F®A -0 for a+pf. q.ed.

We shall now mention a few useful consequences of this theorem.

First we observe that the number of channels is either finite or count-
ably infinite. Indeed, since §) is separable and the projections F® or-
thogonal, their number is at most countably infinite and it is equal to
the number of channels.

Furthermore since by the definition of the scattering system the closed
linear manifold spanned by the ranges R is the whole of the space of
continuum states NV, we have

Ey=YF9= yF®, C(5.20)
o B

where Ey is the projection operator with range N.
As a further consequence of the orthogonality relations (5.9) we have

QED = E § 5= 2% 00, (5.21)

For instance the first of these equations is obtained from
Q% QB _ Q% F& FO) ) _ Q% f0 Q05— Q0% Q05 _E 5,
Finally we note that the operators 2@ have the intertwining property
V, 0% = QDU (5.22)

from which follows, among other things, that the projections F (j’:‘) com-
mute with V,

[FO, V] =0 allalla. (5.23)

There is no orthogonality theorem for the domains D, or their pro-
jections E,. In fact it is quite possible that one of the domains D, may
be the entire space §. In any case the different E, are in general not

orthogonal.
*



674 J. M. Jauch H.P.A.

6. The scattering operator

The operator to be defined is the generalization of the operator S’ of
Section 2. In order to avoid a too cumbersome notation, we shall omit
the prime.

We define a sequence of operators S, by

S, — ZQ(a) Q) (6.1)

and investigate the limiting properties of these operators as » increases
indefinitely. When the number of channels is finite then the sequence S,
is finite and stops for some number 7, In this case there is no limit
problem. We define

S=5,. (6.2)

In case the number of channels is infinite S, converges strongly with
n —> oo to a limit S on all of §.
To show this consider an arbitrary element f € § and the sequence

We must show f, converges to some element g. Because §) 1s complete
it suffices to show that f, is a Cauchy sequence.
Assuming n > m, we have

UamnlP= .= Su /1= (1, £ @002 ap00=/).
o, f=m
The general term under the summation sign can be simplified by using
Equation (5.7) and (5.8).
RO § O E Q0% § 000§, FR, (6.4)

Hence
| o Fmll?= (f, zn‘F‘f’f). (6.5)

According to Equation (5.9) the projections are all mutually orthogonal.
Hence

G,= Y F@
a=1

is a sequence of non-decreasing projections. Such’a sequence converges
strongly to a projection. The sequence of elements

2. =G,
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1s therefore a Cauchy sequence and since

P Y e Tl S b

/. is also a Cauchy sequence. The strong limit # - co exists

g=limf,
and the correspondence
[—=g=S5]
defines the linear operator
S = z QO Qf (6.6)

This is the scattering operator.
Next we prove that S is quasi-unitary:

S*S=SS*=E, . (6.7)

For instance, using the identity (6.4), we find with (5.20)

S*S= Y F®—E, (6.8)
=1

SS* =y F9_E,. (6.9)
=1

Since V', commutes with all terms in the sum (6.6) (cf. Equation (5.22))
we have also

(V8] =0. ' (6.10)
The following relations are also useful
QB*S O Q(f)*SQ(j_‘): AR e, (6.11)

The physical interpretation of the scattering operator is obtained from
the matrix elements. Let the system be at # - — oo in a channel «. With
this we mean that it approaches in the norm for £ - — oo the state U™f
where f, e D, and | f, | = 1. Because of the basic property of scattering
systems, this also approaches in the norm V, f(f) ast - — oo. The prob-
ability for finding the system at time ¢ in the state Ui"‘)fﬁ (fs € Dy) of
channel § is then |

P,Ba(t) = ‘ (Ugﬁ)f) T/tf(-f)) l2 '
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In the limit £ = oo we have
P 1y, V) = (VEUP Ly, 1) = (2 12).

We can write the last expression in the equivalent forms (cf. Equation
(6.11))

(19, 19) — (19, 519 - (/2. 5/2)
— (fﬁ’ 'Q(f)* S;.Q(f)fa)
= DP*ERDF ) . (6.12)

These expressions lead to the usual formulae for scattering cross-sections
and decay time when properly specialized.

