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Eine Methode zur direkten Berechnung des Spektrums
der von quantenmechanischen Systemen absorbierten

bzw. emittierten elektromagnetischen Strahlung
von H. Primas und Hs. H. Günthard

(Organ.-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich)

(6. III. 1958)

Zusammenfassung. Die in den elektromagnetischen Spektroskopien beobachtbaren

Frequenzen C0jk und Intensitäten Ajk der emittierten resp. absorbierten
Strahlung werden zu einem idealisierten Spektrum Q (co) zusammengefasst:

0 (<*>) Z Aile d (« - (Ojk) ¦

Es wird gezeigt, dass die Fouriertransformierte von Q (tu) die Eigenschaften einer
Korrelationsfunktion K (t) hat und durch die Relation

K(t) Z Am cos (cojkt) Spur {X(t)X(0)}
j<k

mit
X (t) exp - iHt) P exp (iHt)

gegeben ist. Dabei ist H der Hamiltonoperator des Systems und P der
Wechselwirkungsoperator des Systems mit der Strahlung. Dadurch ist es möglich, Spektren
ohne Lösung des Eigenwertproblems des Hamiltonoperators H direkt zu berechnen,
was sowohl vom theoretischen Standpunkt aus als auch für die praktische Rechnung

Vorteile hat. Unter gewissen Voraussetzungen gilt folgende, allgemeinere
Relation

Ä (t) 2 Z Ajk exp (i | cojk t) 4" "Spur {e-imp-eiHtp+y
j<k 2

P±=PX± iPv ¦

Die Korrelationsfunktion K(t) ist die erzeugende Funktion der Waller-vanVleck-
schen Momentmethode, für welche Korrekturterme zur Berücksichtigung der
natürlichen und apparativen Linienbreite hergeleitet werden. K (t) erlaubt ferner die
Aufstellung expliziter Ausdrücke für die Intensitäten in Funktion der Frequenzen.
Auf die Möglichkeit, direkt für das idealisierte Spektrum Q (co) ein algebraisches
Eigenwertproblem zu formulieren, wird hingewiesen. Es wird eine Approximationsmethode

angegeben, die eine störungstheoretische (gegenüber unitären
Transformationen invariante) Auswertung von K (t) erlaubt.



414 H. Primas und Hans H. Günthard

1. Einleitung

Sehr viele spektroskopische und verwandte experimentelle Methoden
fallen unter folgendes allgemeine Schema: Ein quantenmechanisches
System habe im stationären Zustand die möglichen, diskreten
Energieeigenwerte Ex, E2, E3, Dieses System sei durch einen Operator P an
das Strahlungsfeld gekoppelt, und dadurch seien Übergänge zwischen den
verschiedenen Zuständen unter Emission oder Absorption elektromagnetischer

Strahlung der Frequenz*)

cojk Ej — E}: (1-1)

ermöglicht. Für solche Fälle gilt bekanntlich in erster Näherung der
Strahlungstheorie1), dass die Übergangswahrscheinlichkeit pro Zeiteinheit

vom Zustand / zum Zustand k proportional [ Pjk j2 ist. Die
experimentell beobachtete Intensität der elektromagnetischen Strahlung ist
gemäss der Einsteinschen Überlegung noch mit einem statistischen
Faktor zu versehen, z. B. mit dem Bolzmann-Faktor, so dass die
beobachtbare Intensität proportional wird zu

e~EikT \Pjk\2. (1-2)

Nun liegt oft der Fall vor, dass der Bolzmann-Faktor praktisch konstant
ist und dann die Intensität der mit dem Übergang / -> k verknüpften,
experimentell beobachtbaren Strahlung proportional**) ist der Grösse

Ajk (die wir im folgenden kurz als Intensität bezeichnen), mit

Ajk | Pjk \2 (1-3)

Unter experimentell oft erfüllten Bedingungen (keine Sättigung durch
das Strahlungsfeld, nicht zu tiefe Temperaturen usw.) fallen die meisten
Arten der Spektroskopie unter dieses allgemeine Schema, unter anderem

z. B. die optische Spektroskopie mit Atomen und Molekülen,
Infrarotspektroskopie, Ramanspektroskopie, magnetische Kern- und Elektronenresonanz,

Mikrowellenspektroskopie, Kernquadrupolresonanz usw. In all
diesen Fällen stellt die quantenmechanische Berechnung der Frequenzen

wik und der Intensitäten An ein wichtiges Problem dar, das üblicherweise

wie folgt behandelt wird :

*) Wir setzen im folgenden immer h e 1.

**) Eigentlich ist die Intensität proportional der Grösse conjkAjk (z. B. n 1

in der Infrarotspektroskopie, » 2 in der Kernresonanzspektroskopie), doch wird
wegen ihrer Kleinheit diese Abhängigkeit von der Frequenz oft vernachlässigt.
Durch Differentiation der Korrelationsfunktion K (t) von Kap. 2 nach t kann man
aber diese Abhängigkeit auch leicht korrekt mitberücksichtigen.
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a) H sei der Hamilton-Operator des Systems ohne die Wechselwirkung

mit dem Strahlungsfeld und ohne solche Wechselwirkungen des

Systems mit der Umgebung, die zu LinienVerbreiterungen Anlass geben.
Unter diesen Voraussetzungen ist im allgemeinen H explizite zeitun-
abhängig. Die Lösung des Eigenwertproblems des Operators H

H0j Xj0j (1-4)

ergibt die Eigenwerte A3- und die Eigenfunktionen &t.
b) Das experimentell in der Spektroskopie beobachtete Spektrum ist

dann gegeben durch
G M X Sik (« - «>«) (!~5)

wobei gjk die shapefunction einer einzelnen Spektrallinie mit der
Zentrumsfrequenz a>jk ist. Die Zentrumsfrequenz cojk ist in ausgezeichneter
Näherung gegeben durch

oAk h - K l1"6)

und die Intensität Aik ebenfalls in guter Näherung durch
00

Ajk=Jgik(x)dx=\(<P1\P\&k) \2. (1-7)
—oo

Die Berechnung der Frequenzen cajk und der Intensitäten Ajk durch
explizite Lösung des Eigenwertproblems (1-4) und durch Benützung
von Gleichung (1-6) und (1-7) hat aber verschiedene Nachteile, von
denen wir lediglich zwei erwähnen möchten.

