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Eine Methode zur direkten Berechnung des Spektrums
der von quantenmechanischen Systemen absorbierten
bzw. emittierten elektromagnetischen Strahlung

von H. Primas und Hs. H. Giinthard
(Organ.-chemisches Laboratorium der Eidg. Technischen Hochschule, Ziirich)

(6. II1. 1958)

Zusammenfassung. Die in den elektromagnetischen Spektroskopien beobacht-
baren Frequenzen wj; und Intensititen Aj; der emittierten resp. absorbierten
Strahlung werden zu einem idealisierten Spektrum Q (@) zusammengefasst:

Q(w) = ) A1, 6 (0— ).

Es wird gezeigt, dass die Fouriertransformierte von Q (w) die Eigenschaften einer
Korrelationsfunktion K (#) hat und durch die Relation

K(l) = Z; A, cos (wjd) = Spur {X(£)X(0)}
<
mit
X (t) = exp (—iHt) P exp (i1?)

gegeben ist. Dabei ist H der Hamiltonoperator des Systems und P der Wechsel-
wirkungsoperator des Systems mit der Strahlung. Dadurch ist es méglich, Spektren
ohne Losung des Eigenwertproblems des Hamiltonoperators H direkt zu berechnen,
was sowohl vom theoretischen Standpunkt aus als auch fiir die praktische Rech-
nung Vorteile hat. Unter gewissen Voraussetzungen gilt folgende, allgemeinere
Relation

1 ) .
RO) =23 A, exp (i | w; | 1) = — -Spur {e—Ht p—giHt p+
— ik SXP ik 2 P
i<

PE =P, +iP,.

Die Korrelationsfunktion K (f) ist die erzeugende Funktion der Waller-van Vleck-
schen Momentmethode, fiir welche Korrekturterme zur Beriicksichtigung der na-
tiirlichen und apparativen Linienbreite hergeleitet werden. K (¢) erlaubt ferner die
Aufstellung expliziter Ausdriicke fiir die Intensitidten in Funktion der Frequenzen.
Auf die Moglichkeit, direkt fiir das idealisierte Spektrum Q (w) ein algebraisches
Eigenwertproblem zu formulieren, wird hingewiesen. Es wird eine Approximations-
methode angegeben, die eine storungstheoretische (gegeniiber unitidren Transfor-
mationen invariante) Auswertung von K (¢) erlaubt. '
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1. Einleitung

Sehr viele spektroskopische und verwandte experimentelle Methoden
fallen unter folgendes allgemeine Schema: Ein quantenmechanisches
System habe im stationdren Zustand die méglichen, diskreten Energie-
eigenwerte E,, E,, E,, . ... Dieses System sei durch einen Operator P an
das Strahlungsfeld gekoppelt, und dadurch seien Uberginge zwischen den
verschiedenen Zustdnden unter Emission oder Absorption elektromagne-
tischer Strahlung der Frequenz*)

C()j'_zc — Ej == Ek (1—1)

ermoglicht. Fiir solche Fille gilt bekanntlich in erster Niherung der
Strahlungstheorie!), dass die Ubergangswahrscheinlichkeit pro Zeitein-
heit vom Zustand j zum Zustand % proportional | P |? ist. Die expe-
rimentell beobachtete Intensitidt der elektromagnetischen Strahlung ist
gemiss der Einsteinschen Uberlegung noch mit einem statistischen
Faktor zu versehen, z. B. mit dem Bolzmann-Faktor, so dass die beob-
achtbare Intensitdt proportional wird zu

e 5T | Py |2 (1-2)

Nun liegt oft der Fall vor, dass der Bolzmann-Faktor praktisch konstant
ist und dann die Intensitit der mit dem Ubergang j - % verkniipften,
experimentell beobachtbaren Strahlung proportional**) ist der Grosse
A (die wir im folgenden kurz als Intensitdt bezeichnen), mit

Ai:’c - | PJL

L (1-3)

Unter experimentell oft erfilllten Bedingungen (keine Sittigung durch
das Strahlungsfeld, nicht zu tiefe Temperaturen usw.) fallen die meisten
Arten der Spektroskopie unter dieses allgemeine Schema, unter anderem
z. B. die optische Spektroskopie mit Atomen und Molekiilen, Infrarot-
spektroskopie, Ramanspektroskopie, magnetische Kern- und Elektronen-
resonanz, Mikrowellenspektroskopie, Kernquadrupolresonanz usw. In all
diesen Fillen stellt die quantenmechanische Berechnung der Frequenzen
w;;, und der Intensititen A, ein wichtiges Problem dar, das iiblicher-
weise wie folgt behandelt wird:
*) Wir setzen im folgenden immer /i = ¢ = 1.

**) Eigentlich ist die Intensitit proportional der Grosse w";; A (z. B.n =1
in der Infrarotspektroskopie, # = 2 in der Kernresonanzspektroskopie), doch wird
wegen ihrer Kleinheit diese Abhingigkeit von der Frequenz oft vernachlidssigt.

Durch Differentiation der Korrelationsfunktion K (f) von Kap. 2 nach # kann man
aber diese Abhédngigkeit auch leicht korrekt mitberiicksichtigen.
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a) H sei der Hamilton-Operator des Systems ohne die Wechsel-
wirkung mit dem Strahlungsfeld und okne solche Wechselwirkungen des
Systems mit der Umgebung, die zu Linienverbreiterungen Anlass geben.
Unter diesen Voraussetzungen ist im allgemeinen H explizite zeitun-
abhdngig. Die Losung des Eigenwertproblems des Operators H

H@j =5 lj @j (1"—4)

ergibt die Eigenwerte 4, und die Eigenfunktionen @;.
b) Das experimentell in der Spektroskopie beobachtete Spektrum ist
dann gegeben durch

G (w) = 2 gir (0 — wy) (1-5)

wobeil g;; die shapefunction einer einzelnen Spektrallinie mit der Zen-
trumsfrequenz wj;, ist. Die Zentrumsfrequenz wy;, ist in ausgezeichneter
Néherung gegeben durch

O)jk = ;‘-j = Z’k (1_6)
und die Intensitdt 4, ebenfalls in guter Niherung durch
Ap= [ gn () dx = | (@;| P [ D) [2. (1-7)

Die Berechnung der Frequenzen w;;, und der Intensititen A4;, durch
explizite Losung des Eigenwertproblems (1-4) und durch Beniitzung
von Gleichung (1-6) und (1-7) hat aber verschiedene Nachteile, von
denen wir lediglich zwei erwidhnen méchten.