7. Asymptotic properties of observables

In this section we shall investigate the question how the asymptotic
behaviour of observables is related to the S-operator in a general scat-
tering system. This question is of interest because the asymptotic oper-
ators have often been introduced as auxiliary quantities in the definition
of the scattering operator®),?). In fact in more recent works the tendency
has been to formulate the scattering theory in such a manner that no ex-
plicit reference 1s made to the free Hamiltonian describing ‘bare’ par-
ticles. Instead one attempts to replace it by the asymptotic properties
of a sufficiently complete set of observables (or field operators). The re-
lation between these observables in the past and the future is then used
for the definition of the scattering operator3),8).

We shall examine here the asymptotic properties of observables from
the point of view of the rigorous scattering theory.

Let A be a self-adjoint, bounded operator in §), representing an observ-
able. We shall assume that A4 is independent of time in the Schrédinger
picture in which state vectors change in time according to

fe=Vif . (7.1}
In the Heisenberg picture the operator 4 varies in time according to
A,= VAV, (7.2)

while the state vectors are constant.

We shall first discuss the case of a ‘simple scattering system’, that is,
a system with one channel only?). The transformation operator for this
channel shall be denoted, as before, by U, = e,

The asymptotic condition as usually formulated is to assume that with
every operator A there are associated two operators 4;, and 4,,; which
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in some sense, to be made precise, represent the operator 4 in the distant
past and the remote future.

The A,, and A,,; are considered the. observables of free particle
motion. The definition of the operators 4,, and A4,,; is not unique even
for the case of simple scattering systems. The ambiguity is related to
the ambiguity in the definition of the scattering operator discussed in
section 2 of this paper.

One sense in which the asymptotic condition can be made precise. is
to require the weak convergence of the operators U, 4, U;" to the con-
stant operators A4;, and A4,,; for the respective limits { > — oo, and
t > + oc.

In other words, for any two elements f, g € $ we shall have

(1, U,A,Ujg) — (f, A,,g)  for t—> —o0,
and (7.3)
(£, U,A,Ufg) —~ (f, A,ug) for t— +o0.

We shall now examine whether this condition is in fact satisfied for
simple scattering systems and whether it can be used for the definition
of the S-operator.

From the identity

UVIUF— Q*AQ_=UVIA(VUI - Q)+ (U V- Q*)AQ

e (1, (U,A,UF - 0_40.)g)|
<|(GCUVAV U~ Q) )| + |1, (UV; - Q1) 42 _¢g)| .
For the first term we have by Schwartz’ inequality
| (LU Vi A(VU/~ 2_)¢g) |
<l l4a] [vui-2 )|

This term tends to zero with £ > — oo forallf, g € $ as a consequence
of the basic property of a simple scattering system.
For the second term we have

|(f,(UtVfﬁQi)AQ_g)]
<[f] 141 [|U;-2)¢]

and this is again convergent to zero for { - — co. We have thus verified
the weak convergence of

U,A, U to A,=02% AQ_ for t—+ —oo.

m—
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We remark that we could have asserted strong convergence for oper-
ators A which leave the subspace N of continuum states invariant.
Indeed we have

(U A,UF =4,/ < | UVEA@_~ VU f|
P —U v AQ_f].

The first term converges to zero without restriction for # - — co. For
the second term on the other hand we can only assert convergence if
AL _feN. Since 2_f e N this is assured if N is invariant under 4.

If N = $, that is if there are no bound states, this is no restriction and
strong convergence can always be asserted in that case.

In a similar way one can discuss the operators 4,,; and the conver-
gence of the corresponding expressions in the limit # > + oco. The re-
lation between A4,, and A4,,; is then obtained from the two defining
equations

A, = QXAQ_

. (7.4)
A,,=Q5AQ, .

If we multiply the second Equation (7.4) from the left with 2, and
from the right with Q% , we obtain first
Q4,28 =FAF (7.5)
where F is the left projection of 2, with range N. Multiplying now (7.5)
from the left with 2% and from the right with 2_ we obtain
‘Qt Q+Aout'Q*+Q_: Ain' (76)
Here we have used the fact that the left projection of £ are the same
for simple scattering systems. This leads to the definition of the S-oper-
ator according to

Aoutz S*AinS (77)

with S = Q% Q. in agreement with Equation (9) reference8). The
S-operator obtained in this manner is the S-operator which does not allow
a generalization to the multichannel case. The definition of S through
Equations (7.3) and (7.5) is therefore only suitable for the ‘simple scat-
tering systems’.