Erstens ist vom theoretischen Standpunkt aus die Berechnung der
Frequenzen durch die Differenzbildung (1-6) nicht sehr befriedigend, da
es dann schwierig scheint, allgemeine Aussagen über eine allfällige
Entartung der Frequenzen oj,jk zu machen. Zwar erhält man durch eine

gruppentheoretische Behandlung des Eigenwertproblems (1-4) des

Hamilton-Operators H leicht eine vollständige Übersicht über die
möglichen Entartungen der Eigenwerte A,- von H, jedoch nicht über
eventuelle Entartungen der Differenzen der Eigenwerte. Nun ist es aber wohl
bekannt, dass es Operatoren gibt, bei denen die Differenzen der Eigenwerte

entartet sind. Ein solcher Operator ist beispielsweise die z-Kom-
ponente eines Spinoperators, dessen Eigenwerte eine äquidistante Folge
bilden. Die Untersuchung, wie solche entartete Differenzen der Eigenwerte

(die ja den beobachtbaren Resonanzfrequenzen entsprechen) unter
dem Einfluss von Störoperatoren aufspalten, ist z. B. in der
Kernresonanzspektroskopie wichtig und kann nach der üblichen Methode
meist nur durch explizite Rechnung geschehen. Es ist somit schwierig,
eine generelle Übersicht zu erhalten.

Ein zweiter Nachteil betrifft die praktische, explizite Rechnung. Es
ist unökonomisch, die Eigenfunktionen explizite zu berechnen und die
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dadurch erhaltene detaillierte Information über das System durch den

Mittelungsprozess der Berechnung der Matrixelemente nach Gleichung
(1-7) zu einem grossen Teil wieder zu verlieren.

Im folgenden Kapitel werden wir zeigen, dass es möglich ist, die oft
allein interessierenden Grössen cajk und Ajk direkt zu berechnen, ohne

dass man zuvor das Eigenwertproblem des Hamilton-Operators H zu lösen

hat. Es zeigt sich, dass sich das Spektrum in einer geschlossenen,
übersichtlichen Weise analytisch darstellen lässt, die sowohl zur allgemeinen
theoretischen Diskussion als auch zur praktischen Auswertung geeignet
ist und die die oben erwähnten Umwege vermeidet.

In Kapitel 3 und 4 werden wir zeigen, dass verschiedene, aus speziellen
Anwendungen bekannte Methoden und Sätze sich leicht als Spezialfälle
der Hauptformel von Kapitel 2 ergeben und sehr allgemeine Gültigkeit
haben. In Kapitel 5 beschreiben wir u. a. ein Approximationsverfahren
für die Berechnung des spektroskopisch beobachtbaren Spektrums, das

gegenüber der konventionellen Störungsrechnung bedeutende Vorteile
aufweist.

Auf eine explizite Auswertung der in dieser Arbeit hergeleiteten
Relationen für den Fall der Kernresonanzspektroskopie kommen wir in
einigen folgenden Arbeiten2) zurück. Eine Anwendung auf den Wilson-
schen Formalismus der Berechnung von Infrarotspektren (FG-Methode)
macht einige Modifikationen nötig, auf die wir an anderer Stelle
zurückkommen3) *).

2. Berechnung des Spektrums
aus einer verallgemeinerten Korrelationsfunktion

27. Hauptsatz

In dem spektroskopisch beobachtbaren Spektrum G (co)

G M E s« (°j - m^ ¦ (21-1)

wobei glk die shapefunction der Spektrallinie des Überganges / ->• k ist,
sind die Zentrumsfrequenzen coik und die Linienintensitäten Ajk

oo

Aik [gn (x) dx (21-2)

*) Der Hauptsatz dieser Arbeit ist eine Verallgemeinerungs eines von uns
früher bewiesenen Satzes der Infrarotspektroskopie (vgl. 8)). Manche Resultate
des Hauptsatzes sind in der Literatur bekannt, z. B. in der Theorie der Linienbreite

und der Relaxation14). Anwendungen zur Berechnung eines (idealisierten)
Spektrums sind bisher keine bekannt geworden. Das Korollar sowie die
expliziten Ausdrücke für die Intensitäten (4-2) und die Approximationsmethode
Kap. 6 scheinen neu zu sein.
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aus einem vereinfachten Hamilton-Operator (ohne Wechselwirkungsoperator

mit der Strahlung und ohne Wechselwirkungen, die zu
Linienverbreiterungen führen) gemäss Gl. (1-4), (1-6) und (1-7) in guter
Näherung berechenbar. Wir können diese Grössen zu einem idealisierten
Spektrum Q (co)

QH=2J Aik ô (co - cojk) (21-2)
i,*

zusammenfassen. Für den Fall verschwindender Linienbreiten geht das
beobachtbare Spektrum G (co) in das idealisierte Spektrum Q (co) über.
Der folgende Hauptsatz zeigt, dass die Fouriertransformierte K (t) von
QH c

K(t) [q (co) e'mt dco 2J Ajk exp (imjkt) (21-3)

-co h *

die Eigenschaften einer Korrelationsfunktion hat und direkt aus den

Operatoren H und P berechenbar ist.

Hauptsatz

H sei ein beliebiger, explizite zeitunabhängiger, hermitischer
Operator*) mit den Eigenwerten und den Eigenfunktionen 0}

H0j Xj0j;
weiter bedeute

Wjä /\j - K
A; \ (0-\ P \0,) \2 \ P -, I2

wobei .P ein beliebiger hermitischer, von der Zeit explizite
unabhängiger Operator sei, der in der Eigenbasis des Hamiltonopera-
tors H keine Diagonalelemente aufweise.**) Dann gilt für die
Fouriertransformierte des Spektrums Q (co)

K(t) 2]T A\ik cos co,k t Spur { X (t) X (0) } (21-4)
I<kmit

X (t) e-im PetHi, X (0) P. (21-5)

Beweis: Da die Spur in einer beliebigen Basis berechnet werden kann, darf die
Eigenbasis von H gewählt werden. Damit folgt:

K(t) Sp {e—-HtPe'HtP} Z e-ioJfkt PjkPkj
i,k

Z e~'m,kt Aik 2 Z Aik cos cojkt
j, k i<k

*) Wir nehmen immer an, dass H nur ein diskretes, endliches Spektrum habe.
Die Sätze lassen sich auf allgemeinere Fälle ausdehnen.
**) Hat P Diagonalelemente, so tritt in K (t) noch ein konstanter Term auf.