Erstens ist vom theoretischen Standpunkt aus die Berechnung der
Frequenzen durch die Differenzbildung (1-6) nicht sehr befriedigend, da
es ‘dann schwierig schHeint, allgemeine Aussagen iiber eine allfillige
Entartung der Frequenzen w;, zu machen. Zwar erhilt man durch eine
gruppentheoretische Behandlung des Eigenwertproblems (1-4) des
Hamilton-Operators H leicht eine vollstindige Ubersicht iiber die még-
lichen Entartungen der Eigenwerte A; von H, jedoch nicht {iber even-
tuelle Entartungen der Differenzen der Eigenwerte. Nun ist es aber wohl
bekannt, dass es Operatoren gibt, bei denen die Differenzen der Eigen-
werte entartet sind. Ein solcher Operator ist beispielsweise die z-Kom-
ponente eines Spinoperators, dessen Eigenwerte eine dquidistante Folge
bilden. Die Untersuchung, wie solche entartete Differenzen der Eigen-
werte (die ja den beobachtbaren Resonanzfrequenzen entsprechen) unter
dem Einfluss von Stéroperatoren aufspalten, ist z. B. in der Kern-
resonanzspektroskopie wichtig und kann nach der iiblichen Methode
meist nur durch explizite Rechnung geschehen. Es ist somit schwierig,
eine generelle Ubersicht zu erhalten.

Ein zweiter Nachteil betrifft die praktische, explizite Rechnung. Es
ist unékonomisch, die Eigenfunktionen explizite zu berechnen und die
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dadurch erhaltene detaillierte Information iiber das System durch den
Mittelungsprozess der Berechnung der Matrixelemente nach Gleichung
(1-7) zu einem grossen Teil wieder zu verlieren.

Im folgenden Kapitel werden wir zeigen, dass es moglich ist, die oft
allein interessierenden Grossen w,;;, und A;, direkt zu berechnen, o/ine
dass man zuvor das Eigenwertproblem des Hamullon-Operators H zu losen
hat. Es zeigt sich, dass sich das Spektrum in einer geschlossenen, iiber-
sichtlichen Weise analytisch darstellen lasst, die sowohl zur allgemeinen
theoretischen Diskussion als auch zur praktischen Auswertung geeignet
i1st und die die oben erwihnten Umwege vermeidet.

In Kapitel 3 und 4 werden wir zeigen, dass verschiedene, aus speziellen
Anwendungen bekannte Methoden und Sétze sich leicht als Spezialfille
der Hauptformel von Kapitel 2 ergeben und sehr allgemeine Giiltigkeit
haben. In Kapitel 5 beschreiben wir u. a. ein Approximationsverfahren
fiir die Berechnung des spektroskopisch beobachtbaren Spektrums, das
gegeniiber der konventionellen Stérungsrechnung bedeutende Vorteile
aufweist.

Auf eine explizite Auswertung der in dieser Arbeit hergeleiteten Rela-
tionen fiir den Fall der Kernresonanzspektroskopie kommen wir in
einigen folgenden Arbeiten?) zuriick. Eine Anwendung auf den Wilson-
schen Formalismus der Berechnung von Infrarotspektren (FG-Methode)
macht einige Modifikationen nétig, auf die wir an-anderer Stelle zuriick-
kommen?3) *).

2. Berechnung des Spektrums
aus einer verallgemeinerten Korrelationsfunktion

21. Hauptsatz
In dem spektroskopisch beobachtbaren Spektrum G (w)

G () = Z gir (0 — wy) (21-1)
Ik
wobei g;; die shapefunction der Spektrallinie des Uberganges 7 — % ist,
sind die Zentrumsfrequenzen w;, und die Linienintensititen A4,

Ap = [ gn () dx (21-2)

*) Der Hauptsatz dieser Arbeit ist eine Verallgemeinerung eines von uns
frither bewiesenen Satzes der Infrarotspektroskopie (vgl. 8)). Manche Resultate
des Hauptsatzes sind in der Literatur bekannt, z. B. in der Theorie der Linien-
breite und der Relaxation'4). Anwendungen zur Berechnung eines (idealisierten)
Spektrums sind bisher keine bekannt geworden. Das Korollar sowie die ex-
pliziten Ausdricke fiir die Intensititen (4-2) und die Approximationsmethode
Kap. 6 scheinen neu zu sein.
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aus einem vereinfachten Hamilton-Operator (ohne Wechselwirkungs-
operator mit der Strahlung und ohne Wechselwirkungen, die zu Linien-
verbreiterungen fithren) gemiss Gl (1-4), (1-6) und (1-7) in guter
Nédherung berechenbar. Wir kénnen diese Grossen zu einem idealisierten
Spektrum Q (w)

Q)= A 0 (w— oy (21-2)

zusammenfassen. Fiir den Fall verschwindender Linienbreiten geht das
beobachtbare Spektrum G (@) in das idealisierte Spektrum Q (w) iiber.
Der folgende Hauptsatz zeigt, dass die Fouriertransformierte K (f) von

Q () 00
K({) = f Q) e dow— 37 Ajy exp (i) (21-3)
-1 s &
die Eigenschaften einer Korrelationsfunktion hat und direkt aus den
Operatoren H und P berechenbar ist.

Hauptsatz

H sei ein beliebiger, explizite zeitunabhingiger, hermitischer Ope-
rator*) mit den Eigenwerten 4; und den Eigenfunktionen @;

H ®j = AJ’ @3‘ ,
weiter bedeute

Wy = }"3' - ;]'i:

Aflc= | (@j | B \cbk) |2z ! ij
wobel, P ein beliebiger hermitischer, von der Zeit explizite unab-
hiangiger Operator sei, der in der Eigenbasis des Hamiltonopera-
tors H keine Diagonalelemente aufweise.**) Dann gilt fiir die
Fouriertransformierte des Spektrums Q ()

K it] =2 2 Ajcos wyt = Spur { X () X (0) } (21-4)

j<k

X () =e H PP X (0)= P. (21-5)

2
3

mit

Bewets: Da die Spur in einer beliebigen Basis berechnet werden kann, darf die
Eigenbasis von H gewiahlt werden. Damit folgt:

K(t) = Sp {e—z’HtPethP} — 2 o—iotkt ijcpkj
ik
= 2 E_ia)jkt Ajk = 2 2 Ajk COS w-,’.kt .
j) k i<<k
*) Wir nehmen immer an, dass H nur ein diskretes, endliches Spektrum habe.
Die Sitze lassen sich auf allgemeinere Fille ausdehnen.
**) Hat P Diagonalelemente, so tritt in K (/) noch ein konstanter Term auf.
Fiir praktisch wichtige Falle ist die Voraussetzung des Satzes erfillt.
*
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Dass K (#) reell ist, folgt aus der Hermitezitdt von X (¢) und damit von (X () X (0)
+ X (0) X (f)) unter Beriicksichtigung, dass Sp (AB) = Sp (BA) und dass die Spur
eines hermiteschen Operators reell ist.