A different definition of A4,, and A,,; which is used by EKSTEIN3),
allows a generalization to the multichannel case. We shall again use the
same notation as before even though the operators to be defined now
differ from the ones discussed so far.
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We verify first that for f, g e N

(f.A.8) = (1,2_A@®) Q% g) for ¢— +o0. (7.8)
Wh
e A,=ViAV,
A)=UAU,.
Indeed

| (£, 4,8) — (f,2_A(t) Q% ¢)|
<|(LVIAV,—U Q%) ) |+ (1, (V- R2_U)AU, Q%p)|.
For the first term we have
(L VA— U, @) <[ f] 4] |T-VIU2)¢].

Since g e N
lim ViU, Q% ¢g=—Q Q*g—Fg=g.

t—+ o0

Therefore the right hand side vanishes with # - + oco. For the second
term we obtain

| (V7= Q.U AU, 2/ g) |
<[T-ViUOf] |4] |e]

and this vanishes for £ - oo because f € N. Thus relation (7.8) is estab-
lished. A similar reasoning for -~ — oo leads to a corresponding relation.
We can then define two time dependent observables 4;,(f) and A4 ,,(?)
according to

Age(t)=Q2_A@) 2F
(7.9)
Ay ()= 82,4 Qi

As was pointed out by EKSTEIN®) these are not ‘free’ operators since
their time dependence is only apparently governed by the free transfor-
mation operator U, as may be seen from

QAN =Q_U;AUQ =V;Q_AQTV,.
By eliminating from (7.9) the operators A (¢), we obtain
Ay =0_0% 4,0 2, Q" (7.10)
4 () =5%4, (1 8, (7.11)
=1, O, (7.12)

or

with
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The similarity of (7.11) with (7.7) is superficial and misleading (as is
the notation) since all the quantities involved in (7.11) are quite different
from the ones occurring in (7.7). We shall not refer to (7.7) any more in
the rest of the paper.

The generalization of these considerations to the multichannel case
are now fairly straightforward. We need to show for instance the weak
convergence for f, g e N

(f,4,8) = (f,Aout(t) g) for t— 400, (7.13)
Aty = X QUUP* A ZUPQO* . (7.14)
B

with

To show this we use formula (5.20), and obtain for instance _
g=Eyg=XF%, (7.15)

and a similar decomposition for f. We shall write f# — F) f and g =
F'®g 5o that

(f, Atg) = Zﬁ' (f(a)JAtg(ﬁ)) ’ (7'16)

and show that the general term under the summation sign converges to
(1%, A ous(t) g#)) for £ = + oo. This last expression may also be written as

(19, QO US4 TP QP) since F&I QD=8 0
The stated convergence is now proved by writing
| (72, (A, — Ao ) €7) |
<| (9, VA (V- UP Q9) ) |
| (9, (VE — Q@U@ 4 UP QP* By |,
The vanishing of the first factor in the limit £ > 4 co follows now from
| (V,— UPQE) B || -0 for t—>+o0.

Similarly one concludes the vanishing of the second factor.
We summarize the result for convenience:

A g) = (A (8 for ¢ o0
(fA8) == {} v (tyg) for t— 4 .17
and f,geN.

A, (t) = ZLO U A UP QP*. (7.18)
uilf) = 2 5

in
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The relation between A4,,(f) and A4,,(f) is exactly as in the single
channel case

Aout (t) = S*‘Ain(t) S ’ (719)
with S now defined as
S =200 QW (7.20)

To prove this we eliminate 4 from the two relations (7.18). For instance
we obtain by multiplying from the left with 2% and from the right
with Q% using (5.21)

QD% A4,.(t) QP —E U4 UPE,.

This relation we multiply next from the left with 2 and from the

right with Q”* and sum over the indices « and . Using the fact that
E . is right projection of 2, we find

S*Ain(t) S= Aout(t)
with S given by (7.20).

The question needs to be examined whether this procedure can be
used for the definition of the scattering operator. The answer is yes if
the asymptotic operators 4,,(f) are known for a sufficiently large set of
operators in 4 so that they generate i1n N an irreducible operator ring.
The S-operator is then uniquely determined by (7.19) in the subspace N
up to a numerical factor of magnitude 1.