Für praktisch wichtige Fälle ist die Voraussetzung des Satzes erfüllt.
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Dass K (t) reell ist, folgt aus der Hermitezität von X (t) und damit von (X (t) X (0)
+ X(0) X(t)) unter Berücksichtigung, dass Sp (AB) Sp (BA) und dass die Spur
eines hermiteschen Operators reell ist.

Dieser Satz ist im wesentlichen eine Analogie und Verallgemeinerung
des Satzes von Khintchine-Wiener, nach welchem die Korrelationsfunktion

einer Zeitfunktion die Cosinus-Fouriertransformierte ihrer
Spektraldichte ist. Im vorliegenden Falle ist K (t) die Korrelationsfunktion

der Heisenbergdarstellung X (t) des Wechselwirkungsoperators
P mit dem Strahlungsfeld, wobei die Mittelwertsbildung durch die Spur
bewerkstelligt ist. Wegen der Invarianz der Spur gegenüber unitären
Transformationen folgt auch hier die bei Korrelationsfunktionen übliche
Stationarität. Es sei noch erwähnt, dass in Gl. (21-4) bereits alle
Auswahlregeln implizite enthalten sind. Bei der Auswertung der Spur (21-4)
braucht man also keinerlei Auswahlregeln zu berücksichtigen.

22. Verallgemeinerung des Hauptsatzes

Ist die Korrelationsfunktion K (t) des Hauptsatzes in der Form

Z Ajk cos (cOjkt) explizite bekannt, so sind die Frequenzen cojk und die
Intensitäten Ajk ebenfalls explizite bekannt, und es kann somit jede
beliebige Funktion der cojk und der Ajk berechnet werden. Ist der
Hamilton-Operator H kompliziert, so kann man nicht immer ohne weiteres die

explizite Darstellung von K (t) in Form einer trigonometrischen Reihe
erhalten. Trotzdem sind aber aus der Spurdarstellung von K (t) gewisse
Funktionen der coik und der Ajk sofort herzuleiten, so z. B. die in Kap. 3

behandelten geraden Momente der shape function (dies sind im wesentlichen

die Entwicklungskoeffizienten der Entwicklung von K (t) nach
Potenzen von f). Die ungeraden Momente sind im Prinzip ebenfalls aus

K (t) herleitbar, jedoch nicht in der einfachen Weise wie die geraden
Momente. Im vorstehenden Korollar geben wir für den Fall, dass P ein

Vektoroperator ist (z.B. das elektrische oder magnetische Dipolmoment)
eine allgemeinere Form des Hauptsatzes, die zwar nicht mehr Information
liefert, aber z. B. die Berechnung der ungeraden Momente in derselben
einfachen Weise wie für die geraden Momente erlaubt.

Korollar zum Hauptsatz
Es sei H der Hamilton-Operator und F (Fx, Fy Fz) der Ope-

rator des Gesamtdrehimpulses des betrachteten Systems. Ausser
den Voraussetzungen des Hauptsatzes gelte weiter:

a) H sei invariant gegenüber Drehungen um die z-Achse, d. h.

es sei

[H, Fz] 0. (22-1)



Vol. 31, 1958 Eine Methode zur direkten Berechnung des Spektrums 419

b) Es seiP (Px, Py, Pz) ein Vektoroperator, der die fo

Vertauschungsrelationen erfülle :

genden

[Fx, Py] - [Fy, Px] iPz usw. (22-2)

c) Wegen der Vertauschbarkeit (22-1) kann man eine Basis

{ ^am } finden, in der sowohl Fz als auch H diagonal ist,

Fz Warn m Warn (22-3)

H fcLm Km Warn ¦ )(22-4

Wir setzen voraus, dass gilt

k,m+i-Aß,,n>° für allea,/3. (22-5)

Dann gilt:

St(t) 227A* exp (* 1w« 1 ') =4 sp {e"m p~ßiHt p+} (22-6)

d.h.
2 27 -4,/£ cos (coj) S^> { e-m Px eiHt Px }

Sp { e-im Py em Py }

(22-7)

(22-8)

2 27 Ajk sin | coik | t) Sp{ e-'m Px eim Py } (22-9)

- -Sp{e-MtPyeilItPx},
wobei

(22-10)

P±=Px±iPy.

Beweis:

a) Mit der bekannten Relation
00 (it)s-lAt Be+'At Z -j- cs [ß. A ¦ (22-11)

(22-12)

wobei Cs [B, Ä] die sukzessiven Kommutatoren von B mit A sind,

C0 [B, A] B Cx [B, A] [B,A] BA-AB
Cn+1[B,A] Cn[[B,A],A]

folgt aus den Vertauschungsrelationen (22-2) :

exp - iFz &) PXi y exp (iFz ÌÌ) Px< y
¦ cos & ± Py< x

¦ sin &

Wegen der Vertauschbarkeit von H mit Fz (Gl. 22-1) und der Invarianz der Spur
gegenüber unitären Transformationen folgt durch Transformation mit dem
Operator exp (iFz 7tj2) :

K(t) Sp { e-im Px em Px } Sp{ e-m Py elHt Py }
und

Sp { e~im Px eu» Py}= - Sp { e~iHt Py emt Px }
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b) Unterwerfen wir beide Seiten der Gleichung

K(t) 2Z Ajk cos (cojk t) Sp{ e-«» Px e'f" Px }
i<k

der HiLBERTschen Integraltransformation (HW Hauptwert)
oo

t> [/(Ol (Vn)HW J f(t) ¦ («-r)"1*,
— 00

so finden wir wegen4)
§ [cos (at)] — sin \a\ t)
§ [exp (iat)] i ¦ sg (a) ¦ exp (iar)

a reell mit sg (a) +1 für a > 0, sg (a) — 1 für a < 0

für die HiLBERTtransformierte von X (t) :

§ [tf (*)] - 2 21 ^ft sin Icüftl r) Sp {S [•-»' P^ „««] Px}
j<k

Die Grösse P 9) re~'Ht p^ eiHt-\ werten wir in der gemeinsamen Eigenbasis von
H und Fz aus (vgl. Gl. 22-3 und 22-4) :

Pam, ßm' S [exP { ~ ' (^am~ ^ßm') 0 ' (Px)am,ßm'
— * " sr? ßcm~ Äßm') ' exP {— 2 ßam— ^ßm') T } ' (Px)am, ßm' ¦

Wegen der Vertauschungsrelation (22-2) gilt5)

(Px)am, ßm' (Py)am, ßm' °. falls »»' 4= » ± 1

v^x'am, ßm ± 1 ~ + î (¦*" y) am, ßm ± 1

so dass mit Voraussetzung (22-5)

SffWom- ^« à l) sg (+!) + 1

folgt:
Pam, ßm-k 1 ± * " exP { _ ßam~ ^ßm ± l) T } (Px)am, ßm ± 1

exp { - f (Aam- A^jm ± i) T } (Py)am, ßm ± 1

jj _ e-Of> pa e«T

und damit folgt sofort der zu beweisende Satz.