Dieser Satz ist im wesentlichen eine Analogie und Verallgemeinerung
des Satzes von KHINTCHINE-WIENER, nach welchem die Korrelations-
funktion einer Zeitfunktion die Cosinus-Fouriertransformierte ihrer
Spektraldichte ist. Im vorliegenden Falle ist K (¢) die Korrelations-
funktion der Heisenbergdarstellung X (f) des Wechselwirkungsoperators
P mit dem Strahlungsfeld, wobei die Mittelwertsbildung durch die Spur
bewerkstelligt ist. Wegen der Invarianz der Spur gegeniiber unitidren
Transformationen folgt auch hier die bei Korrelationsfunktionen iibliche
Stationaritdt. Es sei noch erwihnt, dass in Gl. (21-4) bereits alle Aus-
wahlregeln implizite enthalten sind. Bei der Auswertung der Spur (21-4)
braucht man also keinerlei Auswahlregeln zu beriicksichtigen.

22. Verallgemeinerung des Hauptsatzes

Ist die Korrelationsfunktion K (f) des Hauptsatzes in der Form
D) Ay cos (wyt) explizite bekannt, so sind die Frequenzen wj, und die
Intensititen A4;, ebenfalls explizite bekannt, und es kann somit jede
beliebige Funktion der w,;; und der A4, berechnet werden. Ist der Hamil-
ton-Operator H kompliziert, so kann man nicht immer ohne weiteres die
explizite Darstellung von K (f) in Form einer trigonometrischen Reihe
erhalten. Trotzdem sind aber aus der Spurdarstellung von K (f) gewisse
Funktionen der w;;, und der A4, sofort herzuleiten, so z. B. die in Kap. 3
behandelten geraden Momente der shape function (dies sind im wesent-
lichen die Entwicklungskoeffizienten der Entwicklung von K (f) nach
Potenzen von ¢#). Die ungeraden Momente sind im Prinzip ebenfalls aus
K (#) herleitbar, jedoch nicht in der einfachen Weise wie die geraden
Momente. Im vorstehenden Korollar geben wir fiir den Fall, dass P ein
Vektoroperator ist (z.B. das elektrische oder magnetische Dipolmoment)
eine allgemeinere Form des Hauptsatzes, die zwar nicht mehr Information
liefert, aber z. B. die Berechnung der ungeraden Momente in derselben
einfachen Weise wie fiir die geraden Momente erlaubt.

Korollar zum Hauptsatz

Es sei H der Hamilton-Operator und F = (F,, F,, I,) der Ope-
rator des Gesamtdrehimpulses des betrachteten Systems. Ausser
den Voraussetzungen des Hauptsatzes gelte weiter:

a) H sei invariant gegeniiber Drehungen um die z-Achse, d. h.
es sel

[H, F,]=0. (22-1)
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b) EsseiP = (P,, P,, P,) ein Vektoroperator, der die folgenden
Vertauschungsrelationen erfiille:

[F,, P, = — [F,, P,] =iP,usw. (22-2)

c) Wegen der Vertauschbarkeit (22-1) kann man eine Basis.
{ ¥ } finden, in der sowohl F, als auch H diagonal ist,
F, Yoam = M Yom (22—3)
Hy, . = Ay Vo - ) (224
Wir setzen voraus, dass gilt
Agme1 —Ag >0 firallea, §. (22-5)
Dann gilt:
; i it e i
R = 27%: Ajeexp (i | wy|8) =5 Sp{e Hp=e™ Pt Y. (22-6)
d. K.z
2 37 Ay cos (wit) = Sp{e ™ Py ™ Py} (22-7)
j<k _ .
= Sp{e# P, TP} (22-8)
2 ) Aysin (o | ) = Sp{e ™ P, e P,}  (22-9)
)

i<k

— — Sp{e P, P,Y, (22-10

wobei
= 14
e
Beweis:
a) Mit der bekannten Relation
. . o (12)?
B_iAt BBVF'!At == 2 —-T CS EB: A] » (22_11)

!
=0 %

wobei C, [B, 4] die sukzessiven Kommutatoren von B mit 4 sind,
Cy[B,A]=B, C,[B,4A] =[B,A]=BA—-A4B
Cpy1 [B, A1 = C, [[B, 4], 4]
folgt aus den Vertauschungsrelationen (22-2):
exp (—iF, @) Py  exp (F,8) = Py , * vost -} Py .~ sin #.

Wegen der Vertauschbarkeit von H mit F, (Gl. 22-1) und der Invarianz der Spur
gegeniiber unitdren Transformationen folgt durch Transformation mit dem Ope-
rator exp (¢F, 7/2):

Effj = Sple M P o P Y= Spla- P ol P Y

(22-12)

und
SP { e— i Pw ethit Py} = —Sp { e—tHt Py etHt Pm} .
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b) Unterwerfen wir beide Seiten der Gleichung
K(f) =2 ) Ajcos (wpt) = Sp{e " P ol P}
i<k
der HiLBERTschen Integraltransformation (HW = Hauptwert)

SN = (Ym) HW [ (1) - t-7) " a2,
so finden wir wegen?) —
$[cos (at)] = —sin (|a|T)
$Hlexp (iat)] =i - sg (a) - exp (iat)
a reell mit sg (@) =+1fiira >0,sg(a) =—1fira <0

fiir die HiLBERTtransformierte von K (f):
SIK M) = —2 ) Ay sin (|og|7) = Sp{H[e™ Pyl Py}
i<k
Die Grosse R = §Te—i#H? P_ ¢H!) werten wir in der gemeinsamen Eigenbasis von
H und F, aus (vgl. Gl. 22-3 und 22-4):

Roym, gm’ = Hlexp{—1 (Agm— ’lﬁm’) i} (Pm)ocm, gm’ =
= —1-58 (Agm— f’lﬁm') ~exp {—1 (Ao = ;“ﬁm’) T} (Pm)am, gm’

Wegen der Vertauschungsrelation (22-2) gilt5)

(Poam, pm' = (Pylam, gmr = 0, falls m’ = m £ 1
(Pylam, pm 1= T ¢ (Pylam, gm + 1,
so dass mit Voraussetzung (22-5)
¢ Auem—Agm £ 1). =g (F1) = F1
folgt: )
Rom, pm+1= L1 cexp{— (Zam—l,ﬁmi 1) T} (Pam, pm + 1
= exp {_i (lam_}‘ﬁmi 1)7"} (P'y)omz,ﬁm + 1

R — ¢—iHT py etAT s

und damit folgt sofort der zu beweisende Satz.