It is also possible to introduce time-independent operators 4, and
A oyt by defining

Agull) = Vi Ao V- (7.21)

in in

By using the intertwining property (5.22) one obtains

Aqut = Z‘Q(:]?)A ZQ(;E)*, (722)
and @ b
Ay =S*4,.S. (7.23)

Appendix

In referencel) we have stated the following lemma: let V, = ¢~*#* and
U,= e "¢ be the unitary transformation groups associated with a
‘simple scattering system’. Let £ denote either 2, or 2_ and let £,
be any bounded intertwining cperator such that

V,0,=0,U,. (1)
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Denote by R the range of £2 (which is common to £2, and £2_) and by R,
the range of £, then

R, CR. @)

The proof given in reference!) was incorrect as indicated in the foot-
note. We shall here give a correct proof.

We remark first of all that it is sufficient to prove the theorem for
intertwining operators which are isometries. This simplification is pos-
sible because if T is any bounded intertwining operator, then there exists
another one W which is an isometry and which has exactly the same
range as 1.

This is a simple consequence of the well-known theorem on the polar
decomposition of bounded linear operators®). According to this theorem
one can associate with every bounded linear operator 7" a unique linear
isometry W with the same left and right projections as 7. It is related
to T by the formulas

T=WR (3)
and

R— (T*T). (4)

The operator W is defined as follows: on all elements g of the form
g = Rf, we have Wg = Tf. On the linear manifold R ($) of such elements
W is homogeneous, additive and isometric. Such a transformation can

be uniquely extended by continuity to the closed linear manifold R (),
preserving these properties. On the orthogonal complement of this sub-
space W is zero by definition. IV is then a partial isometry. Its left and
right projections are the same as the left and right projections of 7.

To apply this theorem for our case we assume that 7 is an intertwining
operator such that

V,T=TU,. (5)
We aim to show that then also

V. W=WU, (6)

where W is the partial isometry just defined. In order to see this we
evaluate the left-hand side of (6) as follows. Let the arbitrary f be de-
composed f=g+ /& with ge R(H) and % e R (H)-. We have then
Wi = Wg. Since g is of the form Ru with u € $, or a limit point of such
elements we have

Wf = Tu or the corresponding limiting relation.

Consequently
VWi=V,Tu=TUu (7)
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On the other hand we have

Uif=U,g+ Uk, UgeR(H) and U,heR(H) -

because R commutes with U,.
Therefore

WU, f=WU,g=WU,Ru=WRU,u=TU,u. (8)
Combining (7) and (8) we find for all f
VW i=WU,f. (9)

This is the content of Equation (6). It is thus sufficient to prove the
theorem for partial isometries.
Let now £, be a partial isometry with the intertwining property

Vt-le-Ql Ut' ‘ (1)

The relation (1) can be extended to a certain class of bounded functions
of V;and U, by a standard procedure*). In particular if F; and E, are
the spectral revolutions associated with ¥, and U, such that

+ o0
U = e_“”dE,: (10)
too
Iﬁzu/e_“tdFﬂ. (11)
Then we have also -
E 5, ~ O\F, (12)
from which follows
FF~ QF, @ - I F, (13)
where
By = 10, 10 - (14

is the left-projection of £2,. |
Consider now an element f in the range of £, such that

f=Fif. (15)
We decompose it according to
[—g+h

withge R=Nandh e NL =M.
We wish to show that 4 = 0 for arbitrary choice of f € R,.

*) See for instance ref.4), p. 341.
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Let A; be the eigenvalues of the operators 7, and
Bz Lyt = £ g0

the corresponding projection operators. The total projection P corre-
sponding to the subspace M of bound states is then the sum

P=YP,

Since & € M we have Ph = k and since & = Pf and [P, F,] = 0, we also
have

F,h=F,Pf=PF,f=Pf=h (16)

Thus £ is also in the range of £,.
We express now the norm of % in the following manner

|k 2= (h,Ph) = (h, SP;h) = (h, X P,Fy h)

= (h, 2, X (Ez,+0— Ej,—0) Q[ k), or finally
|2 )2= (2R, X (Ep+o—Ez—0) 21 h)

The right-hand side is zero, because U, has a spectral revolution with
no discontinuities. Therefore 2 = 0 for all f, or f € R, or finally R, C R,
q.e.d.
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