Aus dem Beweis folgt, dass die Voraussetzung (22-5) notwendig ist,
d. h. also dass das Korollar falsch wird, wenn diese Voraussetzung nicht
erfüllt ist. Diese Voraussetzung scheint aber aus physikalischen Gründen
meist erfüllt zu sein, denn die Auszeichnung der z-Achse geschieht immer
durch ein äusseres Feld (elektrisches oder magnetisches), und bei
genügend hohen Feldstärken dürfte die Voraussetzung (22-5) immer
zutreffen. Ist die Voraussetzung bei hohen Feldstärken erfüllt, so muss
wegen der stetigen Abhängigkeit der Eigenwerte von der Feldstärke
und wegen des Kreuzverbotes zweier Terme die Relation (22-5)
unabhängig von der Feldstärke gelten*).

*) Zur Begründung des Kreuzverbotes muss man voraussetzen, dass der Hamil-
tonoperator für alle nichtverschwindenden Feldstärken dieselbe Symmetriegruppe
aufweist. Mathematisch sind Ausnahmefälle denkbar, die jedoch kaum physikalisch
realisiert werden können.
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Da die Funktion Sì (t) durch Addition eines durch Hubert-Transformation

von K (t) erzeugten Imaginärteils zu K (t) entstanden ist

St(t)=K (t) Ai§>[K (t)] (22-11)

folgt, dass St (t) eine analytische Funktion in der ganzen oberen Halbebene

ist, und dass die Fouriertransformierte von Sì (t) für negative co

verschwindet und für positive gleich dem Spektrum Q (co), d. h. der
Fouriertransformierten von K (t) ist :

Q(co)emtdca St(t) (22-12)
o

3. Intensitäts-Summensätze und WALLERsche Momentenmethode

Von Waller8) stammt eine Methode zur Berechnung des zweiten
und vierten Moments der shapefunction, die von van Vleck7) in einer
bekannten Arbeit auf die Kernresonanzspektren von Festkörpern
angewandt wurde. Wir werden zeigen, dass die Korrelationsfunktion des

Hauptsatzes bzw. die verallgemeinerte Funktion des Korollars erzeugende
Funktionen der von Waller und van Vleck benutzten Momente sind.

Im folgenden werden wir die Summensätze für einen im Sinne des

Korollars um die z-Achse rotationsinvarianten Hamilton-Operator H
herleiten. Jedoch sind die folgenden Summenrelationen Sn für gerades n
allgemeingültig, da diese auch aus der allgemeingültigen Gl. (21-4)
hergeleitet werden können. Für einen nicht rotationsinvarianten Hamilton-
Operator müssen die Intensitätssummensätze für ungerades n speziell
und unter Berücksichtigung der Anisotropie des Hamilton-Operators
hergeleitet werden.

Durch Entwicklung nach Potenzen von t von beiden Seiten von Gl.

(22-6) erhält man durch Koeffizientenvergleich ein vollständiges System
von Intensitätssummensätzen. Mit den Gleichungen (22-11) und (22-6)
erhält man :

27 K | Ajk | Spur { Cn [P- H] • P+ }. (3-1)
4

wobei Cn der «-te Kommutator gemäss Gl. (22-12) ist.
Diese Relationen für S0, S2 und S4 wurden von Waller, van Vleck

und anderen benutzt, um mit Hilfe der experimentell bestimmten zweiten

und vierten Momente der shapefunction Informationen über das
untersuchte Kernspinsystem zu erhalten. Wir möchten aber darauf
hinweisen, dass die nach Gl. (3-3) berechneten Momente Sn sich auf ein
idealisiertes Spektrum beziehen, bei welchem alle Linien eine ver-
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schwindende Linienbreite haben, d. h. <3-Funktionen sind. Eine exakte
Relation zwischen den experimentell bestimmten Momenten und den
Intensitätssummen Sn kann man wie folgt herleiten. Der durch
Vernachlässigung der Linienverbreiterung vereinfachte Hamilton-Operator H
ergibt die Zentrumsfrequenzen cojk und die Intensitäten Ajk der einzelnen
Linien. Die Linienverbreiterung der j, /%-ten Linie beschreiben wir durch
eine shapefunction gjk (m-coik), wobei wir gleichzeitig auch eine allfällige
Linienverbreiterung durch apparative Einflüsse mitberücksichtigen können.

Von den Funktionen g3k setzen wir lediglich voraus, dass ihre «-ten
Momente //„ (/, k) existieren und dass sie so normiert seien, dass das

nullte Moment gleich der Linienintensität Am sei und das erste Moment
verschwinde : ^ ^

j eue (x) dx Ajk I xgjk (x) dx 0

»°° -~ (3-2)

J xn gjk (x) dx fi„ (j, k) (n 2, 3,..
— CO

Das experimentell beobachtete Spektrum ist durch die shapefunetion
G (co) beschrieben,

G H 27 s« (m - I mi* D • (3_3)
j<h

deren «-te Momente gegeben sind durch:
CO CO

Mn fco" G (co) dco 27 f(x A | mn \)n gik (x) dx

u - COfk

co

^27 f(x+ \chk\)ngik(x)dx.
i<" -i

Die letzte approximative Gleichung gilt sehr genau, da ja meist die
Linienbreite einer einzelnen Linie sehr viel kleiner ist als ihre Zentrumsfrequenz.