Aus dem Beweis folgt, dass die Voraussetzung (22-5) notwendig ist,
d. h. also dass das Korollar falsch wird, wenn diese Voraussetzung nicht
erfiillt ist. Diese Voraussetzung scheint aber aus physikalischen Griinden
meist erfiillt zu sein, denn die Auszeichnung der z-Achse geschieht immer
durch ein dusseres Feld (elektrisches oder magnetisches), und bei ge-
niigend hohen Feldstdrken diirfte die Voraussetzung (22-5) immer zu-
treffen. Ist die Voraussetzung bei hohen Feldstdrken erfiillt, so muss
wegen der stetigen Abhidngigkeit der Eigenwerte von der Feldstiarke
und wegen des Kreuzverbotes zweier Terme die Relation (22-5) unab-
hingig von der Feldstdrke gelten*).

*) Zur Begriindung des Kreuzverbotes muss man voraussetzen, dass der Hamil-
tonoperator fiir alle nichtverschwindenden Feldstdrken dieselbe Symmetriegruppe
aufweist. Mathematisch sind Ausnahmefille denkbar, die jedoch kaum physikalisch
realisiert werden konnen.
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Da die Funktion K (¢) durch Addition eines durch Hilbert-Transforma-
tion von K (f) erzeugten Imaginirteils zu K (f) entstanden ist '

KRO=K @ +:H[K®], - (22-11)

folgt, dass & (¢) eine analytische Funktion in der ganzen oberen Halb-
ebene ist, und dass die Fouriertransformierte von K (¢) fiir negative w
verschwindet und fiir positive gleich dem Spektrum @ (w), d.h. der
Fouriertransformierten von K (¢) ist:

[0 e dw=8 (@), (22-12)
0

3. Intensitits-Summensitze und WALLERsche Momentenmethode

Von WALLER®) stammt eine Methode zur Berechnung des zweiten
und vierten Moments der shapefunction, die von VAN VLECK?) in einer
bekannten Arbeit auf die Kernresonanzspektren von Festkoérpern ange-
wandt wurde. Wir werden zeigen, dass die Korrelationsfunktion des
Hauptsatzes bzw. die verallgemeinerte Funktion des Korollars erzeugende
Funktionen der von WALLER und VAN VLECK benutzten Momente sind.

Im folgenden werden wir die Summensitze fiir einen im Sinne des
Korollars um die z-Achse rotationsinvarianten Hamilton-Operator H
herleiten. Jedoch sind die folgenden Summenrelationen S, fiir gerades »
allgemeingiiltig, da diese auch aus der allgemeingiiltigen Gl. (21-4) her-
geleitet werden kénnen. Fiir einen nicht rotationsinvarianten Hamilton-
Operator miissen die Intensititssummensitze fiir ungerades » speziell
und unter Beriicksichtigung der Anisotropie des Hamilton-Operators
hergeleitet werden,

Durch Entwicklung nach Potenzen von ¢ von beiden Seiten von Gl
(22-6) erhilt man durch Koeffizientenvergleich ein vollstindiges System
von Intensitdtssummensitzen. Mit den Gleichungen (22-11) und (22-6)
erhidlt man:

7 1 _ ]
Su= 70 | Ay = Spur { C, [P H] - P} (31
i<

wobei C,, der n-te Kommutator geméss Gl. (22-12) 1st.

Diese Relationen fiir S;, S, und S; wurden von WALLER, VAN VLECK
und anderen benutzt, um mit Hilfe der experimentell bestimmten zwei-
ten und vierten Momente der shapefunction Informationen iiber das
untersuchte Kernspinsystem zu erhalten. Wir méchten aber darauf hin-
weisen, dass die nach Gl. (3-3) berechneten Momente S, sich auf ein
idealisiertes Spektrum beziehen, bei welchem alle Linien eine ver-
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schwindende Linienbreite haben, d. h. d-Funktionen sind. Eine exakte
Relation zwischen den experimentell bestimmten Momenten und den
Intensitdtssummen S, kann man wie folgt herleiten. Der durch Vernach-
lassigung der Linienverbreiterung vereinfachte Hamilton-Operator H er-
gibt die Zentrumsfrequenzen w;, und die Intensititen 4, der einzelnen
Linien. Die Linienverbreiterung der 7, k2-ten Linie beschreiben wir durch
eine shapefunction g;; (w-w;;), wobei wir gleichzeitig auch eine allfdllige
Linienverbreiterung durch apparative Einfliisse mitberiicksichtigen kén-
nen. Von den Funktionen g;, setzen wir lediglich voraus, dass ihre n-ten
Momente u,, (7, ) existieren und dass sie so normiert seien, dass das
nullte Moment gleich der Linienintensitidt 4, sei und das erste Moment

verschwinde: o o

fgjls )dx = Ay, , /xgm()dxuO
5 o (3-2)
jx“gm(x)dx=ﬂn 7, ®m=23..).
Das experimentell beobachtete Spektrum ist durch die shapefunction
G (w) beschrieben,
G (w) = Z g (@ — | @i |) - (3-3)
<k |

deren n-te Momente gegeben sind durch:

oo

M, ~/w” G (o) dw ——Z f(x+ !wjk |)"gzk (%) dx

i<k
- Wy

x fx+ )™ g (%) dx.