Durch Entwicklung nach dem binomischen Satz und mit
Gl. (3-1) folgt damit:

n

Mn sn +27 ; 271 m7p 1 p* (/. *) « >1 ¦ (3-4)
#> 2 ]<k

also insbesondere :

Ma S0 Mx Sx, M2 S2 A Zf*2 (j, k)
i<k

Daraus ist ersichtlich, dass die experimentell ermittelten Momente Mn im
allgemeinen nicht mit den nach der Waller-vanVleckschen Methode berechneten

Momenten Sn übereinstimmen, sondern dass eine u. U. erhebliche

Korrektur anzubringen ist, die durch die natürliche und apparative Linienbreite

verursacht wird.
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4. Ein expliziter Ausdruck für die Intensitäten
in Funktion der Resonanzfrequenzen

In diesem Kapitel nehmen wir an, dass der Hamilton-Operator H
Anlass zu N Spektrallinien mit den Resonanzfrequenzen cojk Xt — Xk und
den Intensitäten A,jk gibt, wobei wir der Einfachheit halber die Indizierung

ändern und die Resonanzfrequenzen und Intensitäten von 1 bis N
durchnumerieren und mit oj3- (co, > 0) bzw. A} (/' 1, 2, N)
bezeichnen. In dieser Bezeichnungsweise lauten dann die Summensätze
(3-3)

'

v
Sn ]FwjAr (4-1)

7-1

Kennt man die Ar Momente S0, Sx, SN_X, so kann man das
Gleichungssystem (4-1) nach den Intensitäten Aj auflösen und man findet8) :

N-l A'-l
Z ' am,i ' ^X-m-1 Z (~ ' am,l' -V—m-1

a m=0 m 0
A, K, -$ t (4_2)

/jK-%) 27(-)Sm-<"/ì"1
*4=J *4=?

wobei o+j die /e-te elementarsymmetrische Funktion vom Grad k der
(A+l) Variablen cos (s 1, 2, V; s 4= /) ist:

V .Y

O",0,3
1 °i, j 27w* ff2- 3= 27 27oj"«w>-

A -» 1 ffl-H-w+ 1

TV
(4-3)

ffv-i,7 =77 i-,
w -1

Diese explizite Darstellung (4-2) der Intensitäten in Funktion der
Frequenzen und der Momente erweist sich für die Diskussion des Verlaufs
der Intensitäten in Funktion von Parametern im Hamilton-Operator
oftmals als nützlich.

5. Ein algebraisches Eigenwertproblem für das Spektrum
Den geeignetsten Ausgangspunkt für die Berechnung des Spektrums bildet die

Differentialgleichung, der X (t) von Gl. (21-5) genügt. Man verifiziert sofort, dass
der Operator

X(t) e~m Peim (51-1)

Lösung der Differentialgleichung

idXjdt [H, X] HX-XH (51-2)

mit der Anfangsbedingung
X (0) P (51-3)
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ist. Die Fouriertransformation
CO

X(t) f X (co) e-imt da (51-4)
— CO

algebraisiert die Differentialgleichung (51—2) und ergibt:

coX [H,X]. (51-5)

Wie Nambu9) im Zusammenhang mit Problemen der Feldquantisierung erwähnte,
kann eine Relation des Typus von Gl. (51-5) als verallgemeinertes lineares
Eigenwertproblem mit dem Eigenwert cOj und dem Eigenoperator Xj aufgefasst werden.
Wie man leicht verifiziert, bestehen zwischen dem ursprünglichen Eigenwertproblem
des Operators H,

H i^. Xj Vj, (51-6)

und dem Eigenwertproblem (51-5) folgende bemerkenswerte Zusammenhänge:
1. Ein Eigenwert von (51—5) ist gleich der Differenz zweier Eigenwerte von

(51—6), d. h. jeder experimentell beobachtbaren Resonanzfrequenz entspricht ein
Eigenwert von Gl. (51-5).

2. Ist Xj Eigenoperator von (51-5) und Wk Eigenfunktion von (51-6), so ist

Xj xfk entweder Null oder wieder Kigenfunktion von (51-6).
3. Ist Xj Eigenoperator von (51-5) mit dem Eigenwert <Oj, so ist XjXk wieder

Eigenoperator von (51-5) mit dem Eigenwert C0j + a>k.

4. [H, Xf X] [H, XXf] 0 bilden eine Kommutatoralgebra von H.
Mit (51-4) und (2-1) ergibt sich für das (für negative Frequenzen als gerade

Funktion fortgesetzte) Spektrum Q (cu) :

Q (oo) Z Aik & (<o - ««) Sp {X (co) ¦ P} (51-7)
l.k

wobei X (oo) die Lösung des Eigenwertproblems (51-5) ist. Diese Gleichungen dürften

der geeignete Ausgangspunkt zur Diskussion der algebraischen Struktur des

Spektrums sein. Insbesondere wird Gl. (51—5) zusammen mit Gl. (51—7) eine
Diskussion der möglichen Entartungen der Resonanzfrequenzen mit
gruppentheoretischen Hilfsmitteln erlauben, worauf wir in einer späteren Arbeit
zurückkommen werden.

Es sei noch erwähnt, dass man das Eigenwertproblem von Nambu mit Hilfe
der Methode der orthogonalen Operatoren von Fano10) auf ein gewöhnliches
Eigenwertproblem reduzieren kann. Es sei { U0, Ux, U2, ...} ein vollständiges System
hermitescher Operatoren, die bezüglich der Spurbildung orthonormiert seien,

Sp (UjUk) ôjk (51-8)

Nach Fano kann man jeden hermiteschen Operator 0 aus der durch die Uj
erzeugten Operatorenalgebra nach den Orthogonaloperatoren Uj entwickeln:

O Z Sp(OU})-U}. (51-9)
ì

Entwickelt man die Operatoren H und X nach den Uj

H Z hiui i h5 Sp (HUj) (51-10)
i

x Z A ui ¦ xi SP (xui) t51"11)
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und setzt man in die rechte Seite von Gl. (51-5) die Entwicklung von X ein, so

erhält man nach der Multiplikation mit xk und Spurbildung:

™*k Z xi SP {{H, Uj] Uk) Z *i Sp {H [Utt Uk]} (51-12)
i l

PDie Operatoren Uj erzeugen eine Liesche Algebra mit den Strukturkonstanten c\

\V„ Uk] z <% Up ¦ (51-13)
P

Damit reduziert sich Gl. (51-12) zu

»**-27**27«f*V <51-14>
1 p

Mit der schiefsymmetrischen Matrix T

T=(Tjk), Tik Zc%hp <51-15)
P

erhält man somit aus dem Nambuschen Eigenwcrtproblem ein konventionelles
Matrixeigenwertproblem