Die letzte approximative Gleichung gilt sehr genau, da ja meist die
Linienbreite einer einzelnen Linie sehr viel kleiner ist als ithre Zentrums-
frequenz. Durch Entwicklung nach dem binomischen Satz und mit
Gl. (3-1) folgt damit:

= Sa +2 ( ) 2 ot g (7. F) n>1. (3-4)

’ ]<k

]

also insbesondere:
My= 5S¢, My =5, M,= SzJVZMz(S":k
i<k

Daraus ist ersichtlich, dass die experimentell evmattelten Momente M, im
allgemeinen nicht wat den nach der Waller-vanVleckschen Methode bevech-
neten Momenten S, iibereinstimmen, sondern dass eine u. U. erhebliche
Korrektur anzubringen ist, die durch die natiirliche und apparative Linien-
breite verursacht wivd.
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4. Ein expliziter Ausdruck fiir die Intensititen
in Funktion der Resonanzfrequenzen

In diesem Kapitel nehmen wir an, dass der Hamilton-Operator H
Anlass zu N Spektrallinien mit den Resonanzfrequenzen w;;, = 4;— 1, und
den Intensititen A;, gibt, wobei wir der Einfachheit halber die Indizie-
rung dndern und die Resonanzfrequenzen und Intensitdten von 1 bis N
durchnumerieren und mit w; (w; > 0) bzw. 4; (7 =1, 2, ..., N) be-
zeichnen. In dieser Bezeichnungsweise lauten dann die Summensitze
(3-3)

S, =2a)f 4. - 4-1)

=
Kennt man die N Momente S,, S;, ..., Sy_;, so kann man das Glei-
chungssystem (4-1) nach den Intensititen 4; auflsen und man findet®):

N
1

N-1 N-—1
m
2 (_ ) mgm,j ' SJ\Lm—l 2 (_) G»m,j : S:’\’—m—l
A L m=0 _ m -0
7 N - N N L (4—2)
N —R—
[] (©j— ) 2. (=) oy '
-1 k=1
kg kg

wobel o, ; die k-te elementarsymmetrische Funktion vom Grad % der
(IV-1) Variablen w, (s =1, 2, ..., N; s =+ 7) ist:

N N N
0g,; =1 01, 5= Zwk Oy, = 2 2 Wy, Wy
k=1

m=1k-m+1

S mj  kEj (4-3)

N
U‘\Y_l’j - Z 1 a)m -
m=1

M|
Diese explizite Darstellung (4-2) der Intensititen in Funktion der Fre-
quenzen und der Momente erweist sich fiir die Diskussion des Verlaufs
der Intensititen in Funktion von Parametern im Hamilton-Operator
oftmals als niitzlich.

5. Ein algebraisches Eigenwertproblem fiir das Spektrum

Den geeignetsten Ausgangspunkt fiir die Berechnung des Spektrums bildet die
Differentialgleichung, der X (#) von GIl. (21-5) geniigt. Man verifiziert sofort, dass
der Operator

X () = g—f'Ht Pez’Ht (51-1)

Losung der Differentialgleichung
dXfdt =[H, X] = HX—-XH (51-2)

mit der Anfangsbedingung
X{0) =P (51-3)
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1st. Die Fouriertransformation
(o]

X () = f§ (@) e—i® dey (51-4)

—
algebraisiert die Differentialgleichung (51-2) und ergibt:
wX =[H, X]. (51-5)

Wie NamBU?®) im Zusammenhang mit Problemen der Feldquantisierung erwihnte,
kann eine Relation des Typus von Gl. (51-5) als verallgemeinertes lineares Eigen-
wertproblem mit dem Eigenwert w; und dem Eigenoperator X jaufgefasst werden.
‘Wie man leicht verifiziert, bestehen zwischen dem urspriinglichen Eigenwertproblem
des Operators H,

HWY, — 1,¥,, (51-6)

und dem Eigenwertproblem (51-5) folgende bemerkenswerte Zusammenhéinge:

1. Ein Eigenwert von (51-5) ist gleich der Differenz zweier Eigenwerte von
(51-6), d. h. jeder experimentell beobachtbaren Resonanzfrequenz entspricht ein
Eigenwert von Gl. (51-5).

2. Ist X; Eigenoperator von (31-5) und ¥ Eigenfunktion von (51-6), so ist
X; ¥} entweder Null oder wieder Figenfunktion von (51-6).

3. Ist X; Eigenoperator von (51-5) mit dem Eigenwert w;, so ist X; X, wieder
Eigenoperator von (51-5) mit dem Eigenwert w;+ wy.

4. [H, XT X =[H, X\Xr] = 0 bilden eine Kommutatoralgebra von .

Mit (51-4) und (2-1) ergibt sich fir das (fiir negative Frequenzen als gerade
Funktion fortgesetzte) Spektrum Q (w):

Q(w) =) Ay 6 (0—wy) = Sp {X (0) - P}, (51-7)
ik .
wobei 5{\(6{)) die Losung des Eigenwertproblems (51-5) ist. Diese Gleichungen diirf-
ten der geeignete Ausgangspunkt zur Diskussion der algebraischen Struktur des
Spektrums sein. Insbesondere wird Gl. (51-5) zusammen mit Gl. (51-7) eine
Diskussion der moglichen Entartungen der Resonanzfrequenzen mit gruppen-
theoretischen Hilfsmitteln erlauben, worauf wir in einer spiteren Arbeit zuriick-
kommen werden.

Es sei noch erwihnt, dass man das Eigenwertproblem von NamBu mit Hilfe
der Methode der orthogonalen Operatoren von Fano!?) auf ein gewohnliches Eigen-
wertproblem reduzieren kann. Es sei { Uy, U, U,, ...} ein vollstindiges System
hermitescher Operatoren, die beziiglich der Spurbildung orthonormiert seien,

Sp (U;Uy) = 6 . (51-8)

Nach Fano kann man jeden hermiteschen Operator O aus der durch die U; er-
zeugten Operatorenalgebra nach den Orthogonaloperatoren U; entwickeln:

0= X SpoU,)-U;. (51-9)

i
Entwickelt man die Operatoren H und X nach den U,

H= 3 nU;, hj=Sp(HU) (51-10)
7

X=X x%U;, x=SpXU) (51-11)
1



Vol. 31, 1958  Eine Methode zur direkten Berechnung des Spektrums 425

und setzt man in die rechte Seite von Gl. (51-5) die Entwicklung von X ein, so
erhdlt man nach der Multiplikation mit x;, und Spurbildung: '

Xy = 2 %; Sp{H, U;] Uy = 3 #; Sp {H[U; U,l}. (51-12)
i ]
Die Operatoren U; erzeugen eine Liesche Algebra mit den Strukturkonstanten c;?k
(U Ul = 3 c?k U,. (51-13)
P
Damit reduziert sich Gl. (51-12) zu
oy = 3 % ) c?k hy (51-14)
i p

Mit der schiefsymmetrischen Matrix 7°

T=(Tp), Tp=2 chh, (51-~15)
b

erhdlt man somit aus dem Nambuschen Eigenwertproblem ein konventionelles
Matrixeigenwertproblem

T =w(), (*) =@ ... (51-16)

mit dem Eigenwert w und den Eigenvektoren (x). Somit geben die Eigenwerte des
Matrix-Eigenwertproblems (51-16) direkt die Resonanzfrequenzen, wihrend die
Eigenvektoren (x) in einfacher Weise mit den Intensititen zusammenhingen.
Beispielsweise ist in der Kernresonanzspektroskopie mit isotropen Substanzen der
Dipolmomentoperator P gegeben durch

P =) vl (51-17)
i=1

wobei y;, das gyromagnetische Verhdltnis, [, der Spinoperator des k-ten Kernes
ist (Zahl der Kerne = x). In diesem Falle darf man fir die ersten x+ 1-Operatoren
U; folgende Wahl treffen:

Up = (Sp E)_]‘r2 E (E = Einheitsoperator) (51-18)
Uy 21, G=1,2,...).