T (x) eu (x) (x) (xx, x% (51-16)

mit dem Eigenwert co und den Eigenvektoren (x). Somit geben die Eigenwerte des

Matrix-Eigenwertproblems (51-16) direkt die Resonanzfrequenzen, während die
Eigenvektoren (x) in einfacher Weise mit den Intensitäten zusammenhängen.
Beispielsweise ist in der Kernresonanzspektroskopie mit isotropen Substanzen der
Dipolmomentoperator P gegeben durch

;'-i
wobei yk das gyromagnetische Verhältnis, Ik der Spinoperator des A-ten Kernes
ist (Zahl der Kerne x). In diesem Falle darf man für die ersten x+ 1-Operatoren
Uj folgende Wahl treffen :

U0 (Sp £)~1/2 -E (E Einheitsoperator) (51-18)

Uj 2 Ijx (j 1,2

Ohne Einschränkung der Allgemeinheit dürfen wir uns auf Teilchen mit dem
Spin 1/2 beschränken, womit dann die Orthonormierungsbedingung (51-8) erfüllt
ist. Damit erhält man für das Spektrum Q (oo) (Gl. 51-8) :

0 (co) Sp X (oo) P Ì Z Yi*i -T (Y) (*) (51^19)

mit (y) (yv y2, yk, 0, 0,.

Fällt co mit einem Eigenwert von Gl. (51-16) zusammen, so ist in (51-19) für (x)
der entsprechende Eigenvektor einzusetzen, ist dagegen cu verschieden von
einem Eigenwert, so hat man für (x) den Nullvektor einzusetzen.

Es sei noch darauf aufmerksam gemacht, dass sich die Relation (51-16) kaum
für eine explizite Rechnung eignen dürfte. Denn falls der Hamilton-Operatori/ eine
(n x «)-Matrix ist, so kann im allgemeinsten Fall die Matrix T die Dimension von
bis zu (n2 x n2) haben.
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6. Eine Approximationsmethode zur Berechnung der
Korrelationsfunktion

61. Allgemeines

Wie in Kap. 3 gezeigt wurde, führt die Entwicklung der Korrelationsfunktion

K (t) nach Potenzen von t zu der Waller-vanVleckschen
Momentenmethode und erlaubt nur in den wenigsten Fällen eine
vollständige Berechnung des Spektrums. Da eine strenge Berechnung der
Korrelationsfunktion nach Gl. (21-4) und (21-5) nur bei sehr einfachen

Hamilton-Operatoren möglich zu sein scheint, ist es im allgemeinen
notwendig, zu einem Approximationsverfahren überzugehen. Wie üblich,
spalten wir daher den Hamilton-Operator H in einen relativ einfachen
Operator H0 und einen Störoperator Hx auf :

H H0 + eHx. (61-1)

Eine Entwicklung von exp (iH0t + isHxt) in Gl. (21-5) nach Potenzen

von e ist immer gleichzeitig eine Entwicklung nach Potenzen von t und
bietet gegenüber einer direkten Potenzreihenentwicklung von K (t)

(Methode von Waller und van Vleck) kaum Vorteile. Um eine
geeignete Entwicklung nach Potenzen von e zu erhalten, ist es notwendig,
auf die durch den Operator H0 erzeugte Wechselwirkungsdarstellung
überzugehen. Im folgenden werden wir zeigen, dass die dabei entstehende

Operatorendifferentialgleichung durch eine geeignete unitäre Transformation

S gelöst werden kann, wobei dann in der Korrelationsfunktion
die Frequenzen und Intensitäten nach Potenzen von e entwickelt sind.

62. Skizzierung der Näherungsmethode

Die im folgenden beschriebene Approximationsmethode wurde durch
die Arbeiten von H. S. Green11) und S. Tani12) nahegelegt. Von dem

Hamilton-Operator H spalten wir den Störoperator Hx ab,

H H0 + eHx, (62-1)

und gehen zu der durch H0 erzeugten Wechselwirkungsdarstellung über.
Mit den Bezeichnungen

Hx (t) exp (iH01) Hx exp (- iH01) (62-2)

X (t) exp (iH01) X (t) exp (- iH01) (62-3)

reduziert sich die Differentialgleichung für X (t)

i dXjdt [H, X] X (0) P (62-4)

auf folgende, H0 nicht mehr enthaltende Differentialgleichung:

i dXjdt e [Hx, X], X (0) P (62-5)
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Wegen der Invarianz der Spur gegen unitäre Transformationen gilt dann

K(t) Sp{X (t) ¦ P (t) } (62-6)
wobei

P (0 exp (iH01) P exp (- iH01) (62-7)

Zur Lösung der Differentialgleichung (62-5) führen wir eine
zeitabhängige unitäre Transformation S (t) aus, mit

SfS= SSf E S (0) S0, (62-8)

wobei speziell darauf hingewiesen sei, dass wir S (t 0) nicht gleich dem

Einheitsoperator setzen. Mit

Y Sf X S (62-9)

transformiert sich die Differentialgleichung (62-5) auf die folgende

i dYjdt [IT, Y] Y (0) Sf0 P S0 (62-10)
wobei

W eSf HxS-iSf ¦ S. (62-11)

Wie wir in Kap. 64 zeigen werden, kann man durch den Ansatz

5 (t) exp { - iG (t) }, G G\ G (0) G0 (62-12)

und mit Gl. (62-11) erreichen, dass einerseits W mit H0 vertauschbar
und zeitlich konstant ist und dass G (t) eine trigonometrische Summe
ohne konstanten Term ist. Daher kann man Gl. (62-10) sofort integrieren
und erhält :

Y (t) exp (- iWt) exp (iG0) P exp (- iG0) exp (iWt) (62-13)

Damit erhält man mit Gl. (62-6) und (62-9) für die Korrelationsfunktion

K (t)

K (t) Sp { e~lG e~,m e+lG° P e~iG° eim e,G P } (62-14)

Bezeichnen wir mit

G exp (~iH01) G (t) exp (iH01) (62-15)

und transformieren wir mit exp (— iH01) von der Wechselwirkungsdarstellung

wieder zur Heisenbergdarstellung zurück, so erhalten wir wegen
[H0,W] 0:

K (t) =Sp{ e~l lH°rW) ' eiG° Pe~'G° ei {"«+w) ' ¦ e'G Pe~lG} (62-16)
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In Kap. 64 werden wir beweisen (vgl. Gl. 64-16, 64-17), dass G0 G ist.
Entwickelt man den Operator G nach Potenzen von e

^ °° ^
g=27£"g»> (62~17)

n L

so findet man mit Gl. (22-11)

exp (IG) P exp (- iG) P - î e [P, GJ

- £2 j * [P, G2] + | [ [P, GJ, Gx j | + 0 (s3). (62-18)

Schreiben wir
~ °°
K exp (»G) P exp (- »G) ]T en Rn (62-19)

P0 P (62-20)

Rx =-i [p, GJ (62-21)

Ä, - - »" [^. GJ - i- [[P, GJ, Gx] (62-22)

Rn (t) exp { - i (H0 + IT) * } PM exp { i (H0 A W) t} (62-23)

so lautet die Korrelationsfunktion K (t) gemäss Gl. (62-16) :

K(t) Sp{R (t) R } (62-24)

oder entwickelt nach Potenzen von e

K (t) K0 + e Kx + e2 K2 + (62-25)

K0 =Sp{R0R0}=Sp{PP} (62-26)

Kx =2Sp{R0Rx} (62-27)

K, =2Sp{ R0 R2}ASp{RxRx}, (62-28)

was die gesuchte Entwicklung darstellt.

63. Die Struktur des Störoperators Hx in der Wechselwirkungsdarstellung

Wie man sofort sieht, hat Hx (t) von Gl. (62-2) immer folgende
allgemeine Form

Hx (t) exp (iH0t) IIx exp (- iH0t)

CA2jAncosvJ + 2J Bn sin vn t, (63-1)
jî= 1 n 1

wobei An, B„ und C konstante Operatoren sind. Ohne Einschränkung
der Allgemeinheit darf man natürlich voraussetzen, dass alle vn voneinander

verschieden und positiv sind :

vn * vm für n =1= m vn > 0 (63-2)
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Aus der Gleichung (63-1) ist zu entnehmen, dass C mit H0 vertauschbar
ist,

[C, H0] 0, (63-3)

und dass die Operatoren An, Bnm der Eigenbasis von H0 keine Diagonalelemente

aufweisen. Setzt man in (63-1) t 0, so folgt folgende
Zerlegung von Hx

Hx CA]TAn, (63-4)

wobei gilt :

Än exp (iH0t) An exp (- iH0t) An cos vj + Bn sin vj (63-5)

K (0) An

Durch ein- bzw. zweimalige Differentiation dieser Gleichung nach t folgt
für t 0

vn Bn i [H0, AJ (63-6)

vn An - i [H0, Bn] (63-7)

Mit Gl. (22-11) folgt damit

Bn (t) exp (iH01) Bn exp (-iH0i) Bn cos vnt - An sin vni (63-8)

K (0) Bn

Die durch die Operatoren von Gl. (63-1) erzeugte Liesche Algebra wird
somit z. B. von den Operatoren H0, C, Ax, A2, AN erzeugt und um-
fasst die Operatoren H0, C, An, Bm, [An, Am], [An, Bm] ,[Bn, Bm] usw.
(n, m 1, 2, N). Statt den Operatoren [A„, Bm], [An, Am], [Bn,
BJ] führt man bequemer folgende Linearkombinationen ein :

2 A-m [An, Bm] A [Bn, AJ (63-9)

2 A-m [An, BJ - [B„, AJ (63-10)

2 B+, - [An, AJ + [Bn, BJ (63-11)

2 B~m [An, AJ + [B„, BJ (63-12)

Damit folgt mit Gl. (63-5) und (63-8) in genauer Analogie zu diesen

Gleichungen :

ÄL (t) exp (iH0t) A~m exp (- iH0t)

Atm cos (vn ±vJtA B±m sin (vn ± vj t (63-13)

BÌm (t) exp (iH0t) B=m exp (- iH0t)

Btm cos (vn Avjl- Atm sin (vn ±vm)t. (63-14)
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Die zu Gl. (63-6) und (63-7) analogen Vertauschungsrelationen lauten:

(vn±vJBim= i[H0,AiJ (63-15)

K ± vj A=m - i [H0, J5±] (63-16)

Ganz analoge Relationen gelten für die höheren Kommutatoren. Ist / (t)
eine trigonometrische Summe ohne konstanten Term, so sei im folgenden
in dem Integral

t

f f (x) dx

die Integrationskonstante immer so bestimmt, dass das Integral wieder
eine trigonometrische Summe ohne konstanten Term ist. Mit der durch
Differentiation von (63-5) folgenden Relation

* [#o. 4J - v» (An sin vn t - Bn cos vn t) (63-17)

ergibt sich daher mit Gl. (63-5) und (63-6) für das im erwähnten Sinne

verstandene Integral von An:
t _

J An (x) dx=- (ijvl) [H0, An (t)] - (ljvA Bn (t) (63-18)

Genau analog findet man :

t _f Bn (x)dx= (ljvn)An(t) (63-19)

/ Ä*. (x) dx=- (vn ± O"1 Bim (t) (63-20)

/ P> (x) dx (vn + vj -1 Ätm W • (63-21)

Aus diesen Relationen ist ersichtlich, dass die Operatoren (63-18) bis
(63-21) und die analogen höheren integrierten Operatoren in der Eigenbasis

von Hn ebenso wie die Operatoren A B AA,, BEL usw. keine
u r n' n nm' nm

Diagonalterme aufweisen und zudem (per definitionem) trigonometrische
Summen ohne konstanten Term sind. Transformiert man diese Operatoren

von der Wechselwirkungsdarstellung zur Heisenberg-Darstellung
zurück, so resultieren alles explizite zeitunabhängige Operatoren. Es sei

51 der aus den Operatoren C, An, Bm (n, m 1, N) erzeugte
Kommutatorring, in dem die Kommutatorbildung, die Multiplikation mit
einem Skalar und die im erläuterten Sinne ausgeführte Integration über
Operatoren, die keine konstante Terme enthalten, zulässige Operationen
sind. Sei weiter 2 die durch die Operatoren //0, C, An (n 1, N)
erzeugte Liesche Algebra. Die oben abgeleiteten Relationen bedeuten
dann einfach, dass der Ring 9Î isomorph der Lieschen Algebra fi ist. Damit
folgt, dass sämtliche Operatoren aus 5R, die eine trigonometrische Summe
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ohne konstanten Term darstellen, in der Eigenbasis von H0 keine Dia-
gonalterme aufweisen und dass sämtliche zeitlich konstante Operatoren
aus fi mit H0 vertauschbar sind*).