Ohne Einschrinkung der Allgemeinheit diirfen wir uns auf Teilchen mit dem
Spin 1/2 beschranken, womit dann die Orthonormierungsbedingung (51-8) erfiillt
ist. Damit erhidlt man fiir das Spektrum Q (w) (Gl. 51-8):

Q) = SpX@) P =3 3 v =5 () (51-19)
_1 i

~

mit () = (Y, Y2 - s Y22 0,0,...) .

Fallt @ mit einem Eigenwert von GIl. (51-16) zusammen, so ist in (51-19) fiir (x)
der entsprechende Eigenvektor einzusetzen, ist dagegen w verschieden von
einem Eigenwert, so hat man fiir (¥) den Nullvektor einzusetzen.

Es sei noch darauf aufmerksam gemacht, dass sich die Relation (51-16) kaum
fiir eine explizite Rechnung eignen diirfte. Denn falls der Hamilton-Operator H eine
(n x m)-Matrix ist, so kann im allgemeinsten Fall die Matrix T  die Dimension von
bis zu (n2 x n2) haben.
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6. Eine Approximationsmethode zur Berechnung der
Korrelationsfunktion

61. Allgemeines

Wie in Kap. 3 gezeigt wurde, fiithrt die Entwicklung der Korrelations-
funktion K (f) nach Potenzen von ¢ zu der Waller-vanVleckschen
Momentenmethode und erlaubt nur in den wenigsten Féllen eine voll-
stdndige Berechnung des Spektrums. Da eine strenge Berechnung der
Korrelationsfunktion nach Gl. (21-4) und (21-5) nur bei sehr einfachen
Hamilton-Operatoren moglich zu sein scheint, ist es im allgemeinen not-
wendig, zu einem Approximationsverfahren iiberzugehen. Wie {iiblich,
spalten wir daher den Hamilton-Operator H in einen relativ einfachen
Operator H, und einen Stéroperator H, auf:

H=Hy+eH,. (61-1)

Eine Entwicklung von exp (tH, + i¢H,t) in Gl. (21-5) nach Potenzen
von ¢ ist immer gleichzeitig eine Entwicklung nach Potenzen von ¢ und
bietet gegeniiber einer direkten Potenzreihenentwicklung von K (f)
(Methode von WALLER und vAN VLECK) kaum Vorteile. Um eine ge-
eignete Entwicklung nach Potenzen von ¢ zu erhalten, ist es notwendig,
auf die durch den Operator H, erzeugte Wechselwirkungsdarstellung
iiberzugehen. Im folgenden werden wir zeigen, dass die dabei entstehende
Operatorendifferentialgleichung durch eine geeignete unitire Transfor-
mation S gelést werden kann, wobei dann in der Korrelationsfunktion
die Frequenzen und Intensititen nach Potenzen von ¢ entwickelt sind.

62. Skizzierung der Ndherungsmethode

Die im folgenden beschriebene Approximationsmethode wurde durch
die Arbeiten von H. S. GREex!) und S. Tan1'?) nahegelegt. Von dem
Hamilton-Operator H spalten wir den Stéroperator H, ab,

H=H, | ¢H,, (62-1)

und gehen zu der durch H, erzeugten Wechselwirkungsdarstellung iiber.
Mit den Bezeichnungen

H, (f) = exp (tHyt) Hyexp (— 1H,!) (62-2)
X (t) = exp (iH,8) X (¢) exp (— iH,?) (62-3)

reduziert sich die Differentialgleichung fiir X (¢)
1dX|dt=[H,X], X(0)=2P (62—4)

auf folgende, H, nicht mehr enthaltende Differentialgleichung:

idX/dt — e [H,, X], X (0)=P. (62-5)
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Wegen der Invarianz der Spur gegen unitire Transformationen gilt dann

K({#t)=Sp{X(®)-P@®)}, (62-6)
wobei

P () =exp (iH,t) Pexp (—iH,t) . (62-7)

Zur Losung der Differentialgleichung (62-5) fithren wir eine zeitab-
hingige unitire Transformation S (f) aus, mit

S’S=SST=E, S(0)=3S,, (62-8)

wobei speziell darauf hingewiesen sei, dass wir S (¢ = 0) nicht gleich dem
Einheitsoperator setzen. Mit

Y=5XS (62-9)
transformiert sich die Differentialgleichung (62-5) auf die folgende

idY/dt=[W,Y], Y(©0) =SPS,, (62-10)

wobel

W—eS HS—iS -S. (62-11)
Wie wir in Kap. 64 zeigen werden, kann man durch den Ansatz
S{t)y=exp{—1iG ()}, G=G, G(0) =G, (62-12)

und mit Gl. (62-11) erreichen, dass einerseits W mit H, vertauschbar
und zeitlich konstant ist und dass G (¢) eine trigonometrische Summe
ohne konstanten Term ist. Daher kann man Gl. (62-10) sofort integrieren
und erhalt:

Y (t) = exp (— iWt) exp (¢G,) P exp (— iGy) exp ((WE) . (62-13)

Damit erhdlt man mit Gl. (62-6) und (62-9) fiir die Korrelationsfunk-
tion K (¢)

K () = 8p{ a7 ¢~ g¥6s P g~ gWI g6 P | (62-14)
Bezeichnen wir mit |
G = exp (—iH,t) G () exp (iH,1) (62-15)

und transformieren wir mit exp (— ¢Hy¢) von der Wechselwirkungsdar-
stellung wieder zur Heisenbergdarstellung zuriick, so erhalten wir wegen
[Hy, W] = 0:

SP { e~ 1 (Hy+W)t zGo Pe—-LGo ¢ i (Hy+W)t 1(; —1(;} (62*16)
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In Kap. 64 werden wir beweisen (vgl. Gl. 64-16, 64-17), dass G, = G ist.
Entwickelt man den Operator G nach Potenzen von ¢

"\)

= 2 G, (62-17)
so findet man mit Gl. (22-11)

~ s

exp (iG) Pexp (—iG) = P —i¢ [P, Gy]

- 82{ i [P, Gyl + 5 [ (P, Gy, 81] } 10 (Y. (62-18)
Schreiben wir
R = exp (iG) Pexp (— iG) = f‘ & R, (62-19)
Ry =P " (62-20)
R, = —i[P, ?;1] (62-21)
R, =—i[P, G, —— [[P 6.6 ] (62-22)
R, () =exp{—i (H0—|— W)ty R, exp{i (Hy+ W)t} (62-23)

so lautet die Korrelationsfunktion K (f) gemiss Gl. (62-16):
f) = Sp{ R (t) R} (62-24)
oder entwickelt nach Potenzen von ¢
K{)=Ky+eK,+eKy+ ... ( )
Ky, = Sp{RyRy}=Sp{ PP} (62-26)
K, =2Sp{RyR;} (62-27)
K, =2Sp{RyRy}+ Sp{R, R}, (62-28)
was die gesuchte Entwicklung darstellt.

63. Die Struktur des Storoperators H 1 i der Wechselwirkungsdarstellung

Wie man sofort sieht, hat H, (f) von Gl (62-2) immer folgende allge-
meine Form

H, ()mexp(th)H exp(—zH f) =
—C—G—ZA cosvt+ZB sinv,?, - (63-1)

wobei 4,, B, und C konstante Operatoren sind. Ohne Einschrinkung
der Allgemeinheit darf man natiirlich voraussetzen, dass alle »,, vonein-
ander verschieden und positiv sind:

v, v firn+m, v,>0. (63-2)
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Aus der Gleichung (63-1) ist zu entnehmen, dass C mit H, vertauschbar
1st,
[C» H()] =0 ’ (63*3)

und dass die Operatoren 4,, B, in der Eigenbasis von H, keine Diagonal-

elemente aufweisen. Setzt man in (63-1) ¢ = 0, so folgt folgende Zer-
legung von H,

Hi=C+ Y 4,, (63-4)

wobei gilt: *
A, —exp(iHyt) A, exp (—iHyt)= A, cosv t+ B,sinv, ¢ (63-5)
| A (0)=4

n -

Durch ein- bzw. zweimalige Differentiation dieser Gleichung nach ¢ folgt
tir¢ =0
Vau Bn = v [HO! An] (6376)

v A = —i[H, B,]. (63-7)
Mit Gl. (22-11) folgt damit

B, (t) = exp ({ Hyt) B, exp (— i Hyt) = B, cosv,t — A, sinvy, ¢  (63-8)

B, (0)=1B,.

Die durch die Operatoren von Gl. (63-1) erzeugte Liesche Algebra wird
somit z. B. von den Operatoren H,, C, A;, 4,, ..., Ay erzeugt und um-
fasst die Operatoren H,, C, 4,, B,., [4,, 4,1, [4,, B, .[B,, B,] usw.
(m,m=1, 2, ..., N). Statt den Operatoren [4,, B, ], [4,, 4.,.], [Bn,
B,,] fithrt man bequemer folgende Linearkombinationen ein:

24, = [A,B+[B, 4,] (63-9)

24,= [4,, B, —[B,. 4,,] (63-10)

2B, = [A4,4,]+[B,. B,]. (63-12)

Damit folgt mit Gl. (63-5) und (63-8) in genauer Analogie zu diesen
Gleichungen:

AZ, (f) = exp (Hyt) AZ, exp (— i Hyt)

= A= cos (v, +»)t+ B sin (v, +»,) ¢ (63-13)
BZ, (t) = exp (i Hyt) BE, exp (— i Hyt)

= B, cos (v, +w,) t — A, sin (v, +9,) 6. (63-14)
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Die zu Gl. (63-6) und (63-7) analogen Vertauschungsrelationen lauten:
(v, £ ,) BE = i[H, AL] (63-15)
(v, = v,) A5, = — i [Hy, BE]. (63-16)

Ganz analoge Relationen gelten fiir die hoheren Kommutatoren. Ist f (¢)
eine trigonometrische Summe ohne konstanten Term, so sei im folgenden

in dem Integral
14
[ 1) ax

die Integrationskonstante immer so bestimmt, dass das Integral wieder
eine trigonometrische Summe oine konstanten Term ist. Mit der durch
Differentiation von (63-5) folgenden Relation

i [Hy A = — v, (A, sinv,t— B, cos v, 1) (63-17)

ergibt sich daher mit Gl. (63-5) und (63-6) fiir das im erwidhnten Sinne
verstandene Integral von 4,,:

f A, (¥) dx = — (i) [Ho, 4, (0] = — (f»,) B, (1) . (63-18)

Genau analog findet man:

[ B, ®dx= (1)n,) 4, ) (63-19)
f A%, (%) dx = — (v, £ v, BE, (9 (63-20)
anm dx*‘ (vn:!:— m) IAI () (63'21)

Aus diesen Relationen ist ersichtlich, dass die Operatoren (63-18) bis
(63-21) und die analogen héheren 1ntegnerten Operatoren in der Eigen-

basis von H, ebenso wie die Operatoren An B Anim, Bi usw. keine
D_iagonalterme aufweisen und zudem (per definitionem) trlgonometnsche
Summen ohne konstanten Term sind. Transformiert man diese Opera-
toren von der Wechselwirkungsdarstellung zur Heisenberg-Darstellung

zuriick, so resultieren alles explizite zeitunabhingige Operatoren. Es sei

R der aus den Operatoren C, Zn, Em (n,m=1, ..., N) erzeugte Kom-
mutatorring, in dem die Kommutatorbildung, die Multiplikation mit
einem Skalar und die im erliuterten Sinne ausgefiihrte Integration iiber
Operatoren, die keine konstante Terme enthalten, zuldssige Operationen
sind. Sei weiter £ die durch die Operatoren Hy, C, 4, (n =1, ..., N)
erzeugte Liesche Algebra. Die oben abgeleiteten Relationen bedeuten
dann einfach, dass der Ring R isomorph der Lieschen Algebra L ist. Damit
folgt, dass samtliche Operatoren aus R, die eine trigonometrische Summe
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ohne konstanten Term darstellen, in der Eigenbasis von H, keine Dia-
gonalterme aufweisen und dass simtliche zeitlich konstante Operatoren
aus £ mit H vertauschbar sind*).