64. Bestimmung der unitären Fransformation S
Aus

S (t) exp (- iG (t)) G (0) G0 (64-1)

erhält man durch Anwendung der bekannten Differentiationsformeln13)
für einen zeitabhängigen Operator (vgl. Gl. 22-11 und 22-12)

i
S?S - il #* G e-^G d«.= -i£ rL-^L Cs [G, G] (64-2)

o s " °

und somit mit Gl. (22-11) und (62-11)

W=Z~TLcs^Hx-Gj(sAl), G]. (64-3)
5-0

Aus dieser Gleichung bestimmen wir nun W und G so, dass W mit H0
vertauschbar und zeitunabhängig ist, und dass G in der Eigenbasis von
H0 keine Diagonalelemente enthält und eine trigonometrische Summe
ohne konstanten Term ist. Dass diese Bedingungen erfüllbar sind,
wurde in Kap. 63 gezeigt, falls man bei Integrationen die Integrationskonstante

so bestimmt, dass das Integral einer trigonometrischen Summe
ohne konstanten Term wiederum eine solche ergibt.

Durch Potenzreihenentwicklung nach e

W Z£"Wn> G £e"Gn (64-4)

kann man die Lösung von Gl. (64-3) durch Koeffizientenvergleich rekursiv

erhalten :

Wx A Gx Hx (64-5)

W2 +G2=-i [Hx - Gxj2, GJ - i [Wx + Gxj2, Gx] (64-6)

*) Für die Gültigkeit dieser Beziehungen ist es notwendig, dass die Integration
in SR in der angegebenen Weise durchgeführt wird. Die Integration

t

J f (x) dx
t

darf beispielsweise nicht als f f (x) dx definiert werden (was zu der an sich angeneh-
o

men Relation S (0) E Anlass gäbe). Dieser Sachverhalt wurde von H. S. Green11)
nicht beachtet, und er erhält so teilweise unrichtige Resultate.
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Die Ermittlung der höheren Näherungen macht keinerlei Schwierigkeiten.

Mit der Darstellung von Hx (t) nach Gl. (63-1) erhält man mit Gl.
(63-3) und (63-18) :

WX=C (64-7)
i

Gx f An (x) dx=-£(lj vn) B„ (t) (64-8)

Zur Berechnung der zweiten Näherung bestimmen wir mit Gl. (64-8),
(63-9) und (63-10) zunächst den folgenden Kommutator:

[Gi, Gx] - 27 (1 / vj [Än, BJ - 27 (1 / "J (Äim A Ä-J (64-9)
n, m n, m

Von den Operatoren Aim ist wegen (63-2) nach (63-13) lediglich A~n
ein konstanter Operator, so dass wegen [IT,-, H0] 0 aus (64-6) für 1T2

folgt, dass

w^î^w "«) ä- | 27 (V o iä. *J ¦ (64-10)

Wegen ^4 n+ 0 ergibt sich weiter aus (64-6), (64-8) und (64-9) :

G2 i f 27 (1 / »n) \W, Bn(x)] dx +1/27 / "J { JÌm (*) + Ä-m (X) } dx
n n=£m

und damit mit Gl. (63-19) und (63-20)

g2 * 27 <l Jn w - i 27 27 "-1 ("• ± "J-1 Bim • (64-11)

Transformieren wir gemäss Gl. (62-15) zur Heisenberg-Darstellung
zurück, so erhalten wir mit den obigen Relationen :

Wx C (64-12)

W2==\Z<(ljvn)[An,Bn] (64-13)
n

Gi =- Z(llvn)B„ (64-14)

G2= i £ v-2 An-\Z 27 ^1 ("» ± O"1 ß™ (64-15)
n n-\-m +,—

während man für G0n G„ (0) mit den Gl. (63-5), (63-8), (63-13) und
(63-14) findet :

G01 Gx (64-16)

G02 G2. (64-17)



Vol. 31, 1958 Eine Methode zur direkten Berechnung des Spektrums 433

65. Zusammenfassung der Näherungsmethode

Unter Benützung der in Kap. 63 und 64 abgeleiteten Resultate kann
man die Entwicklung (62-25) bis (62-28) wie folgt zusammenfassen:

a) Vom Hamilton-Operator H wird ein Stör-Operator Hx abgespalten

H H0 + e Hx.
b) Gemäss der Relation

exp (iH0t) Hx exp (-iH0t) C + £ An cos v„t + 27 Bn sin vj
n n

werden die zeitlich konstanten Operatoren An, Bn und C sowie die
Frequenzen vn berechnet. Diese Zerlegung ist eindeutig, wenn man beachtet,
dass v„ iz vm für n + m und vn > 0.

c) Die Korrelationsfunktion K (t) von Gl. (21-4) kann nach Potenzen
von e entwickelt werden

K(t)=K0(t)+sKx(l) + E2K2(t)+

wobei die Näherungen durch folgende Ausdrücke zu berechnen sind:

K0=Sp{PP}
Ki {Z(l/vn) Sp{P[P,Bn}}

n

K2= 2 Z(ljvn)2Sp{P[P,AA}
n

- Y 27 27 <" ("« ± O"1 SP j P [ P [B„, BJ + [An, AJ } |

- Z (llvnVm){sp\P [[P, BJ, Bm]\+ Sp {[P,Bn]-[P,Bj)\
n, m

Die durch ein ^-Zeichen angedeutete Transformation ist definiert
durch :

Z exp (- i (H0 + IT) t) Z exp (i (H0 + W) t) (Z P oder B„)

Der Operator W ist mit H0 vertauschbar und bis und mit zur zweiten
Näherung gegeben durch

W=C + ^2J(llv„)[An,Bn].
n

Bei dieser Näherungsmethode sind sowohl die Intensitäten als auch die
Frequenzen nach Potenzen von e entwickelt. Die Resultate sind somit
äquivalent mit denjenigen, die man nach der konventionellen Methode
durch störungstheoretische Behandlung des Eigenwertproblems des
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Hamilton-Operators H erhalten kann, doch wird der Arbeitsaufwand für
eine explizite Rechnung nach der hier beschriebenen Methode bedeutend
geringer sein.

Wir danken dem Schweizerischen Nationalfonds zur Förderung der
Wissenschaften (Projekt Nr. 721) und der Firma Hoffmann-La Roche

AG, Basel, für dit Unterstützung dieser Arbeit.
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