64. Bestimmung der unitaven Transformation S
Aus

S (¢) = exp (—1G (), G (0) = Gy (64-1)
erhdlt man durch Anwendung der bekannten Differentiationsformeln?'s)

fiir einen zeitabhidngigen Operator (vgl. Gl. 22-11 und 22-12)

I

S =g f 696 G 6 gy — — ZLJ)_ C.[G, Gl (64-2)
0

und somit mit Gl. (22-11) und (62-11)
W = 2—-C[sH~G/(s+1),G]. (64-3)

Aus dieser Gleichung bestimmen wir nun W und G so, dass W mit H,
vertauschbar und zeitunabhingig ist, und dass G in der Eigenbasis von
H, keine Diagonalelemente enthilt und eine trigonometrische Summe
ohne konstanten Term ist. Dass diese Bedingungen erfiillbar sind,
wurde in Kap. 63 gezeigt, falls man bei Integrationen die Integrations-
konstante so bestimmt, dass das Integral einer trigonometrischen Summe
ohne konstanten Term wiederum eine solche ergibt.

Durch Potenzreihenentwicklung nach ¢

wW=Xe&W,, G6=)¢66G, (64-4)

kann man die Losung von Gl. (64-3) durch Koeffizientenvefgleich rekur-
siv erhalten:

W, + G, = H, (64-5)
Wyt Gy=—i[Hy — G1/2, Gl = —i [Wy + G2, G;] (64-6)

*) Fiir die Giltigkeit dieser Beziehungen ist es notwendig, dass die Integration
in R in der angewebenen Weise durchgefuhrt wird. Die Integration

f f(#
t
darf beispielsweise nicht als f f (#) dx definiert werden (was zu der an sich angeneh-

men Relation S (0) = E Anlass gibe). Dieser Sachverhalt wurde von H. S. GREEN!})
nicht beachtet, und er erhilt so teilweise unrichtige Resultate.
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Die Ermittlung der héheren Niherungen macht keinerlei Schwierigkei-
ten. Mit der Darstellung von H, (f) nach Gl. (63-1) erhilt man mit GL
(63-3) und (63-18): '

W, =C (64-7)
Gi= [A, &) dx=—=3(1]v,) B, (1) . (64-8)

Zur Berechnung der zweiten Niherung bestimmen wir mit Gl. (64-8),
(63-9) und (63-10) zunichst den folgenden Kommutator:

Gy, Gl = — 3 (1/9,) [4,, B,] = 2(1/vm)(Z:m+E;m>- (64-9)

Von den Operatoren Efm ist wegen (63-2) nach (63-13) lediglich .:4_”_%
ein konstanter Operator, so dass wegen [W;, H,] = 0 aus (64-6) fiir W,
folgt, dass

Wo=5 3 (1) A= 53 (/%) [4, B,).  (64-10)

Wegen Zﬂ: = 0 ergibt sich weiter aus (64-0), (64-8) und (64-9):

Gzzzfz [v,) [W, B, ( dHﬁ_.fZ (1/w,) { A (x) + A, (¥) } dx
n=m

und damit mit Gl. (63-19) und (63—2())

Go=i v 24, 00— 5 3 v, -1 B= . (64-11)

n:}:m +,—

Transformieren wir gemiss Gl. (62-15) zur Heisenberg-Darstellung
zuriick, so erhalten wir mit den obigen Relationen:

W,=C (64-12)

Wa= — 2 (U]v,) (4, B, (64-13)

G, = — X /v B, (64-14)

?;zzszMA 2 3 3 v -1 BE | (64-15)
nFEM A+,

wihrend man fiir G,, = G,, (0) mit den Gl (63-5), (63-8), (63-13) und
(63-14) findet:

G, = G, (64-16)
Gy == G (64-17)
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05. Zusammenfassung der Ndaherungsmethode

Unter Beniitzung der in Kap. 63 und 64 abgeleiteten Resultate kann
man die Entwicklung (62-25) bis (62-28) wie folgt zusammenfassen:

a) Vom Hémilton-Operator H wird ein Stoér-Operator H, abgespalten

H=H,+e¢H,.
b) Gemiss der Relation

exp (1 Hyt) Hyexp (—iHyt) = C+ ' A, cosv,t+ D' B, sinv,g

werden die zeitlich konstanten Operatoren 4, B, und C sowie die Fre-
quenzen v, berechnet. Diese Zerlegung ist eindeutig, wenn man beachtet,
dass v, + v, fir # = m und », > 0.

c) Die Korrelationsfunktion K (f) von Gl. (21-4) kann nach Potenzen
von ¢ entwickelt werden

K({f)=Ky(t) +eK, () +2K, () + ...,
wobei die Ndherungen durch folgende Ausdriicke zu berechnen sind:

K,= Sp{ PP}

K= 3 X (U/n) Sp{P(P B}
Ky=2 3 (1/9)2Sp{ P[P, 4,]}

~5 2 Xt kr) 1 Sp | P[PIB, BT 4,4,]]}

nFM +,—

— X /v, %) (Sp| P[P, B, B, ]|+ Sp | [P B[P, B,)}) .

Die durch ein ~-Zeichen angedeutete Transformation ist definiert
durch:

Z=exp(—t(Hy+ W)t) Zexp (i (Hy+ W)t) (Z—= Poder B)).

Der Operator W ist mit H, vertauschbar und bis und mit zur zweiten
Niaherung gegeben durch

1
W=C+ 2 ; (I/vn) [An’ Bﬂ} !

Bei dieser Naherungsmethode sind sowohl die Intensitidten als auch die
Frequenzen nach Potenzen von ¢ entwickelt. Die Resultate sind somit
dquivalent mit denjenigen, die man nach der konventionellen Methode
durch stérungstheoretische Behandlung des Eigenwertproblems des
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Hamilton-Operators H erhalten kann, doch wird der Arbeitsaufwand fiir
eine explizite Rechnung nach der hier beschriebenen Methode bedeutend
geringer sein.

Wir danken dem Schweizerischen Nationalfonds zur Forderung der
Wissenschaften (Projekt Nr.721) und der Firma Hoffmann-La Roche
AG, Basel, fiir die Unterstiitzung dieser Arbeit.
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